JP2009202258A - Method and apparatus for finishing curved surface shape - Google Patents
Method and apparatus for finishing curved surface shape Download PDFInfo
- Publication number
- JP2009202258A JP2009202258A JP2008045447A JP2008045447A JP2009202258A JP 2009202258 A JP2009202258 A JP 2009202258A JP 2008045447 A JP2008045447 A JP 2008045447A JP 2008045447 A JP2008045447 A JP 2008045447A JP 2009202258 A JP2009202258 A JP 2009202258A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- finishing
- curved surface
- processing
- reciprocating mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000003754 machining Methods 0.000 claims abstract description 62
- 238000003672 processing method Methods 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 1
Images
Landscapes
- Milling Processes (AREA)
- Numerical Control (AREA)
Abstract
Description
本発明は、3次元曲面を含む形状のワーク表面をエンドミル等回転工具を用いて仕上加工する曲面形状の仕上加工方法及び装置に関する。 The present invention relates to a curved surface finishing method and apparatus for finishing a workpiece surface including a three-dimensional curved surface using a rotary tool such as an end mill.
一般的に、金型や航空機部品等の3次元曲面を含む形状のワーク表面の仕上加工では、ボールエンドミルを用いて、形状に沿った複数の等間隔に作成された加工軌跡で形状面をくまなく切削加工する。ボールエンドミルの移動態様(加工経路)を規定する加工モードには、図5に示すように、ボールエンドミルB.Eで複数の加工軌跡を同一方向に加工する1方向(加工)モード(図5Aの場合)と、加工方向を交互に変えて加工する往復(加工)モード(図5B)等がある。 In general, when finishing a workpiece surface that includes a three-dimensional curved surface such as a mold or aircraft part, a ball end mill is used to mark the shape surface with a plurality of equally-spaced machining trajectories. Without cutting. As shown in FIG. 5, the ball end mill B.B is a machining mode that defines the movement mode (machining path) of the ball end mill. E includes a one-direction (machining) mode (in the case of FIG. 5A) in which a plurality of machining trajectories are machined in the same direction, a reciprocating (machining) mode (FIG. 5B) in which the machining direction is changed alternately.
そして、1方向モードでは、各加工軌跡の切削条件は一定のため均一な加工面を得ることができるが、各加工軌跡の加工を終了するごとに次の加工軌跡の開始点に戻る必要があり、ボールエンドミルB.Eは加工軌跡の約2倍の距離を移動しなければならないことから、多大な加工時間が必要となるという特色を有している。 In the unidirectional mode, the cutting condition of each machining locus is constant, so a uniform machining surface can be obtained. However, it is necessary to return to the starting point of the next machining locus each time machining of each machining locus is finished. , Ball end mill B. E has a feature that a great amount of machining time is required because it must move a distance of about twice the machining locus.
一方、往復モードでは、加工軌跡の切削条件は交互に変化し、加工面が均一とならないが、各加工軌跡の加工を終了すると隣の加工軌跡に最短距離で移動することができるので、ボールエンドミルB.Eの移動が少なく、効率的な加工が可能であるという特色を有している。 On the other hand, in the reciprocating mode, the cutting conditions of the machining locus change alternately and the machining surface does not become uniform, but when the machining of each machining locus is finished, it is possible to move to the next machining locus with the shortest distance. B. It has the feature that the movement of E is small and efficient processing is possible.
図5でも解るように、1方向モードでは切削条件が一定のため仕上面に残る加工跡は一定の高さとなり(図5A参照)、往復モードでは往路と復路の切削条件が異なるためその加工跡の幅が異なり一定の高さとはならないことから面粗度が低くなるのである(図5B参照)。 As can be seen from FIG. 5, since the cutting conditions are constant in the unidirectional mode, the processing trace remaining on the finished surface has a constant height (see FIG. 5A). The surface roughness is low because the widths of the two are different and do not become a constant height (see FIG. 5B).
ところで、往復モードでの切削条件の違いは、図4に示すアップカット(上向き削り;図4Aの場合)とダウンカット(下向き削り;図4Bの場合)の違いである。図4は工具の元から先端を見る方向で加工の状態を描画し、切削抵抗が送り分力と背分力に分解されることを示している。同じ加工幅で加工した時に、背分力の大きなダウンカットの加工軌跡ではボールエンドミルB.Eが背分力で工具経路と直角方向に倒されるために加工跡の幅が小さくなり、アップカットでは背分力がダウンカットと逆方向で小さくなり、ボールエンドミルB.Eは切削抵抗の向きに倒されるが、加工跡の幅には影響が少ないのである。 By the way, the difference in the cutting conditions in the reciprocating mode is the difference between the upcut (upward cutting; in the case of FIG. 4A) and the downcut (downward cutting: in the case of FIG. 4B) shown in FIG. FIG. 4 depicts the state of machining in the direction of looking at the tip from the source of the tool, and shows that the cutting force is broken down into feed force and back force. When machining with the same machining width, the ball end mill B. Since E is tilted in the direction perpendicular to the tool path by the back component force, the width of the machining trace is reduced, and in the up cut, the back component force is reduced in the opposite direction to the down cut. E is tilted in the direction of the cutting force, but has little effect on the width of the machining trace.
以上のように、従来では、ボールエンドミルで曲面形状を仕上加工する場合には、仕上面の面粗度を上げるためには高能率な往復モードでの加工ではなく、能率の低い1方向モードでの加工が必要であった。 As described above, conventionally, when finishing a curved surface shape with a ball end mill, in order to increase the surface roughness of the finished surface, the processing is not performed in a highly efficient reciprocating mode, but in a low efficiency one-way mode. This processing was necessary.
尚、特許文献1では、三次元曲面を有したワークの表面をボールエンドミルによって、能率よくかつ高品位に加工可能にすべく、入力・設定部に使用ボールエンドミルの工具半径r、刃数nおよび回転速度N、ワークに形成されるカスプの高さh、ワークの加工形状および加工モード等を入力し、f・p演算部で、前記入力したrおよびhから1刃当たりの送り量fを算出し、更にピックフィード量pをこのfと等しく設定する。工具経路生成部は、このpと前記入力した加工形状および加工モードとから工具経路データを生成し、NC装置へ送出し工作機械で切削加工を行う技術が開示されている。 In Patent Document 1, the tool radius r of the ball end mill used in the input / setting unit, the number of blades n, and the number of blades are used so that the surface of the workpiece having a three-dimensional curved surface can be processed efficiently and with high quality by a ball end mill. The rotational speed N, the height h of the cusp formed on the work, the work shape and work mode of the work, etc. are input, and the feed amount f per tooth is calculated from the input r and h by the f / p calculation unit. Further, the pick feed amount p is set equal to f. A tool path generating unit generates a tool path data from the p, the input machining shape and machining mode, and sends the tool path data to an NC device to perform cutting with a machine tool.
ところが、特許文献1では、1方向モードと往復モードについては何も記述されていない。 However, Patent Document 1 does not describe anything about the one-way mode and the reciprocating mode.
本発明は、前述した状況に鑑みてなされたもので、加工時間が短く効率的な往復モードにおいて面粗度の高い仕上加工面が得られる曲面形状の仕上加工方法及び装置を提供することを目的とする。 The present invention has been made in view of the above-described situation, and an object thereof is to provide a curved surface finishing method and apparatus capable of obtaining a finished surface with high surface roughness in an efficient reciprocating mode with a short machining time. And
斯かる目的を達成するための本発明に係る曲面形状の仕上加工方法は、回転工具を用い3次元曲面を含む形状のワーク表面を、形状に沿った複数の等間隔に作成された加工軌跡で仕上加工する仕上加工法において、前記複数の加工軌跡をその加工方向を交互に変えて加工する往復モードにより加工する際に、ダウンカットすべき加工経路の次に加工するアップカットの加工経路を先行して加工することを特徴とする。 In order to achieve such an object, a curved surface finishing method according to the present invention uses a rotating tool to form a workpiece surface including a three-dimensional curved surface with a plurality of machining trajectories created at equal intervals along the shape. In the finishing method for finishing machining, when machining the plurality of machining trajectories in a reciprocating mode in which the machining directions are alternately changed, an up-cut machining path to be machined next to a machining path to be down-cut is preceded. And processing.
また、前記回転工具は、エンドミルであることを特徴とする。 Further, the rotary tool is an end mill.
斯かる目的を達成するための本発明に係る曲面形状の仕上加工装置は、回転工具を主軸に装着してワークとの間で相対移動してワーク表面を仕上加工するNC工作機械と、前記請求項1に記載した加工経路の順番で仕上加工する往復モードを有する工具経路データとを有し、3次元曲面を含む形状のワーク表面を仕上加工する際には、前記請求項1に記載した加工経路の順番で仕上加工する往復モードを前記NC工作機械に送出して仕上加工することを特徴とする。 In order to achieve such an object, a curved surface finishing apparatus according to the present invention comprises an NC machine tool for finishing a workpiece surface by mounting a rotary tool on a spindle and moving relative to the workpiece. When finishing a workpiece surface having a shape including a three-dimensional curved surface having tool path data having a reciprocating mode for finishing machining in the order of machining paths described in Item 1, the machining described in Claim 1 A reciprocating mode in which finishing is performed in the order of the paths is sent to the NC machine tool for finishing.
また、前記回転工具は、エンドミルであることを特徴とする。 Further, the rotary tool is an end mill.
本発明に係る曲面形状の仕上加工方法及び装置よれば、往復モードで交互に加工されるアップカットとダウンカットの加工経路を、ダウンカットすべき加工経路の次に加工するアップカットの加工経路を先に加工することで、大きな背分力により加工位置のずれるダウンカットの切削抵抗を軽減して、加工のずれを小さくすることができ、依って、加工時間が短く効率的な往復モードにおいて面粗度の高い仕上加工面を得ることができる。加えて、往復モードにおける加工経路の順番を変えるという簡単な手段で済むので、安価で済むという利点もある。 According to the curved surface finishing processing method and apparatus according to the present invention, the upcut processing path for processing the upcut and the downcut processed alternately in the reciprocating mode is processed next to the processing path to be downcut. By machining first, down-cut cutting resistance that shifts the machining position due to large back force can be reduced, and machining deviation can be reduced, so surface can be cut in efficient reciprocating mode with short machining time A finished surface with high roughness can be obtained. In addition, since a simple means of changing the order of the processing paths in the reciprocating mode is sufficient, there is an advantage that the cost can be reduced.
以下、本発明に係る曲面形状の仕上加工方法及び装置を実施例により図面を用いて詳細に説明する。 Hereinafter, a curved surface finishing method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
図1は本発明の一実施例を示す加工経路の模式図、図2は加工跡及び加工経路の順番の説明図、図3はブロック図である。 FIG. 1 is a schematic diagram of a machining path showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of the order of machining traces and machining paths, and FIG. 3 is a block diagram.
図3に示すように、CAD/CAMシステム10で自動プログラミングされたNCプログラム(この中には一方向モード(図5A参照),通常の往復モード(図5B参照),後述する本実施例の往復モード等の複数の加工モードが含まれる)がNC装置11に送出され、このNC装置11の指令コードにより、3次元曲面を含む形状のワーク表面を仕上加工する際には、本実施例の往復モードでボールエンドミルB.Eを主軸に装着してなる工作機械12が動作される。
As shown in FIG. 3, the NC program automatically programmed by the CAD / CAM system 10 (including the one-way mode (refer to FIG. 5A), the normal reciprocal mode (refer to FIG. 5B), and the reciprocal operation of the embodiment described later. When a workpiece surface having a shape including a three-dimensional curved surface is finished by a command code of the
本実施例の往復モードは、図1及び図2に示すように、ワーク表面の形状に沿った複数の等間隔に作成された加工軌跡をその加工方向を交互に変えて加工するにあたって、ダウンカット(図4B参照)すべき加工経路の次に加工するアップカット(図4A参照)の加工経路を先行して加工するものである。 As shown in FIGS. 1 and 2, the reciprocating mode of the present embodiment is a down-cut when machining a plurality of machining trajectories created at equal intervals along the shape of the workpiece surface by alternately changing the machining direction. (See FIG. 4B) The processing path of the upcut (see FIG. 4A) to be processed next to the processing path to be processed is processed in advance.
即ち、図2の例で言うと、U(アップカット)1→D(ダウンカット)1→U2→D2→U3→D3の順番でボールエンドミルB.Eを往復移動させて加工するのである。 That is, in the example of FIG. 2, the ball end mill B. is in the order of U (up cut) 1 → D (down cut) 1 → U 2 → D 2 → U 3 → D 3. E is reciprocated and processed.
言い換えれば、アップカットの加工経路をダウンカットの加工経路で加工する前に加工し、ダウンカットの加工で加工すべき部分をあらかじめ加工し、ダウンカットで発生する切削抵抗を小さく抑えることで、背分力の発生を低減してボールエンドミルB.Eの工具経路の直角方向への倒れを防ぐのである。 In other words, the machining path of the upcut is machined before machining with the machining path of the downcut, the part to be machined by the machining of the downcut is machined in advance, and the cutting resistance generated by the downcut is suppressed to a low level. Ball end mill B. This prevents the E tool path from falling in the direction perpendicular to it.
このようにして本実施例では、大きな背分力により加工位置のずれるダウンカットの切削抵抗を軽減して、加工のずれを小さくすることができ、この結果、加工時間が短く効率的な往復モードにおいて面粗度の高い仕上加工面を得ることができる(図2中の破線で示した通常の往復モード(図5B参照)で加工した場合のダウンカットの加工跡参照)。 In this way, in this embodiment, it is possible to reduce the cutting resistance of the down-cut that shifts the processing position due to a large back component force, and to reduce the processing deviation. A finishing surface having a high surface roughness can be obtained (see a downcut processing trace when processing is performed in a normal reciprocating mode (see FIG. 5B) indicated by a broken line in FIG. 2).
加えて、本実施例では、往復モードにおける加工経路の順番を変えるという簡単な手段で済むので、高度な制御機器等も必要でなく、安価で済むという利点もある。 In addition, in this embodiment, since simple means of changing the order of the processing paths in the reciprocating mode is sufficient, there is an advantage that an advanced control device or the like is not necessary and the cost can be reduced.
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、ボールエンドミルB.Eに代えて切刃のコーナー部がR加工されたコーナーRエンドミルを用いる等各種変更が可能であることはいうまでもない。 In addition, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, ball end mill B.I. It goes without saying that various changes such as using a corner R end mill in which the corner portion of the cutting edge is R processed instead of E are possible.
B.E ボールエンドミル
D1,D2,D3 ダウンカットすべき加工経路
U1,U2,U3 アップカットすべき加工経路
10 CAD/CAMシステム
11 NC装置
12 工作機械
B. E Ball end mill D1, D2, D3 Machining path to be cut down U1, U2, U3 Machining path to be upcut 10 CAD /
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008045447A JP2009202258A (en) | 2008-02-27 | 2008-02-27 | Method and apparatus for finishing curved surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008045447A JP2009202258A (en) | 2008-02-27 | 2008-02-27 | Method and apparatus for finishing curved surface shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009202258A true JP2009202258A (en) | 2009-09-10 |
Family
ID=41145044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008045447A Withdrawn JP2009202258A (en) | 2008-02-27 | 2008-02-27 | Method and apparatus for finishing curved surface shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009202258A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015107539A (en) * | 2013-12-05 | 2015-06-11 | 株式会社ディスコ | Byte cutting method |
CN105312642A (en) * | 2015-10-22 | 2016-02-10 | 苏州市华扬电子有限公司 | Base material forming method for manufacturing of mobile phone cell panel |
CN114290263A (en) * | 2021-12-29 | 2022-04-08 | 广东东唯新材料有限公司 | Manufacturing method of curved surface supporting base of ceramic plate and curved surface supporting base |
-
2008
- 2008-02-27 JP JP2008045447A patent/JP2009202258A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015107539A (en) * | 2013-12-05 | 2015-06-11 | 株式会社ディスコ | Byte cutting method |
CN105312642A (en) * | 2015-10-22 | 2016-02-10 | 苏州市华扬电子有限公司 | Base material forming method for manufacturing of mobile phone cell panel |
CN114290263A (en) * | 2021-12-29 | 2022-04-08 | 广东东唯新材料有限公司 | Manufacturing method of curved surface supporting base of ceramic plate and curved surface supporting base |
CN114290263B (en) * | 2021-12-29 | 2024-05-14 | 广东东唯新材料有限公司 | Manufacturing method of curved surface support base of ceramic plate and curved surface support base |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107405746B (en) | Machine tool and control device for the machine tool | |
TWI661892B (en) | Control device of work machine and work machine provided with the control device | |
JP6289766B2 (en) | Machine tool control device, machine tool | |
TWI661884B (en) | Machine tool and its control device | |
WO2016047485A1 (en) | Machine tool and control device for machine tool | |
WO2017051745A1 (en) | Machine tool control device, and machine tool equipped with said control device | |
CN105934300B (en) | Machining method and tool path generation device | |
WO2018181447A1 (en) | Control device for machine tool and machine tool | |
JP7161349B2 (en) | Machine tool controls and machine tools | |
US10569348B2 (en) | Groove-forming method, control device for machine tool and tool path generating device | |
US10007247B2 (en) | Numerical control device with plurality of spindles and associated synchronous tapping | |
JP2009202258A (en) | Method and apparatus for finishing curved surface shape | |
JP6457169B2 (en) | Lathe control system | |
TW201914739A (en) | Machine tool | |
JP6517061B2 (en) | Machine tool and control device for the machine tool | |
CN204818258U (en) | Be used for processing broaching machine and broach in convex groove | |
JP6517060B2 (en) | Machine tool and control device for the machine tool | |
JP2007021692A (en) | Cutting method and apparatus | |
KR20140078461A (en) | Control method for CNC machine tool | |
JP5132235B2 (en) | Cutting method and cutting apparatus | |
CN105033347A (en) | Broaching machine and broaching tool for machining arc groove | |
JP5736667B2 (en) | NC program creation device | |
JP2005279839A (en) | Method for machining deep groove | |
JP2006192485A (en) | The second relief part processing method for the press die punching blade | |
CN106141852B (en) | The control method of numerical control inclined shaft grinding machine and numerical control inclined shaft grinding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110510 |