[go: up one dir, main page]

JP2009208055A - Photocatalyst filter unit - Google Patents

Photocatalyst filter unit Download PDF

Info

Publication number
JP2009208055A
JP2009208055A JP2008088449A JP2008088449A JP2009208055A JP 2009208055 A JP2009208055 A JP 2009208055A JP 2008088449 A JP2008088449 A JP 2008088449A JP 2008088449 A JP2008088449 A JP 2008088449A JP 2009208055 A JP2009208055 A JP 2009208055A
Authority
JP
Japan
Prior art keywords
photocatalytic
photocatalyst
filter unit
cathode fluorescent
cold cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088449A
Other languages
Japanese (ja)
Inventor
Sakae Ishikawa
栄 石川
Hiromi Terakado
浩巳 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPLA TECHNO DEVICE CO Ltd
Takemura Seisakusho KK
Original Assignee
NIPPLA TECHNO DEVICE CO Ltd
Takemura Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPLA TECHNO DEVICE CO Ltd, Takemura Seisakusho KK filed Critical NIPPLA TECHNO DEVICE CO Ltd
Priority to JP2008088449A priority Critical patent/JP2009208055A/en
Publication of JP2009208055A publication Critical patent/JP2009208055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst filter unit which does not release contamination gas primarily comprising hexamethyl disilazane and trimethyl silanol even when accumulating the contamination gas therein, can easily remove a deposited decomposition product on a photocatalyst filter, has a long life of an optical source, has a resistance to an alkalline gas too and can avoid the deposition of salt. <P>SOLUTION: The photocatalyst filter unit comprises: a photocatalyst filter 4, 4a disposed in a body frame 3 provided with opening parts 2, 2a on the both ends so as to face at least the both opening parts 2, 2a; a cold cathode fluorescent lamp 5 disposed between the both photocatalyst filters 4, 4a; and a fluorine resin tube 6 capable of freely transmitting photocatalytic action inducing light irradiated from the cold cathode fluorescent lamp 5, with which the cold cathode fluorescent lamp 5 is covered, whereby photocatalyst filter 4, 4a can decompose the contamination gas primarily comprising hexamethyl disilazane and trimethyl silanol, can prevent the deposition of the decomposition product to the photocatalyst filter 4, 4a and can easily remove the deposited decomposition product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、クリーンルームなどに設置して、ヘキサメチルジシラザン(HMDS)や分解生成物であるトリメチルシラノール(TMS)を中心とした汚染物質を除去する光触媒フィルタユニットに関し、詳しくは、両端に開口部がある機体内に、光触媒フィルタを両開口部に面して設けると共に、これらの間に、光触媒反応誘起光が透過自在のフッ素樹脂製チューブで覆われている冷陰極蛍光ランプを設けてなる、光触媒フィルタユニットに関する。  The present invention relates to a photocatalytic filter unit which is installed in a clean room or the like and removes contaminants mainly hexamethyldisilazane (HMDS) and decomposition product trimethylsilanol (TMS). In the body, a photocatalytic filter is provided facing both openings, and a cold cathode fluorescent lamp covered with a fluororesin tube through which photocatalytic reaction inducing light can pass is provided. The present invention relates to a photocatalytic filter unit.

半導体、液晶、有機ELなどの製造工程は、汚染を極度に嫌うことから、クリーンルーム内で行われることが多い。このクリーンルームでは、種々の要因により侵入あるいは発生する汚染物質を、適切且つ高度に除去する必要がある。汚染物質は大別して微粒子とガスとがあり、汚染微粒子に対してはHEPAフィルタやULPAフィルタなどにより除去し、汚染ガスに対しては吸着フィルタなどにより除去している。この汚染ガス除去の吸着フィルタは、当然に吸着された汚染ガスが分解されないので蓄積して再放出することがあり、また、吸着フィルタは、その材料構成から自らが汚染源となるガスを放出する虞があり、さらに、その吸着量には限界があるから、所定の除去性能を維持するためには定期的な交換作業が発生し、且つ、交換した吸着フィルタの再生が困難であるため、そのまま廃棄することになって、ランニングコストが高くなる傾向にある。  Manufacturing processes of semiconductors, liquid crystals, organic EL, etc. are often performed in a clean room because they are extremely disliked from contamination. In this clean room, it is necessary to appropriately and highly remove contaminants that enter or occur due to various factors. Contaminants are roughly classified into fine particles and gas. Contaminated fine particles are removed by a HEPA filter or ULPA filter, and contaminated gases are removed by an adsorption filter. Naturally, the adsorbing filter for removing pollutant gas may accumulate and re-release because the adsorbed pollutant gas is not decomposed. Also, the adsorbing filter may release the gas that is the source of contamination from its material structure. In addition, since the amount of adsorption is limited, periodic replacement work is required to maintain the specified removal performance, and it is difficult to regenerate the replaced adsorption filter. As a result, running costs tend to increase.

したがって、上述のような吸着フィルタの不都合さを解消するものとして、以下のようなものが知られている。
特開2000−300936号公報 特開2003−053194号公報 特開2006−255529号公報
Therefore, the following are known as means for eliminating the disadvantages of the adsorption filter as described above.
Japanese Patent Laid-Open No. 2000-300936 JP 2003-053194 A JP 2006-255529 A

特許文献1は、汚染ガスの除去のために光触媒フィルタを使用し、その光触媒作用により汚染ガスを分解するものであり、吸着フィルタのように汚染ガスが蓄積して再放出する虞が無いものである。  Patent Document 1 uses a photocatalytic filter for removing pollutant gas, decomposes the pollutant gas by its photocatalytic action, and does not have the possibility of accumulating pollutant gas and releasing it again like an adsorption filter. is there.

特許文献2は、光触媒フィルタがセラミック製あるいは金属製の基材上に酸化チタンなどの光触媒の膜を形成し、水洗可能なものとしたものである。すなわち、光触媒フィルタが有する光触媒作用により汚染ガスを分解した結果、光触媒フィルタ上に分解生成物、例えば、硫酸塩や硝酸塩などが堆積して、この分解生成物が光触媒作用を阻害する。したがって、その分解生成物を水洗などにより容易に除去出来るようにして、光触媒フィルタの性能を維持すると共に再生可能としたものである。  In Patent Document 2, a photocatalytic filter is formed by forming a film of a photocatalyst such as titanium oxide on a ceramic or metal base material so that it can be washed with water. That is, as a result of decomposing the pollutant gas by the photocatalytic action of the photocatalytic filter, decomposition products such as sulfates and nitrates are deposited on the photocatalytic filter, and the decomposition products inhibit the photocatalytic action. Therefore, the decomposition product can be easily removed by washing with water or the like, so that the performance of the photocatalytic filter can be maintained and regenerated.

特許文献3は、セラミック基材層及びこのセラミック基材層の表面に形成した光触媒層からなる光触媒フィルタと、該光触媒フィルタに隣接して配置し光触媒作用を誘起する光を照射出来る光源と、を備え、セラミック基材層はSiOを主成分とし且つAlを約21重量%含んで構成され、光触媒層はTiOを主成分とし且つSiOを含むと共に、光触媒層中におけるTiOに対するSiOの重量比率が約8:2とし、光触媒層の表面が弱酸性に調整してなるものである。これにより、光触媒層のSiO量が多くさらに弱酸性であるため、汚染ガスたるアンモニアガスなどの塩基性ガスの吸着、除去を選択的に高め、加えて光触媒フィルタ上に堆積した分解生成物は水洗いにより容易に除去できて、光触媒フィルタの性能を維持すると共に再生可能となっている。Patent Document 3 discloses a photocatalytic filter comprising a ceramic base layer and a photocatalytic layer formed on the surface of the ceramic base layer, and a light source that is arranged adjacent to the photocatalytic filter and that can emit light that induces photocatalytic action. And the ceramic base layer is composed of SiO 2 as a main component and about 21 wt% of Al 2 O 3, and the photocatalyst layer is composed of TiO 2 as a main component and includes SiO 2 , and TiO 2 in the photocatalyst layer. The weight ratio of SiO 2 to is about 8: 2, and the surface of the photocatalyst layer is adjusted to be weakly acidic. As a result, since the amount of SiO 2 in the photocatalyst layer is much weaker and acidic, the adsorption and removal of basic gas such as ammonia gas, which is a polluting gas, is selectively enhanced, and in addition, the decomposition products deposited on the photocatalyst filter are It can be easily removed by washing with water, and the performance of the photocatalytic filter can be maintained and regenerated.

特許文献1は、光触媒フィルタの光触媒作用により汚染ガスを分解するので、汚染ガスが蓄積して再放出する虞が無いものの、汚染ガスの分解により生じた分解生成物が光触媒フィルタ上に堆積して、この分解生成物が光触媒作用を阻害し、性能の低下を招き光触媒フィルタの交換を余儀なくされ、しかも再生が著しく困難であるため、吸着フィルタの場合のようにランニングコストが高くなってしまう。  In Patent Document 1, since the pollutant gas is decomposed by the photocatalytic action of the photocatalyst filter, there is no possibility that the pollutant gas accumulates and re-releases, but decomposition products generated by the decomposition of the pollutant gas accumulate on the photocatalyst filter. This decomposition product inhibits the photocatalytic action, causes a drop in performance, necessitates replacement of the photocatalytic filter, and is extremely difficult to regenerate, resulting in high running costs as in the case of an adsorption filter.

特許文献2は、光触媒フィルタの光触媒作用により汚染ガスを分解するので、汚染ガスが蓄積して再放出する虞が無く、分解生成物が光触媒フィルタ上に堆積しても水洗いにより容易に除去出来る。しかし、半導体製造の前工程におけるリソグラフィ工程でウエーハ表面を疎水性にして、フォトレジスト(感光性樹脂)との密着性を高めるため、HMDS(ヘキサメチルジシラザンの略称)処理が行われるが、このHMDSは空気中の水分と反応しHMDSOに加水分解して、その際アンモニア(NH)を遊離生成し、さらに加水分解してTMS(トリメチルシラノール)を生成して、これらの物質はリソグラフィ工程で重大な阻害要因となる。しかし、この文献では、このHMDS処理に伴うHMDS、NH、TMSの光触媒作用による分解除去性能は、明らかでなく製品の歩留まり低下に陥りやすい。In Patent Document 2, since the pollutant gas is decomposed by the photocatalytic action of the photocatalyst filter, there is no possibility that the pollutant gas is accumulated and re-released, and even if the decomposition product is deposited on the photocatalyst filter, it can be easily removed by washing with water. However, a HMDS (abbreviation for hexamethyldisilazane) process is performed to make the wafer surface hydrophobic in the lithography process in the pre-process of semiconductor manufacturing and to improve the adhesion to the photoresist (photosensitive resin). HMDS reacts with moisture in the air and hydrolyzes to HMSO, in which ammonia (NH 3 ) is liberated and further hydrolyzed to produce TMS (trimethylsilanol). These substances are produced in the lithography process. It becomes a serious obstacle. However, in this document, the decomposition removal performance due to the photocatalytic action of HMDS, NH 3 , and TMS accompanying this HMDS treatment is not clear, and the yield of the product is liable to fall.

また、特許文献3は、光触媒フィルタにより汚染ガスを分解するから、汚染ガスが蓄積して再放出する虞が無く、分解生成物が光触媒フィルタ上に堆積しても水洗いにより容易に除去出来、NHの分解除去性能も良いものである。しかしながら、光源である熱陰極蛍光ランプは、寿命が比較的短く、ランプのガラスは、NHの存在に対し化学的に弱く、しかも空気中のSO 2−やClと反応して生じた硫酸アンモニウムや塩化アンモニウムがガラス表面に付着すると、その分、光触媒作用誘起光の照射が弱くなり、熱陰極蛍光ランプの交換時にこれら付着アンモニウム塩が飛散し、汚染源となる虞がある。Further, in Patent Document 3, since the pollutant gas is decomposed by the photocatalyst filter, there is no possibility that the pollutant gas is accumulated and re-released, and even if the decomposition product is deposited on the photocatalyst filter, it can be easily removed by washing with water. The decomposition removal performance of No. 3 is also good. However, the hot cathode fluorescent lamp as a light source has a relatively short life, and the glass of the lamp is chemically weak against the presence of NH 3 , and is generated by reacting with SO 4 2− and Cl 2 in the air. When ammonium sulfate or ammonium chloride adheres to the glass surface, the photocatalytic action-induced light irradiation is weakened accordingly, and when the hot cathode fluorescent lamp is replaced, these attached ammonium salts may scatter and become a contamination source.

そこで、本発明は、上記事情に鑑みてなされたもので、汚染ガスが蓄積して再放出する虞が無く、分解生成物が光触媒フィルタ上に堆積しても容易に除去出来、しかもリソグラフィ工程でのHMDS処理に伴うHMDS、NH、TMSの分解除去性能も良く、その上、光源の寿命が長く、アルカリ系ガスにも強く、発生した塩類の付着を防護することができる光触媒フィルタユニットを提供することを課題とする。Therefore, the present invention has been made in view of the above circumstances, there is no possibility that contaminated gas accumulates and is re-released, and it can be easily removed even if decomposition products accumulate on the photocatalytic filter, and in the lithography process. Provides a photocatalytic filter unit that has good HMDS, NH 3 , and TMS decomposition and removal performance in conjunction with HMDS treatment, and that has a long light source life, is resistant to alkaline gases, and can protect the adhesion of generated salts. The task is to do.

本発明は、上記課題を達成するために提案されたものであって、下記の構成からなることを特徴とするものである。
すなわち、請求項1記載の発明は、両端に開口部を設けてなる機体内に、光触媒フィルタを少なくとも前記両開口部に面して設けると共に、前記両光触媒フィルタの間に冷陰極蛍光ランプを設けてなる光触媒フィルタユニットであって、前記冷陰極蛍光ランプは、自身から照射する光触媒作用誘起光が透過自在のフッ素樹脂製チューブにて覆われてなり、空気中に含有するヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体的に除去することを特徴とする光触媒フィルタユニットである。
The present invention has been proposed in order to achieve the above-mentioned problems, and is characterized by having the following configuration.
That is, according to the first aspect of the present invention, a photocatalytic filter is provided at least at both openings in a body having openings at both ends, and a cold cathode fluorescent lamp is provided between the two photocatalytic filters. In the photocatalytic filter unit, the cold cathode fluorescent lamp is covered with a fluororesin tube through which photocatalytic induction light emitted from the cold cathode fluorescent lamp is transmissive, and hexamethyldisilazane (HMDS) contained in the air. ) And trimethylsilanol (TMS) are mainly removed.

請求項2記載の発明は、前記冷陰極蛍光ランプと前記光触媒フィルタとの間に、1以上の光触媒フィルタと、該光触媒フィルタと同数の前記冷陰極蛍光ランプと、を交互に設置してなる光触媒フィルタユニットである。  The invention according to claim 2 is a photocatalyst comprising one or more photocatalyst filters and the same number of cold cathode fluorescent lamps as the photocatalyst filters arranged alternately between the cold cathode fluorescent lamps and the photocatalytic filter. It is a filter unit.

請求項3記載の発明は、前記光触媒フィルタは、セラミック製の三次元網目構造多孔質体の表面に、表層形成用セラミックにより凸凹面を形成し、該凸凹面に光触媒を担持させてなる光触媒フィルタユニットである。  According to a third aspect of the present invention, there is provided the photocatalytic filter, wherein the photocatalytic filter is formed by forming a concave / convex surface on the surface of a ceramic three-dimensional network structure porous body using a surface layer forming ceramic and supporting the photocatalyst on the concave / convex surface. Is a unit.

請求項4記載の発明は、前記光触媒フィルタの前記光触媒は、酸化チタンである請求項1、2または3記載の光触媒フィルタユニット。  The invention according to claim 4 is the photocatalyst filter unit according to claim 1, 2, or 3, wherein the photocatalyst of the photocatalyst filter is titanium oxide.

以上詳述したように、本発明によれば、以下のような効果がある。
請求項1記載の発明は、機体のいずれかの一方の開口部から機体内にヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体とする汚染ガスを含んでいる空気を流すと、一方の光触媒フィルタを通り、冷陰極蛍光ランプ近辺を通過して、さらに、他方の光触媒フィルタを通って、いずれかの他方の開口部から機体外に出る。その際、冷陰極蛍光ランプからの光触媒作用誘起光が照射されている双方の光触媒フィルタにより、直ちにHMDS及びTMSを主体的に分解除去し、且つHMDS及びTMSを主体とする汚染ガスの分解により、新たに生じた塩類などの分解生成物はフッ素樹脂製チューブによりガードされて、冷陰極蛍光ランプの表面に付着しない。したがって、HMDS及びTMSを主体とする汚染ガスが蓄積して再放出する虞が無く、その上、光源に冷陰極蛍光ランプを使用することで寿命が長く、しかもアルカリ系ガスに強く、発生した分解生成物の付着を防護することができる効果がある。
As described above in detail, the present invention has the following effects.
According to the first aspect of the present invention, when air containing a pollutant gas mainly composed of hexamethyldisilazane (HMDS) and trimethylsilanol (TMS) is allowed to flow from one of the openings of the aircraft into the aircraft, Through the other photocatalyst filter, through the vicinity of the cold cathode fluorescent lamp, and further through the other photocatalyst filter and out of the airframe from one of the other openings. At that time, by both photocatalytic filters irradiated with photocatalytic action inducing light from the cold cathode fluorescent lamp, immediately HMDS and TMS are mainly decomposed and removed, and by decomposing the pollutant gas mainly containing HMDS and TMS, Newly generated decomposition products such as salts are guarded by a fluororesin tube and do not adhere to the surface of the cold cathode fluorescent lamp. Therefore, there is no possibility that pollutant gases mainly composed of HMDS and TMS accumulate and re-release, and furthermore, the use of a cold cathode fluorescent lamp as a light source has a long life and is strong against alkaline gases, and the generated decomposition. There is an effect that can prevent the adhesion of the product.

請求項2記載の発明は、交互に設置した1以上の光触媒フィルタと冷陰極蛍光ランプとを、HMDS及びTMSを主体とする汚染ガス含有の空気が通過するから、その分、さらにHMDS及びTMSを主体とする汚染ガスを分解する。したがって、上記効果をなお一層高めることができる。  Since the air containing pollutant gas mainly composed of HMDS and TMS passes through one or more photocatalyst filters and cold cathode fluorescent lamps installed alternately, the invention according to claim 2 further increases HMDS and TMS accordingly. Decomposes the main polluting gas. Therefore, the above effect can be further enhanced.

請求項3記載の発明は、セラミック製の三次元網目構造多孔質体の表面に、表層形成用セラミックにより凸凹面を形成し、その凸凹面に光触媒を担持させてあるから、表面積が飛躍的に広くなり、且つ凸凹面のアンカー効果により、光触媒が脱落しづらい。したがって、上記効果に加えて、光触媒フィルタの性能を向上させ且つ維持できると共に、再生可能となる効果がある。  In the invention according to claim 3, since the surface of the ceramic three-dimensional network structure porous body is formed with an uneven surface by the surface layer forming ceramic, and the photocatalyst is supported on the uneven surface, the surface area is dramatically increased. The photocatalyst is difficult to fall off due to the wider and uneven anchor effect. Therefore, in addition to the above effects, the performance of the photocatalytic filter can be improved and maintained, and there is an effect that it can be regenerated.

請求項4記載の発明は、光触媒が酸化チタンであると、高触媒効果を得て、HMDS及びTMSを主体とする汚染ガスを分解する。したがって、上記効果に加えて、リソグラフィ工程でのHMDS処理に伴うHMDS、NH、TMSの分解除去性能が良くなる効果がある。In the invention according to claim 4, when the photocatalyst is titanium oxide, a high catalytic effect is obtained and the polluted gas mainly composed of HMDS and TMS is decomposed. Therefore, in addition to the above effects, there is an effect that the decomposition removal performance of HMDS, NH 3 and TMS accompanying the HMDS process in the lithography process is improved.

以下に、図面を参照して本発明を実施するための最良の形態を説明する。  The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態を示す光触媒フィルタユニットの平面図、図2は図1の光触媒フィルタユニットの一部破断した断面図、図3は図1の光触媒フィルタユニットの一部破断した断面図、図4は図1の光触媒フィルタユニットの光触媒フィルタの説明図、図5は空気清浄装置に本発明の光触媒フィルタユニットを組み込んだ状態の断面図である。図面において、光触媒フィルタユニット1は、両端に開口部2、2aを設けてなる機体3内に、光触媒フィルタ4、4aを少なくとも両開口部2、2aに面して設けると共に、両光触媒フィルタ4、4aの間に冷陰極蛍光ランプ5を設けてなり、この冷陰極蛍光ランプ5は、自身から照射する光触媒作用誘起光が透過自在のフッ素樹脂製チューブ6にて覆われてなって、空気中に含有するヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体的に除去するものである。  FIG. 1 is a plan view of a photocatalytic filter unit showing an embodiment of the present invention, FIG. 2 is a partially broken sectional view of the photocatalytic filter unit of FIG. 1, and FIG. 3 is a partially broken sectional view of the photocatalytic filter unit of FIG. FIG. 4 is an explanatory view of the photocatalytic filter of the photocatalytic filter unit of FIG. 1, and FIG. 5 is a cross-sectional view of the air cleaning device in which the photocatalytic filter unit of the present invention is incorporated. In the drawing, a photocatalytic filter unit 1 is provided with a photocatalytic filter 4, 4 a facing at least both openings 2, 2 a in an airframe 3 having openings 2, 2 a at both ends, and both photocatalytic filters 4, The cold cathode fluorescent lamp 5 is provided between 4a, and this cold cathode fluorescent lamp 5 is covered with a fluororesin tube 6 through which photocatalytic induction light irradiated from itself is freely transmitted, and is in the air. Hexamethyldisilazane (HMDS) and trimethylsilanol (TMS) contained are mainly removed.

なお、この光触媒フィルタユニット1では、冷陰極蛍光ランプ5と光触媒フィルタ4aとの間にさらに光触媒フィルタ4bと冷陰極蛍光ランプ5aとを設けて介在させ、開口部2から開口部2aまでの間に、光触媒フィルタ4、冷陰極蛍光ランプ5、光触媒フィルタ4b、冷陰極蛍光ランプ5a、光触媒フィルタ4aを介在させている。なお、光触媒フィルタ4、4a、4bは、仕切板9にて仕切られ設置されている。  In this photocatalyst filter unit 1, a photocatalyst filter 4b and a cold cathode fluorescent lamp 5a are further provided between the cold cathode fluorescent lamp 5 and the photocatalyst filter 4a so as to be interposed between the opening 2 and the opening 2a. The photocatalytic filter 4, the cold cathode fluorescent lamp 5, the photocatalytic filter 4b, the cold cathode fluorescent lamp 5a, and the photocatalytic filter 4a are interposed. Note that the photocatalytic filters 4, 4 a, and 4 b are partitioned and installed by a partition plate 9.

前記機体3は、直方体をなし、その両端に開口部2、2aがあり、それ以外は運転操作時は閉じている。機体3側部には冷陰極蛍光ランプ5に電気を供給する電源箱7が内蔵され、さらにメンテナンス上の必要性から側板8などが開放且つ閉鎖出来、光触媒フィルタ4、4a、4b及び冷陰極蛍光ランプ5、5aの取り外し、取り付けが容易に出来るような構造になっている。  The airframe 3 has a rectangular parallelepiped shape, and has openings 2 and 2a at both ends thereof. The other portions are closed during a driving operation. A power supply box 7 for supplying electricity to the cold cathode fluorescent lamp 5 is built in the side of the machine body 3, and the side plate 8 and the like can be opened and closed for maintenance needs, and the photocatalytic filters 4, 4 a, 4 b and cold cathode fluorescent light can be opened. The structure is such that the lamps 5 and 5a can be easily removed and attached.

前記光触媒フィルタ4、4a、4bは、図4に示すように、セラミック製の三次元網目構造多孔質体10の骨格11の表面に、表層形成用セラミック粒子12を焼結して凸凹面13を形成し、この凸凹面13に光触媒を担持させたものである。この三次元網目構造多孔質体10の骨格11は、その径が100μmから1000μmの範囲であり、表層形成用セラミック粒子12は、その粒径が1μmから50μmの範囲であるから、三次元網目構造多孔質体10の骨格11上に、良好な凹凸面13が形成されて、充分な表面積を有することになり、冷陰極蛍光ランプ5による光触媒作用誘起光が、光触媒フィルタ4、4a、4b内部まで達して、高効率の光触媒作用を実現できる。  As shown in FIG. 4, the photocatalytic filters 4, 4 a, and 4 b are formed on the surface of the skeleton 11 of the ceramic three-dimensional network structure porous body 10 by sintering the surface layer forming ceramic particles 12 to form the uneven surface 13. The photocatalyst is supported on the uneven surface 13. Since the skeleton 11 of the three-dimensional network structure porous body 10 has a diameter of 100 μm to 1000 μm, and the surface layer forming ceramic particles 12 have a particle diameter of 1 μm to 50 μm, the three-dimensional network structure A good irregular surface 13 is formed on the skeleton 11 of the porous body 10 to have a sufficient surface area, and the photocatalytic action induced light by the cold cathode fluorescent lamp 5 reaches the inside of the photocatalytic filters 4, 4 a and 4 b. To achieve a highly efficient photocatalytic action.

前記光触媒は、アナターゼ型の酸化チタン(TiO)の微粉末であり、これを主成分としつつも、バインダーとしてSiOを約20%含有している。そして、この酸化チタンは、三次元網目構造多孔質体10の骨格11上の良好な凹凸面13に焼き付けられる。したがって、焼き付けられた酸化チタンは、凸凹面13のアンカー効果により脱落しづらい。このため、光触媒フィルタ4、4a、4bは、光触媒たる酸化チタンの脱落による性能低下と発塵とを防ぐことが出来て、その性能が向上し且つ維持できると共に、再生可能となる。なお、光触媒には酸化チタン以外にSiOも約20%含有しているため、光触媒の表面が弱酸性となり、アンモニアガスなどの塩基性ガスの吸着、分解を促進させることが出来る。The photocatalyst is a fine powder of anatase-type titanium oxide (TiO 2 ), and contains approximately 20% of SiO 2 as a binder while having this as a main component. And this titanium oxide is baked on the favorable uneven | corrugated surface 13 on the frame | skeleton 11 of the three-dimensional network structure porous body 10. FIG. Therefore, the baked titanium oxide is difficult to fall off due to the anchor effect of the uneven surface 13. For this reason, the photocatalytic filters 4, 4a and 4b can prevent performance degradation and dust generation due to dropping of the titanium oxide as the photocatalyst, and the performance can be improved and maintained, and can be regenerated. Since the photocatalyst contains about 20% of SiO 2 in addition to titanium oxide, the surface of the photocatalyst becomes weakly acidic, and the adsorption and decomposition of a basic gas such as ammonia gas can be promoted.

前記冷陰極蛍光ランプ5、5aは、耐久性の観点(最大で3万時間)から優れているものの、使用によって、その表面のガラスに汚染ガス、特にアンモニアガスなどの存在下では、アンモニウム塩が付着して、自身から照射する光触媒作用誘起光、すなわち、紫外線の透過性が低下し、さらに、交換の際、アンモニウム塩などの付着物質が飛散し、汚染源になる可能性がある。このため、冷陰極蛍光ランプ5、5aは、フッ素樹脂製チューブ6にて覆われている。  Although the cold cathode fluorescent lamps 5 and 5a are excellent from the viewpoint of durability (up to 30,000 hours), the use of ammonium salt in the presence of pollutant gas, especially ammonia gas, etc. on the glass of the surface by use. The photocatalytic action-induced light that is attached and irradiates from itself, that is, the transmittance of ultraviolet rays is reduced. Further, during exchange, adhering substances such as ammonium salts may be scattered and become a source of contamination. For this reason, the cold cathode fluorescent lamps 5 and 5 a are covered with the fluororesin tube 6.

このフッ素樹脂製チューブ6は、ガス低透過性、換言すればガス低付着性であり、充分な高耐蝕性を有し、その上、冷陰極蛍光ランプ5、5aから照射される紫外線の透過性の高いものである。したがって、このフッ素樹脂製チューブ6により覆われた冷陰極蛍光ランプ5、5aは、空気中の汚染ガスにより直接侵されたり、汚染ガス及びそれに由来する汚染物質が付着したりせず、紫外線を安定して前記光触媒フィルタ4、4a、4bに供給でき、メンテナンスにおける冷陰極蛍光ランプ5、5aの交換時に、汚染ガス及びそれに由来する汚染物質を飛散させて、汚染源となることがほとんど無くなる。  This fluororesin tube 6 has a low gas permeability, in other words, a low gas adhesion, has a sufficiently high corrosion resistance, and also transmits ultraviolet rays irradiated from the cold cathode fluorescent lamps 5 and 5a. Is high. Therefore, the cold-cathode fluorescent lamps 5 and 5a covered with the fluororesin tube 6 are stable against ultraviolet rays without being directly attacked by pollutant gases in the air or adhering pollutant gases and contaminants derived therefrom. Thus, when the cold-cathode fluorescent lamps 5 and 5a are replaced during maintenance, the pollutant gas and the contaminants derived therefrom are scattered to almost never become a pollution source.

なお、フッ素樹脂製チューブ6の具体的な材質を例示すれば、以下のとおりである。すなわち、PFA(パーフルオロアルコキシアルカン)、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)、E/TFE(エチレン,テトラフルオロエチレン共重合体)、FEP(パーフルオロ(エチレン,ポロピレン),テトラフルオロエチレン,ヘキサフルオロエチレン共重合体)などである。入手面、コスト面からはPFA、PTFEなどが適している。  A specific material of the fluororesin tube 6 is exemplified as follows. That is, PFA (perfluoroalkoxyalkane), PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), E / TFE (ethylene, tetrafluoroethylene copolymer), FEP (perfluoro (ethylene, polypropylene), tetra Fluoroethylene, hexafluoroethylene copolymer) and the like. PFA, PTFE, etc. are suitable in terms of availability and cost.

上記した光触媒フィルタユニット1は、ヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体とする汚染ガスを含有している空気が流通している場所に、単独で使用しても良く、あるいは図4に示すような空気清浄装置20に組み込んで使用しても良い。この空気清浄装置20は、空気入口21及び空気出口22を備えた装置本体23内に、空気入口21から空気出口22に向かって順次、ファン24、プレフィルター25、光触媒フィルタユニット1及び後フィルタ26を設けてなる。そして、この空気清浄装置20は、半導体製造などのクリーンルームに設置される。  The above-described photocatalytic filter unit 1 may be used alone in a place where air containing a pollutant gas mainly composed of hexamethyldisilazane (HMDS) and trimethylsilanol (TMS) circulates, or You may use it incorporating in the air purifying apparatus 20 as shown in FIG. The air cleaning device 20 is arranged in a device main body 23 having an air inlet 21 and an air outlet 22 in order from the air inlet 21 toward the air outlet 22, a fan 24, a pre-filter 25, the photocatalytic filter unit 1, and a rear filter 26. Is provided. The air cleaning device 20 is installed in a clean room such as semiconductor manufacturing.

次に、上記構成になる光触媒フィルタユニット1の作用について、前記空気清浄装置20に組み込んだ状態で説明する。
まず、空気清浄装置20に電源スイッチをオンし、冷陰極蛍光ランプ5、5aを点灯させた後、ファン24を駆動させると、ヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体とする汚染ガスを含有する空気は、空気入口21から装置本体23内に導入され、プレフィルター25により汚染ガスを含有する空気中の比較的粒径の粗粒子や塵などが除去されて、次の光触媒フィルタユニット1内に侵入しないようにしている。そして、開口部2から光触媒フィルタユニット1内に入った空気は、順次光触媒フィルタ4、冷陰極蛍光ランプ5、光触媒フィルタ4b、冷陰極蛍光ランプ5a、光触媒フィルタ4bを通り、開口部2aから光触媒フィルタユニット1外に出る。
Next, the operation of the photocatalytic filter unit 1 having the above configuration will be described in a state where the photocatalytic filter unit 1 is incorporated in the air cleaning device 20.
First, when the air cleaner 20 is turned on and the cold cathode fluorescent lamps 5 and 5a are turned on and then the fan 24 is driven, hexamethyldisilazane (HMDS) and trimethylsilanol (TMS) are mainly used. The air containing the pollutant gas is introduced into the apparatus main body 23 from the air inlet 21, and the prefilter 25 removes coarse particles and dust, etc., in the air containing the pollutant gas, and the next photocatalyst. The filter unit 1 is prevented from entering. The air that has entered the photocatalytic filter unit 1 from the opening 2 sequentially passes through the photocatalytic filter 4, the cold cathode fluorescent lamp 5, the photocatalytic filter 4b, the cold cathode fluorescent lamp 5a, and the photocatalytic filter 4b, and then passes through the opening 2a. Go out of unit 1.

汚染ガスを含有する空気が光触媒フィルタユニット1内を通過する過程で、冷陰極蛍光ランプ5、5aからの紫外線照射を受けて、光触媒フィルタ4、4a、4b上に発生している強い酸化分解作用を持つ活性酸素やOHラジカルにより、空気中のHMDS及びTMSを主体とする汚染ガスが分解され、除去されるのである。すなわち、光触媒フィルタ4にて分解除去できなかったHMDS及びTMSを主体とする汚染ガスは、次の光触媒フィルタ4aに分解除去され、それでも分解除去されなかったHMDS及びTMSを主体とする汚染ガスは、さらに光触媒フィルタ4bにて分解除去される。  Strong oxidative decomposition action generated on the photocatalytic filters 4, 4 a, 4 b due to the ultraviolet irradiation from the cold cathode fluorescent lamps 5, 5 a in the process in which the air containing the pollutant gas passes through the photocatalytic filter unit 1. The pollutant gas mainly composed of HMDS and TMS in the air is decomposed and removed by the active oxygen and OH radicals having the above. That is, the pollutant gas mainly composed of HMDS and TMS that could not be decomposed and removed by the photocatalyst filter 4 is decomposed and removed by the next photocatalyst filter 4a. Further, it is decomposed and removed by the photocatalytic filter 4b.

光触媒フィルタユニット1にて、HMDS及びTMSを主体とする汚染ガスをあらかた分解除去された空気は、後フィルタ26を通り空気出口22から空気清浄装置10外に出る。この後フィルタ26は、プレフィルター25よりも微細な粒子、例えば0.1μm程度の微細粒子を除去出来るものであり、光触媒フィルタユニット1を含めた上記空気清浄装置20に由来する塵を最終的に除去し、空気清浄装置20の設置場所であるクリーンルーム内にそれら塵を出さないようにしている。  In the photocatalytic filter unit 1, the air which has been decomposed and removed mainly from HMDS and TMS, passes through the rear filter 26 and exits from the air purifier 10 through the air outlet 22. Thereafter, the filter 26 can remove finer particles than the prefilter 25, for example, fine particles of about 0.1 μm, and finally removes dust from the air cleaning device 20 including the photocatalytic filter unit 1. It removes so that these dusts are not put out in the clean room which is an installation place of the air purifier 20.

次に、本発明の光触媒フィルタユニット1の効果を以下の通り実証した。
〈試験例1〉
本発明の光触媒フィルタユニットに、濃度約50μg/mに調整したHMDS(ヘキサメチルジシラザン)を風速0.5m/秒で流通させ、光触媒フィルタユニットの上流側及び下流側でそれぞれサンプリングを行い、これら上流側及び下流側でサンプリングしたガス中のHMDSを測定し、HMDSの除去性能を算定した。
実験装置は図5に示す通りである。
1.HMDSの測定
パーミエーターを使用しHMDSを発生させ、図6の実験装置の給気ファン手前で前処理された清浄空気と混合して光触媒フィルタユニットの上流側の濃度を約50μg/mに調整した。光触媒フィルタユニットに電源を入れて2時間後に、上流側及び下流側に接続している吸着管(活性炭充填)から吸引速度1L/分で通気し測定目的のガスを捕集した。吸着管で捕集したガスを有機溶剤で抽出し、ガスクロマトグラフ−質量分析計(GC−MS)で測定した。この測定では、TMS(トリメチルシラノール)、M2(ヘキサメチルジシロキサン)の標準物質の検量線を作成し、この検量線により抽出液中のTMS、M2濃度を求め、これにTMS、M2の抽出に用いた溶媒量を乗じ、TMS、M2質量を求め採気量で除することにより濃度を算出した。さらに、これらの濃度からHMDS濃度に換算した。
2.アンモニアの測定
光触媒フィルタユニットに電源を入れて2時間後に、上流側及び下流側に接続している2段連結インピンジャー(吸収液充填)から吸引速度2L/分で通気し測定目的のガスを捕集した。2段連結インピンジャーで捕集した後の吸収液を測定供試液とし、イオンクロマトグラフ(IC)で測定した。吸収液中の目的成分濃度に前処理液量を乗じ、、吸収液に捕集された目的成分質量を求め、これを採気量で除することにより、気中濃度を算出した。さらに、これらの濃度からHMDS濃度に換算した。
Next, the effect of the photocatalytic filter unit 1 of the present invention was demonstrated as follows.
<Test Example 1>
In the photocatalytic filter unit of the present invention, HMDS (hexamethyldisilazane) adjusted to a concentration of about 50 μg / m 3 is circulated at a wind speed of 0.5 m / sec, and sampling is performed on the upstream side and the downstream side of the photocatalytic filter unit, respectively. HMDS in the gas sampled on the upstream side and the downstream side was measured, and the removal performance of HMDS was calculated.
The experimental apparatus is as shown in FIG.
1. Measurement of HMDS Using a permeator, HMDS is generated and mixed with clean air pretreated before the air supply fan of the experimental apparatus shown in FIG. 6 to adjust the concentration on the upstream side of the photocatalytic filter unit to about 50 μg / m 3 . did. Two hours after the photocatalytic filter unit was turned on, the gas for measurement was collected by aeration from an adsorption tube (filled with activated carbon) connected upstream and downstream at a suction speed of 1 L / min. The gas collected by the adsorption tube was extracted with an organic solvent and measured with a gas chromatograph-mass spectrometer (GC-MS). In this measurement, a calibration curve of standard substances of TMS (trimethylsilanol) and M2 (hexamethyldisiloxane) is prepared, and TMS and M2 concentrations in the extract are obtained from this calibration curve, and this is used to extract TMS and M2. The concentration was calculated by multiplying the amount of solvent used to determine the mass of TMS and M2 and dividing by the amount of air sampled. Furthermore, it converted into the HMDS density | concentration from these density | concentrations.
2. Measurement of ammonia 2 hours after turning on the power of the photocatalytic filter unit, the gas for measurement is captured by aeration at a suction speed of 2 L / min from a two-stage linked impinger (absorbing liquid filling) connected upstream and downstream. Gathered. The absorption liquid after being collected by the two-stage connection impinger was used as a measurement test liquid, and measured by an ion chromatograph (IC). The concentration in the air was calculated by multiplying the concentration of the target component in the absorption liquid by the amount of the pretreatment liquid to obtain the mass of the target component collected in the absorption liquid and dividing this by the amount of air sampled. Furthermore, it converted into the HMDS density | concentration from these density | concentrations.

〈試験例2〉
本発明の光触媒フィルタユニットに、濃度約50μg/mに調整したHMDS(ヘキサメチルジシラザン)を風速0.35m/秒で流通させたこと以外、試験例1と同じ方法にてHMDSを測定した。
<Test Example 2>
HMDS was measured by the same method as in Test Example 1 except that HMDS (hexamethyldisilazane) adjusted to a concentration of about 50 μg / m 3 was passed through the photocatalytic filter unit of the present invention at a wind speed of 0.35 m / sec. .

〈対照例1〉
試験例1における本発明の光触媒フィルタユニットの代わりに、従来の光触媒フィルタユニットとしたこと以外、試験例1と同じ方法にてHMDS及びアンモニアを測定した。この従来品のセラミック製の三次元網目構造多孔質体は、炭化珪素(SiC)を主成分とし、光触媒は、酸化チタン(TiO)を主成分とし、TiOに対するSiOの重量比率α(SiO/TiO)を0.11として、光触媒の表面を中性に調整したものである。
<Control Example 1>
Instead of the photocatalytic filter unit of the present invention in Test Example 1, HMDS and ammonia were measured by the same method as in Test Example 1 except that a conventional photocatalytic filter unit was used. This conventional ceramic three-dimensional network structure porous body is mainly composed of silicon carbide (SiC), the photocatalyst is composed mainly of titanium oxide (TiO 2 ), and the weight ratio α of SiO 2 to TiO 2 α ( The surface of the photocatalyst is adjusted to be neutral with SiO 2 / TiO 2 ) of 0.11.

〈対照例2〉
対照例1の光触媒フィルタユニットに、濃度約50μg/mに調整したHMDS(ヘキサメチルジシラザン)を風速0.35m/秒で流通させたこと以外、試験例1と同じ方法にてHMDSを測定した。
以上の結果を表1に示す。
<Control Example 2>
HMDS was measured in the same manner as in Test Example 1 except that HMDS (hexamethyldisilazane) adjusted to a concentration of about 50 μg / m 3 was passed through the photocatalytic filter unit of Control Example 1 at a wind speed of 0.35 m / sec. did.
The results are shown in Table 1.

Figure 2009208055
Figure 2009208055

表1の結果によれば、試験例1及び2は、対照例1及び2に比較して、明らかにHMDS及びアンモニア共に除去効率が高く、本発明の優位性が証明された。  According to the results of Table 1, the test examples 1 and 2 clearly have higher removal efficiency for both HMDS and ammonia than the control examples 1 and 2, demonstrating the superiority of the present invention.

以上、本発明の実施例1を説明したが、具体的な構成はこれに限定されず、本発明の要旨を逸脱しない範囲での変更・追加、各請求項における他の組み合わせにかかるものも、適宜可能であることが理解されるべきである。  As described above, the first embodiment of the present invention has been described, but the specific configuration is not limited to this, and modifications and additions within the scope not departing from the gist of the present invention, other combinations in each claim, It should be understood that this is possible as appropriate.

本発明の光触媒フィルタユニットは、一旦捕捉した汚染ガスの再放出する虞が無く、汚染ガスを分解した後の分解生成物が光触媒フィルタ上に堆積しても容易に除去したいような場合に利用可能性が高く、特にリソグラフィ工程でのHMDS処理に伴うHMDS、NH、TMSの分解除去性能を向上させたく、しかも光源の寿命が長くアルカリ系ガスに強く、発生した塩類の付着を防護してメンテナンス性を高めたいような場合に、利用可能性が極めて高くなる。The photocatalyst filter unit of the present invention can be used when there is no risk of re-release of the once trapped pollutant gas, and the decomposition product after decomposing the pollutant gas is easily removed even if it accumulates on the photocatalyst filter. Highly reliable, especially to improve the decomposition and removal performance of HMDS, NH 3 , and TMS associated with HMDS treatment in lithography process, and has a long light source life and resistance to alkaline gases, and protects and prevents the adhesion of generated salts The availability becomes extremely high when it is desired to improve the performance.

本発明の実施の形態を示す光触媒フィルタユニットの平面図である(実施例1)。  It is a top view of the photocatalyst filter unit which shows the embodiment of the present invention (example 1). 図1の光触媒フィルタユニットの一部破断した断面図である(実施例1)。  FIG. 2 is a partially broken cross-sectional view of the photocatalytic filter unit of FIG. 1 (Example 1). 図1の光触媒フィルタユニットの一部破断した断面図である(実施例1)。  FIG. 2 is a partially broken cross-sectional view of the photocatalytic filter unit of FIG. 1 (Example 1). 図1の光触媒フィルタユニットの光触媒フィルタの説明図である(実施例1)。  (Example 1) which is explanatory drawing of the photocatalyst filter of the photocatalyst filter unit of FIG. 空気清浄装置に本発明の光触媒フィルタユニットを組み込んだ状態の断面図である(実施例1)。  It is sectional drawing of the state which incorporated the photocatalyst filter unit of this invention in the air purifying apparatus (Example 1). 本発明の光触媒フィルタユニットの効果を実証するための実験装置の斜視図である。  It is a perspective view of the experimental apparatus for demonstrating the effect of the photocatalyst filter unit of this invention.

符号の説明Explanation of symbols

1 光触媒フィルタユニット
2、2a 開口部
3 機体
4、4a、4b 光触媒フィルタ
5、5a 冷陰極蛍光ランプ
6 フッ素樹脂製チューブ
7 電源箱
8 側板
9 仕切板
10 三次元網目構造多孔質体
11 骨格
12 表層形成用セラミック粒子
13 凹凸面
20 空気清浄装置
21 空気入口
22 空気出口
23 装置本体
24 ファン
25 プレフィルタ
26 後フィルタ
DESCRIPTION OF SYMBOLS 1 Photocatalyst filter unit 2, 2a Opening part 3 Machine body 4, 4a, 4b Photocatalyst filter 5, 5a Cold cathode fluorescent lamp 6 Fluororesin tube 7 Power supply box 8 Side plate 9 Partition plate 10 Three-dimensional network structure porous body 11 Skeleton 12 Surface layer Ceramic particles for forming 13 Uneven surface 20 Air cleaning device 21 Air inlet 22 Air outlet 23 Device main body 24 Fan 25 Pre-filter 26 Post filter

Claims (4)

両端に開口部を設けてなる機体内に、光触媒フィルタを少なくとも前記両開口部に面して設けると共に、前記両光触媒フィルタの間に冷陰極蛍光ランプを設けてなる光触媒フィルタユニットであって、前記冷陰極蛍光ランプは、自身から照射する光触媒作用誘起光が透過自在のフッ素樹脂製チューブにて覆われてなり、空気中に含有するヘキサメチルジシラザン(HMDS)及びトリメチルシラノール(TMS)を主体的に除去することを特徴とする光触媒フィルタユニット。  A photocatalytic filter unit in which a photocatalytic filter is provided at least facing both the openings in the body having openings at both ends, and a cold cathode fluorescent lamp is provided between the photocatalytic filters. The cold cathode fluorescent lamp is covered with a fluororesin tube through which photocatalytic induction light radiated from itself is freely transmitted, and mainly contains hexamethyldisilazane (HMDS) and trimethylsilanol (TMS) contained in the air. A photocatalytic filter unit that is removed. 前記冷陰極蛍光ランプと前記光触媒フィルタとの間に、1以上の光触媒フィルタと、該光触媒フィルタと同数の前記冷陰極蛍光ランプと、を交互に設置してなる請求項1記載の光触媒フィルタユニット。  2. The photocatalytic filter unit according to claim 1, wherein one or more photocatalytic filters and the same number of the cold cathode fluorescent lamps as the photocatalytic filters are alternately disposed between the cold cathode fluorescent lamps and the photocatalytic filter. 前記光触媒フィルタは、セラミック製の三次元網目構造多孔質体の表面に、表層形成用セラミックにより凸凹面を形成し、該凸凹面に光触媒を担持させてなる請求項1または2記載の光触媒フィルタユニット。  3. The photocatalytic filter unit according to claim 1, wherein the photocatalytic filter is formed by forming a concave / convex surface on a surface of a ceramic three-dimensional network porous body with a surface layer forming ceramic and supporting the photocatalyst on the concave / convex surface. . 前記光触媒フィルタの前記光触媒は、酸化チタンである請求項1、2または3記載の光触媒フィルタユニット。  The photocatalytic filter unit according to claim 1, wherein the photocatalyst of the photocatalytic filter is titanium oxide.
JP2008088449A 2008-03-01 2008-03-01 Photocatalyst filter unit Pending JP2009208055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088449A JP2009208055A (en) 2008-03-01 2008-03-01 Photocatalyst filter unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088449A JP2009208055A (en) 2008-03-01 2008-03-01 Photocatalyst filter unit

Publications (1)

Publication Number Publication Date
JP2009208055A true JP2009208055A (en) 2009-09-17

Family

ID=41181728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088449A Pending JP2009208055A (en) 2008-03-01 2008-03-01 Photocatalyst filter unit

Country Status (1)

Country Link
JP (1) JP2009208055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202374A (en) * 2019-06-10 2020-12-17 セメス カンパニー,リミテッド Apparatus for treating substrate
CN114014474A (en) * 2022-01-10 2022-02-08 南京国兴环保产业研究院有限公司 Continuous photocatalytic lake water purification device and purification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202374A (en) * 2019-06-10 2020-12-17 セメス カンパニー,リミテッド Apparatus for treating substrate
US11557477B2 (en) 2019-06-10 2023-01-17 Semes Co., Ltd. Apparatus for treating substrate
JP7222950B2 (en) 2019-06-10 2023-02-15 セメス カンパニー,リミテッド Substrate processing equipment
CN114014474A (en) * 2022-01-10 2022-02-08 南京国兴环保产业研究院有限公司 Continuous photocatalytic lake water purification device and purification method

Similar Documents

Publication Publication Date Title
ES2376661T3 (en) SYSTEMS FOR THE ELIMINATION OF FLUX FLOW POLLUTANTS.
CN102811794B (en) Air purification system and method using enhanced multifunctional coating based on in situ photocatalytic oxidation and ozonation
CN104848443A (en) Regenerative air purification system
CN104955490A (en) Air cleaning apparatus using UVLED
WO1998007503A1 (en) Method and apparatus for purifying contaminant-containing gas
CN110207286B (en) Novel haze air integrated purification system
CN101293163A (en) Method and apparatus for purifying fluid
JP2006255529A (en) Photocatalyst filter, photocatalyst filter unit, clean room, air purification device, manufacturing device, and air purification method
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
JP2009208055A (en) Photocatalyst filter unit
CN203469810U (en) Indoor air purifier
JPH11207149A (en) Metal carrying photocatalyst type air purifier
JP2011177691A (en) Air cleaner
JPH1176718A (en) Dust filter and production thereof and air conditioner and air cleaner
KR20020063246A (en) Method and device for preventing oxidation on substrate surface
JP2001046906A (en) Air purification equipment
KR20150014822A (en) air purifying apparatus having UV-LED and filter
JPH11128632A (en) Filter and air cleaning device
JPH11290653A (en) Method and apparatus for removing gaseous pollutants
CN105823149A (en) Air purifier
JP2004329499A (en) Air cleaning device and method for cleaning air using the same
JPH10180044A (en) Fluid purifier utilizing photocatalyst
KR100799105B1 (en) Preventing the Closing of Circulation and Exhaust Pipe of Water Washing Air Cleaner
JPH11179154A (en) Method and apparatus for cleaning of air pollution hazardous substance
JPH11123316A (en) Apparatus for producing ultra-pure air