[go: up one dir, main page]

JP2009202213A - High heat input electroslag welding process - Google Patents

High heat input electroslag welding process Download PDF

Info

Publication number
JP2009202213A
JP2009202213A JP2008048867A JP2008048867A JP2009202213A JP 2009202213 A JP2009202213 A JP 2009202213A JP 2008048867 A JP2008048867 A JP 2008048867A JP 2008048867 A JP2008048867 A JP 2008048867A JP 2009202213 A JP2009202213 A JP 2009202213A
Authority
JP
Japan
Prior art keywords
mass
content
welding
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008048867A
Other languages
Japanese (ja)
Other versions
JP4954122B2 (en
Inventor
Hiroyuki Sumi
博幸 角
Hiroshi Yano
浩史 矢埜
Shigeki Nishiyama
繁樹 西山
Munenori Sato
統宣 佐藤
Yoshimasa Muranishi
良昌 村西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2008048867A priority Critical patent/JP4954122B2/en
Publication of JP2009202213A publication Critical patent/JP2009202213A/en
Application granted granted Critical
Publication of JP4954122B2 publication Critical patent/JP4954122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

【課題】溶接入熱が400kJ/cmを超える大入熱エレクトロスラグ溶接においても、溶接継手方向で安定した靱性を確保する。
【解決手段】溶接ワイヤは、C:0.02乃至0.25%、Si:0.05乃至1.80%、Mn:0.50乃至3.50%、Mo:0.05乃至2.00%、Al:0.005乃至0.080%、Ti:0.05乃至0.35%、B:0.003乃至0.018%、Ni:3.00%以下、Cr:0.30%以下、V:0.030%以下、Nb:0.030%以下、N:0.012%以下を含有する。溶接フラックスはFeO:4.5%以下、B:1.5%以下、塩基度BLの値を0.5乃至1.5とし、溶接ワイヤ中のB量を(B)としたとき、塩基度BLと(B)から下記数式で与えられる変数(X)が9.8乃至20.8である。
(X)=1000×(B)+5.1×BL
【選択図】図3
[PROBLEMS] To secure stable toughness in the direction of a welded joint even in high heat input electroslag welding in which welding heat input exceeds 400 kJ / cm.
The welding wires are C: 0.02 to 0.25%, Si: 0.05 to 1.80%, Mn: 0.50 to 3.50%, Mo: 0.05 to 2.00. %, Al: 0.005 to 0.080%, Ti: 0.05 to 0.35%, B: 0.003 to 0.018%, Ni: 3.00% or less, Cr: 0.30% or less V: 0.030% or less, Nb: 0.030% or less, N: 0.012% or less. When the welding flux is FeO: 4.5% or less, B 2 O 3 : 1.5% or less, the basicity BL value is 0.5 to 1.5, and the B amount in the welding wire is (B) The variable (X) given by the following equation from the basicity BL and (B) is 9.8 to 20.8.
(X) = 1000 × (B) + 5.1 × BL
[Selection] Figure 3

Description

本発明は溶接入熱400kJ/cm以上の大入熱エレクトロスラグ溶接方法に関し、特に、490〜740MPa級の厚板(厚さ40mm以上)の高張力鋼板を溶接する際の溶接継手方向の各部で良好な靱性値を得ることを可能にする大入熱エレクトロスラグ溶接方法に関する。   The present invention relates to a high heat input electroslag welding method with a welding heat input of 400 kJ / cm or more, and in particular, in each part in the weld joint direction when welding a high-tensile steel plate of 490 to 740 MPa class (thickness of 40 mm or more). The present invention relates to a high heat input electroslag welding method capable of obtaining a good toughness value.

エレクトロスラグ溶接方法は、主として、鉄骨の4面BOX柱における内ダイアフラムの立向溶接に使用されており、一般に高能率溶接が実現されるサブマージアーク溶接と比べてもエレクトロスラグ溶接方法は高能率であり、大入熱1パス溶接が可能な溶接方法である。   The electroslag welding method is mainly used for the vertical welding of the inner diaphragm in a steel 4-sided BOX column, and the electroslag welding method is generally more efficient than the submerged arc welding, which can generally achieve high efficiency welding. Yes, it is a welding method capable of high-heat input one-pass welding.

ところでエレクトロスラグ溶接が適用される建築物の部材及び骨組に関して、近年、地震時の塑性変形能力の確保及び長寿命化の観点から、溶接金属部にも高靱性値が要求されている。しかし、エレクトロスラグ溶接は他のアーク溶接と比べて厚板になると溶接入熱が800kJ/cm程度と大きいため、溶接金属の冷却速度が小さくなり、組織が粗大化する結果、溶接金属の靱性が低下するという問題がある。   By the way, with regard to building members and frames to which electroslag welding is applied, in recent years, a high toughness value is also required for weld metal parts from the viewpoint of securing plastic deformation ability at the time of an earthquake and extending the life. However, electroslag welding has a large heat input of about 800 kJ / cm when it is thicker than other arc welding, so the cooling rate of the weld metal decreases and the structure becomes coarse. As a result, the toughness of the weld metal is reduced. There is a problem of lowering.

このような溶接金属の靱性改善のために溶接金属に微量のTiとBを添加することにより、溶接金属組織を微細化し、靭性を改善する方法が公知である。ところが、エレクトロスラグ溶接においては、溶接線方向での靱性値にばらつきが大きく、試験片採取箇所によっては満足な靱性値が得られないという問題点が残存している。   In order to improve the toughness of such a weld metal, a method for refining the weld metal structure and improving the toughness by adding a small amount of Ti and B to the weld metal is known. However, in electroslag welding, the toughness value in the weld line direction varies greatly, and there remains a problem that a satisfactory toughness value cannot be obtained depending on the specimen collection location.

エレクトロスラグ溶接における靭性確保の従来技術としては、特許文献1乃至4が開示されている。   Patent Documents 1 to 4 are disclosed as conventional techniques for ensuring toughness in electroslag welding.

特許文献1及び特許文献2においては、溶接用ワイヤに、C,Si,Mn,Al,Ni,Mo,Ti等を積極添加すると共に、塩基度の低いフラックスを使用することにより、溶接金属におけるアシキュラフェライト生成の核となるTiO系酸化物を微細分散させ、なおかつ、粒界フェライトの成長を抑制するBの添加によって靱性を確保する技術が開示されている。 In patent document 1 and patent document 2, while actively adding C, Si, Mn, Al, Ni, Mo, Ti or the like to the welding wire, and using a flux with low basicity, it is A technique is disclosed in which toughness is ensured by adding B, which finely disperses a TiO 2 -based oxide serving as a nucleus for the formation of curaferrite, and further suppresses the growth of grain boundary ferrite.

また、特許文献3には、溶接ワイヤに、C,Si,Mn,Al,Ni,Mo等を添加し、旧オーステナイト粒界から偏析する粒界フェライトの抑制のため、適正B量を添加し、更に、微細なアシキュラフェライトの生成核となる酸化物形成のため、Tiを適正量含有することにより、靱性を確保している。また、特許文献4においては、C,Si,Mn,Mo,Ni,B等を夫々適正な範囲で添加させ、N量を抑制させたエレクトロスラグ溶接用ワイヤが提案されている。   Further, in Patent Document 3, C, Si, Mn, Al, Ni, Mo, etc. are added to the welding wire, and an appropriate amount of B is added to suppress the grain boundary ferrite segregating from the prior austenite grain boundaries, Furthermore, toughness is ensured by containing an appropriate amount of Ti in order to form an oxide serving as a production nucleus of fine acicular ferrite. Patent Document 4 proposes an electroslag welding wire in which C, Si, Mn, Mo, Ni, B, etc. are added in appropriate ranges and the N amount is suppressed.

特開2005−246399号公報JP 2005-246399 A 特開2004−114053号公報Japanese Patent Application Laid-Open No. 2004-114053 特開2003−340592号公報Japanese Patent Laid-Open No. 2003-340592 特開2002−79396号公報JP 2002-79396 A

しかしながら、特許文献3及び4においては、フラックス成分が規定されていないと共に、靱性に大きく左右する溶接金属の酸素量については考慮されていない。   However, in Patent Documents 3 and 4, the flux component is not specified, and the oxygen content of the weld metal that greatly affects toughness is not considered.

また、特許文献1及び特許文献2においては、フラックスの塩基度は規定しているものの、溶接金属の酸素量については何ら開示されておらず、溶接金属の適正なB量は酸素量で異なるため、塩基度を規定しただけの特許文献1及び2においては、溶接金属の靱性を確実に向上させているとはいえない。これでは、溶接継手方向で安定した靱性を確保することが困難である。   Moreover, in patent document 1 and patent document 2, although the basicity of a flux is prescribed | regulated, it is not disclosed at all about the oxygen amount of a weld metal, and since the appropriate B amount of a weld metal differs with oxygen amounts. In Patent Documents 1 and 2 in which only the basicity is defined, it cannot be said that the toughness of the weld metal is reliably improved. This makes it difficult to ensure stable toughness in the weld joint direction.

本発明はかかる問題点に鑑みてなされたものであって、溶接入熱が400kJ/cmを超える大入熱エレクトロスラグ溶接においても、溶接継手方向で安定した靱性を確保することができ、特に、490〜740MPa級の厚板(厚さ40mm以上)の高張力鋼板を溶接する際に溶接継手方向で良好な靱性値を得ることができる大入熱エレクトロスラグ溶接方法を提供することを目的とする。   The present invention has been made in view of such problems, and can ensure stable toughness in the weld joint direction even in high heat input electroslag welding in which the heat input of welding exceeds 400 kJ / cm. It is an object of the present invention to provide a high heat input electroslag welding method capable of obtaining a good toughness value in the weld joint direction when welding a 490 to 740 MPa class thick plate (thickness of 40 mm or more). .

本発明に係る大入熱エレクトロスラグ溶接方法は、溶接ワイヤ及び溶接フラックスを使用する大入熱エレクトロスラグ溶接方法において、
前記溶接ワイヤは、ワイヤ全質量当たり、C:0.02乃至0.25質量%、Si:0.05乃至1.80質量%、Mn:0.50乃至3.50質量%、Ni:3.00質量%以下、Mo:0.05乃至2.00質量%、Al:0.005乃至0.080質量%、Ti:0.05乃至0.35質量%、B:0.003乃至0.018質量%、Cr:0.30質量%以下、V:0.030質量%以下、Nb:0.030質量%以下、N:0.012質量%以下を含有し、残部がFe及び不可避的不純物からなり、
前記溶接フラックスは、フラックス全質量当たり、FeO:4.5質量%以下、B:1.5質量%以下を含有し、
前記フラックスのSiO含有量(質量%)を[SiO]、CaO含有量(質量%)を[CaO]、Al含有量(質量%)を[Al]、CaF含有量(質量%)を[CaF]、MgO含有量(質量%)を[MgO]、MnO含有量(質量%)を[MnO]、TiO含有量(質量%)を[TiO]、FeO含有量(質量%)を[FeO]としたとき、下記数式(1)で与えられる塩基度BLの値を0.5乃至1.5とし、
前記溶接ワイヤ中のB含有量を(B)としたとき、塩基度BLと溶接ワイヤ中のB量(B)から下記数式(2)で与えられる変数(X)が9.8乃至20.8を満足することを特徴とする。
The high heat input electroslag welding method according to the present invention is a high heat input electroslag welding method using a welding wire and a welding flux.
The welding wire has C: 0.02 to 0.25% by mass, Si: 0.05 to 1.80% by mass, Mn: 0.50 to 3.50% by mass, Ni: 3. 00 mass% or less, Mo: 0.05 to 2.00 mass%, Al: 0.005 to 0.080 mass%, Ti: 0.05 to 0.35 mass%, B: 0.003 to 0.018 Contains: mass%, Cr: 0.30 mass% or less, V: 0.030 mass% or less, Nb: 0.030 mass% or less, N: 0.012 mass% or less, and the balance from Fe and inevitable impurities Become
The welding flux contains FeO: 4.5% by mass or less, B 2 O 3 : 1.5% by mass or less per total mass of the flux,
The SiO 2 content (% by mass) of the flux is [SiO 2 ], the CaO content (% by mass) is [CaO], the Al 2 O 3 content (% by mass) is [Al 2 O 3 ], and CaF 2 is contained. The amount (mass%) is [CaF 2 ], the MgO content (mass%) is [MgO], the MnO content (mass%) is [MnO], the TiO 2 content (mass%) is [TiO 2 ], FeO When the content (mass%) is [FeO], the basicity BL value given by the following mathematical formula (1) is set to 0.5 to 1.5,
When the B content in the welding wire is (B), the variable (X) given by the following formula (2) from the basicity BL and the B amount (B) in the welding wire is 9.8 to 20.8. It is characterized by satisfying.

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

この大入熱エレクトロスラグ溶接方法において、前記溶接ワイヤのNi含有量は、ワイヤ全質量当たり、Ni:0.50乃至3.00質量%であることが好ましい。特に好ましくは、前記溶接ワイヤのNi含有量は、Ni:0.50乃至2.00質量%である。   In this high heat input electroslag welding method, the Ni content of the welding wire is preferably Ni: 0.50 to 3.00 mass% with respect to the total mass of the wire. Particularly preferably, the Ni content of the welding wire is Ni: 0.50 to 2.00% by mass.

本発明によれば、490〜740MPa級の厚板(厚さ40mm以上)の高張力鋼板の溶接のように、溶接入熱が400kJ/cmを超える大入熱エレクトロスラグ溶接において、溶接継手方向で安定した靱性を確保することができる。   According to the present invention, in the high heat input electroslag welding in which the welding heat input exceeds 400 kJ / cm, such as welding of a high-tensile steel plate of 490 to 740 MPa class (thickness of 40 mm or more), in the weld joint direction. Stable toughness can be ensured.

本発明者等は、入熱が400kJ/cmを超える大入熱エレクトロスラグ溶接においても、溶接継手方向で安定した靱性を確保するためには、主として溶接金属B量と溶接金属酸素量を適切に規定することが必要であるとの知見を得、本発明を完成させたものである。   In order to ensure stable toughness in the weld joint direction even in large heat input electroslag welding where the heat input exceeds 400 kJ / cm, the present inventors mainly set the amount of weld metal B and the amount of weld metal oxygen appropriately. The present invention has been completed by obtaining the knowledge that it is necessary to define it.

以下、本発明について更に詳細に説明する。先ず、本発明にて使用する溶接ワイヤの組成及びその成分限定理由について説明する。   Hereinafter, the present invention will be described in more detail. First, the composition of the welding wire used in the present invention and the reasons for limiting its components will be described.

「C:0.02乃至0.25質量%」
Cは溶接金属の強度と靱性を確保するために有効な元素であるが、C含有量が0.02質量%未満では、その効果が得られない。一方、C含有量が0.25質量%を超えると、溶接金属の靱性が低下すると共に高温割れ発生の懸念がある。よって、C含有量は0.02乃至0.25質量%とする。
“C: 0.02 to 0.25 mass%”
C is an effective element for ensuring the strength and toughness of the weld metal, but if the C content is less than 0.02% by mass, the effect cannot be obtained. On the other hand, if the C content exceeds 0.25% by mass, the toughness of the weld metal is lowered and there is a concern of hot cracking. Therefore, the C content is 0.02 to 0.25% by mass.

「Si:0.05乃至1.80質量%」
Siは溶接金属の脱酸作用と焼入れ性を確保すると共に、溶接金属の湯流れを安定させるために必要な元素である。しかし、Si含有量が0.05質量%未満ではこの効果が得られない。一方、Si含有量が1.80質量%を超えると、高温割れ発生が懸念され、かつ、溶接金属部の硬化により靱性が劣化する。よって、Si含有量は0.05乃至1.80質量%とする。
“Si: 0.05 to 1.80 mass%”
Si is an element necessary for ensuring the deoxidation action and hardenability of the weld metal and stabilizing the molten metal flow of the weld metal. However, when the Si content is less than 0.05% by mass, this effect cannot be obtained. On the other hand, if the Si content exceeds 1.80% by mass, the occurrence of hot cracking is a concern, and the toughness deteriorates due to the hardening of the weld metal part. Therefore, the Si content is 0.05 to 1.80 mass%.

「Mn:0.50乃至3.50質量%」
Mnは脱酸剤として作用すると共に、溶接金属の焼入れ性を向上させる元素であり、溶接金属の靱性安定化のために必要な元素である。しかし、Mn含有量が0.50質量%未満の場合、十分な焼入れ性及び靭性が得られない。一方、Mnが3.50質量%を超えると、焼入れ性が高くなり過ぎ、強度が上がり、耐高温割れ性が劣化すると共に、靱性が劣化する。よって、Mn含有量は0.50乃至3.50質量%とする。
“Mn: 0.50 to 3.50 mass%”
Mn acts as a deoxidizer and is an element that improves the hardenability of the weld metal, and is an element necessary for stabilizing the toughness of the weld metal. However, when the Mn content is less than 0.50% by mass, sufficient hardenability and toughness cannot be obtained. On the other hand, when Mn exceeds 3.50 mass%, hardenability will become high too much, strength will go up, hot cracking resistance will deteriorate, and toughness will deteriorate. Therefore, the Mn content is 0.50 to 3.50 mass%.

「Ni:3.00質量%以下」
本願第1発明においては,Ni含有量は3.00質量%以下である。Niは一般的には溶接ワイヤに添加することにより、マトリックスを強化し、靱性を向上させる効果があるが、本願第1発明では靭性向上効果はMoの添加で補っている。しかし、Ni含有量が3.00質量%を超えると、A3変態点の低下により、固液共存域を増加させ、結果として耐高温割れ性が劣化する。よって、Ni含有量は3.00%以下とする。
"Ni: 3.00 mass% or less"
In 1st invention of this application, Ni content is 3.00 mass% or less. Ni is generally added to the welding wire to strengthen the matrix and improve the toughness. In the first invention of the present application, the toughness improving effect is supplemented by the addition of Mo. However, if the Ni content exceeds 3.00% by mass, the solid-liquid coexistence region is increased due to the decrease in the A3 transformation point, and as a result, the hot cracking resistance deteriorates. Therefore, the Ni content is 3.00% or less.

「Ni:0.50乃至3.00質量%」
また、本願第2発明においては、Ni含有量は0.50乃至3.00質量%である。更に一層、靭性を向上させようとする場合は、Niを0.50質量%以上と、積極的に添加してもよい。靱性向上の効果を得るためにはNiを0.50質量%以上添加する必要がある。よって、Ni積極添加の際のNi含有量は、0.50乃至3.00質量%とする。なお、溶接ワイヤ中のNi含有量が2.00質量%を超えると、溶接金属の靭性向上効果は飽和する一方で、溶接ワイヤの製造コストが上昇するため、好ましくは、Ni含有量を0.50乃至2.00質量%とする。
“Ni: 0.50 to 3.00 mass%”
Moreover, in this-application 2nd invention, Ni content is 0.50 to 3.00 mass%. In order to further improve toughness, Ni may be positively added to 0.50% by mass or more. In order to obtain the effect of improving toughness, it is necessary to add 0.50% by mass or more of Ni. Therefore, the Ni content when Ni is actively added is 0.50 to 3.00 mass%. When the Ni content in the welding wire exceeds 2.00% by mass, the effect of improving the toughness of the weld metal is saturated while the manufacturing cost of the welding wire is increased. 50 to 2.00% by mass.

「Mo:0.05乃至2.00質量%」
Moは溶接金属の焼入れ性を高め、溶接金属の強度と靱性の向上に大きな効果があるが、Mo含有量が0.05質量%未満であると、上記効果が期待できない。一方、Mo含有量が2.00質量%を超えると、溶接金属の高温割れが発生する可能性があり、かつ、過剰な硬化により溶接金属の靱性が劣化する。よって、Mo含有量は0.05乃至2.00質量%とする。
“Mo: 0.05 to 2.00% by mass”
Mo enhances the hardenability of the weld metal and has a great effect on improving the strength and toughness of the weld metal. However, if the Mo content is less than 0.05% by mass, the above effect cannot be expected. On the other hand, if the Mo content exceeds 2.00% by mass, hot cracking of the weld metal may occur, and the toughness of the weld metal deteriorates due to excessive curing. Therefore, the Mo content is 0.05 to 2.00% by mass.

「Al:0.005乃至0.080質量%」
Alは溶接金属の脱酸効果のために含有される元素である。しかし、Al含有量が0.005質量%未満の場合、その効果が発揮されず、溶接金属の焼入れ性低下、及び靱性劣化が生じる。一方、Al含有量が0.080質量%を超えると、Al酸化物が多量に形成され、アシキュラフェライト生成の核となるTi酸化物の生成を阻害するため、靭性が劣化する。よって、Al含有量は0.005乃至0.080質量%とする。
“Al: 0.005 to 0.080 mass%”
Al is an element contained for the deoxidation effect of the weld metal. However, when the Al content is less than 0.005% by mass, the effect is not exhibited and the hardenability of the weld metal is lowered and the toughness is deteriorated. On the other hand, when the Al content exceeds 0.080% by mass, a large amount of Al oxide is formed, and the production of Ti oxide that becomes the core of the generation of acicular ferrite is inhibited, so that the toughness is deteriorated. Therefore, the Al content is set to 0.005 to 0.080 mass%.

「Ti:0.05乃至0.35質量%」
TiはTi酸化物としてアシキュラフェライトを生成する核となるので、粗大な粒界フェライトの生成を防止するために必要な元素である。しかし、Ti含有量が0.05質量%未満の場合、酸化物の生成が不十分で、溶接金属の靱性向上が得られない。一方、Tiが0.35質量%を超えると、溶接金属中のTi析出物が多くなりすぎて、靱性が低下する。よって、Ti含有量は0.05乃至0.35質量%とする。
“Ti: 0.05 to 0.35 mass%”
Since Ti serves as a nucleus for generating acicular ferrite as a Ti oxide, it is an element necessary for preventing the formation of coarse grain boundary ferrite. However, when the Ti content is less than 0.05% by mass, the generation of oxides is insufficient and the toughness of the weld metal cannot be improved. On the other hand, when Ti exceeds 0.35 mass%, the amount of Ti precipitates in the weld metal increases so that the toughness decreases. Therefore, the Ti content is 0.05 to 0.35 mass%.

「B:0.003乃至0.018質量%」
Bは溶接金属の焼入れ性を向上させ、初析フェライトの成長の抑制により、靱性を向上させる元素である。しかし、B含有量が0.003質量%未満の場合、上記効果が期待できない。一方、B含有量が0.018質量%を超えると、溶接金属の焼入れ性が過剰となり、高温割れが発生し易くなると共に、マルテンサイト相の生成により溶接金属の靱性が劣化する。よって、B含有量は0.003乃至0.018質量%とする。
“B: 0.003 to 0.018 mass%”
B is an element that improves the hardenability of the weld metal and improves toughness by suppressing the growth of pro-eutectoid ferrite. However, when the B content is less than 0.003% by mass, the above effect cannot be expected. On the other hand, if the B content exceeds 0.018% by mass, the hardenability of the weld metal becomes excessive, and hot cracking is likely to occur, and the toughness of the weld metal deteriorates due to the formation of the martensite phase. Therefore, the B content is set to 0.003 to 0.018 mass%.

「Cr:0.30質量%以下」
Crは一般的には強度と靱性を向上させる元素であるが、本願第1発明及び第2発明では、強度及び靭性の向上は主として、Moの添加により得ており、一方で、Crの含有量が0.30質量%を超えると、高温割れが発生したり、溶接金属の硬化により靱性が劣化する。よって、Cr含有量は0.30質量%以下とする。
“Cr: 0.30 mass% or less”
In general, Cr is an element that improves strength and toughness. However, in the first and second inventions of the present application, the improvement in strength and toughness is obtained mainly by the addition of Mo, while the content of Cr If it exceeds 0.30 mass%, hot cracking occurs or the toughness deteriorates due to hardening of the weld metal. Therefore, Cr content shall be 0.30 mass% or less.

「V:0.030質量%以下」
Vは一般的には溶接金属の強度を向上させるが、前述の如く、本発明ではMo等の他の元素の添加で強度を確保しており、一方で、Vの含有量が0.030質量%を超えると、溶接金属が硬化して靭性が劣化する。よって、V含有量は0.030質量%以下とする。
“V: 0.030 mass% or less”
V generally improves the strength of the weld metal, but as described above, in the present invention, the strength is ensured by addition of other elements such as Mo, while the V content is 0.030 mass. If it exceeds 50%, the weld metal hardens and the toughness deteriorates. Therefore, V content shall be 0.030 mass% or less.

「Nb:0.030質量%以下」
Nbは一般的にはVと同様に溶接金属の強度を向上させるが、本発明ではMo等の他の元素の添加で強度を確保しており、一方で、Nbの含有量が0.030質量%を超えると、溶接金属が硬化して靭性が劣化する。よって、Nb含有量は0.030質量%以下とする。
“Nb: 0.030 mass% or less”
Nb generally improves the strength of the weld metal in the same way as V, but in the present invention, the strength is ensured by adding other elements such as Mo, while the Nb content is 0.030 mass. If it exceeds 50%, the weld metal hardens and the toughness deteriorates. Therefore, Nb content shall be 0.030 mass% or less.

「N:0.012質量%以下」
Nは溶接金属の靭性を低下させる元素であるため、その含有量は可及的に少なくすることが好ましい。N含有量が0.012質量%を超えると、靱性の劣化が著しい。よってN含有量は0.012質量%以下とする。
“N: 0.012 mass% or less”
Since N is an element that lowers the toughness of the weld metal, its content is preferably reduced as much as possible. When the N content exceeds 0.012% by mass, the toughness is significantly deteriorated. Therefore, N content shall be 0.012 mass% or less.

次に、本発明における溶接フラックスの組成であるFeO、及びBの成分限定理由について説明する。 Next, the reasons for limiting the components of FeO and B 2 O 3 which are the compositions of the welding flux in the present invention will be described.

「FeO:4.5質量%以下」
FeOが4.5質量%を超えると溶接安定性が劣化し、場合によっては溶接停止が発生すると共に、溶接金属中の酸素が高くなり、溶接金属中のB量と酸素量とのバランスが崩れて、良好な靱性が得られなくなるため、FeOは4.5質量%以下に規制する。
“FeO: 4.5% by mass or less”
If FeO exceeds 4.5 mass%, welding stability deteriorates, and in some cases, welding stops, oxygen in the weld metal increases, and the balance between the B content and the oxygen content in the weld metal is lost. Therefore, since good toughness cannot be obtained, FeO is regulated to 4.5% by mass or less.

「B:1.5質量%以下」
本発明においては溶接金属中へのBの供給はワイヤにより行っているため、基本的にはBは添加する必要がない。一方、B量が1.5質量%を超えると、溶接金属中のB量が過大となり、マルテンサイト相の生成により溶接金属の靱性が劣化し、高温割れが発生し易くなる。よって、B含有量は1.5質量%以下に規制する。
“B 2 O 3 : 1.5% by mass or less”
In the present invention, since B is supplied into the weld metal by a wire, basically, it is not necessary to add B 2 O 3 . On the other hand, when the amount of B 2 O 3 exceeds 1.5% by mass, the amount of B in the weld metal becomes excessive, and the toughness of the weld metal is deteriorated due to the formation of the martensite phase, and high temperature cracking is likely to occur. Therefore, the B 2 O 3 content is regulated to 1.5% by mass or less.

次に、本発明における溶接用フラックスの塩基度BLの数値限定理由について説明する。溶接用フラックスは、スラグの融点、流動性及び粘性等の特性を考慮して、その組成が決められており、酸化物と弗化物から構成されている。本発明では溶接金属中の酸素量を決める指標として塩基度BLを使用し、この塩基度BLの範囲を適切にすることにより、溶接金属中の酸素量を適切な範囲に調整した。なお、塩基度BLは前記数式1で算出される値である。   Next, the reason for limiting the numerical value of the basicity BL of the welding flux in the present invention will be described. The composition of the welding flux is determined in consideration of characteristics such as melting point, fluidity and viscosity of slag, and is composed of oxide and fluoride. In the present invention, the basicity BL is used as an index for determining the oxygen content in the weld metal, and the oxygen content in the weld metal is adjusted to an appropriate range by making the range of the basicity BL appropriate. The basicity BL is a value calculated by the formula 1.

「塩基度BL:0.5乃至1.5」
塩基度BLが0.5未満の場合、溶接金属中の酸素量が過剰になり、靱性の向上が期待できない。一方、塩基度BLが1.5を超えると、スラグの融点が高くなり過ぎて、溶接中に停止が発生する。なお、溶接停止とは、スラグ浴の融点が高く、粘性が過大になりすぎて、ワイヤ−スラグ間の通電が悪くなり、溶接中に通電が停止し、溶接が停止する現象である。よって、塩基度BLは0.5乃至1.5とする。
“Basicity BL: 0.5 to 1.5”
When the basicity BL is less than 0.5, the amount of oxygen in the weld metal becomes excessive, and improvement in toughness cannot be expected. On the other hand, if the basicity BL exceeds 1.5, the melting point of the slag becomes too high and a stop occurs during welding. The welding stop is a phenomenon in which the melting point of the slag bath is high and the viscosity becomes excessively high, the conduction between the wire and the slag is deteriorated, the conduction is stopped during welding, and the welding is stopped. Therefore, the basicity BL is set to 0.5 to 1.5.

「変数(X):9.8乃至20.8」
次に、溶接フラックスの塩基度BLと溶接用ワイヤのB量の関係について説明する。上述の如く、溶接フラックスの塩基度BLは溶接金属中の酸素量と相関する値である。一方、溶接ワイヤ中のB量は適正な固溶Bの生成により初析フェライト相の成長を抑制するため、靱性に極めて有効である。このような固溶Bの生成にはBの酸化物及び窒化物として固定されないだけのBの添加が必要である。エレクトロスラグ溶接のように安定した靱性を得難い場合には、溶接金属のB量と溶接金属の酸素量を制御することにより固溶Bを生成させ、溶接線方向で安定した靱性を得ることが可能である。そのときは、溶接ワイヤ中のB含有量(B)と、塩基度BLから得られる数式2の値(変数(X))を、9.8乃至20.8にする。(X)が9.8未満である場合は、溶接フラックスの塩基度BLに対して溶接ワイヤのB量が低すぎるため、固溶Bが生成されず、安定した靭性が得られない。一方、(X)が20.8を超えると、溶接フラックスの塩基度BLに対して溶接ワイヤのB量が高すぎるため、固溶B量が過剰となり、溶接金属が硬化し、靱性が劣化し、高温割れが発生する場合がある。よって、(X)の範囲は9.8乃至20.8とする。
“Variable (X): 9.8 to 20.8”
Next, the relationship between the basicity BL of the welding flux and the B amount of the welding wire will be described. As described above, the basicity BL of the welding flux is a value that correlates with the amount of oxygen in the weld metal. On the other hand, the amount of B in the welding wire is extremely effective for toughness because it suppresses the growth of the pro-eutectoid ferrite phase by the generation of proper solute B. In order to form such a solid solution B, it is necessary to add B that is not fixed as an oxide and nitride of B. When it is difficult to obtain stable toughness as in electroslag welding, it is possible to generate solid solution B by controlling the amount of B in the weld metal and the amount of oxygen in the weld metal to obtain stable toughness in the weld line direction. It is. At that time, the B content (B) in the welding wire and the value of Equation 2 (variable (X)) obtained from the basicity BL are set to 9.8 to 20.8. When (X) is less than 9.8, since the B amount of the welding wire is too low with respect to the basicity BL of the welding flux, solid solution B is not generated, and stable toughness cannot be obtained. On the other hand, if (X) exceeds 20.8, the amount of B of the welding wire is too high with respect to the basicity BL of the welding flux, so the amount of dissolved B becomes excessive, the weld metal hardens, and the toughness deteriorates. , Hot cracking may occur. Therefore, the range of (X) is 9.8 to 20.8.

なお、溶接フラックスの成分組成は、例えば、以下のとおりである。
SiO:25乃至50質量%
CaO:5乃至25質量%
Al:15質量%以下
CaF:20質量%以下
MgO:16質量%以下
MnO:25質量%以下
TiO:10質量%以下
In addition, the component composition of a welding flux is as follows, for example.
SiO 2 : 25 to 50% by mass
CaO: 5 to 25% by mass
Al 2 O 3 : 15 mass% or less CaF 2 : 20 mass% or less MgO: 16 mass% or less MnO: 25 mass% or less TiO 2 : 10 mass% or less

次に、本発明の実施例について本発明の範囲から外れる比較例と比較して本発明の効果について説明する。図1は溶接試験にて使用した溶接継手であり、JIS規格SN490に規定されたフラットバーを側板cとして使用したものである。図中の数値は、各部材の寸法であり、溶接長は、800mmである。スキンプレートa、ダイアフラムbは厚さが60mmの厚板である。   Next, the effects of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. FIG. 1 shows a welded joint used in a welding test, in which a flat bar defined in JIS standard SN490 is used as a side plate c. The numerical value in a figure is a dimension of each member, and welding length is 800 mm. Skin plate a and diaphragm b are thick plates having a thickness of 60 mm.

下記表1はスキンプレートa及びダイアフラムbの組成(質量%)を示す。但し、表1における残部は、Fe及び不可避的不純物である。そして、下記表2に示す溶接条件でエレクトロスラグ溶接を実施した。なお、溶接フラックス投入量は120gで行った。溶接ワイヤの組成を下記表3−1、表3−2、表3−3、表3-4に示す。また、溶接フラックスの塩基度BL、変数(X)の値及び組成を、前記表3−1〜3−4に合わせて示す。この表3−1〜3−4において、フラックスの種類F1〜F6の組成は、下記表4に示すとおりである。   Table 1 below shows the composition (mass%) of skin plate a and diaphragm b. However, the balance in Table 1 is Fe and inevitable impurities. Then, electroslag welding was performed under the welding conditions shown in Table 2 below. The amount of welding flux input was 120 g. The composition of the welding wire is shown in the following Table 3-1, Table 3-2, Table 3-3, and Table 3-4. Moreover, the basicity BL of welding flux, the value of variable (X), and a composition are shown according to the said Tables 3-1 to 3-4. In Tables 3-1 to 3-4, the compositions of the types of flux F1 to F6 are as shown in Table 4 below.

溶接終了後、超音波探査試験で高温割れの有無を確認し、図2に示す採取位置から、引張試験片d及びシャルピー衝撃試験片eを採取し、溶接金属の機械的性質を調査した。引張試験片は、300mmの箇所のみ採取し、引張試験を実施した。衝撃試験片は、溶接線方向の200mm、400mm、600mmの箇所で採取し、試験温度は0℃で実施した(n=3、平均値)。試験結果を下記表5−1,5−2に示す。   After the welding was completed, the presence or absence of hot cracking was confirmed by an ultrasonic exploration test, and a tensile test piece d and a Charpy impact test piece e were collected from the sampling position shown in FIG. 2, and the mechanical properties of the weld metal were investigated. Tensile test pieces were collected only at a location of 300 mm and subjected to a tensile test. The impact test piece was sampled at 200 mm, 400 mm, and 600 mm in the weld line direction, and the test temperature was 0 ° C. (n = 3, average value). The test results are shown in Tables 5-1 and 5-2 below.

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

Figure 2009202213
Figure 2009202213

表5−1及び表5−2に示すように、本発明の実施例No.1〜19においては、溶接ワイヤの化学組成、溶接フラックスの塩基度BL、数式2の値(X)について、本発明の範囲を満足するため、良好な引張性能及び溶接線方向においての良好な衝撃性能が得られた。   As shown in Tables 5-1 and 5-2, Example No. 1 to 19, the chemical composition of the welding wire, the basicity BL of the welding flux, and the value (X) of Equation 2 satisfy the scope of the present invention, so that good tensile performance and good impact in the weld line direction are obtained. Performance was obtained.

一方、比較例No.20については、C量が規定範囲より低いため、引張強度が低く、靭性が低かった。比較例No.21については、C量が規定範囲より高いため、高温割れが発生し、試験を中止した。比較例No.22については、Si量が規定範囲より低いため、溶接金属の焼入れ性が不十分となり、引張強度及び靱性が低かった。比較例No.23については、Si量が規定範囲より高いため、高温割れが発生し、試験を中止した。比較例No.24については、Mn量が規定範囲より低いため、焼入れ性が不十分で、引張強度と靱性が低値であった。比較例No.25については、Mn量が規定範囲より高いため、焼入れ性が過大で割れが発生し、試験を中止した。比較例No.26については、Ni量が規定範囲より高いため、高温割れが発生し、試験を中止した。比較例No.27については、Mo量が規定範囲より低いため、焼入れ性が不十分で、引張強度と靱性が低かった。比較例No.28については、Mo量が規定範囲より高いため、高温割れが発生し、試験を中止した。比較例No.29については、Al量が規定範囲より低いため、脱酸効果が十分でなく、靱性値が低かった。比較例No.30については、Al量が規定範囲より高いため、Al酸化物の多量生成により、靱性が劣化した。比較例No.31については、Ti量が規定範囲より低いため、アシキュラフェライト相の生成が十分でなく、靱性値が低かった。比較例NO.32については、Ti量が規定範囲より高いため、溶接金属のTi析出物が過大となり、靱性が劣化した。比較例No.33については、B量が規定範囲より低いため、初析フェライトの成長抑制効果が十分でなく、また、数式2の値(X)が規定範囲より低いため、固溶Bが生成されず、これに伴い初折フェライト抑制効果が不十分となり、靱性値が低かった。比較例No.34については、B量が規定範囲より高いため、また、数式2の値(X)が規定範囲より高いため、固溶Bが過剰で、溶接金属の硬化により高温割れが発生し、試験を中止した。比較例No.35については、Cr量が規定範囲より高いため、高温割れが発生し、試験を中止した。比較例No.36については、V量が規定範囲より高いため、靭性が劣化した。比較例No.37については、Nb量が規定範囲より高いため、靭性が劣化した。比較例No.38については、N量が規定範囲より高いため、靱性が劣化した。比較例No.39については、溶接用フラックスの塩基度BLが規定範囲より低いため、溶接金属の酸素量が過大となり、靱性値が低かった。比較例No.40については、BLが規定範囲より高いため、スラグの融点が高く、溶接が停止したため、中止した。比較例No.41、42については、数式2の値(X)が規定範囲より低いため、固溶Bが生成されず、これに伴い初折フェライト抑制効果が不十分となり、靱性が劣化した。比較例No.43、44、45については、数式2の値(X)が規定範囲より高いため、固溶B量が過剰で、溶接金属の硬化により、靭性が劣化した。比較例No.46については、FeO量が規定範囲より高いため、溶接が安定せず、溶接試験を中止した。比較例No.47についてはB量が規定範囲より高いため、高温割れが発生し、試験を中止した。 On the other hand, Comparative Example No. About 20, since the C content was lower than the specified range, the tensile strength was low and the toughness was low. Comparative Example No. For No. 21, since the amount of C was higher than the specified range, hot cracking occurred and the test was stopped. Comparative Example No. Regarding No. 22, since the Si amount was lower than the specified range, the hardenability of the weld metal was insufficient, and the tensile strength and toughness were low. Comparative Example No. For No. 23, the amount of Si was higher than the specified range, so hot cracking occurred and the test was stopped. Comparative Example No. About 24, since the amount of Mn was lower than the regulation range, hardenability was inadequate and tensile strength and toughness were low values. Comparative Example No. For No. 25, since the amount of Mn was higher than the specified range, the hardenability was excessive and cracking occurred, and the test was stopped. Comparative Example No. For No. 26, the amount of Ni was higher than the specified range, so hot cracking occurred and the test was stopped. Comparative Example No. For No. 27, the Mo content was lower than the specified range, so the hardenability was insufficient and the tensile strength and toughness were low. Comparative Example No. For 28, the amount of Mo was higher than the specified range, so hot cracking occurred, and the test was stopped. Comparative Example No. Regarding No. 29, since the Al content was lower than the specified range, the deoxidation effect was not sufficient and the toughness value was low. Comparative Example No. For No. 30, since the Al content was higher than the specified range, the toughness deteriorated due to the large amount of Al oxide. Comparative Example No. Regarding No. 31, since the Ti amount was lower than the specified range, the generation of the acicular ferrite phase was not sufficient, and the toughness value was low. Comparative Example NO. Regarding No. 32, since the Ti amount was higher than the specified range, the Ti precipitates of the weld metal became excessive and the toughness deteriorated. Comparative Example No. As for No. 33, since the amount of B is lower than the specified range, the effect of suppressing the growth of pro-eutectoid ferrite is not sufficient, and since the value (X) of Formula 2 is lower than the specified range, solid solution B is not generated. As a result, the effect of suppressing initial ferrite was insufficient, and the toughness value was low. Comparative Example No. For No. 34, the amount of B is higher than the specified range, and since the value (X) of Formula 2 is higher than the specified range, the solid solution B is excessive, and hot cracking occurs due to hardening of the weld metal, and the test is stopped. did. Comparative Example No. For 35, the amount of Cr was higher than the specified range, so hot cracking occurred and the test was stopped. Comparative Example No. As for 36, the toughness deteriorated because the V amount was higher than the specified range. Comparative Example No. For No. 37, the toughness deteriorated because the Nb amount was higher than the specified range. Comparative Example No. For No. 38, the toughness deteriorated because the N content was higher than the specified range. Comparative Example No. For No. 39, since the basicity BL of the welding flux was lower than the specified range, the oxygen content of the weld metal was excessive and the toughness value was low. Comparative Example No. About 40, since BL was higher than a regulation range, since melting | fusing point of slag was high and welding stopped, it stopped. Comparative Example No. For 41 and 42, since the value (X) of Formula 2 was lower than the specified range, solid solution B was not generated, and accordingly, the effect of suppressing the initial ferrite became insufficient and the toughness deteriorated. Comparative Example No. For 43, 44, and 45, the value (X) in Equation 2 was higher than the specified range, so the amount of dissolved B was excessive, and the toughness deteriorated due to the hardening of the weld metal. Comparative Example No. For 46, the amount of FeO was higher than the specified range, so welding was not stable and the welding test was stopped. Comparative Example No. For 47, since the amount of B 2 O 3 was higher than the specified range, hot cracking occurred and the test was stopped.

なお、溶接金属B量−塩基度と吸収エネルギーの関係を図3に示す。この図3は表5−1,5−2の値をワイヤ中のB量(B)と、塩基度BLの値で整理したものである。図3中、○は靭性値が良好な場合(採取位置3カ所全てで100Jを超える場合)、×は靭性値が低い場合(採取位置3カ所のうち、1つでも100Jを満足しない場合)を示す。この図3に示すように、塩基度BLが0.5乃至1.5であり、数式2の値(X)がワイヤ中のB量(B)及び塩基度BLとの関係で、図3中実線にて示す範囲にある場合は、靭性値が高く、この範囲から外れる場合は、靭性値が低い。   The relationship between the amount of weld metal B-basicity and absorbed energy is shown in FIG. In FIG. 3, the values in Tables 5-1 and 5-2 are arranged by the amount of B (B) in the wire and the value of basicity BL. In FIG. 3, ○ indicates that the toughness value is good (when it exceeds 100 J at all three sampling positions), and × indicates that the toughness value is low (if one of the three sampling positions does not satisfy 100J). Show. As shown in FIG. 3, the basicity BL is 0.5 to 1.5, and the value (X) in Equation 2 is related to the B amount (B) in the wire and the basicity BL. When it is in the range indicated by the solid line, the toughness value is high, and when it is out of this range, the toughness value is low.

溶接試験に供した溶接継手を示す模式図である。It is a schematic diagram which shows the welded joint used for the welding test. 試験片の採取位置を示す模式図である。It is a schematic diagram which shows the collection position of a test piece. 横軸に溶接ワイヤ中のB量をとり、縦軸に塩基度BLをとって、靭性値が高い範囲を示すグラフ図である。It is a graph which shows the range whose toughness value is high, taking the amount of B in the welding wire on the horizontal axis and taking the basicity BL on the vertical axis.

符号の説明Explanation of symbols

a:スキンプレート
b:ダイアフラム
c:側板
d:引張試験片
e:シャルピー衝撃試験片
a: Skin plate b: Diaphragm c: Side plate d: Tensile test piece e: Charpy impact test piece

Claims (3)

溶接ワイヤ及び溶接フラックスを使用する大入熱エレクトロスラグ溶接方法において、
前記溶接ワイヤは、ワイヤ全質量当たり、C:0.02乃至0.25質量%、Si:0.05乃至1.80質量%、Mn:0.50乃至3.50質量%、Ni:3.00質量%以下、Mo:0.05乃至2.00質量%、Al:0.005乃至0.080質量%、Ti:0.05乃至0.35質量%、B:0.003乃至0.018質量%、Cr:0.30質量%以下、V:0.030質量%以下、Nb:0.030質量%以下、N:0.012質量%以下を含有し、残部がFe及び不可避的不純物からなり、
前記溶接フラックスは、フラックス全質量当たり、FeO:4.5質量%以下、B:1.5質量%以下を含有し、
前記フラックスのSiO含有量(質量%)を[SiO]、CaO含有量(質量%)を[CaO]、Al含有量(質量%)を[Al]、CaF含有量(質量%)を[CaF]、MgO含有量(質量%)を[MgO]、MnO含有量(質量%)を[MnO]、TiO含有量(質量%)を[TiO]、FeO含有量(質量%)を[FeO]としたとき、下記数式(1)で与えられる塩基度BLの値を0.5乃至1.5とし、
前記溶接ワイヤ中のB含有量を(B)としたとき、塩基度BLと溶接ワイヤ中のB量(B)から下記数式(2)で与えられる変数(X)が9.8乃至20.8を満足することを特徴とする大入熱エレクトロスラグ溶接方法。
Figure 2009202213
・・・(1)
(X)=1000×(B)+5.1×BL ・・・(2)
In a high heat input electroslag welding method using a welding wire and welding flux,
The welding wire has C: 0.02 to 0.25% by mass, Si: 0.05 to 1.80% by mass, Mn: 0.50 to 3.50% by mass, Ni: 3. 00 mass% or less, Mo: 0.05 to 2.00 mass%, Al: 0.005 to 0.080 mass%, Ti: 0.05 to 0.35 mass%, B: 0.003 to 0.018 Contains: mass%, Cr: 0.30 mass% or less, V: 0.030 mass% or less, Nb: 0.030 mass% or less, N: 0.012 mass% or less, and the balance from Fe and inevitable impurities Become
The welding flux contains FeO: 4.5% by mass or less, B 2 O 3 : 1.5% by mass or less per total mass of the flux,
The SiO 2 content (% by mass) of the flux is [SiO 2 ], the CaO content (% by mass) is [CaO], the Al 2 O 3 content (% by mass) is [Al 2 O 3 ], and CaF 2 is contained. The amount (mass%) is [CaF 2 ], the MgO content (mass%) is [MgO], the MnO content (mass%) is [MnO], the TiO 2 content (mass%) is [TiO 2 ], FeO When the content (mass%) is [FeO], the basicity BL value given by the following mathematical formula (1) is set to 0.5 to 1.5,
When the B content in the welding wire is (B), the variable (X) given by the following formula (2) from the basicity BL and the B amount (B) in the welding wire is 9.8 to 20.8. A high heat input electroslag welding method characterized by satisfying
Figure 2009202213
... (1)
(X) = 1000 × (B) + 5.1 × BL (2)
前記溶接ワイヤのNi含有量は、ワイヤ全質量当たり、Ni:0.50乃至3.00質量%であることを特徴とする請求項1に記載の大入熱エレクトロスラグ溶接方法。 The high heat input electroslag welding method according to claim 1, wherein the Ni content of the welding wire is Ni: 0.50 to 3.00 mass% per total mass of the wire. 前記溶接ワイヤのNi含有量は、ワイヤ全質量当たり、Ni:0.50乃至2.00質量%であることを特徴とする請求項2に記載の大入熱エレクトロスラグ溶接方法。 The high heat input electroslag welding method according to claim 2, wherein the Ni content of the welding wire is Ni: 0.50 to 2.00 mass% per total mass of the wire.
JP2008048867A 2008-02-28 2008-02-28 Large heat input electroslag welding method Active JP4954122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048867A JP4954122B2 (en) 2008-02-28 2008-02-28 Large heat input electroslag welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008048867A JP4954122B2 (en) 2008-02-28 2008-02-28 Large heat input electroslag welding method

Publications (2)

Publication Number Publication Date
JP2009202213A true JP2009202213A (en) 2009-09-10
JP4954122B2 JP4954122B2 (en) 2012-06-13

Family

ID=41145006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048867A Active JP4954122B2 (en) 2008-02-28 2008-02-28 Large heat input electroslag welding method

Country Status (1)

Country Link
JP (1) JP4954122B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202214A (en) * 2008-02-28 2009-09-10 Jfe Steel Corp Electro-slag welding method excellent in weld metal toughness
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method
JP2011224612A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Electroslag welded joint with excellent toughness
KR20160006208A (en) * 2013-05-08 2016-01-18 호바트브라더즈캄파니 Systems and methods for low-manganese welding alloys
JP2018075613A (en) * 2016-11-10 2018-05-17 株式会社神戸製鋼所 Non-consumable nozzle type electro-slag welding method and method for manufacturing electro-slag weld joint
WO2021177106A1 (en) * 2020-03-06 2021-09-10 株式会社神戸製鋼所 Flux for electroslag welding and electroslag welding method
CN114643437A (en) * 2022-05-20 2022-06-21 东北大学 A kind of fluorine-free melting flux and its preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108115306A (en) * 2016-11-28 2018-06-05 海宁瑞奥金属科技有限公司 A kind of slag Welding flux-cored wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131641A (en) * 1974-04-05 1975-10-17
JPS52110247A (en) * 1976-03-15 1977-09-16 Kawasaki Steel Co Fluxes for electroslag welding
JPS5370006A (en) * 1976-12-02 1978-06-22 Kobe Steel Ltd Flux for electro-slag refining or welding
JP2003340592A (en) * 2002-05-27 2003-12-02 Jfe Steel Kk High heat input electroslag welding wire
JP2004058142A (en) * 2002-07-31 2004-02-26 Jfe Steel Kk Steel wire for electroslag welding
JP2005324239A (en) * 2004-05-17 2005-11-24 Nippon Steel & Sumikin Welding Co Ltd Electroslag welding wire
JP2009202214A (en) * 2008-02-28 2009-09-10 Jfe Steel Corp Electro-slag welding method excellent in weld metal toughness
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131641A (en) * 1974-04-05 1975-10-17
JPS52110247A (en) * 1976-03-15 1977-09-16 Kawasaki Steel Co Fluxes for electroslag welding
JPS5370006A (en) * 1976-12-02 1978-06-22 Kobe Steel Ltd Flux for electro-slag refining or welding
JP2003340592A (en) * 2002-05-27 2003-12-02 Jfe Steel Kk High heat input electroslag welding wire
JP2004058142A (en) * 2002-07-31 2004-02-26 Jfe Steel Kk Steel wire for electroslag welding
JP2005324239A (en) * 2004-05-17 2005-11-24 Nippon Steel & Sumikin Welding Co Ltd Electroslag welding wire
JP2009202214A (en) * 2008-02-28 2009-09-10 Jfe Steel Corp Electro-slag welding method excellent in weld metal toughness
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202214A (en) * 2008-02-28 2009-09-10 Jfe Steel Corp Electro-slag welding method excellent in weld metal toughness
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method
JP2011224612A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Electroslag welded joint with excellent toughness
KR102175028B1 (en) 2013-05-08 2020-11-06 호바트 브라더즈 엘엘씨 Systems and methods for low-manganese welding alloys
JP2016523714A (en) * 2013-05-08 2016-08-12 ホバート ブラザーズ カンパニー System and method for low manganese weld alloys
KR20160006208A (en) * 2013-05-08 2016-01-18 호바트브라더즈캄파니 Systems and methods for low-manganese welding alloys
JP2018075613A (en) * 2016-11-10 2018-05-17 株式会社神戸製鋼所 Non-consumable nozzle type electro-slag welding method and method for manufacturing electro-slag weld joint
WO2021177106A1 (en) * 2020-03-06 2021-09-10 株式会社神戸製鋼所 Flux for electroslag welding and electroslag welding method
JP2021137855A (en) * 2020-03-06 2021-09-16 株式会社神戸製鋼所 Flux for electroslag welding and electroslag welding method
CN115190826A (en) * 2020-03-06 2022-10-14 株式会社神户制钢所 Flux and Electroslag Welding Method for Electroslag Welding
JP7440303B2 (en) 2020-03-06 2024-02-28 株式会社神戸製鋼所 Flux for electroslag welding and electroslag welding method
CN115190826B (en) * 2020-03-06 2024-05-28 株式会社神户制钢所 Electroslag welding flux and electroslag welding method
CN114643437A (en) * 2022-05-20 2022-06-21 东北大学 A kind of fluorine-free melting flux and its preparation method and application
CN114643437B (en) * 2022-05-20 2022-07-22 东北大学 Fluorine-free smelting flux and preparation method and application thereof

Also Published As

Publication number Publication date
JP4954122B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4954122B2 (en) Large heat input electroslag welding method
JP5792050B2 (en) Submerged arc welding method for low temperature steel
JP4958872B2 (en) Large heat input electroslag welding method
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
KR102020105B1 (en) Submerged arc welding process
JP2011020154A (en) Flux-cored wire for gas shielded welding
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP4954123B2 (en) Electroslag welding method with excellent weld metal toughness
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP2014147970A (en) Coated electrode
JP2009045671A (en) High heat input electroslag welding wire
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JP2005230906A (en) Gas shield arc welding method
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
JP2011224612A (en) Electroslag welded joint with excellent toughness
JP3800330B2 (en) Large heat input electroslag welding method
JP2005330578A (en) Electrogas welding joint with excellent toughness
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP4427350B2 (en) Weld metal with excellent strength uniformity
JP2006241551A (en) Thick steel plate with excellent weldability and low temperature toughness
JP4701619B2 (en) Large heat input electroslag welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4954122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250