[go: up one dir, main page]

JP2009192220A - 流量センサおよびこれを用いた質量流量制御装置 - Google Patents

流量センサおよびこれを用いた質量流量制御装置 Download PDF

Info

Publication number
JP2009192220A
JP2009192220A JP2008029884A JP2008029884A JP2009192220A JP 2009192220 A JP2009192220 A JP 2009192220A JP 2008029884 A JP2008029884 A JP 2008029884A JP 2008029884 A JP2008029884 A JP 2008029884A JP 2009192220 A JP2009192220 A JP 2009192220A
Authority
JP
Japan
Prior art keywords
flow rate
sensor
flow
fluid
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029884A
Other languages
English (en)
Inventor
Masato Sugimoto
真郷 杉本
Akihito Hayashi
明史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008029884A priority Critical patent/JP2009192220A/ja
Priority to KR1020090008290A priority patent/KR101209762B1/ko
Priority to TW098103897A priority patent/TW200935036A/zh
Priority to US12/368,599 priority patent/US7591177B2/en
Priority to CN2009100063508A priority patent/CN101509796B/zh
Publication of JP2009192220A publication Critical patent/JP2009192220A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)
  • Flow Control (AREA)

Abstract

【課題】 大流量用であっても大型化することなく、廉価でコンパクトな高性能流量センサおよびこれを用いた質量流量制御装置を提供する。
【解決手段】流量センサ8は、流体をバイパス流路12と、ブリッジ回路の一部を形成する発熱抵抗線が巻回されたセンサ流路14とに所定の分流比で分岐して流し、前記センサ流路14に前記流体が流れることによって生ずる熱の移動を前記ブリッジ回路の不平衡として捉えることにより、前記流体の全体の流量をセンサ出力として求める流量センサにおいて、前記バイパス流路は、略直線状の一辺と、該一辺と接する曲線で形成される複数の細流路74から構成され、前記細流路74の等価水力直径(d)と、前記細流路74の長さ(T)の常用対数との比が0.27以下である。そして、この流量センサは質量流量制御装置に内蔵される。
【選択図】 図2

Description

本発明は、ガス等の比較的小流量の流体の質量流量を計測する流量センサおよびこれを用いた質量流量制御装置に関する。
一般に、半導体集積回路等の半導体製品等を製造するためには、半導体ウエハ等に対して例えばCVD成膜やエッチング操作等が種々の半導体製造装置において繰り返し行われるが、この場合に微量の処理ガスの供給量を精度良く制御する必要から例えばマスフローコントローラのような質量流量制御装置が用いられている。
ここで一般的な質量流量制御装置の構成について、図6及び図7を参照して説明する。図6はガス配管に介設された従来の質量流量制御装置の一例の概略構成図を示し、図7は質量流量制御装置の流量センサの回路図である。
図示するように、この質量流量制御装置2は、液体や気体等の流体を流す流体通路、例えばガス管4の途中に介設されて、この質量流量を制御するようになっている。尚、このガス管4の一端に接続される半導体製造装置内は例えば真空引きされている。この質量流量制御装置2は、例えばステンレススチール等により成形された流路6を有しており、この両端が上記ガス管4に接続される。この質量流量制御装置2は流路6の前段側に位置する流量センサ部8と後段側に位置する流量制御弁機構10とよりなる。
まず、上記流量センサ部8は、上記流路6のガス流体の流れ方向の上流側に設けられて複数のバイパス管を束ねてなるバイパス群12を有している。上記バイパス群12の両端側には、これを迂回するようにセンサ管14が接続されており、これにバイパス群12と比較して小量のガス流体を一定の比率で流し得るようになっている。すなわち、このセンサ管14には全ガス流量に対して一定の比率の一部のガスを常に流すようになっている。このセンサ管14には直列に接続された制御用の一対の抵抗線R1、R4が巻回されており、これに接続されたセンサ回路16により質量流量値を示す流量信号S1を出力するようになっている。
この流量信号S1は、例えばマイクロコンピュータ等よりなる質量流量制御手段18へ導入されて、上記流量信号S1に基づいて現在流れているガスの質量流量が求められると共に、その質量流量が外部より入力される流量設定信号Sinで表される質量流量に一致するように、上記流量制御弁機構10を制御することになる。この流量制御弁機構10は、上記流路6の下流側に設けられた流量制御弁20を有しており、この流量制御弁20はガス流体の質量流量を直接的に制御するための弁体として例えば金属板製の屈曲可能になされたダイアフラム22を有している。
そして、このダイアフラム22を弁口24に向けて適宜屈曲変形させて移動させることによって、上記弁口24の弁開度を任意に制御し得るようになっている。そして、このダイアフラム22の上面は、例えば積層圧電素子(ピエゾ素子)よりなるアクチュエータ26の下端部に接続されており、これにより、その弁開度が上記したように調整できるようになっている。このアクチュエータ26は、上記質量流量制御手段18からの駆動信号を受けてバルブ駆動回路28が出力するバルブ駆動電圧S2により動作する。
上記抵抗線R1、R4とセンサ回路16との関係は、図7に示されている。すなわち、上記抵抗線R1、R4の直列接続に対して、2つの基準抵抗R2、R3の直列接続回路が並列に接続されて、いわゆるブリッジ回路を形成している。そして、このブリッジ回路に、一定の電流を流すための定電流源30が接続されている。また、上記抵抗線R1、R4同士の接続点と上記基準抵抗R2、R3同士の接続点とを入力側に接続して差動回路32が設けられており、上記両接続点の電位差を求めて、この電位差を流量信号S1として出力するようになっている。
ここで、上記抵抗線R1、R4は、温度に応じてその抵抗値が変化する素材よりなっており、ガスの流れ方向の上流側に抵抗線R1が巻回され、下流側に抵抗線R4が巻回されている。また、基準抵抗R2、R3は略一定の温度に維持されているものとする。
このように構成された質量流量制御装置2において、センサ管14にガス流体が流れていない場合には、両抵抗線R1、R4の温度は同じになっていることから、ブリッジ回路は平衡して差動回路32の検出値である電位差は、例えばゼロである。
ここで、センサ管14にガス流体が質量流量Qで流れると仮定すると、このガス流体は上流側に位置する抵抗線R1の発熱によって温められてその状態で下流側の抵抗線R4が巻回されている位置まで流れることになり、この結果、熱の移動が生じて抵抗線R1、R4間に温度差、すなわち両抵抗線R1、R4間の抵抗値に差が生じて、この時発生する電位差はガスの質量流量に略比例することになる。従って、この流量信号S1に所定のゲインをかけることによってその時に流れているガスの質量流量を求めることができる。また、この検出されたガスの質量流量が、流量設定信号Sin(実際は電圧値)で表される質量流量と一致するように、例えばPID制御法により上記流量制御弁20の弁開度が制御されることになる。
ところで、上記した流量センサ部8は、複数の細管からなるバイパス群12と、バイパス群12から分岐されたセンサ管14を有し、バイパス群12とセンサ管14との分流比を一定となし、センサ管14で検出された流量から全体の流量を測定しているので、バイパス管の数を増減することによって、センサ管との分流比を変更し、小流量域から大流量域をカバーする流量センサとして構成される。したがって、大流量用の流量センサになるほど細管の数が(例えば、数百本)増し、大型化するとともに、バイパス群を製造するためのコストが嵩むという問題がある。
これに対して、特許文献1には、スリーブ内に同心的に挿入されるコアを中心に平板、波板を巻き付けて構成されスリーブ内に固定される層流エレメントが提案され、廉価で製造容易な信頼性の高い層流バイパスとされている。また、特許文献2には、表面に複数のリブを突設した第1帯状体と平坦な第2帯状体とを筒状に巻き込んで形成させた層流素子が開示されている。
実公平3−17226号公報(第1頁から第3頁) 特開平11−101673号公報(第2頁から第3頁、図4)
しかしながら、特許文献1に記載の技術によれば、センサパイプ入口は上流側に層流化に十分なだけの助走距離を持たせた後に設置する必要があるので、小型化することが困難であるとともに、流量の測定可能な範囲(以下、流量レンジという)を変更するにあたっては、波板の山高さやピッチを変える必要があり、流量レンジごとの波板を必要とするのでコスト高であるという問題があった。
また、特許文献2に記載の技術においては、層流素子の流量と出力信号との直線性を得るために層流素子の長さを大きくすることが必要とされ、よって、質量流量制御装置が大型化してしまうという問題があった。
本発明は、上記の事項に留意してなされたもので、大流量用であっても大型化することなく、廉価でコンパクトな高性能流量センサおよびこれを用いた質量流量制御装置を提供することを目的としている。
請求項1に係る発明は、流体をバイパス流路と、ブリッジ回路の一部を形成する発熱抵抗線が巻回されたセンサ流路とに所定の分流比で分岐して流し、前記センサ流路に前記流体が流れることによって生ずる熱の移動を前記ブリッジ回路の不平衡として捉えることにより、前記流体の全体の流量をセンサ出力として求める流量センサにおいて、前記バイパス流路は、略直線状の一辺と、該一辺と接する曲線で形成される複数の細流路から構成され、前記細流路の等価水力直径(d)と、前記細流路の長さ(T)の常用対数との比が0.27以下であることを特徴とする流量センサである。
ここで、前記曲線がy=f(x)、a及びbにて前記一辺と接するとき、曲線長さlは数式1で表わすことができる。
Figure 2009192220
すなわち、前記曲線と前記一辺とで囲まれた細流路の周囲長さLは、数式2で表わすことができる。
Figure 2009192220
また、前記曲線と前記一辺とで囲まれた細流路の断面積Sは、数式3で表わすことができる。
Figure 2009192220
そして、等価水力直径d=4×S/Lとし、前記細流路の長さをTとしたとき、式4を満足するように構成する。
Figure 2009192220
上記の構成によれば、バイパス流路が、式4を満足する複数の細流路が構成されている場合、バイパス流路を流動する流体の整流効果が向上し、バイパス流路長さを短くすることができる。よって、コンパクトな流量センサを構成することができる。また、これを用いた質量流量制御装置は、大流量用であっても大型化することなく、廉価でコンパクトになすことができる。
この場合、例えば請求項2に規定するように、平板と波板とを巻回して前記細流路を構成し、前記波板は略正弦波状であることが好ましい。また、本発明は、請求項1又は2に記載の流量センサを備えてなる質量流量制御装置である。
本発明の流量センサ及びこれを用いた質量流量制御装置によれば、次のように優れた作用効果を発揮することができる。
バイパス流路が、式4を満足する複数の細流路が構成されている場合、バイパス流路を流動する流体の整流効果が向上し、バイパス流路長さを短くすることができる。よって、コンパクトな流量センサを構成することができる。また、これを用いた質量流量制御装置は、大流量用であっても大型化することなく、廉価でコンパクトになすことができる。
以下に、本発明に係る流量センサ及びこれを用いた質量流量制御装置の一実施例を添付図面に基づいて詳述する。
図1は本発明に係る質量流量制御装置の一例を示す断面図である。尚、図6及び図7において示した構成部分と同一構成部分については同一符号を付してその説明を省略する。
図示するように、この質量流量制御装置40は、液体や気体等の流体を流す流体通路に継手部41を介して接続されて、この質量流量(以下、単に「流量」とも称す)を制御するようになっている。尚、この継手部41の一端に接続される半導体製造装置内は例えば真空引きされている。具体的には、この質量流量制御装置40は、例えばステンレススチール等の本体40aの内部に流路6を有しており、流体入口6Aと中間流路6Bとの間に流量センサ部8が、中間流路6Bと流体出口6Cとの間に流量制御弁機構10が設けられている。
上記流量センサ部8は、バイパス群12A、センサ管14、センサ回路16等を有しており、ここで検出した流量信号S1を質量流量制御手段18に向けて出力するようになっている。
バイパス群12Aは、円筒状のバイパスホルダ73に後述する波状板70と平板71とを巻回して収納したもので、継手部41側からスプリング63によって押圧され、流路6内に形成された段部61にシールリング62を介して、バイパスホルダ73の端部を気密にして固定されている。
センサ管14は、本体40aの流路6において、バイパス群12Aの上流側及び下流側に形成された分岐穴40b、40cに接続された例えば内径0.5mm程度の細管である。
上記流量制御弁機構10は、流量制御弁20、これを駆動するアクチュエータ26を有している。
流量制御弁20は、本体40aに螺合され弁口24を有する弁座23と、弁座23に対向する弁体21との間の弁開度を調整するように動作可能となっている。
アクチュエータ26は、電磁コイル26aと、電磁コイル26aによって上下動可能なプランジャ26bを有し、プランジャ26bの下端はフラットスプリング27を介して弁体21に接続されている。
この流量制御弁機構10は、電磁コイル26aが励磁されていない状態では、フラットスプリング27によって、弁座23と弁体21とは離間している、所謂ノーマリーオープンの流量制御弁である。
そして、質量流量制御手段18から直接バルブ駆動電圧S2が電磁コイル26aに印加され、バルブ駆動電圧S2によって電磁コイル26aが励磁され、プランジャ26bには下降方向の電磁力が生じる。フラットスプリング27は、この力に抗する弾性力を有し、前記電磁力と前記弾性力とがバランスする位置に弁体21を駆動させ、弁開度が調整されている。
そして、上記質量流量制御手段18は、これへ例えばホストコンピュータ等の外部より入力される流量設定信号S0で示される流量と上記流量信号S1で示される流量とが一致するように上記流量制御弁20の弁開度を例えばPID制御法で制御し得るようになっている。尚、図示例では、上記流量制御弁機構10は上記流量センサ部8の下流側に設定されているが、これを上記流量センサ部8の上流側に位置させるようにしてもよい。
また、アクチュエータ26は、電磁コイル26aによるものに限らず、上述した積層圧電素子によるものでもよいことはもちろんである。
次に、バイパス群の一実施例を添付図面に基づいて詳述する。図2はバイパス群の正面図で、図2(a)が本発明にかかる一実施例の正面図、図2(b)は比較例の正面図である。図3は図2(a)の部分拡大図を、図4は実施例と比較例との比較試験装置の模式図、図5は実施例と比較例の流量と流量信号との関係の直線性を比較するグラフを示している。
図2(a)に示すように、バイパス群12Aは、例えば厚さ0.03mmのステンレス製薄板をピッチP=1.68mm、高さH=0.25mmの略正弦波曲線に成形した波状板70と、同じくステンレス製の平板71とを重ね合わせて円柱状のコア72を中心に巻回し、内径がφ15.4mmの円筒状のバイパスホルダ73に収納している。そして、波状板70と平板71とで囲まれ2500セル/インチの密度で形成された空間が細流路74をなし軸方向(図の紙面奥方向)に延びている。
細流路74は、図3に示すように、波状板70と平板71とが接する近傍部分が漸近部77となっており、細流路74の流体が流動する断面積と比較して、流体に接する面積(図3に示す細流路74の周長さ)が大きくなっている。したがって、細流路74の壁面から流体が受ける摩擦抵抗が大きくなるので、層流化効果を受け、バイパス群12Aとセンサ管14との分流比が安定化することができると考えられる。波状板70は、矩形や三角形状ではなく、平板71と漸近部77を形成するような形状であれば、正弦波曲線に限らず、半円形を連続的に繋げた波状や、二次元、三次元曲線の一部を連続的に繋げて波状に形成してもよい。
これに対して、図2(b)に示すように、比較例におけるバイパス群12Cは、厚さ0.03mmのステンレス製薄板をピッチP=1.68mm、高さH=0.4mmの略正弦波曲線に成形した波板70Cと平板Cに囲まれた細流路74Cが正三角形に近い形状をなしており、流体に接する面積が小さく、層流化効果が小さいことが判った。
<実施例>
図2(a)に示したバイパス群12Aと、図2(b)に示したバイパス群12Cとをそれぞれ質量流量制御装置40に組み込み、図4に示すように、圧力制御弁80と、質量流量制御装置40と、事前に検定された質量流量計81とを直列に配管し、上流側から一定圧力のガスを最大流量10SLMの流量で供給しつつ、質量流量制御装置40の流量制御における直線性を比較した。
供給ガスは、0.05MPaの窒素ガスを用い、質量流量制御装置40への流量設定信号SPを最大流量(フルスケール流量)QFSの20%から100%まで順次変化させた際の質量流量QSPを質量流量計81で測定した。
図5に示す実施例と比較例の流量と流量信号との関係の直線性を比較するグラフは、図2(a)に示したバイパス群12Aと図2(b)に示したバイパス群12Cの層流化の効果を表わしたものである。
ここで、横軸SPは、最大流量(フルスケール流量)QFSに対する比率であり、縦軸の直線性は、測定された質量流量QSPを次の数式5に代入して求めた値である。
Figure 2009192220
SP:測定された質量流量
FS:質量流量制御装置の最大流量
SP:最大流量(フルスケール流量)QFSに対する比率
そして、図5(a)が図2(b)に示したバイパス群12C(比較例)による実験結果、図5(b)から図5(e)が図2(a)に示したバイパス群12A(実施例)による実験結果であり、略正弦波形状の波板と平板とを外径φ15.4mmに巻回したもので、表1に示す形状のものである。
Figure 2009192220
図5(a)と図5(b)とを比較すると、図5(a)がSP=40%付近で約3.5%の直線性を示しているのに対して、図5(b)では、SPが20から100のいずれの流量においても直線性が0.5%を上回ることがなく良好な直線性を示すことが判る。
更に、図5(c)に示すように、細流路の長さ(T)を16mmに設けても層流化効果にほとんど影響を与えず、良好な直線性を示すことが判る。
また、図5(d)に示すように、実施例3においても良好な直線性を示している。図5(d)に示す実施例4において、SP=40%付近で2%弱の直線性を示した。しかしながら、流量センサとしての実用上の精度には、ほとんど影響を与えない。
ここで、数式1から数式4に立ち返って考察する。
実施例、比較例ともに、正弦波形状の波板を使用しているから、表1に示した形状から数式1から数式4に代入してd/log(T)を計算すると表2のようになる。
Figure 2009192220
したがって、d/log(T)が0.27以下であれば、バイパス流路長さを短く、コンパクトな流量センサを構成できることがわかる。これは、細流路74の壁面から流体が受ける摩擦抵抗が大きくなり、層流化効果を受け、バイパス群12Aとセンサ管14との分流比が安定化することができると考えられる。
また、ガス圧力を0.1MPaから0.3MPa、ガス種をHe、SF6において比較試験を行ったが、バイパス群12Cと比較してバイパス群12Aの層流効果が同様に顕著であることが確認された。そして、バイパス群12Aを用いた流量センサを組み込んで、最大流量39SLMの質量流量制御装置をコンパクトに提供することが可能となった。
なお、流量センサに更なる高精度を求める場合には、好ましくはd/log(T)は0.24以下である。ただし、d/log(T)が小さくなるほど、流体の圧力損失が大きくなるので、その下限は、0.15程度に留めると良い。
また、製造上難がある点や圧力損失の課題は残るものの、中実線を複数束ね、バイパスホルダに収納して、中実線同士の隙間で細流路を構築すれば、更に細流路長さの短いコンパクトなバイパス群が可能となると考えられる。
本発明に係る質量流量制御装置の一例を示す断面図である。 バイパス群の正面図で、図2(a)が本発明にかかる一実施例の正面図、図2(b)は比較例の正面図である。 図2(a)の部分拡大図である。 実施例と比較例との比較試験装置の模式図である。 実施例と比較例の流量と流量信号との関係の直線性を比較するグラフである。 ガス配管に介設された従来の質量流量制御装置の一例を示す概略構成図である。 質量流量制御装置の流量センサ部の回路図である。
符号の説明
2:質量流量制御装置、4:ガス管(流体通路)、6:流路、6A:流体入口、6B:流体出口、8:流量センサ部、10:流量制御弁機構、
12、12A、12C:バイパス群、
14:センサ管、16:センサ回路、18:質量流量制御手段、20:流量制御弁、21:弁体、
22:ダイアフラム、23:弁座、24:弁口、26:アクチュエータ、26a:電磁コイル、26b:プランジャ、27:フラットスプリング、28:バルブ駆動回路、30:定流電源、32:差動回路、
40:質量流量制御装置、40a:本体、40b、40c:分岐穴、41:継手部、
61:段部、62:シールリング、
70、70C:波状板、71、71C:平板、72:コア、73:バイパスホルダ、74、74C:細流路、77:漸近部、
80:圧力制御弁、81:質量流量計、
S0 流量設定信号
S1 流量信号
S2 バルブ駆動電圧
S3 タンクバルブ開閉信号
S4 圧力信号
S10 校正信号

Claims (3)

  1. 流体をバイパス流路と、ブリッジ回路の一部を形成する発熱抵抗線が巻回されたセンサ流路とに所定の分流比で分岐して流し、前記センサ流路に前記流体が流れることによって生ずる熱の移動を前記ブリッジ回路の不平衡として捉えることにより、前記流体の全体の流量をセンサ出力として求める流量センサにおいて、
    前記バイパス流路は、略直線状の一辺と、該一辺と接する曲線で形成される複数の細流路から構成され、前記細流路の等価水力直径(d)と、前記細流路の長さ(T)の常用対数との比が0.27以下であることを特徴とする流量センサ。
  2. 前記バイパス流路は、平板と波板とを巻回して前記細流路を構成し、前記波板は略正弦波状であることを特徴とする請求項1に記載の流量センサ。
  3. 請求項1又は2に記載の流量センサを備えてなる質量流量制御装置。
JP2008029884A 2008-02-12 2008-02-12 流量センサおよびこれを用いた質量流量制御装置 Pending JP2009192220A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008029884A JP2009192220A (ja) 2008-02-12 2008-02-12 流量センサおよびこれを用いた質量流量制御装置
KR1020090008290A KR101209762B1 (ko) 2008-02-12 2009-02-03 유량 센서 및 이것을 사용한 질량 유량 제어 장치
TW098103897A TW200935036A (en) 2008-02-12 2009-02-06 Flow sensor and mass flow controller using the same
US12/368,599 US7591177B2 (en) 2008-02-12 2009-02-10 Flow sensor and mass flow controller using the same
CN2009100063508A CN101509796B (zh) 2008-02-12 2009-02-10 流量传感器及应用此流量传感器的质量流量控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029884A JP2009192220A (ja) 2008-02-12 2008-02-12 流量センサおよびこれを用いた質量流量制御装置

Publications (1)

Publication Number Publication Date
JP2009192220A true JP2009192220A (ja) 2009-08-27

Family

ID=40937734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029884A Pending JP2009192220A (ja) 2008-02-12 2008-02-12 流量センサおよびこれを用いた質量流量制御装置

Country Status (5)

Country Link
US (1) US7591177B2 (ja)
JP (1) JP2009192220A (ja)
KR (1) KR101209762B1 (ja)
CN (1) CN101509796B (ja)
TW (1) TW200935036A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113871A (ko) 2014-03-31 2015-10-08 히타치 긴조쿠 가부시키가이샤 질량 유량계 및 당해 질량 유량계를 사용하는 질량 유량 제어 장치
KR20160057394A (ko) 2013-09-18 2016-05-23 히타치 긴조쿠 가부시키가이샤 유량 센서, 그것을 사용한 질량 유량계 및 질량 유량 제어 장치 및 유량 센서의 제조 방법
KR20160134675A (ko) 2014-03-20 2016-11-23 히타치 긴조쿠 가부시키가이샤 열식 질량 유량계 및 이것을 사용한 질량 유량 제어 장치
KR20160138067A (ko) 2014-03-31 2016-12-02 히타치 긴조쿠 가부시키가이샤 열식 질량 유량 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
KR20160140654A (ko) 2014-03-31 2016-12-07 히타치 긴조쿠 가부시키가이샤 질량 유량의 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
JP2018084526A (ja) * 2016-11-25 2018-05-31 株式会社堀場エステック 流路形成構造、流量測定装置及び流量制御装置
US10310521B2 (en) 2016-04-07 2019-06-04 Hitachi Metals, Ltd. Bypass unit, a base for a flow meter, a base for a flow controller, a flow meter, and a flow controller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006552A2 (en) * 2011-07-02 2013-01-10 Viking At, Llc Mass flow controller driven by smart material actuator with mechanical amplification
WO2013134136A1 (en) * 2012-03-07 2013-09-12 Illinois Tool Works Inc. System and method for improving the accuracy of a rate of decay (rod) measurement in a mass flow controller
WO2015100280A1 (en) 2013-12-24 2015-07-02 Viking At, Llc Mechanically amplified smart material actuator utilizing layered web assembly
KR102269103B1 (ko) * 2017-03-30 2021-06-23 가부시키가이샤 후지킨 질량 유량 센서, 그 질량 유량 센서를 구비하는 질량 유량계 및 그 질량 유량 센서를 구비하는 질량 유량 제어기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279815A (ja) * 1990-03-29 1991-12-11 Hitachi Metals Ltd 質量流量計
JPH0445925U (ja) * 1990-08-22 1992-04-20

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978927U (ja) 1982-11-18 1984-05-28 大倉電気株式会社 熱式質量流量計の分流機構
US5080131A (en) * 1989-09-26 1992-01-14 Lintec Co., Ltd. Mass flow controller
US5209113A (en) * 1990-04-26 1993-05-11 Nippondenso Co., Ltd. Air flow meter
JPH11101673A (ja) 1997-09-27 1999-04-13 Stec Kk 層流素子
US6886401B2 (en) * 2003-02-26 2005-05-03 Ckd Corporation Thermal flow sensor having sensor and bypass passages
KR100522545B1 (ko) * 2003-03-28 2005-10-19 삼성전자주식회사 질량 유량 제어기
CN1936506A (zh) * 2006-04-29 2007-03-28 浙江麦姆龙仪表有限公司 大口径气体流量的小截面分流测量方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279815A (ja) * 1990-03-29 1991-12-11 Hitachi Metals Ltd 質量流量計
JPH0445925U (ja) * 1990-08-22 1992-04-20

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352746B2 (en) 2013-09-18 2019-07-16 Hitachi Metals, Ltd. Mass flow meter including organic-material covering layers
KR20160057394A (ko) 2013-09-18 2016-05-23 히타치 긴조쿠 가부시키가이샤 유량 센서, 그것을 사용한 질량 유량계 및 질량 유량 제어 장치 및 유량 센서의 제조 방법
US9970801B2 (en) 2014-03-20 2018-05-15 Hitachi Metals, Ltd. Thermal mass-flow meter and mass-flow control device using same
KR20160134675A (ko) 2014-03-20 2016-11-23 히타치 긴조쿠 가부시키가이샤 열식 질량 유량계 및 이것을 사용한 질량 유량 제어 장치
KR20160138067A (ko) 2014-03-31 2016-12-02 히타치 긴조쿠 가부시키가이샤 열식 질량 유량 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
KR20160140654A (ko) 2014-03-31 2016-12-07 히타치 긴조쿠 가부시키가이샤 질량 유량의 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
KR20150113871A (ko) 2014-03-31 2015-10-08 히타치 긴조쿠 가부시키가이샤 질량 유량계 및 당해 질량 유량계를 사용하는 질량 유량 제어 장치
US9417108B2 (en) 2014-03-31 2016-08-16 Hitachi Metals, Ltd. Mass flow meter with self-diagnostic function and mass flow controller using the same
US10508943B2 (en) 2014-03-31 2019-12-17 Hitachi Metals, Ltd. Thermal mass flow rate measurement method, thermal mass flow meter using said method, and thermal mass flow controller using said thermal mass flow meter
US10514289B2 (en) 2014-03-31 2019-12-24 Hitachi Metals, Ltd. Mass flow rate measurement method, thermal mass flow meter using said method, and thermal mass flow controller using said thermal mass flow meter
US10310521B2 (en) 2016-04-07 2019-06-04 Hitachi Metals, Ltd. Bypass unit, a base for a flow meter, a base for a flow controller, a flow meter, and a flow controller
JP2018084526A (ja) * 2016-11-25 2018-05-31 株式会社堀場エステック 流路形成構造、流量測定装置及び流量制御装置
KR20180059364A (ko) * 2016-11-25 2018-06-04 가부시키가이샤 호리바 에스텍 유로 형성 구조, 유량 측정 장치 및 유량 제어 장치
US10877492B2 (en) 2016-11-25 2020-12-29 Horiba Stec, Co., Ltd. Flow path forming structure, flow rate measuring device and flow rate control device
KR102446996B1 (ko) * 2016-11-25 2022-09-23 가부시키가이샤 호리바 에스텍 유로 형성 구조, 유량 측정 장치 및 유량 제어 장치

Also Published As

Publication number Publication date
KR101209762B1 (ko) 2012-12-10
US20090199633A1 (en) 2009-08-13
KR20090087411A (ko) 2009-08-17
CN101509796A (zh) 2009-08-19
TW200935036A (en) 2009-08-16
US7591177B2 (en) 2009-09-22
CN101509796B (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
JP2009192220A (ja) 流量センサおよびこれを用いた質量流量制御装置
JP4186831B2 (ja) 質量流量制御装置
JP4594728B2 (ja) より高い正確度の圧力に基づく流れコントローラ
JP5090559B2 (ja) マスフローコントローラ
US20120298220A1 (en) Pressure type flow rate control device
JP2009002901A (ja) 圧力センサ、差圧式流量計及び流量コントローラ
JP2006038832A (ja) 質量流量制御装置及びこの検定方法
KR100418684B1 (ko) 반도체 공정가스용 차압식 유량 제어기
JP2008519981A (ja) 所定のバイパス比を持つ熱式質量流量センサ
CN100520311C (zh) 耐蚀金属制流体用传感器及用该传感器的流体供给设备
JP2015166745A (ja) 流体クロマトグラフィ向け拡散接合平面装置における圧力検出および流量制御
JP2022047815A (ja) マスフローコントローラ
WO2010137392A1 (ja) 流量測定装置及び流体圧力測定装置
JP2019035766A (ja) ターニングベーン
JP2019144146A (ja) 流体素子
JP2008129765A (ja) 流量制御装置
JP6920331B2 (ja) 流体制御弁、流体制御装置、及び駆動機構
EP3227756B1 (en) Wireless flow restrictor of a flowmeter
KR101041434B1 (ko) 질량 유량계
JP2011080822A (ja) 流量計、流量計の継ぎ手、流量制御装置、及び流量計の製造方法
CN222887566U (zh) 一种流量测量装置及质量流量控制器
JP2004240590A (ja) 質量流量制御器
JP2019164046A (ja) 熱式流量計
JP2001142539A (ja) 微少流量制御装置
JP2006018599A (ja) 質量流量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130405