[go: up one dir, main page]

JP2009205801A - Vacuum switch - Google Patents

Vacuum switch Download PDF

Info

Publication number
JP2009205801A
JP2009205801A JP2008043702A JP2008043702A JP2009205801A JP 2009205801 A JP2009205801 A JP 2009205801A JP 2008043702 A JP2008043702 A JP 2008043702A JP 2008043702 A JP2008043702 A JP 2008043702A JP 2009205801 A JP2009205801 A JP 2009205801A
Authority
JP
Japan
Prior art keywords
vacuum
end plate
side end
insulating cylinder
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008043702A
Other languages
Japanese (ja)
Inventor
Tomoaki Uchiumi
知明 内海
Takashi Shirane
隆志 白根
Kenji Tsuchiya
賢治 土屋
Satoru Kajiwara
悟 梶原
Masahito Kobayashi
将人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008043702A priority Critical patent/JP2009205801A/en
Publication of JP2009205801A publication Critical patent/JP2009205801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

【課題】
本発明の課題は、モールド部材の亀裂や破断を防止可能に、絶縁モールドされた真空開閉器を提供することにある。
【解決手段】
少なくとも一対の固定側電極13及び該固定側電極13に対向する可動側電極12を収納し、かつ内部が真空であって、かつ外周面に径方向における段差部を有している真空容器20と、前記空容器20を前記段差部を含めて一括して覆う応力緩和部材4と、該真空容器及び前記応力緩和部材をまとめて絶縁モールドしている絶縁性樹脂2とを備える真空開閉器10において、前記段差部に前記真空容器20の周囲を囲む輪状弾性体6を配置又は保持することを特徴とする。
【選択図】図1
【Task】
An object of the present invention is to provide a vacuum switch that is insulated and molded so as to prevent cracks and breakage of a mold member.
[Solution]
A vacuum vessel 20 that houses at least a pair of fixed-side electrode 13 and movable-side electrode 12 facing the fixed-side electrode 13, has a vacuum inside, and has a step portion in the radial direction on the outer peripheral surface; In the vacuum switch 10 comprising: the stress relaxation member 4 that collectively covers the empty container 20 including the stepped portion; and the insulating resin 2 that collectively insulates the vacuum container and the stress relaxation member. The annular elastic body 6 surrounding the vacuum vessel 20 is disposed or held in the stepped portion.
[Selection] Figure 1

Description

本発明は真空開閉器に係り、特に、真空容器の外表面が絶縁モールドされ、受配電用開閉装置に好適な真空開閉器に関する。   The present invention relates to a vacuum switch, and more particularly, to a vacuum switch suitable for a power distribution switchgear in which an outer surface of a vacuum vessel is insulation-molded.

真空開閉器は、真空が有する高い電流遮断の性能と絶縁耐力を活かした開閉器であって、コンパクトで、かつ信頼性が高く、受配電用開閉装置(以下、スイッチギヤ)に広く適用されているものである。   A vacuum switch is a switch that takes advantage of the high current interruption performance and dielectric strength of a vacuum, is compact and highly reliable, and is widely applied to switchgear for power distribution (hereinafter referred to as switchgear). It is what.

近年、スイッチギヤをさらにコンパクト化し、かつ真空開閉器の絶縁性能の低下を予防すべく、大気よりも高い絶縁耐力を有するエポキシ等の樹脂で真空容器の表面全体をモールドする真空開閉器が増加している。   In recent years, the number of vacuum switches that mold the entire surface of a vacuum vessel with a resin such as epoxy having a higher dielectric strength than the atmosphere has increased in order to further reduce the size of the switchgear and prevent the insulation performance of the vacuum switch from decreasing. ing.

エポキシ等の樹脂は、大気より絶縁耐力が高いことから、大気で真空容器の表面を覆う場合と比較して絶縁距離を短くすることができ、真空容器の絶縁性確保に必要な空間を減少させられ、スイッチギヤのコンパクト化が実現できる。   Resins such as epoxy have a higher dielectric strength than the atmosphere, so the insulation distance can be shortened compared to the case where the surface of the vacuum container is covered with the atmosphere, reducing the space required to ensure the insulation of the vacuum container. Therefore, the switchgear can be made compact.

また、真空容器の表面全体を樹脂でモールドすることで、湿気や塵埃等といった汚損物が真空容器に付着することを防止し、汚損物の真空容器への付着により生ずる真空開閉器の絶縁性能の低下を予防することができる。   In addition, by molding the entire surface of the vacuum vessel with resin, it prevents the fouling substances such as moisture and dust from adhering to the vacuum vessel, and the insulation performance of the vacuum switch caused by the fouling matter adhering to the vacuum vessel. Decline can be prevented.

しかし、真空容器の表面全体を、直接、樹脂でモールドする場合、樹脂と真空容器を構成する絶縁円筒との熱膨張係数が異なることから、高温下で樹脂をモールドした後に、両者の熱膨張係数差に基づく熱応力が発生する。係る熱応力が原因となり、例えば開閉動作時に生じる衝撃力が樹脂に伝わると、樹脂に衝撃力による亀裂や剥離が生ずる可能性がある。この亀裂や剥離が生じた部位は、部分放電の原因となり絶縁耐力が低下してしまうという問題がある。   However, when the entire surface of the vacuum vessel is directly molded with resin, the thermal expansion coefficients of the resin and the insulating cylinder constituting the vacuum vessel are different. Thermal stress based on the difference occurs. For example, when the impact force generated during the opening / closing operation is transmitted to the resin due to the thermal stress, the resin may be cracked or peeled off due to the impact force. The site where the crack or peeling occurs causes a partial discharge and has a problem that the dielectric strength decreases.

また、樹脂と真空容器を構成する絶縁円筒との熱膨張係数が異なることによって生ずる、樹脂の亀裂や剥離を防止する機能を備えた真空バルブとして、例えば真空容器を構成する絶縁円筒と端板とを一括してゴムで覆い、さらにそれらをまとめて絶縁物でモールドしているものがある。   Further, as a vacuum valve having a function of preventing cracking and peeling of the resin caused by different thermal expansion coefficients of the resin and the insulating cylinder constituting the vacuum container, for example, the insulating cylinder and the end plate constituting the vacuum container Are collectively covered with rubber, and then they are collectively molded with an insulator.

更に、真空容器の角部の電界集中緩和を可能にする機能を備えた真空バルブとして、例えば特許文献1に記載されたものがある。該特許文献1には、真空容器の外周方向に突出する数箇所のエッジ部分(角部)に導電性熱応力緩和部材を施すと共に、真空容器の外周面を樹脂で一体にモールドすることにより、エッジ部分への電界集中緩和及び熱応力緩和を図った真空バルブが記載されている。   Furthermore, as a vacuum valve having a function that enables electric field concentration relaxation at the corners of the vacuum vessel, there is one described in Patent Document 1, for example. In Patent Document 1, by applying conductive thermal stress relaxation members to several edge portions (corner portions) protruding in the outer peripheral direction of the vacuum vessel, and molding the outer peripheral surface of the vacuum vessel integrally with a resin, A vacuum valve is described in which electric field concentration relaxation and thermal stress relaxation at the edge portion are achieved.

特開2002−358861号公報Japanese Patent Laid-Open No. 2002-358861

しかしながら、絶縁円筒及び端板から構成される真空容器では、両者の厚みの違いから、両者を接続すると絶縁円筒と端板との境界部分で軸方向に段差部が生じてしまうことから、真空容器を一括してゴムで覆う場合、該段差部の角部がゴムを圧迫することになり、該段差部の角部において、ゴムが薄くなってゴムが破断しやすくなる。段差部の角部においてゴムが破断した場合、モールド後に該段差部の角部において、熱応力によって樹脂に亀裂や剥離が生じる可能性がある。   However, in a vacuum container composed of an insulating cylinder and an end plate, a difference in thickness between the two causes a stepped portion in the axial direction at the boundary portion between the insulating cylinder and the end plate. If the rubber is covered with rubber at the same time, the corners of the stepped portion press the rubber, and the rubber becomes thin at the corners of the stepped portion and the rubber is easily broken. When the rubber breaks at the corner of the stepped portion, the resin may crack or peel off due to thermal stress at the corner of the stepped portion after molding.

また、特許文献1に記載された真空バルブは、真空容器の外周面のエッジ部分に、導電性熱応力緩和部材を固定するのがそもそも困難であり、樹脂で真空容器の外周面をモールドする際に、該導電性熱応力緩和部材が外れる可能性があった。導電性熱応力緩和部材が外れた場合、電界集中緩和を図ることができなくなる。   In addition, in the vacuum valve described in Patent Document 1, it is difficult in the first place to fix the conductive thermal stress relaxation member to the edge portion of the outer peripheral surface of the vacuum vessel, and when the outer peripheral surface of the vacuum vessel is molded with resin. Further, there is a possibility that the conductive thermal stress relaxation member is detached. When the conductive thermal stress relaxation member is detached, the electric field concentration relaxation cannot be achieved.

さらに、真空容器を構成するセラミック製筒体,導電性熱応力緩和部材、及び樹脂の熱膨張係数の違いにより、高温下で樹脂をモールドした後における樹脂の熱変形の規模が、セラミック製筒体側よりも導電性熱応力緩和部材側で大きくなるために、セラミック製筒体,導電性熱応力緩和部材、及び樹脂が向き合った3重点近傍において、互いの応力集中が過大となって、セラミック製筒体と樹脂が剥離して、部分放電の原因となり絶縁耐力が低下しやすくなるという問題があった。   Furthermore, the scale of the thermal deformation of the resin after molding the resin at a high temperature due to the difference in the thermal expansion coefficient of the ceramic cylindrical body, the conductive thermal stress relaxation member, and the resin constituting the vacuum vessel In the vicinity of the triple point where the ceramic tubular body, the conductive thermal stress relaxation member, and the resin face each other, the stress concentration is excessive, and the ceramic tubular body is larger than the conductive thermal stress relaxation member side. There was a problem that the body and the resin peeled, causing partial discharge, and the dielectric strength was likely to be lowered.

本発明は上述の点に鑑みなされたもので、その目的とするところは、特殊な熱応力緩和部材を設けることなく、真空容器の軸方向に段差部が生じても、該段差部の角部によるモールド部材への亀裂や剥離を防止して絶縁耐力が低下しない真空開閉器を提供することにある。   The present invention has been made in view of the above points, and the object thereof is to provide a corner portion of the step portion even if a step portion is generated in the axial direction of the vacuum vessel without providing a special thermal stress relaxation member. An object of the present invention is to provide a vacuum switch that prevents cracking and peeling of the mold member due to the above and does not lower the dielectric strength.

本発明の真空開閉器は、上記目的を達成するために、固定側電極及び該固定側電極に対向する可動側電極を少なくとも一対収納し、かつ内部が真空であって、外周面の途中に軸方向段差部を有している真空容器と、該真空容器の外表面を絶縁モールドする絶縁性樹脂と、前記真空容器と絶縁性樹脂との間で、かつ前記真空容器の段差部を含むように配置され、前記絶縁性樹脂と真空容器との熱膨張係数の違いによる熱応力を緩和する応力緩和部材とを備えた真空開閉器において、前記真空容器の外周面と応力緩和部材に囲まれた前記段差部に輪状弾性体を配置したことを特徴とする。   In order to achieve the above object, a vacuum switch according to the present invention accommodates at least a pair of a fixed side electrode and a movable side electrode facing the fixed side electrode, and has a vacuum inside, and a shaft in the middle of the outer peripheral surface. A vacuum vessel having a direction step portion, an insulating resin that insulatively molds the outer surface of the vacuum vessel, and between the vacuum vessel and the insulating resin and so as to include a step portion of the vacuum vessel A vacuum switch provided with a stress relaxation member that relieves thermal stress due to a difference in thermal expansion coefficient between the insulating resin and the vacuum vessel, and is surrounded by the outer peripheral surface of the vacuum vessel and the stress relaxation member A ring-shaped elastic body is arranged at the step portion.

本発明によれば、特殊な熱応力緩和部材を設けることなく、真空容器の軸方向に段差部が生じても、該段差部の角部によるモールド部材への亀裂や剥離を防止して絶縁耐力が低下しない真空開閉器を得ることができる。   According to the present invention, even if a step portion is generated in the axial direction of the vacuum vessel without providing a special thermal stress relaxation member, it prevents the mold member from cracking or peeling off at the corner portion of the step portion, thereby providing a dielectric strength. It is possible to obtain a vacuum switch that does not drop.

特殊な熱応力緩和部材を設けることなく、真空容器の軸方向に段差部が生じても、該段差部の角部によるモールド部材への亀裂や剥離を防止して絶縁耐力が低下しない真空開閉器を提供するという目的を、簡単な構成で実現した。   Even if there is a step in the axial direction of the vacuum vessel without providing a special thermal stress relief member, the vacuum switch does not decrease the dielectric strength by preventing cracks and peeling of the mold member by the corner of the step The purpose of providing is realized with a simple configuration.

以下、本発明の真空開閉器の一実施例を図1乃至図3を用いて説明する。   An embodiment of the vacuum switch according to the present invention will be described below with reference to FIGS.

図1は、本発明の真空開閉器の一実施例の断面図を示すもので、真空開閉器10は、真空容器20と、この真空容器20内に収納される固定側電極13と、該固定側電極13に対して上下可動可能に対向配置された可動側電極12と、真空容器20の外表面全体を絶縁モールドする固体絶縁外皮2(絶縁性樹脂)とから概略構成されている。   FIG. 1 is a sectional view of an embodiment of a vacuum switch according to the present invention. The vacuum switch 10 includes a vacuum vessel 20, a fixed side electrode 13 accommodated in the vacuum vessel 20, and the fixing device. The movable electrode 12 is arranged to be opposed to the side electrode 13 so as to be movable up and down, and a solid insulating skin 2 (insulating resin) that insulates the entire outer surface of the vacuum vessel 20.

真空容器20は、銅製の可動側端板21及び固定側端板22と、該可動側端板21及び固定側端板22の間に配置されるセラミックス製の絶縁円筒1a,1bとから構成され、可動側端板21と絶縁円筒1aが、固定側端板22と絶縁円筒1bがそれぞれ接続されている。そして、可動側端板21及び固定側端板22の径方向厚みより絶縁円筒1a,1bの径方向厚みの方が厚く形成されており、可動側端板21と絶縁円筒1a及び固定側端板22と絶縁円筒1bを接続した場合には、両者の径方向厚みの相違により、両者の境界部分に軸方向段差部が生じる。また、セラミックス製の絶縁円筒1a,1bは、可動側端板21及び固定側端板22と接続する側の端面に焼付け金属部を有し、この絶縁円筒1aと絶縁円筒1bの間で、開閉時に電極から発生するアークを遮蔽するためのアークシールド16を挟持している。更に、可動軸14と可動側端板21の間は、可動側端板21に一端が接続され、他端が可動軸14に接続され、該可動軸14と連動して可動するベローズ23によって気密に密閉されている。   The vacuum vessel 20 includes a movable end plate 21 and a fixed end plate 22 made of copper, and ceramic insulating cylinders 1 a and 1 b disposed between the movable end plate 21 and the fixed end plate 22. The movable side end plate 21 and the insulating cylinder 1a are connected to each other, and the fixed side end plate 22 and the insulating cylinder 1b are connected to each other. In addition, the radial thickness of the insulating cylinders 1a and 1b is thicker than the radial thickness of the movable side end plate 21 and the fixed side end plate 22, and the movable side end plate 21, the insulating cylinder 1a and the fixed side end plate are formed. When 22 and the insulating cylinder 1b are connected, an axial step portion is generated at the boundary portion between the two due to the difference in the radial thickness between the two. Insulating cylinders 1a and 1b made of ceramics have a baked metal portion on the end face connected to the movable side end plate 21 and the fixed side end plate 22, and are opened and closed between the insulating cylinder 1a and the insulating cylinder 1b. An arc shield 16 is sometimes sandwiched to shield an arc generated from the electrode. Further, between the movable shaft 14 and the movable side end plate 21, one end is connected to the movable side end plate 21, the other end is connected to the movable shaft 14, and the bellows 23 that moves in conjunction with the movable shaft 14 are airtight. Is sealed.

固定側電極13は、銅製の固定軸15の一端に支持され、該固定軸15は、真空容器20を貫通して固定されており、その他端には例えば母線側や負荷側の外部ケーブルが接続される。一方、可動側電極12は、銅製の可動軸14の一端に支持され、該可動軸14は、真空容器20を貫通し、他端は外部の操作機構に接続される可動絶縁ロッド8に支持され、該操作機構によって上下方向に可動され、固定側電極13と可動側電極12との開閉操作を行う。可動軸14は、真空容器の外部で高電圧導体30と接続され、該高電圧導体30には、例えば負荷側や母線側の導体が接続される。   The fixed side electrode 13 is supported by one end of a copper fixed shaft 15, and the fixed shaft 15 is fixed through the vacuum vessel 20. For example, an external cable on the bus side or load side is connected to the other end. Is done. On the other hand, the movable electrode 12 is supported by one end of a copper movable shaft 14, the movable shaft 14 penetrates the vacuum vessel 20, and the other end is supported by a movable insulating rod 8 connected to an external operation mechanism. The movable mechanism is moved up and down by the operation mechanism, and opens and closes the fixed side electrode 13 and the movable side electrode 12. The movable shaft 14 is connected to a high-voltage conductor 30 outside the vacuum vessel, and a load-side or bus-side conductor, for example, is connected to the high-voltage conductor 30.

また、真空容器20及び熱収縮チューブ4は、固体絶縁外皮2によって絶縁モールドされており、該固体絶縁外皮2の表面は、接地導電層3によって覆われている。   Further, the vacuum container 20 and the heat shrinkable tube 4 are insulated and molded by the solid insulating skin 2, and the surface of the solid insulating skin 2 is covered with the ground conductive layer 3.

そして、本実施例では、可動側端板21と絶縁円筒1a及び固定側端板22と絶縁円筒1bの接続部の境界部分に形成される軸方向段差部に、導電性の輪状弾性体6a及び6b、例えばシリコーンゴムにカーボンブラックや金属粉などの導電性粒子を混合した導電性シリコーンゴムが配置されている。この輪状弾性体6a及び6bは、可動側端板21,固定側端板22の端部周囲を囲むように、自身の弾性力により保持されているものであり、その断面形状は、図2に示すように略円形状となっている。   In this embodiment, the conductive ring-like elastic body 6a and the axially stepped portion formed at the boundary portion of the connecting portion between the movable side end plate 21 and the insulating cylinder 1a and the fixed side end plate 22 and the insulating cylinder 1b 6b, for example, conductive silicone rubber in which conductive particles such as carbon black and metal powder are mixed with silicone rubber is disposed. The ring-shaped elastic bodies 6a and 6b are held by their own elastic force so as to surround the periphery of the end portions of the movable side end plate 21 and the fixed side end plate 22, and their cross-sectional shapes are shown in FIG. As shown, it has a substantially circular shape.

しかも、この輪状弾性体6a,6b,絶縁円筒1a,1bの外周面,前述の段差部,可動側端板21及び固定側端板22の一部表面は、主として固体絶縁外皮2と真空容器20との熱応力を緩和することを目的とする応力緩和部材である熱収縮チューブ4によって一括して覆われており、これにより輪状弾性体6は、自己の弾性力と併せて熱収縮チューブ4,可動側端板21及び固定側端板22とに挟まれることで強く固定されている。また、図3に示すように、輪状弾性体6a,6bの外周は、段差部のうち径方向に長い側である絶縁円筒1b(又は1a)の外周と略並んで配置されている。   Moreover, the outer peripheral surfaces of the ring-shaped elastic bodies 6a and 6b, the insulating cylinders 1a and 1b, the above-described stepped portions, the partial surfaces of the movable side end plate 21 and the fixed side end plate 22 are mainly composed of the solid insulating outer skin 2 and the vacuum vessel 20. Are collectively covered with a heat shrinkable tube 4 which is a stress relieving member for the purpose of relieving the thermal stress of the ring-like elastic body 6. It is strongly fixed by being sandwiched between the movable side end plate 21 and the fixed side end plate 22. Further, as shown in FIG. 3, the outer circumferences of the ring-shaped elastic bodies 6a and 6b are arranged substantially in line with the outer circumference of the insulating cylinder 1b (or 1a) which is the longer side in the radial direction among the stepped portions.

尚、上述した熱収縮チューブ4は、モールド時の温度に耐える必要があり、例えばシリコーン樹脂又はフッ素樹脂等の耐熱性樹脂を用いている。   The heat shrinkable tube 4 described above needs to withstand the temperature at the time of molding. For example, a heat resistant resin such as a silicone resin or a fluororesin is used.

次に、上述した本実施例の構成における真空開閉器10の動作について説明する。   Next, the operation of the vacuum switch 10 in the configuration of the above-described embodiment will be described.

外部に設置されている操作機構(図示せず)によって可動絶縁ロッド8が上下動することにより、該可動絶縁ロッド8に支持された可動軸14が可動絶縁ロッド8に連動して上下動する。それに伴って可動軸14の一端に支持された可動側電極12も上下動し、固定側電極13と接離することにより、開閉(開放,投入)動作が行われる。可動側電極12と固定側電極13が接触することにより、可動軸14及び固定軸15を介して、該可動軸14に接続され負荷側や母線側の導体が接続されている高電圧導体30と、固定軸15に接続され母線側や負荷側の外部ケーブルに電流が通電される。   When the movable insulating rod 8 moves up and down by an operating mechanism (not shown) installed outside, the movable shaft 14 supported by the movable insulating rod 8 moves up and down in conjunction with the movable insulating rod 8. Along with this, the movable side electrode 12 supported on one end of the movable shaft 14 also moves up and down and comes in contact with and separates from the fixed side electrode 13 to perform an opening / closing (opening and closing) operation. When the movable side electrode 12 and the fixed side electrode 13 come into contact with each other, the high voltage conductor 30 connected to the movable shaft 14 via the movable shaft 14 and the fixed shaft 15 is connected to the load side or bus side conductor. The current is applied to the external cable on the busbar side or load side connected to the fixed shaft 15.

次に、導電性の輪状弾性体6a,6b及び熱収縮チューブ4を配置した後、樹脂を注型してモールドし固体絶縁外皮2を形成する方法について説明する。   Next, a method for forming the solid insulating outer skin 2 by placing the conductive ring-shaped elastic bodies 6a and 6b and the heat shrinkable tube 4 and then casting and molding the resin will be described.

先ず、可動側端板21及び固定側端板22と絶縁円筒1a,1bの接続部に形成される段差部に、輪状弾性体6a,6bを、可動側端板21及び固定側端板22の周囲を囲んで配置して自己の弾性力によって保持する。輪状弾性体6a,6bが上述の段差部に保持された後、絶縁円筒1a,1b,輪状弾性体6a,6b,可動側端板21及び固定側端板22の端部を一括して熱収縮チューブ4で覆い、この熱収縮チューブ4の弾性力により輪状弾性体6a,6bを真空容器20の表面に固定する。このようにして熱収縮チューブ4を配置した後、真空容器20の表面全体にエポキシ等の樹脂をモールドして固体絶縁外皮2を形成する。モールド作業が終了した後には、固体絶縁外皮2の表面に接地導電層3を設ける。   First, the ring-shaped elastic bodies 6a and 6b are connected to the step portions formed at the connecting portions of the movable side end plate 21 and the fixed side end plate 22 and the insulating cylinders 1a and 1b, and the movable side end plate 21 and the fixed side end plate 22 are connected. It is placed around the periphery and held by its own elastic force. After the ring-shaped elastic bodies 6a and 6b are held by the above-described stepped portions, the insulating cylinders 1a and 1b, the ring-shaped elastic bodies 6a and 6b, the end portions of the movable side end plate 21 and the fixed side end plate 22 are collectively heat-shrinked. Covered with the tube 4, the elastic elastic members 6 a and 6 b are fixed to the surface of the vacuum container 20 by the elastic force of the heat shrinkable tube 4. After disposing the heat shrinkable tube 4 in this way, a resin such as epoxy is molded on the entire surface of the vacuum vessel 20 to form the solid insulating skin 2. After the molding operation is completed, the ground conductive layer 3 is provided on the surface of the solid insulating skin 2.

以上説明した本実施例の構成とすることにより、可動側端板21と絶縁円筒1a及び固定側端板22と絶縁円筒1bの接続部の境界部分に形成される軸方向段差部における絶縁円筒1a,1bの角部近傍においては、熱収縮チューブ4に、絶縁円筒1a,1bの角部からの圧縮力に加えて輪状弾性体6a,6bからの反発力も働き、絶縁円筒1a,1bの角部から熱収縮チューブ4に加わる圧縮力を分散させることができる。それにより、熱収縮チューブ4の破断を防止することができ、絶縁円筒1a,1bの角部において固体絶縁外皮2の亀裂や破断が防止され、真空開閉器10の信頼性を向上させることができる。   By adopting the configuration of the present embodiment described above, the insulating cylinder 1a in the axial step portion formed at the boundary portion of the connecting portion between the movable side end plate 21 and the insulating cylinder 1a and the fixed side end plate 22 and the insulating cylinder 1b. In the vicinity of the corners of the insulating cylinders 1a and 1b, in addition to the compressive force from the corners of the insulating cylinders 1a and 1b, the repulsive force from the ring-shaped elastic bodies 6a and 6b acts on the heat-shrinkable tube 4. Thus, the compressive force applied to the heat shrinkable tube 4 can be dispersed. Thereby, breakage of the heat-shrinkable tube 4 can be prevented, and cracks and breakage of the solid insulation outer shell 2 can be prevented at the corners of the insulating cylinders 1a and 1b, and the reliability of the vacuum switch 10 can be improved. .

また、本実施例では、輪状弾性体6a,6bが可動側端板21,固定側端板22に保持され、さらに熱収縮チューブ4で覆って固定されているため、モールド時に、輪状弾性体6a,6bが外れる危険性がなくなり、作業性が低下するようなことはない。   Further, in this embodiment, the ring-shaped elastic bodies 6a and 6b are held by the movable side end plate 21 and the fixed side end plate 22 and further covered and fixed by the heat shrinkable tube 4, so that the ring-shaped elastic bodies 6a are molded. , 6b is eliminated, and workability is not reduced.

また、本実施例では、輪状弾性体6a,6bが導電性であるので、絶縁円筒1a,1bの角部や空隙51〜53に生ずる電界集中を緩和することができるし、輪状弾性体6a,6bは、可動側端板21,固定側端板22に保持させ、さらに熱収縮チューブ4で覆って固定しているため、モールド時に輪状弾性体6a,6bが外れる危険性を低減でき、確実に電界集中緩和を図れるようになる。   In the present embodiment, since the ring-shaped elastic bodies 6a and 6b are conductive, the electric field concentration generated in the corners of the insulating cylinders 1a and 1b and the gaps 51 to 53 can be reduced, and the ring-shaped elastic bodies 6a and 6b 6b is held by the movable side end plate 21 and the fixed side end plate 22 and further covered and fixed by the heat shrinkable tube 4, so that the risk of the ring-like elastic bodies 6a and 6b coming off at the time of molding can be reduced. Electric field concentration relaxation can be achieved.

上述した本実施例においては、輪状弾性体6a,6bの断面の形状は、図2に記載されたように円形状となっているが、例えば、図4に示すように、輪状弾性体6a,6bの断面形状を、段差が存する面に近い側を厚くし、遠い側を細くなるような例えば楔形形状とすることにより、空隙全体を小さくすることができ、空隙に集中する電界を緩和しやすくなるので効果的である。   In the present embodiment described above, the cross-sectional shapes of the ring-shaped elastic bodies 6a and 6b are circular as shown in FIG. 2, but for example, as shown in FIG. By making the cross-sectional shape of 6b thicker on the side close to the surface where the level difference exists, for example, in a wedge shape that becomes thinner on the far side, the entire gap can be reduced, and the electric field concentrated in the gap can be easily relaxed. This is effective.

また、熱収縮チューブ4が収縮する際に押し出される空気が絶縁円筒1a,1bと熱収縮チューブ4の間に残ると部分放電が発生して絶縁耐力が低下する場合がある。   Moreover, if the air pushed out when the heat shrinkable tube 4 shrinks remains between the insulating cylinders 1a and 1b and the heat shrinkable tube 4, partial discharge may occur and the dielectric strength may be reduced.

このような場合には、図5に示すように、輪状弾性体6a,6bの周方向の一部に、例えば凹部といった孔6cを設けることで、熱収縮チューブ4が収縮する際に空気が孔6cを介して確実に排気され、絶縁円筒1a,1bと熱収縮チューブ4の間の残留空気を減らすことができ、空気が残留することによる絶縁耐力の低下を抑制することができる。   In such a case, as shown in FIG. 5, by providing a hole 6c such as a recess in a part of the ring-shaped elastic bodies 6a and 6b in the circumferential direction, air is formed when the heat-shrinkable tube 4 contracts. The air is reliably exhausted through 6c, and the residual air between the insulating cylinders 1a and 1b and the heat-shrinkable tube 4 can be reduced, and the decrease in the dielectric strength due to the remaining air can be suppressed.

次に、本発明の真空開閉器の他の実施例を図6を用いて説明する。   Next, another embodiment of the vacuum switch according to the present invention will be described with reference to FIG.

本実施例では、上述した実施例で説明した導電性の輪状弾性体を配置する代わりに、図6に示す如く、予め軸方向段差部近傍の熱収縮チューブ4に、例えば導電性シリコーンゴムからなる導電性部分4cを設けている。この導電性部分4cは、断面形状が段差部の絶縁円筒1a,1bの端面側が厚く、絶縁円筒1a,1bの端面から軸方向に遠い側が薄くなっている。そして、この導電性部分4cの薄い部分が可動側端板21又は固定側端板22に当接している。   In this embodiment, instead of disposing the conductive ring-shaped elastic body described in the above-described embodiment, as shown in FIG. 6, the heat shrinkable tube 4 in the vicinity of the step portion in the axial direction is made of, for example, conductive silicone rubber. A conductive portion 4c is provided. The conductive portion 4c has a thick section at the end face side of the insulating cylinders 1a and 1b having a stepped portion and a thin side far from the end faces of the insulating cylinders 1a and 1b in the axial direction. The thin portion of the conductive portion 4 c is in contact with the movable side end plate 21 or the fixed side end plate 22.

この時、導電性部分4cの径方向で最も厚い幅は、熱収縮チューブ4が配置された時に、段差部の径方向の幅と略等しくなるようにしておき、熱収縮チューブ4を配置した後は、上述した実施例と同様に、真空容器20の表面全体にエポキシ等の樹脂をモールドして固体絶縁外皮2を形成し、この固体絶縁外皮2の表面に接地導電層3を設けている。   At this time, the thickest width in the radial direction of the conductive portion 4c is set to be substantially equal to the radial width of the stepped portion when the heat-shrinkable tube 4 is disposed, and after the heat-shrinkable tube 4 is disposed. In the same manner as in the above-described embodiment, a resin such as epoxy is molded on the entire surface of the vacuum vessel 20 to form the solid insulating skin 2, and the ground conductive layer 3 is provided on the surface of the solid insulating skin 2.

このような本実施例では、予め熱収縮チューブ4に導電性部分4cを設け、該導電性部分4cが、上述した実施例で説明した段差部に相当する位置のうち、径方向で短い側の部位に当たる可動側端板21又は固定側端板22に当接して配置されており、絶縁円筒1a,1bの角部から熱収縮チューブ4に加わる圧縮力を分散させることができる。   In this embodiment, the heat-shrinkable tube 4 is provided with the conductive portion 4c in advance, and the conductive portion 4c is located on the short side in the radial direction in the position corresponding to the step portion described in the above-described embodiment. It is arranged in contact with the movable side end plate 21 or the fixed side end plate 22 that hits the part, and the compressive force applied to the heat shrinkable tube 4 from the corners of the insulating cylinders 1a and 1b can be dispersed.

それにより、熱収縮チューブ4の破断を防止することができ、絶縁円筒1a,1bの角部において固体絶縁外皮2の亀裂や破断を防止し、真空開閉器10の信頼性を向上させることができる。また、絶縁円筒1a,1bの角部から熱収縮チューブ4に加わる圧縮力を効率よく分散させるために、導電性部分4cは絶縁円筒1に、例えば接するように、できるだけ近づけて配置されることが望ましい。   Thereby, breakage of the heat-shrinkable tube 4 can be prevented, cracks and breakage of the solid insulation outer shell 2 can be prevented at the corners of the insulating cylinders 1a and 1b, and the reliability of the vacuum switch 10 can be improved. . Further, in order to efficiently disperse the compressive force applied to the heat-shrinkable tube 4 from the corners of the insulating cylinders 1a and 1b, the conductive portion 4c may be disposed as close as possible to the insulating cylinder 1 so as to contact, for example. desirable.

また、導電性部分4cは予め熱収縮チューブ4に設けられているため、モールド時に、上述した実施例で用いられた輪状弾性体が外れるという心配がなくなるし、段差部に導電性部分4cが配置されることで、電界集中緩和を図ることができる。   In addition, since the conductive portion 4c is provided in the heat-shrinkable tube 4 in advance, there is no fear that the ring-shaped elastic body used in the above-described embodiment will be removed during molding, and the conductive portion 4c is disposed at the step portion. As a result, electric field concentration relaxation can be achieved.

本実施例では、熱収縮チューブ4に設けられた導電性部分4cの径方向の幅は、熱収縮チューブ4が配置された時に、段差部の径方向の幅と略等しくなるようにしているので、導電性部分4cと熱収縮チューブ4及び真空容器20との間の空隙を小さくし、大気より誘電率が大きい導電性部分4cによって、小さくした空隙分を占めることができるので、電界集中緩和を図ることができる。   In the present embodiment, the width in the radial direction of the conductive portion 4c provided in the heat shrinkable tube 4 is made substantially equal to the width in the radial direction of the step portion when the heat shrinkable tube 4 is disposed. Since the gap between the conductive portion 4c and the heat-shrinkable tube 4 and the vacuum vessel 20 can be reduced and the reduced gap can be occupied by the conductive portion 4c having a dielectric constant larger than that of the atmosphere, electric field concentration relaxation can be achieved. Can be planned.

熱収縮チューブ4に予め導電性部分4cを設けることにより、上述した実施例のような輪状弾性体を単独で固定した場合と比較し、空隙51及び53を小さくすることが可能であり、上述した実施例と比較して一層電界集中緩和を図ることができる。   By providing the conductive portion 4c in advance in the heat-shrinkable tube 4, it is possible to reduce the gaps 51 and 53 as compared with the case where the annular elastic body as in the above-described embodiment is fixed alone. Compared with the embodiment, the electric field concentration can be further reduced.

また、図5に示した実施例と同様な考えで、導電性部分4cの周方向の一部に、例えば凹部といった孔を設けることで、熱収縮チューブ4を配置する際の残留空気を減らすことができるようになり、空気が残留することによる絶縁耐力の低下を抑制することができる。   Further, based on the same idea as in the embodiment shown in FIG. 5, by providing a hole such as a recess in a part in the circumferential direction of the conductive portion 4c, the residual air when the heat-shrinkable tube 4 is arranged is reduced. As a result, it is possible to suppress a decrease in dielectric strength due to air remaining.

特殊な熱応力緩和部材を設けることなく、真空容器の軸方向に段差部が生じても、該段差部の角部によるモールド部材への亀裂や剥離を防止して絶縁耐力が低下しない真空開閉器を得ることができるので、受配電用開閉装置には有効である。   Even if there is a step in the axial direction of the vacuum vessel without providing a special thermal stress relief member, the vacuum switch does not decrease the dielectric strength by preventing cracks and peeling of the mold member by the corner of the step Therefore, it is effective for a power distribution switchgear.

本発明の真空開閉器の一実施例を示す断面図である。It is sectional drawing which shows one Example of the vacuum switch of this invention. 本発明の一実施例に採用される輪状弾性体近傍の拡大断面図である。It is an expanded sectional view of the vicinity of a ring-shaped elastic body employed in an embodiment of the present invention. 図2に示す部分を更に拡大して示す断面図である。It is sectional drawing which expands and shows the part shown in FIG. 本発明の一実施例に採用される輪状弾性体の他の例を示す輪状弾性体近傍の軸方向断面図の拡大図である。It is an enlarged view of the axial sectional view of the vicinity of the ring-shaped elastic body showing another example of the ring-shaped elastic body employed in one embodiment of the present invention. 輪状弾性体の周方向の一部に孔を設けた例を示す輪状弾性体の断面図である。It is sectional drawing of the annular elastic body which shows the example which provided the hole in a part of circumferential direction of the annular elastic body. 本発明の真空開閉器の他の実施例を示す輪状弾性体部分の拡大断面図である。It is an expanded sectional view of the ring-shaped elastic body part which shows the other Example of the vacuum switch of this invention.

符号の説明Explanation of symbols

1a,1b 絶縁円筒
2 固体絶縁外皮
3 接地導電層
4 熱収縮チューブ
6a,6b 輪状弾性体
7 ケーブル接続部
8 可動絶縁ロッド
10 真空開閉器
12 可動側電極
13 固定側電極
14 可動軸
15 固定軸
16 アークシールド
20 真空容器
21 可動側端板
22 固定側端板
23 ベローズ
30 高電圧導体
51〜53 空隙
DESCRIPTION OF SYMBOLS 1a, 1b Insulating cylinder 2 Solid insulation outer shell 3 Ground conductive layer 4 Heat-shrinkable tubes 6a, 6b Annular elastic body 7 Cable connecting part 8 Movable insulating rod 10 Vacuum switch 12 Movable electrode 13 Fixed electrode 14 Movable shaft 15 Fixed shaft 16 Arc shield 20 Vacuum container 21 Movable side end plate 22 Fixed side end plate 23 Bellows 30 High voltage conductors 51 to 53 Air gap

Claims (10)

固定側電極及び該固定側電極に対向する可動側電極を少なくとも一対収納し、かつ内部が真空であって、外周面の途中に軸方向段差部を有している真空容器と、該真空容器の外表面を絶縁モールドする絶縁性樹脂と、前記真空容器と絶縁性樹脂との間で、かつ前記真空容器の段差部を含むように配置され、前記絶縁性樹脂と真空容器との熱膨張係数の違いによる熱応力を緩和する応力緩和部材とを備えた真空開閉器において、
前記真空容器の外周面と応力緩和部材に囲まれた前記段差部に輪状弾性体を配置したことを特徴とする真空開閉器。
A vacuum container that houses at least a pair of a fixed side electrode and a movable side electrode facing the fixed side electrode, and has a vacuum inside and an axial step in the middle of the outer peripheral surface; and An insulating resin that insulatively molds the outer surface, and is disposed between the vacuum container and the insulating resin so as to include a stepped portion of the vacuum container, and has a coefficient of thermal expansion between the insulating resin and the vacuum container. In a vacuum switch equipped with a stress relaxation member that relieves thermal stress due to differences,
A vacuum switch comprising a ring-shaped elastic body disposed on the stepped portion surrounded by the outer peripheral surface of the vacuum vessel and a stress relaxation member.
絶縁円筒及び該絶縁円筒の軸方向両端部に接続される可動側端板と固定側端板から成り、真空の内部に固定側電極及び該固定側電極に対向する可動側電極を少なくとも一対収納し、前記絶縁円筒と可動側端板及び前記絶縁円筒と固定側端板の接続部分の外周面に軸方向段差部を有している真空容器と、該真空容器の外表面を絶縁モールドする絶縁性樹脂と、前記真空容器と絶縁性樹脂との間で、かつ前記真空容器の段差部を含むように配置され、前記絶縁性樹脂と真空容器との熱膨張係数の違いによる熱応力を緩和する応力緩和部材とを備えた真空開閉器において、
前記絶縁円筒と可動側端板及び絶縁円筒と固定側端板が接続される接続部分の外周面と応力緩和部材に囲まれた前記段差部に輪状弾性体を配置したことを特徴とする真空開閉器。
It consists of an insulating cylinder and a movable side end plate and a fixed side end plate connected to both ends in the axial direction of the insulating cylinder, and at least a pair of a fixed side electrode and a movable side electrode facing the fixed side electrode are housed inside the vacuum. A vacuum vessel having an axial step on the outer peripheral surface of the connecting portion between the insulating cylinder and the movable side end plate and the insulating cylinder and the fixed side end plate, and an insulating property for insulating molding the outer surface of the vacuum vessel A stress that is disposed between the resin and the vacuum vessel and the insulating resin so as to include a step portion of the vacuum vessel, and relieves thermal stress due to a difference in thermal expansion coefficient between the insulating resin and the vacuum vessel. In a vacuum switch equipped with a relaxation member,
A vacuum opening and closing characterized in that a ring-shaped elastic body is disposed on the stepped portion surrounded by the outer peripheral surface of the connecting portion where the insulating cylinder and the movable side end plate and the insulating cylinder and the fixed side end plate are connected and the stress relaxation member vessel.
請求項1又は2に記載の真空開閉器おいて、
前記輪状弾性体は導電性であることを特徴とする真空開閉器。
In the vacuum switch according to claim 1 or 2,
A vacuum switch according to claim 1, wherein the ring-shaped elastic body is conductive.
セラミック製の絶縁円筒及び該絶縁円筒の軸方向両端部に接続され、前記絶縁円筒の径方向厚みより厚みが薄い銅製の可動側端板と固定側端板から成り、真空の内部に固定側電極及び該固定側電極に対向する可動側電極を少なくとも一対収納し、前記絶縁円筒と可動側端板及び前記絶縁円筒と固定側端板の接続部分の外周面に、前記絶縁円筒と可動側端板及び固定側端板との厚みの違いによる軸方向段差部を有している真空容器と、該真空容器の外表面を絶縁モールドする絶縁性樹脂と、前記真空容器と絶縁性樹脂との間で、かつ前記真空容器の段差部を含むように配置され、前記絶縁性樹脂と真空容器との熱膨張係数の違いによる熱応力を緩和する応力緩和部材とを備えた真空開閉器において、
前記絶縁円筒の軸方向端面と可動側端板及び前記応力緩和部材で囲まれた前記段差部並びに前記絶縁円筒の軸方向端面と固定側端板及び前記応力緩和部材で囲まれた前記段差部のそれぞれに、導電性の輪状弾性体を配置したことを特徴とする真空開閉器。
A ceramic insulating cylinder and a movable side end plate made of copper and a fixed side end plate connected to both ends of the insulating cylinder in the axial direction and having a thickness smaller than the radial thickness of the insulating cylinder. And at least a pair of movable side electrodes opposed to the fixed side electrode, and the insulating cylinder and the movable side end plate on the outer peripheral surface of the connecting portion between the insulating cylinder and the movable side end plate and the insulating cylinder and the fixed side end plate. And a vacuum vessel having an axial step due to a difference in thickness between the fixed side end plate, an insulating resin that insulates the outer surface of the vacuum vessel, and the vacuum vessel and the insulating resin. And a vacuum switch comprising a stress relaxation member that is disposed so as to include a stepped portion of the vacuum vessel and that relieves thermal stress due to a difference in thermal expansion coefficient between the insulating resin and the vacuum vessel.
The axial end face of the insulating cylinder, the movable side end plate, the stepped portion surrounded by the stress relaxation member, and the axial end surface of the insulating cylinder, the fixed side end plate, and the stepped portion surrounded by the stress relaxation member. A vacuum switch characterized in that a conductive ring-shaped elastic body is disposed in each.
請求項1,2、又は4のいずれかに記載の真空開閉器において、
前記輪状弾性体は、断面円形状であることを特徴とする真空開閉器。
In the vacuum switch according to claim 1, 2, or 4,
The vacuum switch according to claim 1, wherein the ring-shaped elastic body has a circular cross section.
請求項1,2、又は4のいずれかに記載の真空開閉器において、
前記輪状弾性体は、断面が前記段差部側が厚く、該段差部から軸方向に遠い側が薄い楔形形状であることを特徴とする真空開閉器。
In the vacuum switch according to claim 1, 2, or 4,
The ring-shaped elastic body is a vacuum switch characterized in that the cross section is thick on the side of the stepped portion and thin on the side far from the stepped portion in the axial direction.
請求項1,2、又は4のいずれかに記載の真空開閉器において、
前記輪状弾性体の周方向の一部に、前記真空容器と応力緩和部材の間の空気を排気するための孔を設けたことを特徴とする真空開閉器。
In the vacuum switch according to claim 1, 2, or 4,
A vacuum switch according to claim 1, wherein a hole for exhausting air between the vacuum vessel and the stress relaxation member is provided in a part of the annular elastic body in the circumferential direction.
セラミック製の絶縁円筒及び該絶縁円筒の軸方向両端部に接続され、前記絶縁円筒の径方向厚みより厚みが薄い銅製の可動側端板と固定側端板から成り、真空の内部に固定側電極及び該固定側電極に対向する可動側電極を少なくとも一対収納し、前記絶縁円筒と可動側端板及び前記絶縁円筒と固定側端板の接続部分の外周面に、前記絶縁円筒と可動側端板及び固定側端板との厚みの違いによる軸方向段差部を有している真空容器と、該真空容器の外表面を絶縁モールドする絶縁性樹脂と、前記真空容器と絶縁性樹脂との間で、かつ前記真空容器の段差部を含むように配置され、前記絶縁性樹脂と真空容器との熱膨張係数の違いによる熱応力を緩和する応力緩和部材とを備えた真空開閉器において、
前記真空容器の軸方向段差部近傍の前記応力緩和部材に、断面が前記段差部の前記絶縁円筒端面側が厚く、絶縁円筒端面から軸方向に遠い側が薄い形状の導電性部分を設け、該導電性部分の薄い部分が前記可動側端板又は固定側端板に当接していることを特徴とする真空開閉器。
A ceramic insulating cylinder and a movable side end plate made of copper and a fixed side end plate connected to both ends of the insulating cylinder in the axial direction and having a thickness smaller than the radial thickness of the insulating cylinder. And at least a pair of movable side electrodes opposed to the fixed side electrode, and the insulating cylinder and the movable side end plate on the outer peripheral surface of the connecting portion between the insulating cylinder and the movable side end plate and the insulating cylinder and the fixed side end plate. And a vacuum vessel having an axial step due to a difference in thickness between the fixed side end plate, an insulating resin that insulates the outer surface of the vacuum vessel, and the vacuum vessel and the insulating resin. And a vacuum switch comprising a stress relaxation member that is disposed so as to include a stepped portion of the vacuum vessel and that relieves thermal stress due to a difference in thermal expansion coefficient between the insulating resin and the vacuum vessel.
The stress relaxation member in the vicinity of the step portion in the axial direction of the vacuum vessel is provided with a conductive portion whose cross section is thick on the end side of the insulating cylinder of the step portion and thin on the side far from the end surface of the insulating cylinder in the axial direction. A vacuum switch characterized in that a thin part is in contact with the movable side end plate or the fixed side end plate.
請求項1,2,4、又は7のいずれかに記載の真空開閉器において、
前記絶縁性樹脂の表面は、接地導電層で覆われていることを特徴とする真空開閉器。
In the vacuum switch according to any one of claims 1, 2, 4, or 7,
The vacuum switch characterized in that the surface of the insulating resin is covered with a ground conductive layer.
請求項1,2,4、又は7のいずれかに記載の真空開閉器において、
前記絶縁性樹脂は、シリコーン樹脂又はフッ素樹脂からなる耐熱性樹脂であることを特徴とする真空開閉器。
In the vacuum switch according to any one of claims 1, 2, 4, or 7,
The vacuum switch according to claim 1, wherein the insulating resin is a heat-resistant resin made of silicone resin or fluorine resin.
JP2008043702A 2008-02-26 2008-02-26 Vacuum switch Pending JP2009205801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043702A JP2009205801A (en) 2008-02-26 2008-02-26 Vacuum switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043702A JP2009205801A (en) 2008-02-26 2008-02-26 Vacuum switch

Publications (1)

Publication Number Publication Date
JP2009205801A true JP2009205801A (en) 2009-09-10

Family

ID=41147889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043702A Pending JP2009205801A (en) 2008-02-26 2008-02-26 Vacuum switch

Country Status (1)

Country Link
JP (1) JP2009205801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004534A (en) * 2014-11-27 2017-08-01 泰科电子英国有限公司 Primary cut-out, system, vacuum interrupter module and associated drive module
WO2018163703A1 (en) * 2017-03-07 2018-09-13 株式会社日立産機システム Vacuum valve and production method therefor
EP3780056A1 (en) * 2019-08-16 2021-02-17 Siemens Aktiengesellschaft Ventilating insulating member for interrupter units

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004534A (en) * 2014-11-27 2017-08-01 泰科电子英国有限公司 Primary cut-out, system, vacuum interrupter module and associated drive module
JP2017539058A (en) * 2014-11-27 2017-12-28 タイコ エレクトロニクス ユーケー リミテッド High voltage circuit breakers, systems, vacuum interrupter modules, and related drive modules
US10262820B2 (en) 2014-11-27 2019-04-16 Tyco Electronics Uk Ltd High voltage circuit breaker, system, vacuum interrupter module and associated drive module
CN107004534B (en) * 2014-11-27 2019-11-05 泰科电子英国有限公司 High-voltage circuitbreaker, system, vacuum interrupter module and associated drive module
WO2018163703A1 (en) * 2017-03-07 2018-09-13 株式会社日立産機システム Vacuum valve and production method therefor
EP3780056A1 (en) * 2019-08-16 2021-02-17 Siemens Aktiengesellschaft Ventilating insulating member for interrupter units

Similar Documents

Publication Publication Date Title
JP4781446B2 (en) Vacuum insulated switchgear
US8178812B2 (en) Insulation of a switchgear device of vacuum cartridge type by insert moulding
AU2007251105A1 (en) Vacuum circuit breaker of tank type
CN106133869B (en) Circuit breaker arrangement
EP2622620B1 (en) Compact vacuum interrupter with selective encapsulation
JP4832352B2 (en) Resin mold vacuum valve
CN109716602B (en) lightning arrester
KR100789443B1 (en) Vacuum interrupter of vacuum breaker
JP5565236B2 (en) Vacuum circuit breaker and switchgear
CN109791858B (en) High-voltage switching device, switching installation with a high-voltage switching device, and method for producing a high-voltage switching device
JP2009205801A (en) Vacuum switch
JP2009022115A (en) Solid insulated switchgear, and test method therefor
JP5292225B2 (en) Mold vacuum valve
JP4660303B2 (en) Solid insulation switchgear
KR101137967B1 (en) The insulated multi-swtich to be molded by polymer
JP3833444B2 (en) Mold vacuum valve and manufacturing method thereof
JP2006080036A (en) Vacuum circuit breaker
WO2018138754A1 (en) Vacuum valve
WO2020031437A1 (en) Vacuum switch and method for manufacturing same
US11862419B2 (en) Toroidal encapsulation for high voltage vacuum interrupters
CN214626072U (en) Electrode contact arm for electrode unit, electrode unit for switching device, and switching device
JPH04121635U (en) Vacuum interrupter and switchgear
JP2011048996A (en) Molded vacuum valve
JP2008027585A (en) Vacuum switch
JPH04121634U (en) Vacuum interrupter and switchgear