JP2009190209A - Resin-coated aluminum sheet for molding and its manufacturing method - Google Patents
Resin-coated aluminum sheet for molding and its manufacturing method Download PDFInfo
- Publication number
- JP2009190209A JP2009190209A JP2008031269A JP2008031269A JP2009190209A JP 2009190209 A JP2009190209 A JP 2009190209A JP 2008031269 A JP2008031269 A JP 2008031269A JP 2008031269 A JP2008031269 A JP 2008031269A JP 2009190209 A JP2009190209 A JP 2009190209A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- zinc phosphate
- aluminum plate
- wax
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 91
- 239000011347 resin Substances 0.000 title claims abstract description 91
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 64
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000465 moulding Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims abstract description 40
- 229910000165 zinc phosphate Inorganic materials 0.000 claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 19
- 239000003513 alkali Substances 0.000 claims abstract description 13
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 9
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 9
- 239000003822 epoxy resin Substances 0.000 claims abstract description 8
- 239000003973 paint Substances 0.000 claims abstract description 8
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 7
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 7
- 239000004645 polyester resin Substances 0.000 claims abstract description 7
- 229920001225 polyester resin Polymers 0.000 claims abstract description 7
- 238000013329 compounding Methods 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims description 60
- 239000011248 coating agent Substances 0.000 claims description 57
- 239000010419 fine particle Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 238000007493 shaping process Methods 0.000 claims description 5
- 239000011859 microparticle Substances 0.000 claims description 3
- 238000005238 degreasing Methods 0.000 abstract description 14
- 239000012528 membrane Substances 0.000 abstract 1
- 239000001993 wax Substances 0.000 description 22
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002952 polymeric resin Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 241000178435 Eliokarmos dubius Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005237 degreasing agent Methods 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、成形加工されて缶エンド材、缶ボディ材、電気電子機器部材、自動車用ボディ材又は建材などに用いられる樹脂被覆アルミニウム板に関するものである。 The present invention relates to a resin-coated aluminum plate that is molded and used for a can end material, a can body material, an electric / electronic equipment member, an automobile body material, or a building material.
アルミニウム板及びアルミニウム合金板(以下、総称してアルミニウム板という)は、耐食性が良好で軽量であることから、飲料缶材料、建材、電気及び電子部品を含む家電材並びに自動車材等の用途に広く適用されている。アルミニウム板を前記用途に適用する場合は、通常、アルミニウム板を所定の形状にプレス成形して適用する。アルミニウム板のプレス成形は、プレス機に枚葉状のシートを1枚ずつ供給して行う方法と、プレス機にコイル状のアルミニウム板を連続的に供給して行う方法とがあり、後者は生産性に優れた製造方法として前記用途の事業分野において広く採用されている。また、前記用途のアルミニウム板は、耐食性のより一層の向上、外観の向上及びキズ付きの防止等を目的として、プレス成形後に表面に塗装を施されて使用されることが多い。 Aluminum plates and aluminum alloy plates (hereinafter collectively referred to as aluminum plates) have good corrosion resistance and are lightweight, so they are widely used in applications such as beverage can materials, building materials, home appliance materials including electric and electronic parts, and automobile materials. Has been applied. When applying an aluminum plate to the said use, normally, an aluminum plate is press-molded to a predetermined shape, and is applied. There are two methods for press-forming aluminum plates: one is to supply sheet-fed sheets one by one to the press, and the other is to supply coil-shaped aluminum plates to the press continuously. As an excellent manufacturing method, it is widely adopted in the business field of the above-mentioned use. In addition, the aluminum plate for the above-mentioned use is often used after the press molding, with the surface being coated for the purpose of further improving the corrosion resistance, improving the appearance and preventing scratches.
このプレス成形に際して、成形加工性を向上させるために潤滑性を有する被膜をアルミニウム板表面に設ける方法が提案されている。例えば、特許文献1では、塗膜等の表面処理皮膜上にパラフィンワックスを融点以上の温度で塗布する方法が提案されている。また、特許文献2では、クロメート処理後ウレタン、エステル、エポキシ系樹脂にシリカゾル5〜30%、ワックスが5〜20%含有有機組成物を塗布して、1〜10g/m2の被膜を形成させる方法が提案されている。 In this press molding, a method of providing a coating film having lubricity on the surface of an aluminum plate has been proposed in order to improve molding processability. For example, Patent Document 1 proposes a method of applying paraffin wax on a surface treatment film such as a coating film at a temperature equal to or higher than the melting point. In Patent Document 2, an organic composition containing 5 to 30% silica sol and 5 to 20% wax is applied to urethane, ester or epoxy resin after chromate treatment to form a film of 1 to 10 g / m 2 . A method has been proposed.
しかしながら、アルミニウム板を接着等によって組み立てて製品形状とする場合には、このようにワックスを含有する被膜を形成したアルミニウム板を用いると、アルミニウム板表面の被膜によって接着剤の油分が十分に吸収されず、接着性を低下させることがある。 However, when an aluminum plate is assembled by bonding or the like to obtain a product shape, the use of the aluminum plate formed with the wax-containing coating as described above sufficiently absorbs the oil content of the adhesive by the coating on the surface of the aluminum plate. However, the adhesiveness may be reduced.
また、プレス成形後に塗装を施す場合には、塗装前に潤滑塗膜をアルカリ脱脂等によって除去することが不可欠である。この際の脱膜性が不足していると、潤滑被膜が十分に除去されず、その後の塗装が良好に行えなくなる。 In addition, when coating is performed after press molding, it is essential to remove the lubricating coating film by alkali degreasing or the like before coating. If the film removal property at this time is insufficient, the lubricating coating is not sufficiently removed, and subsequent coating cannot be performed satisfactorily.
かかる事情を考慮した表面被覆アルミニウム材として、特許文献3に、粒径0.1〜10μm、粒子密度103〜107個/m2のアルミニウム以外の金属微粒子及び酸化物、水酸化物を陰極電解法又は無電解法で付着させ、更に5〜500nmの有機皮膜を被覆させる方法が開示されている。しかし、このようにして形成された被膜には潤滑性に大きく寄与するワックスが含まれないため、より過酷な張り出し成形と絞り成形性が要求される場合には十分なプレス成形性を得ることができない。
上のように、従来の表面被覆アルミニウム板においては、プレス成形を良好に行うことのできる十分な潤滑性を与えようとすると、他部材との接着時に接着性が損なわれたり、プレス成形後の工程におけるアルカリ脱脂脱膜性が低下したりする問題があった。 As described above, in the conventional surface-coated aluminum plate, if it is intended to give sufficient lubricity so that the press molding can be performed satisfactorily, the adhesiveness is impaired at the time of adhesion to other members, or after press molding. There has been a problem that the alkali degreasing and film removal properties in the process are lowered.
本発明は、かかる従来の問題点に鑑みてなされたものであって、プレス成形性に優れると共に、接着性能およびアルカリ脱脂脱膜性を確保できる成形加工用樹脂被覆アルミニウム板を提供することを目的とするものである。 The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a resin-coated aluminum plate for molding processing that is excellent in press moldability and can ensure adhesion performance and alkali degreasing delaminating performance. It is what.
上記の目的を達成するため、本発明の成形加工用樹脂被覆アルミニウム板は、
アルミニウム板又はアルミニウム合金板表面に樹脂塗膜が設けられた成形加工用樹脂被覆アルミニウム板において、
前記樹脂塗膜は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂のうちの1種又は2種以上からなるアルカリ可溶性樹脂に、リン酸亜鉛微粒子及びワックスが均一に分散した樹脂塗膜であり、
前記ワックスの量が0.03〜0.12g/m2であり、前記リン酸亜鉛微粒子の粒径が0.01〜1μmであり、
前記アルカリ可溶性樹脂に対する前記リン酸亜鉛微粒子の配合比が5.3〜300重量%であり、
かつ、前記アルカリ可溶性樹脂と前記リン酸亜鉛微粒子の合計固形分量に対する前記ワックスの配合比が2〜15重量%であることを特徴とする成形加工用樹脂被覆アルミニウム板である。
In order to achieve the above object, the resin-coated aluminum plate for molding processing of the present invention is
In a resin-coated aluminum plate for molding processing in which a resin coating is provided on the surface of an aluminum plate or an aluminum alloy plate,
The resin coating is a resin coating in which zinc phosphate fine particles and wax are uniformly dispersed in an alkali-soluble resin composed of one or more of urethane resin, acrylic resin, epoxy resin and polyester resin,
The amount of the wax is 0.03 to 0.12 g / m 2 , and the particle size of the zinc phosphate fine particles is 0.01 to 1 μm,
The blending ratio of the zinc phosphate fine particles to the alkali-soluble resin is 5.3 to 300% by weight,
And the compounding ratio of the said wax with respect to the total solid content of the said alkali-soluble resin and the said zinc phosphate microparticles | fine-particles is 2 to 15 weight%, It is a resin-coated aluminum plate for shaping | molding processes characterized by the above-mentioned.
前記樹脂塗膜の被覆量が0.2〜1.5g/m2であることとすれば、より好ましい。 It is more preferable that the coating amount of the resin coating film is 0.2 to 1.5 g / m 2 .
また、本発明の成形加工用樹脂被覆アルミニウム板の製造方法は、
ウレタン樹脂、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂のうちの1種又は2種以上からなるアルカリ可溶性樹脂に、前記アルカリ可溶性樹脂に対して重量比5.3〜300%のリン酸亜鉛微粒子及び前記アルカリ可溶性樹脂と前記リン酸亜鉛の合計固形分量に対して重量比2〜15%のワックスを均一に分散させて樹脂塗料を作製する工程と、
前記樹脂塗料をアルミニウム板又はアルミニウム合金板表面にロールコーター法により塗布する工程と、
を含むことを特徴とする成形加工用樹脂被覆アルミニウム板の製造方法である。
Moreover, the manufacturing method of the resin-coated aluminum plate for molding processing of the present invention is as follows.
To the alkali-soluble resin composed of one or more of urethane resin, acrylic resin, epoxy resin, and polyester resin, zinc phosphate fine particles having a weight ratio of 5.3 to 300% with respect to the alkali-soluble resin and the alkali A step of uniformly dispersing a wax having a weight ratio of 2 to 15% with respect to the total solid content of the soluble resin and the zinc phosphate to prepare a resin coating;
Applying the resin paint to the surface of the aluminum plate or aluminum alloy plate by a roll coater method;
It is a manufacturing method of the resin coating aluminum plate for shaping | molding processes characterized by including.
前記樹脂塗料の塗布量が0.2〜1.5g/m2であることとすれば、より好ましい。 It is more preferable that the coating amount of the resin coating is 0.2 to 1.5 g / m 2 .
本発明によれば、プレス成形性に優れると共に、塗膜密着性及び接着性能にも優れ、かつ、アルカリ脱脂での脱膜性を確保できる成形加工用樹脂被覆アルミニウム板を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, while being excellent in press moldability, it is excellent also in coating-film adhesiveness and adhesive performance, and the resin-coated aluminum plate for shaping | molding processes which can ensure the film removal property by alkali degreasing can be obtained.
本発明に用いるアルミニウム板又はアルミニウム合金板の種類は特に限定されるものではないが、JIS A1100等の純アルミニウム系合金板、JIS A3004等のAl−Mn系合金板、JIS A5182等のAl−Mg系合金板、JIS A6063等のAl−Mg−Si系合金板等を用いることができる。なお、以下において、アルミニウム板及びアルミニウム合金板を総称して「アルミニウム板」と呼ぶ。 The type of the aluminum plate or aluminum alloy plate used in the present invention is not particularly limited, but a pure aluminum alloy plate such as JIS A1100, an Al—Mn alloy plate such as JIS A3004, and an Al—Mg such as JIS A5182. An Al—Mg—Si alloy plate such as JIS A6063 can be used. Hereinafter, the aluminum plate and the aluminum alloy plate are collectively referred to as “aluminum plate”.
本発明の成形加工用樹脂被覆アルミニウム板は、アルミニウム板表面に、以下に述べる樹脂塗膜が設けられたものである。この樹脂被覆塗膜量が0.2g/m2以下では、成形金型とアルミニウム面とが接触し易くなる結果、座屈やカジリといった成形不良が発生し易くなることがある。また、1.5g/m2を超えると、プレス成形性がそれ以上向上せず、コストアップ要因となる。そのため、樹脂塗膜量は、0.2〜1.5g/m2の範囲であることが好ましい。 The resin-coated aluminum plate for molding processing according to the present invention has a resin coating described below on the surface of the aluminum plate. When the amount of the resin-coated film is 0.2 g / m 2 or less, the molding die and the aluminum surface are likely to come into contact with each other, so that molding defects such as buckling and galling are likely to occur. On the other hand, if it exceeds 1.5 g / m 2 , the press formability will not be improved any more, resulting in an increase in cost. Therefore, the resin coating amount is preferably in the range of 0.2 to 1.5 g / m 2 .
なお、アルミニウム板表面のMg(主に水酸化物等の形で存在する)が多いと樹脂塗膜の密着性が悪くなるので、表面のMg量を抑制することが好ましい。アルミニウム板表面のMgは、GDS(グロー放電発光分析)にて最大発光強度を測定することにより評価することができ、本発明においては、Mgの最大発光強度が2V以下となることが好ましい。 In addition, since the adhesiveness of a resin coating film will worsen when there is much Mg on the aluminum plate surface (it exists mainly in the form of a hydroxide etc.), it is preferable to suppress the amount of Mg on the surface. Mg on the surface of the aluminum plate can be evaluated by measuring the maximum emission intensity by GDS (glow discharge emission analysis). In the present invention, the maximum emission intensity of Mg is preferably 2 V or less.
アルミニウム板表面に設ける樹脂塗膜は、水溶性かつアルカリ可溶性を有する高分子樹脂中に、リン酸亜鉛微粒子及び潤滑成分であるワックスが均一に分散したものである。 The resin coating provided on the surface of the aluminum plate is obtained by uniformly dispersing zinc phosphate fine particles and a wax as a lubricating component in a water-soluble and alkali-soluble polymer resin.
高分子樹脂としては、ウレタン樹脂、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂のうちの1種又は2種以上からなる樹脂を用いることができる。なお、これらの樹脂の中でも、水溶性・アルカリ可溶性を有するものを選ぶものとする。このような水溶性かつアルカリ可溶性の高分子樹脂を樹脂塗膜に用いることで、後にアルミニウム板に塗装を施して使用する場合に、前処理として行うアルカリ脱脂での脱膜性を良好にすることができる。 As the polymer resin, a resin composed of one or more of urethane resin, acrylic resin, epoxy resin, and polyester resin can be used. Among these resins, those having water solubility and alkali solubility are selected. By using such a water-soluble and alkali-soluble polymer resin for the resin coating film, it is possible to improve the film-removability in the alkaline degreasing performed as a pretreatment when the aluminum plate is used after being coated later. Can do.
樹脂塗膜に添加するリン酸亜鉛微粒子の粒径は0.01〜1μmとし、アルカリ可溶性樹脂とリン酸亜鉛微粒子の重量比は25:75〜95:5とする(すなわち、アルカリ可溶性樹脂100重量部に対し、リン酸亜鉛微粒子が5.3〜300重量部)。リン酸亜鉛微粒子の粒径及び量をこのような範囲とすることによって、樹脂塗膜の表面に凹凸が形成され、樹脂被覆アルミニウム板を相互に接着あるいは外部の部材と接着する際にアンカー効果が働き、優れた接着性能を得ることができる。 The particle size of the zinc phosphate fine particles added to the resin coating is 0.01 to 1 μm, and the weight ratio of the alkali-soluble resin and zinc phosphate fine particles is 25:75 to 95: 5 (that is, 100 wt. Part of the zinc phosphate fine particles is 5.3 to 300 parts by weight). By setting the particle size and amount of the zinc phosphate fine particles in such a range, irregularities are formed on the surface of the resin coating, and the anchor effect is obtained when the resin-coated aluminum plates are bonded to each other or to an external member. It can work and obtain excellent adhesion performance.
リン酸亜鉛微粒子の粒径が0.01μ未満では、樹脂塗膜形成後の塗膜表面に凹凸が形成されないため、接着性能が低下する。一方、粒径が1μmを超えると、塗膜表面から飛び出したリン酸亜鉛微粒子が過剰に存在するようになり、プレス成形性の低下を招くこととなる。また、アルカリ可溶性樹脂100重量部に対してリン酸亜鉛微粒子が5.3重量部より小さいと、塗膜表面に凹凸が形成されないため、接着性能が低下する。一方、アルカリ可溶性樹脂100重量部に対してリン酸亜鉛微粒子が300重量部より大きいと、樹脂成分量が不足し、プレス成形時の塗膜伸びが確保されないために成形性が低下すると共に、アルミニウム板表面における塗膜密着性が劣ることとなる。 If the particle diameter of the zinc phosphate fine particles is less than 0.01 μm, irregularities are not formed on the surface of the coating film after the resin coating film is formed. On the other hand, when the particle diameter exceeds 1 μm, the zinc phosphate fine particles jumping out from the surface of the coating film are excessively present, resulting in a decrease in press formability. Moreover, since unevenness | corrugation is not formed in the coating-film surface when zinc phosphate microparticles | fine-particles are smaller than 5.3 weight part with respect to 100 weight part of alkali-soluble resin, adhesive performance falls. On the other hand, if the zinc phosphate fine particles are larger than 300 parts by weight with respect to 100 parts by weight of the alkali-soluble resin, the amount of the resin component is insufficient, and the film elongation at the time of press molding is not ensured. The coating film adhesion on the plate surface will be inferior.
樹脂塗膜に添加するワックスとしては、ポリエチレンワックス、カルナウバワックス、ラノリンワックス、クリスタリンワックス等を用いることができ、その量は0.03〜0.12g/m2とする。アルカリ可溶性樹脂とリン酸亜鉛微粒子の合計固形分量に対する前記ワックスの重量比は、2〜15%とする。ワックス量が0.03g/m2以下では、潤滑性が不足するため、十分なプレス成形性が確保されない。一方、ワックス量が0.12g/m2を超えると、プレス成形性がそれ以上向上しないばかりか、樹脂被覆アルミニウム板を相互に接着あるいは外部の部材と接着する際に接着剤にワックスや油分が十分に吸収されず、接着性能が低下するため好ましくない。 As the wax to be added to the resin coating film, polyethylene wax, carnauba wax, lanolin wax, crystallin wax or the like can be used, and the amount thereof is set to 0.03 to 0.12 g / m 2 . The weight ratio of the wax to the total solid content of the alkali-soluble resin and the zinc phosphate fine particles is 2 to 15%. When the amount of wax is 0.03 g / m 2 or less, the lubricity is insufficient, and sufficient press formability is not ensured. On the other hand, if the amount of wax exceeds 0.12 g / m 2 , not only the press formability is improved, but also when the resin-coated aluminum plates are bonded to each other or bonded to an external member, wax or oil is present in the adhesive. It is not preferable because it is not sufficiently absorbed and the adhesive performance is lowered.
本発明の樹脂被覆アルミニウム板を製造する際のアルミニウム板表面への樹脂塗膜形成方法としては、種々の方法を用いることができ、例えばロールコーター法、ロールスクイズ法、ケミコーター法、浸漬法、スプレー法等を用いることができる。これらの方法の中でも、塗膜の均一性に優れ、生産性が良好なロールコーター法が特に好ましい。ロールコーター法としては、塗布量管理が容易なグラビアロール方式や、厚塗りに適したナチュラルコート方式、塗布面に美的外観を付与するのに適したリバースコート方式等を採用することができる。 Various methods can be used as a method for forming a resin coating film on the surface of the aluminum plate when the resin-coated aluminum plate of the present invention is produced. For example, a roll coater method, a roll squeeze method, a chemicoater method, a dipping method, a spray method can be used. The law etc. can be used. Among these methods, a roll coater method that is excellent in the uniformity of the coating film and good in productivity is particularly preferable. As the roll coater method, a gravure roll method with easy coating amount management, a natural coating method suitable for thick coating, a reverse coating method suitable for imparting an aesthetic appearance to the coated surface, and the like can be employed.
アルミニウム板表面に樹脂塗膜を形成した後、乾燥を行う。乾燥は、熱風炉、赤外炉、誘導加熱炉などにより行うことができるが、中でも特に、電気ヒーター,燃焼ガス等により間接的に加熱した空気等を用いる熱風炉が好ましい。 After forming the resin coating film on the aluminum plate surface, drying is performed. Drying can be performed by a hot air furnace, an infrared furnace, an induction heating furnace, or the like, and among them, a hot air furnace using air heated indirectly by an electric heater, a combustion gas, or the like is particularly preferable.
〔実施例1〕
次に、本発明の実施例1について説明する。アルミニウム板として、最終熱処理を行ったJIS A5182−O(0.8mm厚さ)を用意した。樹脂塗膜形成の前処理として、アルカリ脱脂(日本ペイント製EC−371に、60℃×5秒間浸漬)→水洗(室温で15秒間。スプレー圧1.5kg/cm2)→酸洗(10wt%のH2SO4(30℃)に5秒間浸漬)→水洗(室温で15秒間。スプレー圧1.5kg/cm2)→純水洗浄→熱風乾燥の工程で処理を行った。この工程を経たアルミニウム板から幅50mm×長さ60mmの測定試料を切り出し、表面のMg量を、GDSにて最大発光強度を測定することにより求めた。
[Example 1]
Next, Example 1 of the present invention will be described. As an aluminum plate, JIS A5182-O (0.8 mm thickness) subjected to final heat treatment was prepared. As pretreatment for resin coating formation, alkaline degreasing (immersion in EC-371 manufactured by Nippon Paint, 60 ° C. × 5 seconds) → water washing (at room temperature for 15 seconds, spray pressure 1.5 kg / cm 2 ) → pickling (10 wt% Of H 2 SO 4 (30 ° C.) for 5 seconds) → water washing (at room temperature for 15 seconds, spray pressure 1.5 kg / cm 2 ) → pure water washing → hot air drying. A measurement sample having a width of 50 mm and a length of 60 mm was cut out from the aluminum plate that had undergone this step, and the amount of Mg on the surface was determined by measuring the maximum emission intensity with GDS.
GDS装置は、堀場製作所製JY5000RFを用いた。Mg量の測定条件は、アルゴンガスで置換後の圧力を600Paとし、出力30W、モジュール650、フェーズ350、アノード径4mmφとした。また、Mg検出波長を384nm、Mg感度を750Vとした。測定試料の酸化皮膜表面層から、スパッタ時間1秒以内でスパッタされるMgの最大ピーク高さを発光強度(V)として測定した。 As the GDS apparatus, JY5000RF manufactured by HORIBA, Ltd. was used. The measurement conditions for the amount of Mg were a pressure after replacement with argon gas of 600 Pa, an output of 30 W, a module 650, a phase 350, and an anode diameter of 4 mmφ. The Mg detection wavelength was 384 nm and the Mg sensitivity was 750V. From the oxide film surface layer of the measurement sample, the maximum peak height of Mg sputtered within 1 second of the sputtering time was measured as the emission intensity (V).
次に、水溶性・アルカリ可溶性を有するウレタン樹脂に、粒径及び配合量を種々変えたリン酸亜鉛微粒子と、配合量を種々変えた融点105℃のポリエチレンワックスを均一に含有させた樹脂塗料を作製した(表1)。これらの樹脂塗料をアルミニウム板にロールコーターにて塗布し、PMT(板到達温度)115℃、在炉時間30秒間で乾燥を行い、性能評価用の試験片とした。 Next, a resin paint in which zinc phosphate fine particles with various particle sizes and blending amounts and polyethylene wax with a melting point of 105 ° C. with various blending amounts are uniformly contained in a water-soluble and alkali-soluble urethane resin. It produced (Table 1). These resin paints were applied to an aluminum plate with a roll coater, and dried at PMT (plate arrival temperature) of 115 ° C. and in-furnace time of 30 seconds to obtain test pieces for performance evaluation.
上のようにして得られた樹脂被覆アルミニウム板の性能として、プレス成形性(絞り性)、プレス成形性(カジリ性)、接着性能及びアルカリ脱脂脱膜性を評価した。 As the performance of the resin-coated aluminum plate obtained as described above, press moldability (drawability), press moldability (galling property), adhesion performance, and alkaline degreasing delaminating performance were evaluated.
(1)プレス成形性(絞り性)
試験片に市販の潤滑油(油研工業製RP−75N)を0.5g/m2塗油後、ポンチ径50mmφ、肩R5mmの金型にて、BHF(しわ押さえ荷重)600N、成形速度5mm/秒で深絞り成形を行い、限界絞り比(LDR)を求めた。評価・判定基準は以下のとおりとした。
(1) Press formability (drawability)
After commercial lubricating oil on the test piece (Yukenkogyo manufactured RP-75N) 0.5g / m 2 oiling, punch diameter 50 mm [phi], in the mold of the shoulder R5 mm, BHF (blank holding load) 600N, forming speed 5mm Deep drawing was performed at a rate of / sec, and the limit drawing ratio (LDR) was determined. Evaluation / judgment criteria were as follows.
○:LDR 2.1以上 合格
△:LDR 1.9〜2.0 不合格
×:LDR 1.89以下 不合格
○: LDR 2.1 or higher Pass △: LDR 1.9 to 2.0 Fail ×: LDR 1.89 or lower Fail
(2)プレス成形性(耐カジリ性)
試験片に市販の潤滑油(油研工業製RP−75N)を0.5g/m2塗油後、バウデン式磨耗試験機を用い、試験荷重500gf,摺動速度0.6mm/秒,鋼球直径=3/16インチの条件にて、50往復目の動摩擦係数(μ)を測定した。評価・判定基準は以下のとおりとした。
(2) Press formability (galling resistance)
After applying 0.5 g / m 2 of commercially available lubricating oil (RP-75N manufactured by Yuken Kogyo Co., Ltd.) to the test piece, using a Bowden abrasion tester, test load 500 gf, sliding speed 0.6 mm / second, steel ball The dynamic friction coefficient (μ) at the 50th reciprocation was measured under the condition of diameter = 3/16 inch. Evaluation / judgment criteria were as follows.
○:μ 0.1以下 合格
△:μ 0.1以上 不合格
×:50往復未満で、かじり発生 不合格
○: μ 0.1 or less Pass △: μ 0.1 or more Fail ×: Less than 50 round trips, galling generated Fail
(3)接着性能
試験片を1mm厚さ×25mm幅×150mm長さに切断し、市販の潤滑油(油研工業製RP−75N)を浸漬塗油後、1日室温放置し、構造用接着剤(サンスター製#1086)で接着面積25mm×10mm、接着剤厚さ0.2mmにて接着を行い、180℃×20分の加熱処理を施した。これらについて、25mm/分の引張り速度で引張り試験を行い、せん断強さを測定した。評価・判定基準は以下のとおりとした。
(3) Adhesion performance The test piece was cut into 1 mm thickness x 25 mm width x 150 mm length, and after commercially available lube oil (RP-75N manufactured by Yuken Kogyo Co., Ltd.) was immersed in the oil, left at room temperature for 1 day to adhere to the structure. An adhesive (Sunstar # 1086) was used for adhesion at an adhesive area of 25 mm × 10 mm and an adhesive thickness of 0.2 mm, followed by heat treatment at 180 ° C. for 20 minutes. These were subjected to a tensile test at a tensile speed of 25 mm / min, and the shear strength was measured. Evaluation / judgment criteria were as follows.
◎:せん断強さ 19MPa以上 合格
○:せん断強さ 17MPa以上 19MPa未満 合格
×:せん断強さ 17MPa未満 不合格
◎: Shear strength 19 MPa or more Pass ○: Shear strength 17 MPa or more but less than 19 MPa Pass ×: Shear strength less than 17 MPa Fail
(4)アルカリ脱脂脱膜性
市販の潤滑油(油研工業製RP−75N)を0.5g/m2塗油後、市販のアルカリ脱脂剤(日本パーカライジング製FC−E3003、CO2によりpH=11に調整)に40℃×2分間浸漬後、30秒間水洗を行った後の水濡れ面積で、アルカリ脱脂脱膜性を評価した。評価・判定基準は以下のとおりとした。
(4) Alkaline degreasing defilming property After applying 0.5 g / m 2 of a commercially available lubricating oil (RP-75N manufactured by Yuken Kogyo Co., Ltd.), a commercially available alkaline degreasing agent (Nippon Parkerizing FC-E3003, pH = CO 2 = 11), the degreasing property of the alkaline degreasing was evaluated based on the water-wetting area after being washed with water for 30 seconds. Evaluation / judgment criteria were as follows.
◎:水濡れ面積 100% 合格
○:水濡れ面積 90%以上100%未満 合格
×:水濡れ面積 90%未満 不合格
◎: Water-wetting area 100% pass ○: Water-wetting area 90% or more and less than 100% Pass ×: Water-wetting area less than 90%
表2に、実施例1の評価・判定結果を示す。本発明例1〜11の樹脂被覆アルミニウム板は、アルミニウム板表面のMg量を反映するGDS発光強度が2V以下と低く、また、樹脂塗膜におけるリン酸亜鉛微粒子の粒径及び配合量、ワックスの配合量が本発明規定の範囲内であり、さらに、樹脂塗膜の被覆量が適正であったため、プレス成形性、接着性能及びアルカリ脱膜性の全てを満足している。 Table 2 shows the evaluation / determination results of Example 1. In the resin-coated aluminum plates of Invention Examples 1 to 11, the GDS emission intensity reflecting the amount of Mg on the surface of the aluminum plate is as low as 2 V or less, and the particle size and blending amount of zinc phosphate fine particles in the resin coating film, Since the blending amount is within the range specified in the present invention and the coating amount of the resin coating film is appropriate, all of press moldability, adhesive performance and alkali film removal property are satisfied.
これに対し、比較例1では、リン酸亜鉛微粒子の粒径が0.005μmと小さ過ぎたため、樹脂被覆アルミニウム板表面に凹凸が形成されず、アンカー効果が得られなかった結果、接着性能に劣っていた。一方、比較例2では、リン酸亜鉛微粒子の粒径が1.2μmと大き過ぎたため、塗膜表面から飛び出したリン酸亜鉛微粒子が過剰に存在するようになり、プレス成形性(耐カジリ性)に劣っていた。 On the other hand, in Comparative Example 1, since the particle diameter of the zinc phosphate fine particles was too small as 0.005 μm, the surface of the resin-coated aluminum plate was not formed with unevenness, and the anchor effect was not obtained, resulting in poor adhesion performance. It was. On the other hand, in Comparative Example 2, since the particle diameter of the zinc phosphate fine particles was too large at 1.2 μm, the zinc phosphate fine particles jumped out from the surface of the coating film existed excessively, and press formability (anti-galling resistance) It was inferior to.
比較例3では、樹脂塗膜中にリン酸亜鉛微粒子を配合していないため、樹脂被覆アルミニウム板表面に凹凸が形成されず、アンカー効果が得られなかった結果、接着性能に劣っていた。一方、比較例4では、ウレタン樹脂とリン酸亜鉛の合計量に対するリン酸亜鉛微粒子の配合比が80%と多過ぎたため、樹脂成分量が不足し、成形時の塗膜伸びが確保されない結果、プレス成形性に劣っていた。 In Comparative Example 3, since zinc phosphate fine particles were not blended in the resin coating film, unevenness was not formed on the surface of the resin-coated aluminum plate, and the anchor effect was not obtained, resulting in poor adhesion performance. On the other hand, in Comparative Example 4, since the blending ratio of the zinc phosphate fine particles with respect to the total amount of the urethane resin and zinc phosphate was too much as 80%, the resin component amount was insufficient, and the coating film elongation at the time of molding was not ensured, The press formability was poor.
比較例5では、ウレタン樹脂とリン酸亜鉛微粒子の合計固形分量に対するワックスの配合比が1%と少な過ぎたため、十分な潤滑性が得られず、プレス成形性に劣っていた。また、比較例6では、ワックスの配合量が0.14g/m2と多過ぎたため、接着性能に劣っていた。 In Comparative Example 5, since the blending ratio of the wax with respect to the total solid content of the urethane resin and the zinc phosphate fine particles was too small as 1%, sufficient lubricity was not obtained and the press formability was inferior. Further, in Comparative Example 6, since the amount of the wax was too large, 0.14 g / m 2 , the adhesive performance was inferior.
比較例7では、樹脂塗膜形成の前処理において酸洗処理を行わなかったため、アルミニウム板表面において検出されるMg量が多くなった。その結果、接着性能およびアルカリ脱脂脱膜性に劣っていた。 In Comparative Example 7, since the pickling treatment was not performed in the pretreatment for forming the resin coating film, the amount of Mg detected on the surface of the aluminum plate increased. As a result, it was inferior to adhesive performance and alkali degreasing film removal property.
〔実施例2〕
次に、本発明の実施例2について説明する。アルミニウム板の種類、前処理、GDS測定は、実施例1の場合と同様とした。
[Example 2]
Next, a second embodiment of the present invention will be described. The type of aluminum plate, pretreatment, and GDS measurement were the same as in Example 1.
次に、水溶性・アルカリ可溶性を有するアクリル樹脂、エポキシ樹脂又はポリエステル樹脂に、粒径0.3μmで配合量を種々変えたリン酸亜鉛微粒子と、配合量を種々変えた融点105℃のポリエチレンワックスを含有させた樹脂塗料を作製した(表3)。これらの樹脂塗料をアルミニウム板にロールコーターにて塗布し、PMT(板到達温度)120℃、在炉時間30秒間で乾燥を行い、性能評価用の試験片とした。 Next, zinc phosphate fine particles with a particle size of 0.3 μm and various blending amounts in a water-soluble and alkali-soluble acrylic resin, epoxy resin or polyester resin, and a polyethylene wax having a melting point of 105 ° C. with various blending amounts. Resin paints containing bismuth were prepared (Table 3). These resin coatings were applied to an aluminum plate with a roll coater and dried at PMT (plate arrival temperature) of 120 ° C. for 30 seconds in the furnace to obtain a test piece for performance evaluation.
上のようにして得られた樹脂被覆アルミニウム板の性能として、プレス成形性(絞り性)、プレス成形性(カジリ性)、接着性能及びアルカリ脱脂脱膜性を評価した。なお、性能評価方法及び評価・判定基準は、実施例1の場合と同様である。 As the performance of the resin-coated aluminum plate obtained as described above, press moldability (drawability), press moldability (galling property), adhesion performance, and alkaline degreasing delaminating performance were evaluated. The performance evaluation method and the evaluation / determination criteria are the same as those in the first embodiment.
表4に、実施例2の評価・判定結果を示す。本発明例12〜24の樹脂被覆アルミニウム板は、アルミニウム板表面のMg量を反映するGDS発光強度が2V以下と低く、また、樹脂塗膜におけるリン酸亜鉛微粒子の粒径及び配合量、ワックスの配合量が本発明規定の範囲内であり、さらに、樹脂塗膜の被覆量が適正であったため、プレス成形性、接着性能及びアルカリ脱脂脱膜性の全てを満足している。 Table 4 shows the evaluation / determination results of Example 2. In the resin-coated aluminum plates of Invention Examples 12 to 24, the GDS emission intensity reflecting the amount of Mg on the surface of the aluminum plate is as low as 2 V or less, and the particle size and blending amount of zinc phosphate fine particles in the resin coating film, Since the blending amount is within the range specified in the present invention and the coating amount of the resin coating film is appropriate, all of press moldability, adhesive performance and alkaline degreasing defilming property are satisfied.
一方、比較例19、20では、樹脂とリン酸亜鉛の合計量に対するリン酸亜鉛微粒子の配合比が80%と多過ぎたため、樹脂成分量が不足し、成形時の塗膜伸びが確保されない結果、プレス成形性に劣っていた。 On the other hand, in Comparative Examples 19 and 20, since the blending ratio of the zinc phosphate fine particles with respect to the total amount of the resin and zinc phosphate was too high at 80%, the amount of the resin component was insufficient, and the coating film elongation during molding was not ensured. The press formability was inferior.
比較例21、22では、樹脂とリン酸亜鉛微粒子の合計固形分量に対するワックスの配合比が1%と少な過ぎたため、十分な潤滑性が得られず、プレス成形性に劣っていた。また、比較例23、24では、ワックスの配合量が0.14g/m2と多過ぎたため、接着性能に劣っていた。 In Comparative Examples 21 and 22, since the compounding ratio of the wax with respect to the total solid content of the resin and zinc phosphate fine particles was too small at 1%, sufficient lubricity was not obtained and the press formability was poor. In Comparative Examples 23 and 24, the amount of the wax was too large at 0.14 g / m 2, and thus the adhesion performance was inferior.
Claims (4)
前記樹脂塗膜は、ウレタン樹脂、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂のうちの1種又は2種以上を含むアルカリ可溶性樹脂中にリン酸亜鉛微粒子及びワックスが均一に分散した樹脂塗膜であり、
前記ワックスの量が0.03〜0.12g/m2であり、前記リン酸亜鉛微粒子の粒径が0.01〜1μmであり、
前記アルカリ可溶性樹脂に対する前記リン酸亜鉛微粒子の配合比が5.3〜300重量%であり、
かつ、前記アルカリ可溶性樹脂と前記リン酸亜鉛微粒子の合計固形分量に対する前記ワックスの配合比が2〜15重量%であることを特徴とする成形加工用樹脂被覆アルミニウム板。 In a resin-coated aluminum plate for molding processing in which a resin coating is provided on the surface of an aluminum plate or an aluminum alloy plate,
The resin coating is a resin coating in which zinc phosphate fine particles and wax are uniformly dispersed in an alkali-soluble resin containing one or more of urethane resin, acrylic resin, epoxy resin and polyester resin,
The amount of the wax is 0.03 to 0.12 g / m 2 , and the particle size of the zinc phosphate fine particles is 0.01 to 1 μm,
The blending ratio of the zinc phosphate fine particles to the alkali-soluble resin is 5.3 to 300% by weight,
And the compounding ratio of the said wax with respect to the total solid content of the said alkali-soluble resin and the said zinc phosphate microparticles | fine-particles is 2 to 15 weight%, The resin-coated aluminum plate for shaping | molding processes characterized by the above-mentioned.
前記樹脂塗料をアルミニウム板又はアルミニウム合金板表面にロールコーター法により塗布する工程と、
を含むことを特徴とする成形加工用樹脂被覆アルミニウム板の製造方法。 To the alkali-soluble resin composed of one or more of urethane resin, acrylic resin, epoxy resin, and polyester resin, zinc phosphate fine particles having a weight ratio of 5.3 to 300% with respect to the alkali-soluble resin and the alkali A step of uniformly dispersing a wax having a weight ratio of 2 to 15% with respect to the total solid content of the soluble resin and the zinc phosphate to prepare a resin coating;
Applying the resin paint to the surface of the aluminum plate or aluminum alloy plate by a roll coater method;
The manufacturing method of the resin-coated aluminum plate for shaping | molding processes characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008031269A JP5184126B2 (en) | 2008-02-13 | 2008-02-13 | Resin-coated aluminum plate for molding and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008031269A JP5184126B2 (en) | 2008-02-13 | 2008-02-13 | Resin-coated aluminum plate for molding and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009190209A true JP2009190209A (en) | 2009-08-27 |
JP5184126B2 JP5184126B2 (en) | 2013-04-17 |
Family
ID=41072680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008031269A Expired - Fee Related JP5184126B2 (en) | 2008-02-13 | 2008-02-13 | Resin-coated aluminum plate for molding and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5184126B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001011656A (en) * | 1998-11-08 | 2001-01-16 | Nkk Corp | Organic coated steel sheet excellent in corrosion resistance and method for producing the same |
JP2003532778A (en) * | 2000-05-06 | 2003-11-05 | ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン | Conductive organic paint |
JP2004501233A (en) * | 2000-05-11 | 2004-01-15 | ダウ・コ−ニング・コ−ポレ−ション | Paint composition |
JP2005089780A (en) * | 2003-09-12 | 2005-04-07 | Nippon Steel Corp | Lubricated surface-treated metal substrate with excellent formability and weldability |
JP2007217731A (en) * | 2006-02-15 | 2007-08-30 | Jfe Steel Kk | Surface-treated steel sheet |
-
2008
- 2008-02-13 JP JP2008031269A patent/JP5184126B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001011656A (en) * | 1998-11-08 | 2001-01-16 | Nkk Corp | Organic coated steel sheet excellent in corrosion resistance and method for producing the same |
JP2003532778A (en) * | 2000-05-06 | 2003-11-05 | ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン | Conductive organic paint |
JP2004501233A (en) * | 2000-05-11 | 2004-01-15 | ダウ・コ−ニング・コ−ポレ−ション | Paint composition |
JP2005089780A (en) * | 2003-09-12 | 2005-04-07 | Nippon Steel Corp | Lubricated surface-treated metal substrate with excellent formability and weldability |
JP2007217731A (en) * | 2006-02-15 | 2007-08-30 | Jfe Steel Kk | Surface-treated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5184126B2 (en) | 2013-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105814228B (en) | The manufacturing method of hot pressing Al-plated steel sheet and hot pressing Al-plated steel sheet | |
JP2010064293A (en) | Coated aluminum plate and aluminum can lid | |
JP2759620B2 (en) | Resin-coated metal plate and method of manufacturing the same | |
JP2010223520A (en) | Aluminum fin material for heat exchanger | |
JP3932823B2 (en) | Lubricated steel sheet with excellent chemical conversion and adhesion | |
JP5184126B2 (en) | Resin-coated aluminum plate for molding and method for producing the same | |
JP2005138294A (en) | Coated metal sheet excellent in lubricity and processability | |
JP2002012983A (en) | Phosphate composite coated steel sheet with excellent corrosion resistance, lubricity and paint adhesion | |
JP2008207423A (en) | Resin-coated aluminum plate for shaping machining, and manufacturing method of the same | |
JPH01301332A (en) | Lubricating resin treated steel plate excellent in moldability | |
JP4023248B2 (en) | Lubricated steel strip for strong processing | |
JP2006161126A (en) | Lubricated steel sheet with excellent chemical conversion | |
JP2009269234A (en) | Resin coated aluminum sheet for molding processing and its manufacturing method | |
JP2002012982A (en) | Phosphate composite coated steel sheet with excellent corrosion resistance, lubricity and paint adhesion | |
JP3336947B2 (en) | Organic composite coated steel sheet | |
JPH0780403A (en) | Resin-coated steel plate with superb press-forming, and coating properties and corrosion-protective effect and its manufacture | |
JP3075953B2 (en) | Guard film-free type precoated steel sheet with excellent punching resistance and pressure mark resistance | |
JPH0494771A (en) | Lubricant thin film resin steel sheet excellent in corrosion resistance and weldability | |
JPH06305074A (en) | Surface treated al or al alloy material for car panel | |
JP2007216180A (en) | Coated aluminum plate excellent in forming characteristics | |
WO2013031344A1 (en) | Aluminium coated sheet material for moulding | |
JP2002212757A (en) | Hot-dip galvanized steel sheet with excellent corrosion resistance after processing and its manufacturing method | |
JP2001145848A (en) | Coated metal plate excellent in self-lubricity and its production method | |
JPH08291294A (en) | A film-removal type lubrication agent and lubrication-treated metal plate with excellent anti-galling, corrosion and blocking resistance | |
CN118475722A (en) | Lubricating film coated galvanized steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5184126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |