[go: up one dir, main page]

JP2009209507A - Pitch-based carbon fiber felt and heat insulating material containing carbon fiber - Google Patents

Pitch-based carbon fiber felt and heat insulating material containing carbon fiber Download PDF

Info

Publication number
JP2009209507A
JP2009209507A JP2008232296A JP2008232296A JP2009209507A JP 2009209507 A JP2009209507 A JP 2009209507A JP 2008232296 A JP2008232296 A JP 2008232296A JP 2008232296 A JP2008232296 A JP 2008232296A JP 2009209507 A JP2009209507 A JP 2009209507A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
based carbon
felt
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008232296A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
弘樹 佐野
Hiroshi Hara
寛 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008232296A priority Critical patent/JP2009209507A/en
Publication of JP2009209507A publication Critical patent/JP2009209507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pitch-based carbon fiber felt suitable for heat insulating materials excellent in durability. <P>SOLUTION: Provided is the pitch based carbon fiber felt which uses a mesophase pitch and has controlled the average fiber diameter, fiber diameter distribution and average fiber length, and provided is a heat insulating material containing a carbon fiber using the same. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ピッチ系炭素繊維フェルトの繊維径及び繊維径分布を規定した炭素繊維含有断熱材に関するものである。   The present invention relates to a carbon fiber-containing heat insulating material that defines the fiber diameter and fiber diameter distribution of pitch-based carbon fiber felt.

高性能の炭素繊維はポリアクリロニトリル(PAN)を原料とするPAN系炭素繊維と、一連のピッチ類を原料とするピッチ系炭素繊維に分類できる。炭素繊維は強度・弾性率、耐熱性、耐久性が通常の合成高分子に比較して著しく高いという特徴を利用し、様々な用途に用いられ、例えば各種の補強材や断熱材などとして使用されている。補強材としては、例えば、プラスチックの補強材として用いることにより、航空・宇宙用途、建築・土木用途、スポーツ・レジャー用途、電子・電気用品用途などの構成材料として広く用いられている。しかし、プラスチックを含む組成物である以上、耐火性については限界があり、用途が限定されている。   High-performance carbon fibers can be classified into PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from a series of pitches. Carbon fiber is used for various applications, for example, as various reinforcing materials and heat insulating materials, utilizing the characteristics that strength, elastic modulus, heat resistance and durability are remarkably higher than ordinary synthetic polymers. ing. As a reinforcing material, for example, by using it as a plastic reinforcing material, it is widely used as a constituent material for aerospace applications, construction / civil engineering applications, sports / leisure applications, electronic / electric appliance applications, and the like. However, as long as the composition contains a plastic, the fire resistance is limited, and its application is limited.

断熱材としては、例えば、半導体や機能性セラミックスなどの分野において、真空炉、半導体単結晶成長炉、セラミックス焼結炉、C/Cコンポジット焼成炉、金属処理炉などの高温処理炉の断熱材用充填材として使用されている。特許文献1には、高温処理炉の断熱材用充填材として、耐熱性にすぐれるメソフェーズピッチを用いたピッチ系炭素繊維フェルトが提案されている。   As a heat insulating material, for example, in the field of semiconductors and functional ceramics, for heat insulating materials of high temperature processing furnaces such as vacuum furnaces, semiconductor single crystal growth furnaces, ceramic sintering furnaces, C / C composite firing furnaces, metal processing furnaces, etc. Used as a filler. Patent Document 1 proposes a pitch-based carbon fiber felt using a mesophase pitch having excellent heat resistance as a filler for a heat insulating material in a high-temperature treatment furnace.

これらピッチ系炭素繊維フェルトを用いた断熱材は、ピッチ系炭素繊維フェルトをそのまま断熱材として用いる方法(特許文献1)と、ピッチ系炭素繊維よりなるウェブやフェルト、マット、クロス等に熱硬化性樹脂やピッチ等を含浸させ、これを加熱硬化させたのち、真空下又は不活性ガス雰囲気下で焼成する方法がある(特許文献2)。これらの方法はウェブやフェルトを連続的に処理できるので、生産性に優れた方法である。   The heat insulating material using these pitch-based carbon fiber felts is a method using the pitch-based carbon fiber felt as a heat insulating material as it is (Patent Document 1), and is thermosetting to webs, felts, mats, cloths, etc. made of pitch-based carbon fibers. There is a method of impregnating resin, pitch or the like, heat-curing the resin, and baking it under vacuum or in an inert gas atmosphere (Patent Document 2). Since these methods can continuously process webs and felts, they are excellent in productivity.

特開平5−195396号公報JP-A-5-195396 特開平7−41372号公報JP 7-41372 A

これら断熱材は高温状態という過酷な条件で使用されていることから、高い耐久性が求められている。中でも、充填材であるピッチ系炭素繊維フェルトが高温下でも酸化劣化しにくく、かつ複合材とした状態でも酸化劣化しにくいことが求められている。耐久性に優れる高温処理炉用が求められているという観点から、高温化でも酸化劣化しにくいピッチ系炭素繊維フェルト及びこれを用いた炭素繊維含有断熱材を提供することを本発明の目的とする。   Since these heat insulating materials are used under severe conditions such as a high temperature state, high durability is required. In particular, it is required that pitch-based carbon fiber felt as a filler is not easily oxidized and deteriorated even at a high temperature, and is not easily oxidized and deteriorated even in a composite material state. From the viewpoint that a high-temperature treatment furnace having excellent durability is required, it is an object of the present invention to provide a pitch-based carbon fiber felt that is not easily oxidized and deteriorated even at high temperatures and a carbon fiber-containing heat insulating material using the same. .

本発明者らは、強度に優れた断熱材を作成するための優れた充填材であるピッチ系炭素繊維フェルト及びこれを含んだ断熱材を提供することを鑑み、繊維長分布及び平均繊維径を制御したピッチ系炭素繊維フェルトを用いた断熱材が、断熱性に優れるだけではなく耐久性に優れたものとなることを見出し本発明に到達した。   In view of providing a pitch-based carbon fiber felt that is an excellent filler for creating a heat-insulating material having excellent strength and a heat-insulating material containing the same, the present inventors have determined the fiber length distribution and the average fiber diameter. The present inventors have found that a heat insulating material using a controlled pitch-based carbon fiber felt not only has excellent heat insulating properties but also has excellent durability.

即ち本発明はメソフェーズピッチを原料とし、平均繊維径が10〜20μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が5〜15であり、平均繊維長が20〜400mmであるピッチ系炭素繊維フェルト、およびその製造方法である。   That is, the present invention uses a mesophase pitch as a raw material, has an average fiber diameter of 10 to 20 μm, a fiber diameter dispersion percentage with respect to the average fiber diameter (CV value) of 5 to 15, and an average fiber length of 20 to 400 mm. Carbon fiber felt and a method for producing the same.

更に、本発明は前述のピッチ系炭素繊維フェルト100重量部と炭化物50〜1000重量部とが複合していることを特徴とする炭素繊維含有断熱材、およびその製造方法を包含する。   Furthermore, the present invention includes a carbon fiber-containing heat insulating material characterized in that 100 parts by weight of the pitch-based carbon fiber felt and 50 to 1000 parts by weight of carbide are combined, and a method for producing the same.

本発明のピッチ系炭素繊維フェルトは、ピッチ系炭素繊維の平均繊維径、繊維径分布、平均繊維長を適切な範囲に制御したものであり、これを用いた炭素繊維含有断熱材は断熱性に優れるだけでなく耐久性に優れたもの、すなわち耐酸化性に優れたものになる。これにより本発明のピッチ系炭素繊維フェルトから、高温処理炉用断熱材が好適に提供できる。   The pitch-based carbon fiber felt of the present invention is one in which the average fiber diameter, fiber diameter distribution, and average fiber length of the pitch-based carbon fiber are controlled within an appropriate range, and the carbon fiber-containing heat insulating material using this has a heat insulation property Not only excellent, but also excellent in durability, that is, excellent in oxidation resistance. Thereby, the heat insulating material for high temperature processing furnaces can be suitably provided from the pitch-based carbon fiber felt of the present invention.

以下に、本発明の実施の形態について順次説明する。
本発明のピッチ系炭素繊維フェルトを構成する炭素繊維の平均繊維径は10〜20μmであることが必要である。平均繊維径が10μm未満の場合には、単位重量当りの炭素繊維の本数が多くなり、比表面積が大きくなる。比表面積がある程度の数値を超えると、酸化による劣化を受ける面積が大きくなり耐酸化性に劣ることになる。また、平均繊維径が細いことから、少量の劣化でも炭素繊維の強度に大きく影響することになり、耐酸化性に劣ることになる。更に、ピッチ系炭素繊維フェルトの状態にした時、フェルト内部の空隙が小さく、フェルトが密な状態になるため樹脂と複合化する際に、樹脂がフェルト内部にまで浸透しにくく、複合材の内部に空隙が発生しやすくなり、空隙にたまった空気がきっかけで高温時の酸化劣化が促進されることになる。この効果は、複合する樹脂の粘度が高いほど、顕著に現れる。逆に平均繊維径が20μmを超えると、単位重量当りの繊維の本数がかなり減るため、ピッチ系炭素繊維フェルトの目付けムラが発生しやすくなり、耐酸化性や強度が均一でなくなる。平均繊維径はより好ましくは10〜15μmである。
Hereinafter, embodiments of the present invention will be sequentially described.
The average fiber diameter of the carbon fibers constituting the pitch-based carbon fiber felt of the present invention is required to be 10 to 20 μm. When the average fiber diameter is less than 10 μm, the number of carbon fibers per unit weight increases and the specific surface area increases. When the specific surface area exceeds a certain value, the area subjected to deterioration due to oxidation becomes large and the oxidation resistance is poor. In addition, since the average fiber diameter is thin, even a small amount of deterioration greatly affects the strength of the carbon fiber, resulting in poor oxidation resistance. Furthermore, when the pitch-based carbon fiber felt is made, the void inside the felt is small and the felt becomes dense, so that when the resin is combined with the resin, the resin is less likely to penetrate into the felt, and the inside of the composite material Air gaps are easily generated in the air, and the oxidative deterioration at high temperatures is promoted by the air accumulated in the air gaps. This effect becomes more prominent as the viscosity of the composite resin increases. On the other hand, if the average fiber diameter exceeds 20 μm, the number of fibers per unit weight is considerably reduced. Therefore, unevenness in the weight of the pitch-based carbon fiber felt is likely to occur, and the oxidation resistance and strength are not uniform. The average fiber diameter is more preferably 10 to 15 μm.

なお、平均繊維径に対する繊維径分散の百分率として求められるCV値は、5〜15であることが必要である。CV値が5を下回ると、繊維径が非常に均等になるため、繊維と繊維の間に入り込む繊維径が低いフィラーが減ることになり、ピッチ系炭素繊維フェルトの嵩密度が上がりにくくなり、ピッチ系炭素繊維フェルトの強度が低下する。また、CV値が15を超えると、繊維径の分布が広くなる事を意味し、耐酸化性の低い細い繊維径を多く含むことになる。CV値を制御する方法として特に限定は無いが、メルトブロー法においては紡糸時の粘度をある程度高くすることで、紡糸時の延伸効果を一定に制御できるようになり、繊維径が揃うすなわちCV値を制御することができる。   In addition, the CV value calculated | required as a percentage of fiber diameter dispersion | distribution with respect to an average fiber diameter needs to be 5-15. When the CV value is less than 5, the fiber diameter becomes very uniform, so the number of fillers with a low fiber diameter entering between the fibers decreases, and the bulk density of the pitch-based carbon fiber felt is difficult to increase, and the pitch The strength of the carbon fiber felt decreases. On the other hand, when the CV value exceeds 15, it means that the fiber diameter distribution becomes wide, and many thin fiber diameters with low oxidation resistance are included. Although there is no particular limitation on the method for controlling the CV value, in the melt blow method, by increasing the viscosity at the time of spinning to some extent, the drawing effect at the time of spinning can be controlled to a constant value, that is, the fiber diameter is uniform, that is, the CV value is Can be controlled.

本発明のピッチ系炭素繊維フェルトを構成する炭素繊維の平均繊維長は20〜400mmであることが必要である。平均繊維長が20mmより短いと、ピッチ系炭素繊維同士の交絡が減りピッチ系炭素繊維フェルトの強度が低くなる。逆に平均繊維長が400mmより大きくなると、ピッチ系炭素繊維フェルトの嵩密度が小さくなり、耐火性が低下する傾向になる。本発明においてはメルトブロー法によりピッチ系炭素繊維前駆体ウェブを得、これをクロスラップして積層ウェブを得る。この積層ウェブ間の交絡による強度を得るには、平均繊維長がある程度短いほうが望ましい。この積層ウェブ間の交絡を得るのに好適な繊維長の下限は20mmであり、好ましくは40mmであり、さらに好ましくは60mmである。繊維長の上限は400mmであり、好ましくは150mmである。以上の理由を総合して考えると、炭素繊維の平均繊維長は40〜150mmである事が好適である。平均繊維長を制御する方法として特に限定は無いが、メルトブロー法においては紡糸時の粘度をある程度高くすることで、紡糸時の延伸効果が高くなり繊維長が長くなる傾向がある。   The average fiber length of the carbon fibers constituting the pitch-based carbon fiber felt of the present invention is required to be 20 to 400 mm. When the average fiber length is shorter than 20 mm, the entanglement between the pitch-based carbon fibers decreases and the strength of the pitch-based carbon fiber felt decreases. On the contrary, when the average fiber length is larger than 400 mm, the bulk density of the pitch-based carbon fiber felt becomes small and the fire resistance tends to be lowered. In the present invention, a pitch-based carbon fiber precursor web is obtained by a melt blow method, and this is cross-wrapped to obtain a laminated web. In order to obtain the strength due to the entanglement between the laminated webs, it is desirable that the average fiber length is somewhat short. The lower limit of the fiber length suitable for obtaining the entanglement between the laminated webs is 20 mm, preferably 40 mm, and more preferably 60 mm. The upper limit of the fiber length is 400 mm, preferably 150 mm. Considering the above reasons as a whole, the average fiber length of the carbon fibers is preferably 40 to 150 mm. The method for controlling the average fiber length is not particularly limited. However, in the melt blow method, by increasing the viscosity at the time of spinning to some extent, the stretching effect at the time of spinning tends to increase and the fiber length tends to increase.

以下本発明のピッチ系炭素繊維フェルトの好ましい製造法について述べる。
本発明で用いられるピッチ系炭素短繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特にメソフェーズピッチが好ましい。メソフェーズピッチのメソフェーズ率としては少なくとも90%以上、より好ましくは95%以上、更に好ましくは99%以上である。なお、メソフェーズピッチのメソフェーズ率は、溶融状態にあるピッチを偏光顕微鏡で観察することで確認出来る。
Hereinafter, a preferred method for producing the pitch-based carbon fiber felt of the present invention will be described.
Examples of the raw material for pitch-based carbon short fibers used in the present invention include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum-based pitch and coal-based pitch. Among these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and mesophase pitch is particularly preferable. The mesophase ratio of the mesophase pitch is at least 90% or more, more preferably 95% or more, and further preferably 99% or more. The mesophase ratio of the mesophase pitch can be confirmed by observing the pitch in the molten state with a polarizing microscope.

更に、原料ピッチの軟化点としては、230℃以上340℃以下が好ましい。不融化処理は、軟化点よりも低温で処理する必要がある。このため、軟化点が230℃より低いと、少なくとも軟化点未満の低い温度で不融化処理する必要があり、結果として不融化に長時間を要するため好ましくない。一方、軟化点が340℃を超えると、紡糸に340℃を超える高温が必要となり、ピッチの熱分解を引き起こし、発生したガスで糸に気泡が発生するなどの問題を生じるため好ましくない。軟化点のより好ましい範囲は250℃以上320℃以下、更に好ましくは260℃以上310℃以下である。なお、原料ピッチの軟化点はメトラー法により求めることが出来る。原料ピッチは、二種以上を適宜組み合わせて用いてもよい。組み合わせる原料ピッチのメソフェーズ率は少なくとも90%以上であり、軟化点が230℃以上340℃以下であることが好ましい。   Furthermore, the softening point of the raw material pitch is preferably 230 ° C. or higher and 340 ° C. or lower. The infusibilization treatment needs to be performed at a temperature lower than the softening point. For this reason, when the softening point is lower than 230 ° C., it is necessary to perform the infusibilization treatment at a temperature at least lower than the softening point. On the other hand, if the softening point exceeds 340 ° C., a high temperature exceeding 340 ° C. is required for spinning, which causes thermal decomposition of the pitch and causes problems such as generation of bubbles in the yarn due to the generated gas. A more preferable range of the softening point is 250 ° C. or higher and 320 ° C. or lower, and more preferably 260 ° C. or higher and 310 ° C. or lower. The softening point of the raw material pitch can be obtained by the Mettler method. Two or more raw material pitches may be used in appropriate combination. The mesophase ratio of the raw material pitch to be combined is preferably at least 90% or more, and the softening point is preferably 230 ° C. or higher and 340 ° C. or lower.

メソフェーズピッチを溶融紡糸した後、不融化、焼成を経て最後にニードルパンチすることによってピッチ系炭素繊維フェルトとする。   After melt spinning the mesophase pitch, through infusibilization and firing, needle punching is finally performed to obtain a pitch-based carbon fiber felt.

本発明における紡糸方法には、特に制限はないが、所謂溶融紡糸法を適応することができる。具体的には、口金から吐出したメソフェーズピッチをワインダーで引き取る通常の紡糸延伸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用してメソフェーズピッチを引き取る遠心紡糸法などが挙げられる。中でも、紡糸直後に繊維同士が絡み合ってウェブ状となり、フェルト化する際に工程上有利であることから、メルトブロー法を用いるのが好ましい。   The spinning method in the present invention is not particularly limited, but a so-called melt spinning method can be applied. Specific examples include a normal spinning drawing method in which a mesophase pitch discharged from a die is drawn with a winder, a melt blow method using hot air as an atomizing source, and a centrifugal spinning method in which a mesophase pitch is drawn using centrifugal force. Among them, it is preferable to use the melt blow method because fibers are intertwined immediately after spinning to form a web, which is advantageous in terms of process when forming a felt.

本発明では、ピッチ系炭素繊維前駆体を形成する紡糸ノズルの形状はどのようなものであっても良い。通常真円状のものが使用されるが、適時楕円などの異型形状のノズルを用いても何ら問題ない。ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)としては、2〜20の範囲が好ましい。LN/DNが20を超えると、ノズルを通過するメソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造が発現する。ラジアル構造の発現は、高温処理の過程で炭素繊維断面に割れを生じさせることがあり、機械特性の低下を引き起こすことがあるため好ましくない。一方、LN/DNが2未満では、原料ピッチにせん断を付与することが出来ず、結果として配向が低いピッチ系炭素繊維前駆体となる。このため、耐熱性を十分に上げることが出来ず、断熱材として好ましくない。機械強度と熱伝導性の両立を達成するには、メソフェーズピッチに適度のせん断を付与する必要がある。このため、ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)は2〜20の範囲が好ましく、更には3〜12の範囲が特に好ましい。   In the present invention, the spinning nozzle forming the pitch-based carbon fiber precursor may have any shape. Normally, a perfect circle is used, but there is no problem even if a nozzle having an irregular shape such as an ellipse is used in a timely manner. The ratio of the nozzle hole length (LN) to the hole diameter (DN) (LN / DN) is preferably in the range of 2-20. When LN / DN exceeds 20, a strong shearing force is imparted to the mesophase pitch passing through the nozzle, and a radial structure appears in the fiber cross section. The expression of the radial structure is not preferable because it may cause a crack in the cross section of the carbon fiber during the high temperature treatment and may cause a decrease in mechanical properties. On the other hand, if LN / DN is less than 2, shearing cannot be imparted to the raw material pitch, resulting in a pitch-based carbon fiber precursor having a low orientation. For this reason, heat resistance cannot fully be raised and it is not preferable as a heat insulating material. In order to achieve both mechanical strength and thermal conductivity, it is necessary to apply appropriate shear to the mesophase pitch. For this reason, the ratio (LN / DN) of the nozzle hole length (LN) to the hole diameter (DN) is preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.

紡糸時のノズルの温度、メソフェーズピッチがノズルを通過する際のせん断速度、ノズルからブローされる風量、風の温度等についても特に制約はなく、安定した紡糸状態が維持できる条件、即ち、メソフェーズピッチのノズル孔での溶融粘度が5〜25Pa・sの範囲にあれば良い。   There are no particular restrictions on the temperature of the nozzle during spinning, the shear rate when the mesophase pitch passes through the nozzle, the amount of air blown from the nozzle, the temperature of the wind, etc. The melt viscosity at the nozzle hole may be in the range of 5 to 25 Pa · s.

ノズルを通過するメソフェーズピッチの溶融粘度が5Pa・s未満の場合、溶融粘度が低すぎて溶融状態にあるメソフェーズピッチに均一なドラフトがかかりにくくなり、CV値が大きくなる傾向にある。一方、メソフェーズピッチの溶融粘度が25Pa・sを超える場合、メソフェーズピッチに強いせん断力が付与され、高温で処理する際に配列がすすみやすく、ピッチ系炭素繊維が割れやすくなる。メソフェーズピッチに付与するせん断力を適切な範囲にせしめ、かつ繊維形状を維持するためには、ノズルを通過するメソフェーズピッチの溶融粘度を制御する必要がある。このため、メソフェーズピッチの溶融粘度を5〜25Pa・sの範囲にするのが好ましく、更には5〜20Pa・sの範囲にすることが好ましい。   When the melt viscosity of the mesophase pitch passing through the nozzle is less than 5 Pa · s, the melt viscosity is too low and it becomes difficult to apply a uniform draft to the mesophase pitch in the molten state, and the CV value tends to increase. On the other hand, when the melt viscosity of the mesophase pitch exceeds 25 Pa · s, a strong shearing force is imparted to the mesophase pitch, the alignment is easy to proceed when processing at a high temperature, and the pitch-based carbon fibers are easily broken. In order to keep the shearing force applied to the mesophase pitch within an appropriate range and maintain the fiber shape, it is necessary to control the melt viscosity of the mesophase pitch passing through the nozzle. For this reason, the melt viscosity of the mesophase pitch is preferably in the range of 5 to 25 Pa · s, and more preferably in the range of 5 to 20 Pa · s.

本発明のピッチ系炭素繊維フェルトは、平均繊維径(D1)が10〜20μm以下であることを特徴とするが、ピッチ系炭素繊維フェルトの平均繊維径の制御は、ノズルの孔径を変更する、あるいはノズルからの原料ピッチの吐出量を変更する、あるいはドラフト比を変更することで調整可能である。ドラフト比の変更は、100〜400℃に加温された毎分100〜20000mの線速度のガスを細化点近傍に吹き付けることによって達成することができる。吹き付けるガスに特に制限は無いが、コストパフォーマンスと安全性の面から空気が望ましい。   The pitch-based carbon fiber felt of the present invention is characterized in that the average fiber diameter (D1) is 10 to 20 μm or less, but the control of the average fiber diameter of the pitch-based carbon fiber felt changes the hole diameter of the nozzle. Or it can adjust by changing the discharge amount of the raw material pitch from a nozzle, or changing a draft ratio. The draft ratio can be changed by blowing a gas having a linear velocity of 100 to 20000 m / minute heated to 100 to 400 ° C. in the vicinity of the thinning point. There is no particular restriction on the gas to be blown, but air is desirable from the viewpoint of cost performance and safety.

ピッチ系炭素繊維前駆体は、金網等のベルトに捕集されピッチ系炭素繊維前駆体ウェブとなる。その際、ベルト搬送速度により任意の目付量に調整できるが、必要に応じ、クロスラップ等の方法により積層させてもよい。ピッチ系炭素繊維前駆体ウェブの目付量は生産性及び工程安定性を考慮して、150〜1000g/mが好ましい。
ノズル孔から出糸されたピッチ繊維は、100〜350℃に加温された毎分100〜10000mの線速度のガスを細化点近傍に吹き付けることによって短繊維化される。吹き付けるガスは空気、窒素、アルゴンを用いることができるが、コストパフォーマンスの点から空気が好ましい。
The pitch-based carbon fiber precursor is collected on a belt such as a wire mesh to form a pitch-based carbon fiber precursor web. At that time, the weight per unit area can be adjusted according to the belt conveyance speed, but if necessary, it may be laminated by a method such as cross wrapping. The basis weight of the pitch-based carbon fiber precursor web is preferably 150 to 1000 g / m 2 in consideration of productivity and process stability.
The pitch fibers drawn out from the nozzle holes are shortened by blowing a gas having a linear velocity of 100 to 10,000 m per minute heated to 100 to 350 ° C. in the vicinity of the thinning point. As the gas to be blown, air, nitrogen, or argon can be used, but air is preferable from the viewpoint of cost performance.

このようにして得られたピッチ系炭素繊維前駆体ウェブは、公知の方法で不融化処理し、ピッチ系不融化繊維ウェブにする。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いた酸化性雰囲気下で実施できるが、安全性、利便性を考慮すると空気中で実施することが望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すると連続処理が望ましい。不融化処理は150〜350℃の温度で、一定時間の熱処理を付与することで達成される。より好ましい温度範囲は、160〜340℃である。昇温速度は1〜15℃/分が好適に用いられ、連続処理の場合は任意の温度に設定した複数の反応室を順次通過させることで、上記昇温速度を達成できる。昇温速度のより好ましい範囲は、生産性及び工程安定性を考慮して、3〜9℃/分である。   The pitch-based carbon fiber precursor web thus obtained is infusibilized by a known method to form a pitch-based infusible fiber web. Infusibilization can be performed in air or in an oxidizing atmosphere using a gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine is added to air, but in consideration of safety and convenience, it is performed in air. It is desirable. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity. The infusibilization treatment is achieved by applying a heat treatment for a predetermined time at a temperature of 150 to 350 ° C. A more preferable temperature range is 160 to 340 ° C. A heating rate of 1 to 15 ° C./min is preferably used. In the case of continuous treatment, the above heating rate can be achieved by sequentially passing through a plurality of reaction chambers set at arbitrary temperatures. A more preferable range of the heating rate is 3 to 9 ° C./min in consideration of productivity and process stability.

ピッチ系不融化繊維ウェブは、600〜1500℃の温度で、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気中で炭化処理され、ピッチ系炭素繊維ウェブになる。炭化処理は、コスト面を考慮して、常圧かつ窒素雰囲気下での処理が望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すれば連続処理が望ましい。   The pitch-based infusible fiber web is carbonized at a temperature of 600 to 1500 ° C. in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, krypton, etc., to become a pitch-based carbon fiber web. . Carbonization treatment is preferably performed at normal pressure and in a nitrogen atmosphere in consideration of cost. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity.

ピッチ系炭素繊維ウェブのフェルト化処理に用いる手法として特に制限はないが、ニードルパンチ処理,ウオータージェット処理等の交絡を増やす手段あるいは接着剤により繊維間を固定する方法等の接着手段などがあるが、操作が簡便であることや、効率的に処理できることから、ニードルパンチ処理が好ましい。フェルト化の際にニードルパンチを行う場合、ニードルパンチ密度は、3〜120パンチ/cm2 であることが好ましい。ニードルパンチ密度が3パンチ/cm2 未満と少ない場合、得られるフェルトの強度が低く、寸法安定性,ハンドリング性が悪くなる。逆に120パンチ/cmとフェルト化処理を多くしすぎると、炭素繊維の損傷が多くなり、フェルト強度が低下し好ましくない。より好ましくは10〜40パンチ/cmである。 There are no particular restrictions on the method used to felt the pitch-based carbon fiber web, but there are means for increasing confounding, such as needle punching and water jet treatment, or bonding means such as a method for fixing the fibers with an adhesive. Needle punch processing is preferable because of its simple operation and efficient processing. When needle punching is performed during felting, the needle punch density is preferably 3 to 120 punches / cm 2 . When the needle punch density is less than 3 punches / cm 2 , the strength of the felt obtained is low, and the dimensional stability and handling properties deteriorate. Conversely, if the felting treatment is excessively increased to 120 punches / cm 2 , damage to the carbon fibers increases, and the felt strength decreases, which is not preferable. More preferably, it is 10-40 punch / cm < 2 >.

ピッチ系炭素繊維フェルトの嵩密度は、用途に応じて選択でき、1〜30kg/m3であることが好ましい。嵩密度が高いと、断熱性が低下する傾向があり、嵩密度が低いと、耐火性が低下する傾向がある。 The bulk density of the pitch-based carbon fiber felt can be selected according to the application, and is preferably 1 to 30 kg / m 3 . When the bulk density is high, the heat insulating property tends to decrease, and when the bulk density is low, the fire resistance tends to decrease.

ピッチ系炭素繊維フェルトの厚みは、用途によって選択すればよく、特に限定されないが、例えば、1〜100mm、好ましくは5〜50mm程度である。   The thickness of the pitch-based carbon fiber felt may be selected depending on the application and is not particularly limited, but is, for example, about 1 to 100 mm, preferably about 5 to 50 mm.

断熱材の製造方法に特に制限は無いが、ピッチ系炭素繊維フェルトを熱硬化性樹脂に含浸し、熱硬化性樹脂を硬化させ成形体を得た後、成形体を500〜2200℃で熱処理してフェルトと炭化物との複合体を得る方法が挙げられる。具体的には、炭素繊維フェルトにフェノール樹脂等の熱硬化性樹脂を含浸し、通常、加圧成型した後に、100〜250℃程度で熱硬化して成形体を得、次いで、炭化処理を行なうことによって炭素繊維含有断熱材を得ることができる。この時の炭化処理の温度は800℃以上2000℃以下が好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of a heat insulating material, After impregnating pitch type carbon fiber felt in a thermosetting resin and hardening a thermosetting resin and obtaining a molded object, the molded object is heat-processed at 500-2200 degreeC. And a method of obtaining a composite of felt and carbide. Specifically, a carbon fiber felt is impregnated with a thermosetting resin such as a phenol resin, and usually molded under pressure, and then thermoset at about 100 to 250 ° C. to obtain a molded body, and then carbonized. Thus, a carbon fiber-containing heat insulating material can be obtained. The carbonization temperature at this time is preferably 800 ° C. or higher and 2000 ° C. or lower.

断熱材はピッチ系炭素繊維フェルト100重量部に対し、炭化物50〜1000重量部含む。ここでの炭化物は上述の熱硬化性樹脂の炭化処理によって得られた成分を意味する。炭化物が50重量部を下回る場合、ピッチ系炭素繊維フェルトの空隙が少ないことを意味し、すなわちピッチ系炭素繊維フェルトの嵩密度が高いことになり、断熱性の低下を招く。逆に炭化物が1000重量部を上回る場合、断熱材のほとんどが熱硬化性樹脂由来の炭化物で、耐酸化性の期待できるピッチ系炭素繊維フェルトが少ないことになり、望ましくない。好ましくはピッチ系炭素繊維フェイルと100重量部に対し、炭化物100〜700重量部である。炭化物とピッチ系炭素繊維フェルトの重量比は、得られた複合物の重量から予め測定しておいたピッチ系炭素繊維フェルトの重量を差し引くことで、炭化物の重量を求め、そこから算出することができる。   The heat insulating material contains 50 to 1000 parts by weight of carbide with respect to 100 parts by weight of pitch-based carbon fiber felt. The carbide | carbonized_material here means the component obtained by the carbonization process of the above-mentioned thermosetting resin. When the carbide content is less than 50 parts by weight, it means that there are few voids in the pitch-based carbon fiber felt, that is, the bulk density of the pitch-based carbon fiber felt is high, resulting in a decrease in heat insulation. Conversely, when the carbide exceeds 1000 parts by weight, most of the heat insulating material is a carbide derived from a thermosetting resin, and the pitch-based carbon fiber felt that can be expected to have oxidation resistance is small, which is not desirable. Preferably, the amount of carbide is 100 to 700 parts by weight based on 100 parts by weight of the pitch-based carbon fiber fail. The weight ratio of the carbide and the pitch-based carbon fiber felt is obtained by subtracting the weight of the pitch-based carbon fiber felt measured in advance from the weight of the obtained composite to obtain the weight of the carbide and calculating from the weight. it can.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、本実施例における各値は、以下の方法に従って求めた。
(1)ピッチ系炭素繊維の平均繊維径はフェルトから抜き取ったピッチ系炭素繊維をJIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
(2)ピッチ系炭素繊維の平均繊維長は、フェルトからピッチ系炭素繊維を抜き取り、定規で60本測定し、その平均値から求めた。
(3)ピッチ系炭素繊維フェルトの耐久性を、TGA(理学電機製、TG8120)で空気気流下で測定し、重量減少開始点を求めた。
(4)断熱材の引張強度は、大型特性試験装置(東洋ボールドウィン製、SS−207−5P)で測定した。
(5)フェノール系樹脂との複合材の断面は、走査型電子顕微鏡で1000倍の倍率で観察し、空隙を確認した。
(6)断熱材の熱伝導率は、京都電子製QTM−500を用いプローブ法で求めた。
(7)炭化物とピッチ系炭素繊維フェルトの重量比は、得られた複合物の重量から予め測定しておいたピッチ系炭素繊維フェルトの重量を差し引くことで、炭化物の重量を求め、そこから算出した。
Examples are shown below, but the present invention is not limited thereto.
In addition, each value in a present Example was calculated | required according to the following method.
(1) The average fiber diameter of the pitch-based carbon fibers was determined from the average value of 60 pitch-based carbon fibers extracted from the felt according to JIS R7607 using a scale under an optical microscope.
(2) The average fiber length of the pitch-based carbon fibers was determined from the average value of 60 pitch-based carbon fibers extracted from the felt, measured with a ruler.
(3) The durability of the pitch-based carbon fiber felt was measured with TGA (manufactured by Rigaku Corporation, TG8120) under an air stream to determine the weight reduction starting point.
(4) The tensile strength of the heat insulating material was measured with a large-scale characteristic test apparatus (SS-207-5P, manufactured by Toyo Baldwin).
(5) The cross section of the composite material with the phenol-based resin was observed with a scanning electron microscope at a magnification of 1000 to confirm voids.
(6) The thermal conductivity of the heat insulating material was obtained by the probe method using Kyoto Electronics QTM-500.
(7) The weight ratio of the carbide and the pitch-based carbon fiber felt is calculated from the weight of the carbide by subtracting the weight of the pitch-based carbon fiber felt measured in advance from the weight of the obtained composite. did.

[実施例1]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。導入角α35℃、吐出口の径D0.2mm、吐出口長さL2mm(L/D=10)のキャップを使用し、吐出口における光学異方性のピッチ温度327℃で、スリットから350℃の加熱空気を毎分5500mの線速度で噴出させて、溶融ピッチを牽引して平均繊維径12.0μmのピッチ系繊維を作製した。この時の溶融ピッチの粘度は18.2Pa・S(182poise)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付380g/mのピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
このピッチ系炭素繊維前駆体ウェブを空気中で170℃から285℃まで平均昇温速度3℃/分で昇温して不融化、更に800℃、酸素濃度50ppmの条件下で30分間焼成を行った。得られたピッチ系炭素繊維ウェブをニードルパンチ密度100パンチ/cmで処理を行い、ピッチ系炭素繊維フェルトを得た。
焼成後のピッチ系炭素繊維フェルト中のピッチ系ピッチ系炭素繊維の平均繊維径は10.7μm、CV値が9.3、平均繊維長は120mmであった。また、TGAによる重量減少開始点は550℃であった。
[Example 1]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a cap with an introduction angle α35 ° C., a discharge port diameter D of 0.2 mm, and a discharge port length L2 mm (L / D = 10), the optical anisotropy pitch temperature at the discharge port is 327 ° C., and 350 ° C. from the slit. Heated air was ejected at a linear velocity of 5500 m / min, and the melt pitch was pulled to produce pitch fibers having an average fiber diameter of 12.0 μm. At this time, the viscosity of the melt pitch was 18.2 Pa · S (182 poise). The spun fibers were collected on a belt to form a mat, and a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 380 g / m 2 by cross-wrapping.
This pitch-based carbon fiber precursor web was heated in air from 170 ° C. to 285 ° C. at an average heating rate of 3 ° C./min to be infusible, and further fired for 30 minutes at 800 ° C. and an oxygen concentration of 50 ppm. It was. The obtained pitch-based carbon fiber web was processed at a needle punch density of 100 punch / cm 2 to obtain a pitch-based carbon fiber felt.
The average fiber diameter of the pitch-based carbon fiber in the pitch-based carbon fiber felt after firing was 10.7 μm, the CV value was 9.3, and the average fiber length was 120 mm. The starting point of weight loss by TGA was 550 ° C.

[実施例2]
実施例1において、加熱空気の線速度を毎分4500mにした以外は同様の方法で、ピッチ系炭素繊維フェルトを作成した。
焼成後のピッチ系炭素繊維フェルト中のピッチ系炭素繊維の平均繊維径は12.9μm、CV値が8.7、平均繊維長は90mmであった。また、TGAによる重量減少開始点は550℃であった。
[Example 2]
In Example 1, a pitch-based carbon fiber felt was prepared in the same manner except that the linear velocity of the heated air was changed to 4500 m / min.
The average fiber diameter of the pitch-based carbon fibers in the pitch-based carbon fiber felt after firing was 12.9 μm, the CV value was 8.7, and the average fiber length was 90 mm. The starting point of weight loss by TGA was 550 ° C.

[実施例3]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。導入角α35℃、吐出口の径D0.2mm、吐出口長さL2mm(L/D=10)のキャップを使用し、吐出口における光学異方性のピッチ温度335℃で、スリットから355℃の加熱空気を毎分6000mの線速度で噴出させて、溶融ピッチを牽引して平均繊維径13.0μmのピッチ系繊維を作製した。この時の溶融ピッチの粘度は10.5Pa・S(105poise)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付420g/mのピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
このピッチ系炭素繊維前駆体ウェブを空気中で180℃から320℃まで平均昇温速度5℃/分で昇温して不融化、更に800℃、酸素濃度50ppmの条件下で30分間焼成を行った。得られたピッチ系炭素繊維ウェブをニードルパンチ密度100パンチ/cmで処理を行い、ピッチ系炭素繊維フェルトを得た。
焼成後のピッチ系炭素繊維フェルト中のピッチ系炭素繊維の平均繊維径は11.5μm、CV値が10.7、平均繊維長は40mmであった。また、TGAによる重量減少開始点は550℃であった。
[Example 3]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a cap with an introduction angle α of 35 ° C., a discharge port diameter of D 0.2 mm, and a discharge port length of L 2 mm (L / D = 10), the optical anisotropy pitch temperature at the discharge port is 335 ° C. Heated air was spouted at a linear velocity of 6000 m / min to pull the melt pitch to produce pitch fibers with an average fiber diameter of 13.0 μm. At this time, the melt pitch had a viscosity of 10.5 Pa · S (105 poise). The spun fibers were collected on a belt to form a mat, and a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 420 g / m 2 by cross-wrapping.
This pitch-based carbon fiber precursor web is heated from 180 ° C. to 320 ° C. at an average heating rate of 5 ° C./min to be infusible, and further fired for 30 minutes at 800 ° C. and an oxygen concentration of 50 ppm. It was. The obtained pitch-based carbon fiber web was processed at a needle punch density of 100 punch / cm 2 to obtain a pitch-based carbon fiber felt.
The average fiber diameter of the pitch-based carbon fibers in the pitch-based carbon fiber felt after firing was 11.5 μm, the CV value was 10.7, and the average fiber length was 40 mm. The starting point of weight loss by TGA was 550 ° C.

[実施例4]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。導入角α35℃、吐出口の径D0.2mm、吐出口長さL2mm(L/D=10)のキャップを使用し、吐出口における光学異方性のピッチ温度327℃で、スリットから350℃の加熱空気を毎分5000mの線速度で噴出させて、溶融ピッチを牽引して平均繊維径13.0μmのピッチ系繊維を作製した。この時の溶融ピッチの粘度は18.2Pa・S(182poise)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付380g/mのピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
このピッチ系炭素繊維前駆体ウェブを空気中で170℃から335℃まで平均昇温速度6℃/分で昇温して不融化、更に800℃、酸素濃度30ppmの条件下で30分間焼成を行った。得られたピッチ系炭素繊維ウェブをニードルパンチ密度16パンチ/cmで処理を行い、ピッチ系炭素繊維フェルトを得た。
焼成後のピッチ系炭素繊維フェルト中のピッチ系炭素繊維の平均繊維径は11.2μm、CV値が9.1、平均繊維長は150mmであった。また、TGAによる重量減少開始点は550℃であった。
[Example 4]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a cap with an introduction angle α35 ° C., a discharge port diameter D of 0.2 mm, and a discharge port length L2 mm (L / D = 10), the optical anisotropy pitch temperature at the discharge port is 327 ° C., and 350 ° C. from the slit. Heated air was spouted at a linear velocity of 5000 m / min, and the melt pitch was pulled to produce pitch fibers having an average fiber diameter of 13.0 μm. At this time, the viscosity of the melt pitch was 18.2 Pa · S (182 poise). The spun fibers were collected on a belt to form a mat, and a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 380 g / m 2 by cross-wrapping.
This pitch-based carbon fiber precursor web is heated from 170 ° C. to 335 ° C. at an average temperature rising rate of 6 ° C./min to be infusible, and further calcined for 30 minutes at 800 ° C. and an oxygen concentration of 30 ppm. It was. The obtained pitch-based carbon fiber web was processed at a needle punch density of 16 punches / cm 2 to obtain a pitch-based carbon fiber felt.
The average fiber diameter of the pitch-based carbon fibers in the pitch-based carbon fiber felt after firing was 11.2 μm, the CV value was 9.1, and the average fiber length was 150 mm. The starting point of weight loss by TGA was 550 ° C.

[実施例5]
実施例1で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−2211、粘度0.1Pa・s)に浸漬させ、ロールプレスで圧縮し余分なフェノール樹脂を搾り出した後、250℃で成形体とし、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。ピッチ系炭素繊維フェルト100重量部に対し、炭化物は400重量部含まれていた。焼成体の断面を観察したところ、空隙は観察されなかった。断熱材の引張強度は0.78MPa、熱伝導率は0.051W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.72MPaであった。
[Example 5]
The pitch-based carbon fiber felt created in Example 1 is immersed in a phenol resin (PL-2211, viscosity 0.1 Pa · s, manufactured by Gunei Chemical Co., Ltd.), and compressed with a roll press to extract excess phenol resin. After that, a molded body was formed at 250 ° C. and fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. 400 parts by weight of carbide was contained with respect to 100 parts by weight of the pitch-based carbon fiber felt. When the cross section of the fired body was observed, no voids were observed. The insulation material had a tensile strength of 0.78 MPa and a thermal conductivity of 0.051 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.72 MPa.

[実施例6]
実施例4で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−2211、粘度0.1Pa・s)に浸漬させ、ロールプレスで圧縮し余分なフェノール樹脂を搾り出した後、250℃で成形体とし、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。ピッチ系炭素繊維フェルト100重量部に対し、炭化物は400重量部含まれていた。焼成体の断面を観察したところ、空隙は観察されなかった。断熱材の引張強度は0.79MPa、熱伝導率は0.048W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.76MPaであった。
[Example 6]
The pitch-based carbon fiber felt created in Example 4 is dipped in a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211, viscosity 0.1 Pa · s) and compressed with a roll press to extract excess phenolic resin. After that, a molded body was formed at 250 ° C. and fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. 400 parts by weight of carbide was contained with respect to 100 parts by weight of the pitch-based carbon fiber felt. When the cross section of the fired body was observed, no voids were observed. The heat insulating material had a tensile strength of 0.79 MPa and a thermal conductivity of 0.048 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.76 MPa.

[実施例7]
実施例4で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−4222、粘度0.5Pa・s)に浸漬させ、ロールプレスで圧縮し余分なフェノール樹脂を搾り出した後、250℃で成形体とし、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。ピッチ系炭素繊維フェルト100重量部に対し、炭化物は400重量部含まれていた。焼成体の断面を観察したところ、空隙は観察されなかった。断熱材の引張強度は0.83MPa、熱伝導率は0.049W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.78MPaであった。
[Example 7]
The pitch-based carbon fiber felt created in Example 4 is immersed in a phenolic resin (PL-4222, viscosity 0.5 Pa · s, manufactured by Gunei Chemical Co., Ltd.) and compressed with a roll press to squeeze out excess phenolic resin. After that, a molded body was formed at 250 ° C. and fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. 400 parts by weight of carbide was contained with respect to 100 parts by weight of the pitch-based carbon fiber felt. When the cross section of the fired body was observed, no voids were observed. The insulation material had a tensile strength of 0.83 MPa and a thermal conductivity of 0.049 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.78 MPa.

[比較例1]
実施例1において、紡糸時のピッチ温度を345℃にした他は同様の方法で、ピッチ系炭素繊維フェルトを作成した。この時の溶融ピッチの粘度は2.0Pa・S(20poise)であった。ピッチ系炭素繊維ウェブに不融化ムラによる焼け跡が観察された。
焼成後のピッチ系炭素繊維フェルト中のピッチ系炭素繊維の平均繊維径は9.2μm、CV値が18.4、平均繊維長は30mmであった。また、TGAによる重量減少開始点は500℃であった。
[Comparative Example 1]
In Example 1, a pitch-based carbon fiber felt was prepared in the same manner except that the pitch temperature during spinning was 345 ° C. The viscosity of the melt pitch at this time was 2.0 Pa · S (20 poise). Burn marks due to infusible unevenness were observed on the pitch-based carbon fiber web.
The average fiber diameter of the pitch-based carbon fibers in the pitch-based carbon fiber felt after firing was 9.2 μm, the CV value was 18.4, and the average fiber length was 30 mm. The starting point of weight loss by TGA was 500 ° C.

[比較例2]
比較例1で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−2211、粘度0.1Pa・s)に浸漬させ、ロールプレスで余分なフェノール樹脂を搾り出した後、250℃で成形体とした後、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。ピッチ系炭素繊維フェルト100重量部に対し、炭化物は400重量部含まれていた。焼成体の断面を観察したところ、20μmの空隙が観察範囲内に8個観察された。断熱材の引張強度は0.52MPa、熱伝導率は0.051W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.21MPaであった。
[Comparative Example 2]
After the pitch-based carbon fiber felt created in Comparative Example 1 is immersed in a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211, viscosity 0.1 Pa · s), and excess phenolic resin is squeezed out with a roll press After forming into a molded body at 250 ° C., it was fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. 400 parts by weight of carbide was contained with respect to 100 parts by weight of the pitch-based carbon fiber felt. When the cross section of the fired body was observed, eight 20 μm voids were observed within the observation range. The insulation material had a tensile strength of 0.52 MPa and a thermal conductivity of 0.051 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.21 MPa.

[比較例3]
実施例1において、加熱空気の線速度を毎分7000mにした以外は同様の方法で、ピッチ系炭素繊維フェルトを作成した。
焼成後のピッチ系炭素繊維フェルト中のピッチ系炭素繊維の平均繊維径は9.1μm、CV値が12.8、平均繊維長は60mmであった。また、TGAによる重量減少開始点は500℃であった。
[Comparative Example 3]
In Example 1, a pitch-based carbon fiber felt was prepared in the same manner except that the linear velocity of the heated air was 7000 m / min.
The average fiber diameter of the pitch-based carbon fibers in the pitch-based carbon fiber felt after firing was 9.1 μm, the CV value was 12.8, and the average fiber length was 60 mm. The starting point of weight loss by TGA was 500 ° C.

[比較例4]
比較例3で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−2211、粘度0.1Pa・s)に浸漬させ、ロールプレスで余分なフェノール樹脂を搾り出した後、250℃で成形体とした後、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。焼成体の断面を観察したところ、20μmの空隙が観察範囲内に6個観察された。断熱材の引張強度は0.61MPa、熱伝導率は0.064W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.37MPaであった。
[Comparative Example 4]
After immersing the pitch-based carbon fiber felt created in Comparative Example 3 in a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211, viscosity 0.1 Pa · s) and squeezing excess phenolic resin with a roll press After forming into a molded body at 250 ° C., it was fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. When the cross section of the fired body was observed, six 20 μm voids were observed within the observation range. The heat insulating material had a tensile strength of 0.61 MPa and a thermal conductivity of 0.064 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.37 MPa.

[比較例5]
比較例3で作成したピッチ系炭素繊維フェルトを、フェノール樹脂(群栄化学(株)製、PL−4422、粘度0.5Pa・s)に浸漬させ、ロールプレスで余分なフェノール樹脂を搾り出した後、250℃で成形体とした後、800℃で焼成した。更に、2000℃で熱処理し、炭素繊維含有断熱材を得た。焼成体の断面を観察したところ、20μmの空隙が観察範囲内に19個観察された。断熱材の引張強度は0.65MPa、熱伝導率は0.062W/m・Kであった。2000℃、酸素濃度20ppmで24時間処理した後の引張強度は0.29MPaであった。
[Comparative Example 5]
After the pitch-based carbon fiber felt created in Comparative Example 3 is immersed in a phenolic resin (PL-4422, viscosity 0.5 Pa · s, manufactured by Gunei Chemical Co., Ltd.), and excess phenolic resin is squeezed out with a roll press After forming into a molded body at 250 ° C., it was fired at 800 ° C. Furthermore, it heat-processed at 2000 degreeC and obtained the carbon fiber containing heat insulating material. When the cross section of the fired body was observed, 19 20 μm voids were observed within the observation range. The insulation material had a tensile strength of 0.65 MPa and a thermal conductivity of 0.062 W / m · K. The tensile strength after treatment for 24 hours at 2000 ° C. and an oxygen concentration of 20 ppm was 0.29 MPa.

本発明のピッチ系炭素繊維フェルトは断熱性に優れるだけでなく耐久性、なかでも耐酸化性に優れるので、樹脂と複合化し断熱材とした時に耐久性に優れたものとなる。これにより本発明のピッチ系炭素繊維フェルトは高温処理炉での使用に適した断熱材に活用できる。   The pitch-based carbon fiber felt of the present invention is not only excellent in heat insulation, but also excellent in durability and, in particular, oxidation resistance. Therefore, it becomes excellent in durability when combined with a resin as a heat insulating material. Thereby, the pitch-based carbon fiber felt of the present invention can be utilized as a heat insulating material suitable for use in a high-temperature processing furnace.

Claims (6)

メソフェーズピッチを原料とし、平均繊維径が10〜20μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が5〜15であり、平均繊維長が20〜400mmであるピッチ系炭素繊維フェルト。   Pitch-based carbon fiber felt using mesophase pitch as a raw material, having an average fiber diameter of 10 to 20 μm, a fiber diameter dispersion percentage with respect to the average fiber diameter (CV value) of 5 to 15, and an average fiber length of 20 to 400 mm. . 平均繊維径が10〜15μmである請求項1に記載のピッチ系炭素繊維フェルト。   The pitch-based carbon fiber felt according to claim 1, having an average fiber diameter of 10 to 15 µm. メソフェーズピッチをメルトブロー法により繊維化し、次いで不融化及び炭化することにより得た炭素繊維ランダムマットを、ニードルパンチによりフェルト化することを特徴とする請求項1〜2のいずれか1項に記載の炭素繊維フェルトの製造方法。   The carbon according to any one of claims 1 to 2, wherein a carbon fiber random mat obtained by fiberizing a mesophase pitch by a melt blow method and then infusibilizing and carbonizing is felt by a needle punch. Manufacturing method of fiber felt. 請求項1〜2のいずれか1項に記載のピッチ系炭素繊維フェルト100重量部と炭化物50〜1000重量部とが複合していることを特徴とする炭素繊維含有断熱材。   A carbon fiber-containing heat insulating material comprising 100 parts by weight of the pitch-based carbon fiber felt according to any one of claims 1 to 2 and 50 to 1000 parts by weight of a carbide. 炭化物が熱硬化性樹脂由来のものであることを特徴とする請求項4に記載の炭素繊維含有断熱材。   The carbon fiber-containing heat insulating material according to claim 4, wherein the carbide is derived from a thermosetting resin. 請求項1〜2のいずれか1項に記載のピッチ系炭素繊維フェルトを熱硬化性樹脂に含浸し、熱硬化性樹脂を硬化させ成形体を得た後、成形体を500〜2200℃で熱処理してフェルトと炭化物との複合体を得ることを特徴とする請求項4に記載の炭素繊維含有断熱材の製造方法。   After impregnating the pitch-based carbon fiber felt according to any one of claims 1 and 2 into a thermosetting resin and curing the thermosetting resin to obtain a molded body, the molded body is heat-treated at 500 to 2200 ° C. Thus, a composite of felt and carbide is obtained, The method for producing a carbon fiber-containing heat insulating material according to claim 4.
JP2008232296A 2008-02-06 2008-09-10 Pitch-based carbon fiber felt and heat insulating material containing carbon fiber Pending JP2009209507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232296A JP2009209507A (en) 2008-02-06 2008-09-10 Pitch-based carbon fiber felt and heat insulating material containing carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026360 2008-02-06
JP2008232296A JP2009209507A (en) 2008-02-06 2008-09-10 Pitch-based carbon fiber felt and heat insulating material containing carbon fiber

Publications (1)

Publication Number Publication Date
JP2009209507A true JP2009209507A (en) 2009-09-17

Family

ID=41182934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232296A Pending JP2009209507A (en) 2008-02-06 2008-09-10 Pitch-based carbon fiber felt and heat insulating material containing carbon fiber

Country Status (1)

Country Link
JP (1) JP2009209507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008371A (en) * 2014-06-23 2016-01-18 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon fiber heat insulator and manufacturing method thereof
CN111636144A (en) * 2020-06-16 2020-09-08 浙江星辉新材料科技股份有限公司 Preparation process of carbon-carbon composite material flat plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248838A (en) * 1990-02-27 1991-11-06 Osaka Gas Co Ltd Heat insulation material
JPH04338170A (en) * 1991-05-15 1992-11-25 Petoca:Kk Carbon fiber-based formed heat insulating material and production thereof
JPH05195396A (en) * 1991-10-18 1993-08-03 Petoca:Kk Production of carbon fiber felt
WO2007126133A1 (en) * 2006-04-27 2007-11-08 Teijin Limited Composite carbon fiber sheet
JP2007291294A (en) * 2006-04-27 2007-11-08 Teijin Ltd Heat conductive paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248838A (en) * 1990-02-27 1991-11-06 Osaka Gas Co Ltd Heat insulation material
JPH04338170A (en) * 1991-05-15 1992-11-25 Petoca:Kk Carbon fiber-based formed heat insulating material and production thereof
JPH05195396A (en) * 1991-10-18 1993-08-03 Petoca:Kk Production of carbon fiber felt
WO2007126133A1 (en) * 2006-04-27 2007-11-08 Teijin Limited Composite carbon fiber sheet
JP2007291294A (en) * 2006-04-27 2007-11-08 Teijin Ltd Heat conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008371A (en) * 2014-06-23 2016-01-18 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon fiber heat insulator and manufacturing method thereof
CN111636144A (en) * 2020-06-16 2020-09-08 浙江星辉新材料科技股份有限公司 Preparation process of carbon-carbon composite material flat plate

Similar Documents

Publication Publication Date Title
Chand Review carbon fibers for composites
JP4829465B2 (en) Carbon-substrate complexes and related compositions and methods
JPWO2009150874A1 (en) Nonwoven fabric, felt and method for producing them
KR100759102B1 (en) Method for producing bicomponent carbon nanofibers and activated carbon nanofibers of polyacrylonitrile and pitch by electrospinning
US20110159767A1 (en) Nonwoven fabric, felt and production processes therefor
Jiménez et al. Materials for activated carbon fiber synthesis
JP6086943B2 (en) Carbon fiber heat insulating material and manufacturing method thereof
WO1984003722A1 (en) Process for producing carbon fibers
CN100402716C (en) A kind of pitch-based graphite fabric and its manufacturing method
JP2011117094A (en) Web, felt comprising the same, and methods for producing them
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
JP2009185411A (en) Heat insulator containing carbon fiber
JP2009209507A (en) Pitch-based carbon fiber felt and heat insulating material containing carbon fiber
KR20120077050A (en) Method of preparing precursor and carbon fiber using the same
WO2020059819A1 (en) Carbon-fiber-molded heat insulator and manufacturing method thereof
WO2010084856A1 (en) Pitch-based carbon fiber web, pitch-based carbon staple fiber, and processes for production of same
CN114457469B (en) Preparation method of polyacrylonitrile pre-oxidized fiber, pre-oxidized fiber and application of pre-oxidized fiber
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JP6307395B2 (en) Heat dissipation sheet
JP2008297656A (en) Method for producing carbon fiber
JP2018076963A (en) Molded adiabatic material and process of manufacture thereof
JPWO2010071226A1 (en) Carbon fiber and method for producing the same
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH04338170A (en) Carbon fiber-based formed heat insulating material and production thereof
KR101523443B1 (en) Preparing method of carbon fiber felt and heat insulator using thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925