[go: up one dir, main page]

JP2009191359A - Fe-Co-Zr BASED ALLOY TARGET MATERIAL - Google Patents

Fe-Co-Zr BASED ALLOY TARGET MATERIAL Download PDF

Info

Publication number
JP2009191359A
JP2009191359A JP2009004792A JP2009004792A JP2009191359A JP 2009191359 A JP2009191359 A JP 2009191359A JP 2009004792 A JP2009004792 A JP 2009004792A JP 2009004792 A JP2009004792 A JP 2009004792A JP 2009191359 A JP2009191359 A JP 2009191359A
Authority
JP
Japan
Prior art keywords
target material
alloy
diameter
polishing
compound phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004792A
Other languages
Japanese (ja)
Inventor
Tomonori Ueno
友典 上野
Mitsuharu Fujimoto
光晴 藤本
Suguru Ueno
英 上野
Koichi Sakamaki
功一 坂巻
Atsushi Fukuoka
淳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009004792A priority Critical patent/JP2009191359A/en
Publication of JP2009191359A publication Critical patent/JP2009191359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-Co based alloy sputtering target material which can stably sputter a soft magnetic film. <P>SOLUTION: The Fe-Co-Zr based alloy target material is compositional formula in an atomic ratio is expressed by (Fe<SB>X</SB>-Co<SB>100-X</SB>)<SB>100-Y</SB>Zr<SB>Y</SB>, 5&le;X&le;95, and 3&le;Y&le;10, and the diameter of the maximum inscribed circle drawable in the range where a Zr compound phase is not present is &le;5 &mu;m in the cross-sectional microstructure of the target material. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、軟磁性膜を形成するためのFe−Co−Zr系合金ターゲット材に関するものである。   The present invention relates to an Fe—Co—Zr alloy target material for forming a soft magnetic film.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、現在広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ヘッドで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として垂直磁気記録方式が検討されている。
垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げて行ってもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されている。
In recent years, the progress of magnetic recording technology has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of drives. However, in the magnetic recording medium of the in-plane magnetic recording system that is currently widely used in the world, when trying to achieve a high recording density, the recording bit becomes finer and a high coercive force that cannot be recorded by the recording head is required. . Therefore, a perpendicular magnetic recording method has been studied as a means for solving these problems and improving the recording density.
Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicularly to the medium surface. This is a method suitable for high recording density with a small decrease in recording and reproduction characteristics. In the perpendicular magnetic recording system, a recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.

このような磁気記録媒体の軟磁性膜としては、優れた軟磁気特性が要求されることから、アモルファス軟磁性合金が採用されている。代表的な軟磁性膜用アモルファス合金として、Fe−Co−B合金膜(例えば、特許文献1参照)、Co−Zr−Nb合金膜(例えば、非特許文献1参照)などが既に実用化されている。しかしながら、Fe−Co−B合金膜は耐食性が低い問題があり、Co−Zr−Nb合金膜は飽和磁束密度が低い問題が指摘されている。このため、最近では、上記合金膜の以外にFe−Co合金にZr、Hf、Ta、Nb等を添加したFe−Co系合金膜を用いることが提案されている(例えば、特許文献2参照)。   As the soft magnetic film of such a magnetic recording medium, an amorphous soft magnetic alloy is adopted because excellent soft magnetic properties are required. As typical amorphous alloys for soft magnetic films, Fe—Co—B alloy films (for example, see Patent Document 1), Co—Zr—Nb alloy films (for example, see Non-Patent Document 1), etc. have already been put into practical use. Yes. However, the Fe—Co—B alloy film has a problem of low corrosion resistance, and the Co—Zr—Nb alloy film has a problem of low saturation magnetic flux density. For this reason, recently, it has been proposed to use an Fe—Co alloy film obtained by adding Zr, Hf, Ta, Nb or the like to an Fe—Co alloy in addition to the above alloy film (see, for example, Patent Document 2). .

特開2004−030740号公報JP 2004-030740 A 特開2007−109378号公報JP 2007-109378 A

D.H.Hong,S.H.Park and T.D.Lee,“Effects of CoZrNb Surface Morphology on Magnetic Properties and Grain Isolation of CoCrPt Perpendicular Recording Media”,IEEE Trans.Magn.,Vol.41,No.10,P.3148−3150,Oct.,2005D. H. Hong, S .; H. Park and T.W. D. Lee, “Effects of CoZrNb Surface Morphology on Magnetic Properties and Grain Isolation of CoCrPt Perpendicular Recording Media”, IEEE Trans. Magn. , Vol. 41, no. 10, P.I. 3148-3150, Oct. , 2005

本発明者らが、特許文献2に記載されている多量の添加元素を含むFe−Co系合金軟磁性膜用スパッタリングターゲット材を作製しスパッタ成膜を行ったところ、スパッタ成膜条件によっては、スパッタ成膜時にパーティクルの発生が顕著になるという問題が確認された。
本発明の目的は、上記の問題を解決し、軟磁性膜を安定してスパッタリング可能なFe−Co系合金スパッタリングターゲット材を提供することである。
When the present inventors made a sputtering target material for Fe-Co alloy soft magnetic film containing a large amount of additive elements described in Patent Document 2 and performed sputter deposition, depending on the sputter deposition conditions, The problem that the generation of particles becomes noticeable during sputter deposition was confirmed.
An object of the present invention is to solve the above problems and provide an Fe—Co alloy sputtering target material capable of stably sputtering a soft magnetic film.

本発明者は、Fe−Co系合金スパッタリングターゲット材の金属組織に着目して検討したところ、スパッタリングターゲット材の主相となるFe−Co合金相に対して、高い硬度を有する添加物元素の化合物相との硬度差に基づく、機械加工時の微細な加工欠陥が原因であることを突き止め、添加元素の化合物相を微細分散させることで、上記に問題を大きく改善できることを見いだし本発明に到達した。   The present inventor studied by paying attention to the metal structure of the Fe—Co based alloy sputtering target material. As a result, the additive element compound having high hardness with respect to the Fe—Co alloy phase which is the main phase of the sputtering target material. Based on the hardness difference from the phase, we found out that it was caused by fine processing defects during machining, found that the problem could be greatly improved by finely dispersing the compound phase of the additive element, and reached the present invention. .

すなわち、本発明は、原子比における組成式が(Fe−Co100−X100−YZr、5≦X≦95、3≦Y≦10で表されるFe−Co−Zr系合金ターゲット材であって、該ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下であるFe−Co−Zr系合金ターゲット材である。
また、好ましくは、原子比における組成式が(Fe−Co100−X100−(Y+Z)−Zr−M、5≦X≦95、3≦Y≦10、0<Z≦20で表され、前記組成式のM元素が(V、Nb、Ta、Cr、Mo、W、Ni、Ru、Rh、Pd、B、Al、Ti)から選ばれる1種または2種以上の元素であるFe−Co−Zr系合金ターゲット材である。
また、好ましくは、原子比における組成式が(Fe−Co100−X100−(Y+a+Z)−Zr−Ni−M、5≦X≦95、3≦Y≦10、0<a+Z≦20で表され、前記組成式のM元素が(V、Nb、Ta、Cr、Mo、W、Ru、Rh、Pd、B、Al、Ti)から選ばれる1種または2種以上の元素であるFe−Co−Zr系合金ターゲット材である。
さらに、好ましくは、スパッタ面に研磨加工を施してなるFe−Co−Zr系合金ターゲット材である。
That is, the present invention relates to an Fe—Co—Zr alloy target in which the composition formula in atomic ratio is represented by (Fe X —Co 100 —X ) 100 —Y Zr Y , 5 ≦ X ≦ 95, 3 ≦ Y ≦ 10 This is a Fe—Co—Zr alloy target material having a maximum inscribed circle diameter of 5 μm or less that can be drawn in a region where no Zr compound phase exists in the cross-sectional microstructure of the target material.
Also preferably, the composition formula in atomic ratio is (Fe X -Co 100-X) 100- (Y + Z) -Zr Y -M Z, 5 ≦ X ≦ 95,3 ≦ Y ≦ 10,0 <Z ≦ 20 The element M represented by the composition formula is one or more elements selected from (V, Nb, Ta, Cr, Mo, W, Ni, Ru, Rh, Pd, B, Al, Ti). This is an Fe—Co—Zr alloy target material.
Also preferably, the composition formula of the atomic ratio (Fe X -Co 100-X) 100- (Y + a + Z) -Zr Y -Ni a -M Z, 5 ≦ X ≦ 95,3 ≦ Y ≦ 10,0 <a + Z ≦ 20, and the M element of the composition formula is one or more elements selected from (V, Nb, Ta, Cr, Mo, W, Ru, Rh, Pd, B, Al, Ti) It is a certain Fe—Co—Zr alloy target material.
Furthermore, an Fe—Co—Zr-based alloy target material obtained by polishing the sputter surface is preferable.

本発明により、安定したマグネトロンスパッタリングが行なえる垂直磁気記録媒体の軟磁性膜を形成するためのFe−Co−Zr系合金スパッタリングターゲットを提供でき、垂直磁気記録媒体を製造する上で極めて有効な技術となる。   INDUSTRIAL APPLICABILITY According to the present invention, an Fe—Co—Zr alloy sputtering target for forming a soft magnetic film of a perpendicular magnetic recording medium capable of performing stable magnetron sputtering can be provided, and an extremely effective technique for manufacturing a perpendicular magnetic recording medium It becomes.

本発明のFe−Co−Zr系合金ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径測定方法を示す模式図である。It is a schematic diagram which shows the diameter measuring method of the maximum inscribed circle which can be drawn in the area | region where a Zr compound phase does not exist in the cross-sectional microstructure of the Fe-Co-Zr system alloy target material of this invention. 試料1の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Sample 1. 試料2の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Sample 2. 試料3の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of Sample 3. 試料4の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of Sample 4. 試料5の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Sample 5. 試料6の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Sample 6.

本発明における最大の特徴は、Fe−Co−Zr系合金ターゲット材において、断面ミクロ組織中に存在するZr化合物相を均一微細に分散させることで、ターゲット材を製造する際の機械加工時の微細な加工欠陥を低減し、安定したスパッタ成膜が可能となることを見出した点にある。   The greatest feature of the present invention is that in the Fe-Co-Zr alloy target material, the Zr compound phase present in the cross-sectional microstructure is uniformly and finely dispersed, so that the fineness at the time of machining when manufacturing the target material is obtained. It has been found that stable processing defects can be reduced and stable sputter deposition can be performed.

本発明のFe−Co−Zr系合金ターゲット材は、原子比における組成式が(Fe−Co100−X100−YZr、5≦X≦95、3≦Y≦10で表される合金組成を有する。
FeとCoとの組成比Xを5≦X≦95としたのは、Fe−Co二元系合金膜において、Co含有量を原子比で5〜95%にすることで高い飽和磁化を持ち軟磁気特性に優れた薄膜を生成できるためである。なお、本発明において、FeとCoとの組成比は、飽和磁化を最大化する必要がある場合には、Feの原子比Xを50〜95%とすることが好ましく、また、薄膜としての磁歪を下げようとする場合には、Feの原子比Xを5〜50%とすることが好ましい。
また、Zrの組成比Yを3≦Y≦10としたのは、Zrをこの範囲で含有させることで、薄膜のアモルファス化を促進させる効果が得られるためであり、Zrが原子比で10%を超えるとFe−Co合金をベースとした高い飽和磁化が低下し望ましくないためである。
The composition formula in the atomic ratio of the Fe—Co—Zr alloy target material of the present invention is represented by (Fe X —Co 100-X ) 100-Y Zr Y , 5 ≦ X ≦ 95, 3 ≦ Y ≦ 10. It has an alloy composition.
The reason why the composition ratio X between Fe and Co is set to 5 ≦ X ≦ 95 is that the Fe—Co binary alloy film has a high saturation magnetization and softness by setting the Co content to an atomic ratio of 5 to 95%. This is because a thin film having excellent magnetic properties can be produced. In the present invention, the Fe / Co composition ratio is preferably 50 to 95% when the saturation magnetization needs to be maximized, and the magnetostriction as a thin film When it is going to lower, it is preferable to make the atomic ratio X of Fe into 5 to 50%.
The reason why the composition ratio Y of Zr is set to 3 ≦ Y ≦ 10 is that the effect of promoting the amorphization of the thin film can be obtained by containing Zr in this range, and Zr has an atomic ratio of 10%. This is because, if it exceeds 1, the high saturation magnetization based on the Fe—Co alloy is lowered, which is not desirable.

上記の組成におけるFe−Co−Zr系合金の一般的な溶解凝固組織は、Zrが10原子%以下であるため、初晶部はFeあるいはCoを主体としたFe−Co固溶体相となり易く、ZrはFeやCoとの間でZr化合物を形成し、FeあるいはCoを主体としたFe−Co固溶体相と共晶部を構成する。このように、ZrはFeあるいはCoとの間でZr化合物を形成しFeやCoを主体とするFe−Co固溶体相であるマトリックス中に存在する。このZr化合物相(例えば、FeZr、CoZr、CoZr等)は、Fe−Co固溶体相に比べ硬度が高く、ターゲット材の製造方法によってその形態や分散が大きく変化し、Fe−Co−Zr系合金材料の機械加工性に影響を与える。微細なZr化合物相をマトリックスのFe−Co固溶体相に均一に分散させることにより、Zr化合物相とマトリックスのFe−Co固溶体相との切削や研磨等の機械加工における加工性のギャップを抑制することが可能となる。そこで、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下とすることでFe−Co−Zr系合金ターゲット材の加工性を向上できる。より好ましくは、断面ミクロ組織においてZr化合物相の存在しない領域の最大内接円の直径が3μm以下であり、さらに好ましくは、1μm以下である。 The general solution and solidification structure of the Fe—Co—Zr alloy having the above composition has a Zr content of 10 atomic% or less, so that the primary crystal part tends to be a Fe—Co solid solution phase mainly composed of Fe or Co. Forms a Zr compound with Fe or Co and constitutes a eutectic part with an Fe—Co solid solution phase mainly composed of Fe or Co. Thus, Zr exists in the matrix which forms a Zr compound with Fe or Co and is a Fe—Co solid solution phase mainly composed of Fe or Co. This Zr compound phase (for example, Fe 2 Zr, Co 2 Zr, Co 5 Zr, etc.) has a higher hardness than the Fe—Co solid solution phase, and its form and dispersion change greatly depending on the method of producing the target material. This affects the machinability of the Co-Zr alloy material. By uniformly dispersing the fine Zr compound phase in the Fe-Co solid solution phase of the matrix, the gap of workability in machining such as cutting and polishing between the Zr compound phase and the Fe-Co solid solution phase of the matrix is suppressed. Is possible. Therefore, the workability of the Fe—Co—Zr alloy target material can be improved by setting the diameter of the maximum inscribed circle that can be drawn in a region where no Zr compound phase exists in the cross-sectional microstructure to 5 μm or less. More preferably, the diameter of the maximum inscribed circle in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 3 μm or less, and more preferably 1 μm or less.

また、本発明においては、添加元素として(V、Nb、Ta、Cr、Mo、W、Ni、Ru、Rh、Pd、B、Al、Ti)から選ばれる1種または2種以上のM元素が添加されてもよい。垂直磁気記録媒体用の軟磁性膜としては、Fe−Co合金をベースとした高い磁気モーメントとアモルファス化を促進させる元素であるZrに加えて、さらにアモルファス化を促進する元素や耐食性を向上させる元素として、上記のM元素を20原子%迄の範囲で添加することが、軟磁性膜の特性向上の上で望ましいためである。   In the present invention, one or more M elements selected from (V, Nb, Ta, Cr, Mo, W, Ni, Ru, Rh, Pd, B, Al, Ti) are added as additive elements. It may be added. As a soft magnetic film for a perpendicular magnetic recording medium, in addition to a high magnetic moment based on an Fe—Co alloy and Zr which promotes amorphization, an element which further promotes amorphization and an element which improves corrosion resistance This is because the addition of the above M element in a range of up to 20 atomic% is desirable for improving the characteristics of the soft magnetic film.

また、本発明においては、Fe−Co合金の一部をNiで置換してもよい。Fe−Co合金の20%迄の範囲をNiで置換させることで、飽和磁化を大きく低減させることなく磁歪が低減でき、薄膜の軟磁気特性を向上させる効果があるためである。また、NiとM元素の総和で含有量を20原子%以下とすることが、磁歪の低減と耐食性の向上を得る上で望ましい。   In the present invention, a part of the Fe—Co alloy may be substituted with Ni. This is because replacing the range of up to 20% of the Fe—Co alloy with Ni can reduce magnetostriction without greatly reducing the saturation magnetization, and has the effect of improving the soft magnetic properties of the thin film. Further, it is desirable that the total content of Ni and M elements be 20 atomic% or less in order to reduce magnetostriction and improve corrosion resistance.

本発明のFe−Co−Zr系合金ターゲット材の製造方法としては、例えば以下の方法が適用できる。
上記の微細な組織は、例えば、所定の組成比に調整したFe−Co−Zr系合金の母合金をガスアトマイズ法等のアトマイズ法に代表される溶湯急冷法を用いて粉末とし、粉末粒径の平均粒径を250μm以下にした上で、加圧焼結することによって得ることができる。溶湯急冷法の適用により、溶湯を急冷凝固させることでZr化合物相の存在しない初晶の晶出を抑制でき、さらに、Zr化合物相の粗大化を抑制できるため、Zr化合物相が均一微細に分散された組織を持つ粉末が得られるのである。また、粉末の平均粒径を250μm以下に制御することで、Zr化合物相の相対的な粒径も制御可能となる。
As a method for producing the Fe—Co—Zr alloy target material of the present invention, for example, the following method can be applied.
The fine structure is obtained by, for example, using a Fe—Co—Zr alloy master alloy adjusted to a predetermined composition ratio as a powder by using a molten metal quenching method represented by an atomizing method such as a gas atomizing method. It can be obtained by making the average particle size 250 μm or less and pressure sintering. By applying the molten metal quenching method, it is possible to suppress the crystallization of primary crystals without the presence of the Zr compound phase by rapidly solidifying the molten metal, and further to suppress the coarsening of the Zr compound phase, so that the Zr compound phase is uniformly and finely dispersed. Thus, a powder having a textured structure is obtained. Moreover, the relative particle size of the Zr compound phase can be controlled by controlling the average particle size of the powder to 250 μm or less.

急冷凝固粉末を焼結すると、本願発明で規定する組織のターゲット材が得られる。特に、熱間静水圧プレス法を用いるとZr化合物相の成長を著しく抑制した状態で焼結を行なうことが可能となり、本発明のターゲット材を得るのに有利である。   When the rapidly solidified powder is sintered, a target material having a structure defined in the present invention is obtained. In particular, when the hot isostatic pressing method is used, sintering can be performed in a state where the growth of the Zr compound phase is remarkably suppressed, which is advantageous for obtaining the target material of the present invention.

また、本発明のターゲット材は、急冷凝固させたFe−Co−Zr合金粉末やFe−Co−Zr−M合金粉末等を所定の組成比で混合した混合粉末を使用することにより実現できる。組成的もしくは組織的にバラツキの少ないターゲット材を得るためには、所定の組成比に調整したFe−Co−Zr系合金の母合金を急冷凝固し原料粉末として使用することがより好ましい。   Moreover, the target material of the present invention can be realized by using a mixed powder obtained by mixing rapidly solidified Fe—Co—Zr alloy powder, Fe—Co—Zr—M alloy powder, or the like at a predetermined composition ratio. In order to obtain a target material with little variation in composition or structure, it is more preferable to rapidly solidify an Fe—Co—Zr alloy mother alloy adjusted to a predetermined composition ratio and use it as a raw material powder.

また、Fe−Co−Zr系合金の加圧焼結では典型的には800℃以上1200℃以下で焼結する。800℃未満では、焼結が進行しにくく、1200℃を越えると焼結素材が溶解する危険があるためである。加圧焼結は、空隙のない緻密な焼結体とするために、50MPa以上の圧力で行なう方が好ましい。この焼結時に空隙が残留することは、スパッタリング中にターゲット材表面にノジュールが発生する原因やパーティクルやスプラッシュの原因となるため、可能な限り避けなければならない。特に焼結体の相対密度(ターゲット材の密度/理論密度×100で表した数値、但し、理論密度は各元素の比重と組成より計算で求めたものである。)は97%以上である事が好ましい。より好ましい焼結体の相対密度は99%以上である。   In pressure sintering of an Fe—Co—Zr alloy, the sintering is typically performed at 800 ° C. or more and 1200 ° C. or less. If it is less than 800 ° C., the sintering is difficult to proceed, and if it exceeds 1200 ° C., there is a risk that the sintered material is dissolved. The pressure sintering is preferably performed at a pressure of 50 MPa or more in order to obtain a dense sintered body having no voids. The voids remaining during the sintering may cause nodules on the surface of the target material during sputtering, or cause particles or splash, and should be avoided as much as possible. In particular, the relative density of the sintered body (the density of the target material / theoretical density × 100, where the theoretical density is calculated from the specific gravity and composition of each element) is 97% or more. Is preferred. The relative density of the sintered body is more preferably 99% or more.

本発明のターゲット材はスパッタ面に研磨加工を施してなるものが望ましい。本発明のターゲット材は、比較的硬度が高いZr化合物相をマトリックスのFe−Co固溶体相に均一に分散しており加工欠陥を低減できる。そして、ターゲット材のスパッタ面の仕上加工を砥石や研磨紙を用いた加工時の応力発生の少ない研磨加工を適用すれば加工欠陥をより低減できる。   The target material of the present invention is preferably formed by polishing the sputter surface. In the target material of the present invention, the Zr compound phase having a relatively high hardness is uniformly dispersed in the Fe—Co solid solution phase of the matrix, so that processing defects can be reduced. Further, if a polishing process that generates less stress during processing using a grindstone or polishing paper is applied to the finish processing of the sputtering surface of the target material, the processing defects can be further reduced.

ガスアトマイズ法によってFe−Co−Zr合金粉末((Fe31.6−Co68.495−Zr(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe—Co—Zr alloy powder ((Fe 31.6 -Co 68.4 ) 95 —Zr 5 (atomic%)) was prepared by a gas atomization method, and the obtained atomized powder was classified with a 250 μm sieve. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr合金((Fe31.6−Co68.495−Zr(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 As a comparative example, an Fe-Co-Zr alloy ((Fe 31.6 -Co 68.4 ) 95 -Zr 5 (atomic%)) was prepared by melt casting, and the ingot was cut by wire cutting in the same manner as described above. A target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。最大内接円の直径測定は、上記で作製したターゲット材から10mm×10mmの試験片を採取し、試料調整した後に、走査型電子顕微鏡により1000倍に拡大したミクロ組織を観察して行った。なお、Zr化合物相の存在しない領域に描ける最大内接円の直径とは、図1に示すターゲット材のミクロ組織の模式図において、マトリクッスのFe−Co固溶体相1中に存在するZr化合物相2が存在しない領域に描ける最大内接円3の直径をいう。測定結果を表1に示す。
次に、スパッタ面の表面粗さを測定した。尚、測定はJIS B 0601−2001に準じ最大高さ[Rz]を計測した。測定結果を表1に示す。
Further, the microstructure was observed using a scanning electron microscope, and the diameter of the maximum inscribed circle that could be drawn in a region where no Zr compound phase was present in the cross-sectional microstructure of the sputtering target material produced above was measured. The diameter of the maximum inscribed circle was measured by collecting a 10 mm × 10 mm test piece from the target material prepared above and adjusting the sample, and then observing the microstructure magnified 1000 times with a scanning electron microscope. In addition, the diameter of the maximum inscribed circle that can be drawn in a region where no Zr compound phase exists is the Zr compound phase 2 existing in the matrix Fe-Co solid solution phase 1 in the schematic diagram of the microstructure of the target material shown in FIG. The diameter of the maximum inscribed circle 3 that can be drawn in a region where no exists. The measurement results are shown in Table 1.
Next, the surface roughness of the sputter surface was measured. In addition, the measurement measured the maximum height [Rz] according to JIS B 0601-2001. The measurement results are shown in Table 1.

本発明のFe−Co−Zr系合金ターゲット材の断面ミクロ組織の代表例として図2に試料1の走査型電子顕微鏡による断面ミクロ組織の観察例を示す。また、比較例として試料2の走査型電子顕微鏡による断面ミクロ組織の観察例を図3に示す。
表1および図2から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。
なお、図3では、濃灰色部が初晶部のFe−Co固溶体相、薄灰色部が共晶部のZr化合物相を含む領域である。
As a representative example of the cross-sectional microstructure of the Fe—Co—Zr-based alloy target material of the present invention, FIG. 2 shows an observation example of the cross-sectional microstructure of the sample 1 using a scanning electron microscope. As a comparative example, an observation example of the cross-sectional microstructure of the sample 2 using a scanning electron microscope is shown in FIG.
From Table 1 and FIG. 2, the Fe—Co—Zr alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 5 μm or less can be confirmed. It is confirmed that the -Zr-based alloy target material has a small maximum sputter surface height and reduced fine processing defects.
In FIG. 3, the dark gray portion is a region containing the Fe—Co solid solution phase of the primary crystal portion, and the light gray portion is a region containing the Zr compound phase of the eutectic portion.

ガスアトマイズ法によってFe−Co−Zr−Ni−Nb合金粉末((Fe28−Co7281−Zr−Ni−Nb(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 To produce a Fe-Co-Zr-Ni- Nb alloy powder ((Fe 28 -Co 72) 81 -Zr 5 -Ni 9 -Nb 5 ( atomic%)) by a gas atomizing method, sieve 250μm atomized powder obtained Classification with. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Ni−Nb合金((Fe28−Co7281−Zr−Ni−Nb(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe-Co-Zr-Ni- Nb alloy as a comparative example ((Fe 28 -Co 72) 81 -Zr 5 -Ni 9 -Nb 5 ( atomic%)) to prepare an ingot by melting and casting the above as well as ingots Was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表2に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. The above measurement results are shown in Table 2.

本発明のFe−Co−Zr系合金ターゲット材の断面ミクロ組織の代表例として図4に試料3の走査型電子顕微鏡による断面ミクロ組織の観察例を示す。また、比較例として試料4の走査型電子顕微鏡による断面ミクロ組織の観察例を図5に示す。
表2および図4から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。
なお、図5では、濃灰色部が初晶部のFe−Co固溶体相、薄灰色部が共晶部のZr化合物相を含む領域である。
As a representative example of the cross-sectional microstructure of the Fe—Co—Zr-based alloy target material of the present invention, FIG. 4 shows an observation example of the cross-sectional microstructure of the sample 3 using a scanning electron microscope. As a comparative example, an observation example of the cross-sectional microstructure of the sample 4 using a scanning electron microscope is shown in FIG.
From Table 2 and FIG. 4, the Fe—Co—Zr-based alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure can be confirmed is 5 μm or less. It is confirmed that the -Zr-based alloy target material has a small maximum sputter surface height and reduced fine processing defects.
In FIG. 5, the dark gray portion is a region containing the Fe—Co solid solution phase of the primary crystal portion, and the light gray portion is a region containing the Zr compound phase of the eutectic portion.

ガスアトマイズ法によってFe−Co−Zr−Ta−Al−Cr合金粉末((Fe40−Co6090−Zr−(Ta66.8−Cr16.6−Al16.6(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe—Co—Zr—Ta—Al—Cr alloy powder ((Fe 40 —Co 60 ) 90 —Zr 4 — (Ta 66.8 —Cr 16.6 —Al 16.6 ) 6 (atomic%) by gas atomization method ) And the obtained atomized powder was classified with a 250 μm sieve. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Ta−Al−Cr合金((Fe40−Co6090−Zr−(Ta66.8−Cr16.6−Al16.6(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 As a comparative example, an Fe—Co—Zr—Ta—Al—Cr alloy ((Fe 40 —Co 60 ) 90 —Zr 4 — (Ta 66.8 —Cr 16.6 —Al 16.6 ) 6 (atomic%)) An ingot was prepared by melt casting, and the ingot was cut by wire cutting in the same manner as described above, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表3に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. The above measurement results are shown in Table 3.

本発明のFe−Co−Zr系合金ターゲット材の断面ミクロ組織の代表例として図6に試料5の走査型電子顕微鏡による断面ミクロ組織の観察例を示す。また、比較例として試料6の走査型電子顕微鏡による断面ミクロ組織の観察例を図7に示す。
表3および図6から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。
なお、図7では、濃灰色部が初晶部のFe−Co固溶体相、薄灰色部が共晶部のZr化合物相を含む領域である。
As a representative example of the cross-sectional microstructure of the Fe—Co—Zr-based alloy target material of the present invention, FIG. 6 shows an observation example of the cross-sectional microstructure of the sample 5 using a scanning electron microscope. As a comparative example, an observation example of the cross-sectional microstructure of the sample 6 using a scanning electron microscope is shown in FIG.
From Table 3 and FIG. 6, the Fe—Co—Zr-based alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 5 μm or less can be confirmed. It is confirmed that the -Zr-based alloy target material has a small maximum sputter surface height and reduced fine processing defects.
In FIG. 7, the dark gray portion is a region containing the Fe—Co solid solution phase of the primary crystal portion, and the light gray portion is a region containing the Zr compound phase of the eutectic portion.

ガスアトマイズ法によってFe−Co−Zr−Ta−Ti合金粉末((Fe30−Co7090−Zr−(Ta60−Ti40(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe—Co—Zr—Ta—Ti alloy powder ((Fe 30 —Co 70 ) 90 —Zr 5 — (Ta 60 —Ti 40 ) 5 (atomic%)) was prepared by a gas atomization method, and the obtained atomized powder was Classification was performed with a 250 μm sieve. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Ta−Ti合金((Fe30−Co7090−Zr−(Ta60−Ti40(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 As a comparative example, an ingot was prepared by melt casting an Fe—Co—Zr—Ta—Ti alloy ((Fe 30 —Co 70 ) 90 —Zr 5 — (Ta 60 —Ti 40 ) 5 (atomic%)), and Similarly, the ingot was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表4に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. The above measurement results are shown in Table 4.

表4から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。   From Table 4, the Fe—Co—Zr alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 5 μm or less can be confirmed. It is confirmed that the alloy target material has a small maximum height of the sputter surface, and fine processing defects are reduced.

ガスアトマイズ法によってFe−Co−Zr−Nb−Al合金粉末((Fe40−Co6090−Zr−(Nb66.7−Al33.3(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe—Co—Zr—Nb—Al alloy powder ((Fe 40 —Co 60 ) 90 —Zr 4 — (Nb 66.7 —Al 33.3 ) 6 (atomic%)) was obtained by a gas atomization method. The atomized powder was classified with a 250 μm sieve. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Nb−Al合金((Fe40−Co6090−Zr−(Nb66.7−Al33.3(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 Fe-Co-Zr-Nb- Al alloy as a comparative example ((Fe 40 -Co 60) 90 -Zr 4 - (Nb 66.7 -Al 33.3) 6 ( atomic%)) produced an ingot by melting and casting the In the same manner as above, the ingot was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表5に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. The above measurement results are shown in Table 5.

表5から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。   From Table 5, the Fe—Co—Zr alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 5 μm or less can be confirmed. It is confirmed that the alloy target material has a small maximum height of the sputter surface, and fine processing defects are reduced.

ガスアトマイズ法によってFe−Co−Zr−Ta合金粉末((Fe40−Co6090−Zr−Ta(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 To produce a Fe-Co-Zr-Ta alloy powder ((Fe 40 -Co 60) 90 -Zr 5 -Ta 5 ( atomic%)) by a gas atomizing method, the atomized powder obtained was classified with a sieve of 250 [mu] m. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Ta合金((Fe40−Co6090−Zr−Ta(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 To prepare an ingot by melting and casting the Fe-Co-Zr-Ta alloy ((Fe 40 -Co 60) 90 -Zr 5 -Ta 5 ( atomic%)) as a comparative example, similarly to the above cutting an ingot by a wire-cut Then, a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表6に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. The above measurement results are shown in Table 6.

表6から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。   From Table 6, the Fe—Co—Zr alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure is 5 μm or less can be confirmed. It is confirmed that the alloy target material has a small maximum height of the sputter surface, and fine processing defects are reduced.

ガスアトマイズ法によってFe−Co−Zr−Ta合金粉末((Fe60−Co4090−Zr−Ta(原子%))を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。作製したアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、圧力100MPa、温度900℃、保持時間2時間の条件で熱間静水圧プレス法により直径200mm×10mmの焼結体を作製した。次いで焼結体をワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 To produce a Fe-Co-Zr-Ta alloy powder ((Fe 60 -Co 40) 90 -Zr 5 -Ta 5 ( atomic%)) by a gas atomizing method, the atomized powder obtained was classified with a sieve of 250 [mu] m. After filling the prepared atomized powder into a mild steel capsule and degassing and sealing it, a sintered body having a diameter of 200 mm × 10 mm was prepared by hot isostatic pressing under the conditions of a pressure of 100 MPa, a temperature of 900 ° C., and a holding time of 2 hours. . Next, the sintered body was cut by wire cutting, and a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

比較例としてFe−Co−Zr−Ta合金((Fe60−Co4090−Zr−Ta(原子%))を溶解鋳造によりインゴットを作製し、上記と同様にインゴットをワイヤーカットにより切断し、研磨加工によって直径180mm×7mmのターゲット材を得た。但し、スパッタ面の仕上研磨は、#60研磨紙で行った。 To prepare an ingot by melting and casting the Fe-Co-Zr-Ta alloy ((Fe 60 -Co 40) 90 -Zr 5 -Ta 5 ( atomic%)) as a comparative example, similarly to the above cutting an ingot by a wire-cut Then, a target material having a diameter of 180 mm × 7 mm was obtained by polishing. However, the finish polishing of the sputtered surface was performed with # 60 polishing paper.

また、実施例1と同様に走査型電子顕微鏡を用いてミクロ組織観察を行い、上記で作製したスパッタリング用ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径を測定した。さらに、実施例1と同様に各ターゲット材のスパッタ面の表面粗さ(最大高さ[Rz])を測定した。以上の測定結果を表7に示す。   In addition, the microstructure is observed using a scanning electron microscope in the same manner as in Example 1, and the diameter of the maximum inscribed circle that can be drawn in the region where the Zr compound phase does not exist in the cross-sectional microstructure of the sputtering target material produced as described above. It was measured. Furthermore, the surface roughness (maximum height [Rz]) of the sputtering surface of each target material was measured in the same manner as in Example 1. Table 7 shows the above measurement results.

表7から、断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下となるFe−Co−Zr系合金ターゲット材を確認でき、本発明のFe−Co−Zr系合金ターゲット材はスパッタ面の最大高さが小さく、微細な加工欠陥が低減されていることが確認される。   From Table 7, an Fe—Co—Zr alloy target material having a maximum inscribed circle diameter of 5 μm or less that can be drawn in a region where no Zr compound phase exists in the cross-sectional microstructure can be confirmed, and the Fe—Co—Zr system of the present invention It is confirmed that the alloy target material has a small maximum height of the sputter surface, and fine processing defects are reduced.

1 Fe−Co固溶体相
2 Zr化合物相
3 最大内接円
1 Fe-Co solid solution phase 2 Zr compound phase 3 Maximum inscribed circle

Claims (4)

原子比における組成式が(Fe−Co100−X100−YZr、5≦X≦95、3≦Y≦10で表されるFe−Co−Zr系合金ターゲット材であって、該ターゲット材の断面ミクロ組織においてZr化合物相の存在しない領域に描ける最大内接円の直径が5μm以下であることを特徴とするFe−Co−Zr系合金ターゲット材。 Composition formula in atomic ratio a (Fe X -Co 100-X) 100-Y Zr Y, 5 ≦ X ≦ 95,3 ≦ Y ≦ 10 Fe-Co-Zr based alloy target material represented by the A Fe—Co—Zr alloy target material, wherein a diameter of a maximum inscribed circle that can be drawn in a region where no Zr compound phase exists in a cross-sectional microstructure of the target material is 5 μm or less. 原子比における組成式が(Fe−Co100−X100−(Y+Z)−Zr−M、5≦X≦95、3≦Y≦10、0<Z≦20で表され、前記組成式のM元素が(V、Nb、Ta、Cr、Mo、W、Ni、Ru、Rh、Pd、B、Al、Ti)から選ばれる1種または2種以上の元素であることを特徴とする請求項1に記載のFe−Co−Zr系合金ターゲット材。 Composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100- (Y + Z) -Zr Y -M Z, 5 ≦ X ≦ 95,3 ≦ Y ≦ 10,0 <Z ≦ 20, wherein the composition The element M in the formula is one or more elements selected from (V, Nb, Ta, Cr, Mo, W, Ni, Ru, Rh, Pd, B, Al, Ti). The Fe—Co—Zr-based alloy target material according to claim 1. 原子比における組成式が(Fe−Co100−X100−(Y+a+Z)−Zr−Ni−M、5≦X≦95、3≦Y≦10、0<a+Z≦20で表され、前記組成式のM元素が(V、Nb、Ta、Cr、Mo、W、Ru、Rh、Pd、B、Al、Ti)から選ばれる1種または2種以上の元素であることを特徴とする請求項1に記載のFe−Co−Zr系合金ターゲット材。 Composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100- (Y + a + Z) -Zr Y -Ni a -M Z, 5 ≦ X ≦ 95,3 ≦ Y ≦ 10,0 <a + Z ≦ 20 The M element of the composition formula is one or more elements selected from (V, Nb, Ta, Cr, Mo, W, Ru, Rh, Pd, B, Al, Ti). The Fe—Co—Zr alloy target material according to claim 1. スパッタ面に研磨加工を施してなることを特徴とする請求項1乃至3のいずれかに記載のFe−Co−Zr系合金ターゲット材。   The Fe—Co—Zr-based alloy target material according to claim 1, wherein the sputter surface is polished.
JP2009004792A 2008-01-15 2009-01-13 Fe-Co-Zr BASED ALLOY TARGET MATERIAL Pending JP2009191359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004792A JP2009191359A (en) 2008-01-15 2009-01-13 Fe-Co-Zr BASED ALLOY TARGET MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008005156 2008-01-15
JP2009004792A JP2009191359A (en) 2008-01-15 2009-01-13 Fe-Co-Zr BASED ALLOY TARGET MATERIAL

Publications (1)

Publication Number Publication Date
JP2009191359A true JP2009191359A (en) 2009-08-27

Family

ID=41073640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004792A Pending JP2009191359A (en) 2008-01-15 2009-01-13 Fe-Co-Zr BASED ALLOY TARGET MATERIAL

Country Status (1)

Country Link
JP (1) JP2009191359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059540A (en) * 2008-08-04 2010-03-18 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL AND Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL
WO2010053048A1 (en) * 2008-11-05 2010-05-14 日立金属株式会社 Co-Fe ALLOY FOR SOFT MAGNETIC FILMS, SOFT MAGNETIC FILM, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
WO2013047328A1 (en) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 Alloy used in soft-magnetic thin-film layer on perpendicular magnetic recording medium, sputtering-target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
JP2014240515A (en) * 2013-06-12 2014-12-25 日立金属株式会社 Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL AND PRODUCTION METHOD THEREOF
WO2015141571A1 (en) * 2014-03-18 2015-09-24 Jx日鉱日石金属株式会社 Magnetic sputtering target

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644750A (en) * 1979-09-21 1981-04-24 Hitachi Metals Ltd Amorphous magnetic material
WO2006051737A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
JP2006265656A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Ni-Co ALLOY TARGET MATERIAL FOR FORMING SOFT MAGNETIC ALLOY FILM AND ITS MANUFACTURING METHOD
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
JP2007284741A (en) * 2006-04-14 2007-11-01 Sanyo Special Steel Co Ltd Soft magnetic target material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644750A (en) * 1979-09-21 1981-04-24 Hitachi Metals Ltd Amorphous magnetic material
WO2006051737A1 (en) * 2004-11-15 2006-05-18 Nippon Mining & Metals Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
JP2006265656A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Ni-Co ALLOY TARGET MATERIAL FOR FORMING SOFT MAGNETIC ALLOY FILM AND ITS MANUFACTURING METHOD
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
JP2007284741A (en) * 2006-04-14 2007-11-01 Sanyo Special Steel Co Ltd Soft magnetic target material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059540A (en) * 2008-08-04 2010-03-18 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL AND Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL
WO2010053048A1 (en) * 2008-11-05 2010-05-14 日立金属株式会社 Co-Fe ALLOY FOR SOFT MAGNETIC FILMS, SOFT MAGNETIC FILM, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
WO2013047328A1 (en) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 Alloy used in soft-magnetic thin-film layer on perpendicular magnetic recording medium, sputtering-target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
JP2013072114A (en) * 2011-09-28 2013-04-22 Sanyo Special Steel Co Ltd Alloy for soft-magnetic thin-film layer of perpendicular magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
CN103842549A (en) * 2011-09-28 2014-06-04 山阳特殊制钢株式会社 Alloy used in soft-magnetic thin-film layer on perpendicular magnetic recording medium, sputtering-target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
JP2014240515A (en) * 2013-06-12 2014-12-25 日立金属株式会社 Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL AND PRODUCTION METHOD THEREOF
WO2015141571A1 (en) * 2014-03-18 2015-09-24 Jx日鉱日石金属株式会社 Magnetic sputtering target
JP6030271B2 (en) * 2014-03-18 2016-11-24 Jx金属株式会社 Magnetic material sputtering target

Similar Documents

Publication Publication Date Title
JP4016399B2 (en) Method for producing Fe-Co-B alloy target material
JP5472688B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2008189996A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
TWI621718B (en) Fe-Co alloy sputtering target material and soft magnetic film layer and perpendicular magnetic recording medium using same
JP2009068100A (en) Alloy for soft magnetic film layer in perpendicular magnetic recording medium, and target material
JP5305137B2 (en) Ni-W sintered target material for forming Ni alloy intermediate layer of perpendicular magnetic recording medium
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP2010111943A (en) Method for producing sputtering target material
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JPH1088333A (en) Sputtering target and its production
JP2010159491A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2018188726A (en) Sputtering target and production method thereof
JP2010248603A (en) METHOD FOR PRODUCING Fe-Co-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
WO2018062189A1 (en) Ni-Ta SYSTEM ALLOY, TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2000096220A (en) Cobalt-chromium sputtering target and its manufacture
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
JP4427792B2 (en) Co alloy target material for magnetic recording media
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111212

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130607