[go: up one dir, main page]

JP2009186350A - Phosphate ion detection method and detection kit - Google Patents

Phosphate ion detection method and detection kit Download PDF

Info

Publication number
JP2009186350A
JP2009186350A JP2008027508A JP2008027508A JP2009186350A JP 2009186350 A JP2009186350 A JP 2009186350A JP 2008027508 A JP2008027508 A JP 2008027508A JP 2008027508 A JP2008027508 A JP 2008027508A JP 2009186350 A JP2009186350 A JP 2009186350A
Authority
JP
Japan
Prior art keywords
moiety
ion
fluorescence
metal complex
phenylboronic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027508A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kubo
由治 久保
Aiko Nonaka
愛子 野中
Shoichi Horie
翔一 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2008027508A priority Critical patent/JP2009186350A/en
Publication of JP2009186350A publication Critical patent/JP2009186350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

【課題】生理的・化学的に重要なリン酸アニオン類を水系媒質中で簡便に蛍光検出できる方法およびこの方法を実施できるキットを提供する。
【解決手段】リン酸イオンの検出方法であって、被検体を、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸(但し、金属錯体部位の金属は亜鉛または銅である)と混合し、発生する蛍光を検出することを含む前記方法。以下の試薬を含むリン酸イオンの検出用キット。(1)ジオール部位をもつ蛍光色素および(2)2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸但し、金属錯体部位の金属は亜鉛または銅である)
【選択図】なし
The present invention provides a method for easily detecting fluorescence of physiologically and chemically important phosphate anions in an aqueous medium and a kit capable of carrying out this method.
A method for detecting phosphate ions, wherein an analyte is a fluorescent dye having a diol moiety and a phenylboronic acid having a 2,2'-dipicolylamine metal complex moiety (provided that the metal of the metal complex moiety is Said method comprising: mixing with zinc or copper) and detecting the generated fluorescence. A phosphate ion detection kit comprising the following reagents: (1) Fluorescent dye having a diol moiety and (2) Phenylboronic acid having a 2,2'-dipiconylamine metal complex moiety, where the metal of the metal complex moiety is zinc or copper)
[Selection figure] None

Description

本発明は、リン酸イオンの計測に利用できる蛍光検出方法および検出用キットに関する。   The present invention relates to a fluorescence detection method and a detection kit that can be used for measurement of phosphate ions.

生体系において,リン酸化合物は、DNAやRNAをはじめとした様々なリン酸エステル体として見いだされる。よって、その生化学的重要性が指摘されており、シグナル伝達系では、リン酸化タンパク質等を介して、種々の情報伝達制御に関わる。また、代謝反応においても、いくつか関係する酵素があり、たとえば、アルカリフォスファターゼ(ALP)は、アルカリ条件下でリン酸エステルを加水分解するが、ALP異常値は肝障害を示唆するものであり、臨床検査に対しても重要被検査物質となる。   In biological systems, phosphate compounds are found as various phosphate esters including DNA and RNA. Therefore, its biochemical importance has been pointed out, and the signal transduction system is involved in various information transmission controls through phosphorylated proteins and the like. In addition, there are some enzymes involved in metabolic reactions, for example, alkaline phosphatase (ALP) hydrolyzes phosphate esters under alkaline conditions, but abnormal ALP values suggest liver damage, It is also an important test substance for clinical tests.

リン成分は、環境における制御因子である。例えば、フィチン酸は、myo-イノシトールの6リン酸エステルであり、身近な例として、家畜の穀物飼料に含まれているが、消化されず自然界のリン酸の濃度を上昇させる(富栄養化)。従って、リン酸化合物は、環境化学的視点からも重要である。   The phosphorus component is a regulatory factor in the environment. For example, phytic acid is a 6-phosphate ester of myo-inositol, which, as a familiar example, is contained in livestock cereal feed, but is not digested and raises the concentration of natural phosphate (eutrophication) . Therefore, the phosphoric acid compound is important from the viewpoint of environmental chemistry.

リン酸イオンの化学検査法には、モリブデン青法、バイオセンサーまたは合成分子による化学センサーを用いる方法がある。   The chemical test method for phosphate ions includes a molybdenum blue method, a biosensor, or a method using a chemical sensor using a synthetic molecule.

モリブデン青法は、被検査試料に、酸性溶液中モリビデン酸を反応させモリビデン錯体を生成する。これを還元してモリブデン青とし、光学的に定量する。
3NH4 + + 12MoO4 2- + H2PO4 - + 22H+ ←→ (NH4)3PO4・12MoO3 + 12H2O
この方法は、オルトリン酸検出法であるので、他のリン酸種に対して、直接適用できないという欠点がある。
In the molybdenum blue method, a to-be-inspected sample is reacted with morbiddenic acid in an acidic solution to form a morbidden complex. This is reduced to molybdenum blue and optically quantified.
3NH 4 + + 12MoO 4 2- + H 2 PO 4 - + 22H + ← → (NH 4) 3 PO 4 · 12MoO 3 + 12H 2 O
Since this method is an orthophosphoric acid detection method, it has a drawback that it cannot be directly applied to other phosphoric acid species.

バイオセンサー(リン酸測定用酵素センサー)を用いる方法は、酵素基質や必要な補酵素等の試薬を共存させなければならない。検出情報をシグナル変換させるためのデバイス化が必要とされる。   In the method using a biosensor (enzyme sensor for measuring phosphoric acid), an enzyme substrate and necessary reagents such as coenzymes must coexist. A device for converting the detection information into a signal is required.

合成分子による化学センサーを用いる方法は、分子認識能と認識情報の信号化処理できる人工分子が、バイオイメージング用試薬や簡易計測システムを提案するうえで有効である。   In the method using a chemical sensor based on a synthetic molecule, an artificial molecule capable of signal processing of molecular recognition ability and recognition information is effective in proposing a bioimaging reagent and a simple measurement system.

特開2003-254909号公報(特許文献1)は、例えば、下記式で示される環状ポリアミンの金属錯体からなるアニオンホストおよび蛍光色素を有する化合物をからなる、ピロリン酸イオン等のアニオンを検出するための蛍光センサーを開示する。
Japanese Patent Laid-Open No. 2003-254909 (Patent Document 1), for example, is for detecting anions such as pyrophosphate ions comprising an anion host composed of a metal complex of a cyclic polyamine represented by the following formula and a compound having a fluorescent dye. A fluorescent sensor is disclosed.

特開2003-246788号公報(特許文献2)は、例えば、下記式で示される亜鉛錯体からなる蛍光性化合物からなる、リン酸イオン等のリン酸アニオンを検出するための蛍光センサーを開示する。
Japanese Unexamined Patent Publication No. 2003-246788 (Patent Document 2) discloses a fluorescent sensor for detecting a phosphate anion such as a phosphate ion, which is made of a fluorescent compound composed of a zinc complex represented by the following formula, for example.

S. Aoki, et al., J. Am. Chem. Soc., 2005, 127, 9129-9139. (非特許文献1)は、例えば、下記式で示される亜鉛錯体からなる蛍光性化合物からなる、リン酸イオン等のリン酸アニオンを検出するための蛍光センサーを開示する。
S. Aoki, et al., J. Am. Chem. Soc., 2005, 127, 9129-9139. (Non-patent Document 1) is composed of, for example, a fluorescent compound composed of a zinc complex represented by the following formula: Disclosed is a fluorescent sensor for detecting phosphate anions such as phosphate ions.

さらに、本発明者らは、下記式で示されるジピコリルアミン亜鉛錯体共役型フェニルボロン酸を用いた自己組織型アニオン蛍光センシングについて提案している(日本化学会第86春季年会,1K1-49 (2006);日本化学会第87春季年会,4E4-35 (2007)、非特許文献2)。
特開2003-254909号公報 特開2003-246788号公報 S. Aoki, et al., J. Am. Chem. Soc., 2005, 127, 9129-9139. 日本化学会第86春季年会,1K1-49 (2006);日本化学会第87春季年会,4E4-35 (2007)
Furthermore, the present inventors have proposed self-organizing anion fluorescence sensing using dipicolylamine zinc complex-conjugated phenylboronic acid represented by the following formula (The 86th Annual Meeting of the Chemical Society of Japan, 1K1-49). (2006); The 87th Annual Meeting of the Chemical Society of Japan, 4E4-35 (2007), Non-Patent Document 2).
Japanese Patent Laid-Open No. 2003-254909 Japanese Patent Laid-Open No. 2003-246788 S. Aoki, et al., J. Am. Chem. Soc., 2005, 127, 9129-9139. The 86th Annual Meeting of the Chemical Society of Japan, 1K1-49 (2006); The 87th Annual Meeting of the Chemical Society of Japan, 4E4-35 (2007)

しかし、特許文献1、2および非特許文献1に記載の合成分子による化学センサーを用いる方法は、前記のような複数の機能を分子内で発現させるのは容易でなく、水中で機能できるリン酸イオン蛍光プローブの例は少ない。非特許文献2に記載の方法で用いるジピコリルアミン亜鉛錯体共役型フェニルボロン酸は、リガンド合成の段階でボロン酸部位が水酸基に置換した副生成物が混ざるため、精製が極めて困難で化成品の提供に支障があるという問題がある。   However, the method using a chemical sensor using synthetic molecules described in Patent Documents 1 and 2 and Non-Patent Document 1 is not easy to express a plurality of functions in the molecule, and phosphoric acid that can function in water. There are few examples of ion fluorescent probes. Dipicolylamine zinc complex conjugated phenylboronic acid used in the method described in Non-Patent Document 2 contains a by-product in which the boronic acid moiety is substituted with a hydroxyl group at the stage of ligand synthesis, and thus is extremely difficult to purify and is a chemical product. There is a problem that the provision is hindered.

そこで本発明の目的は、生理的・化学的に重要なリン酸アニオン類を水系媒質中で簡便に蛍光検出できる方法およびこの方法を実施できるキットを提供することにある。   Accordingly, an object of the present invention is to provide a method capable of easily detecting fluorescence of physiologically and chemically important phosphate anions in an aqueous medium and a kit capable of carrying out this method.

本発明は以下のとおりである。
[1]リン酸イオンの検出方法であって、被検体を、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸(但し、金属錯体部位の金属は亜鉛または銅である)と混合し、発生する蛍光を検出することを含む前記方法。
[2]2,2'-ジピコリルアミン亜鉛錯体部位をもつフェニルボロン酸が以下の式で表される化合物の少なくとも1つである[1]に記載の方法。
[3]2,2'-ジピコリルアミン銅錯体部位をもつフェニルボロン酸が以下の式で表される化合物である[1]に記載の方法。
[4]ジオール部位をもつ蛍光色素がアリザリンレッドSである[1]〜[3]のいずれかに記載の方法。
[5]前記混合および蛍光検出を中性の水系媒質中で行う[1]〜[4]のいずれかに記載の方法。
[6]リン酸イオンが、ピロリン酸イオン、アデノシン三リン酸イオン(ATP)、アデノシンニリン酸イオン(ADP)、アデノシンモノリン酸イオン(AMP)、またはフィチン酸イオン、イノシトールリン酸イオンである[1]〜[5]のいずれかに記載の方法。
[7]前記蛍光検出を、蛍光最大波長付近での蛍光強度として測定する[1]〜[6]のいずれかに記載の方法。
[8]以下の試薬を含むリン酸イオンの検出用キット。
(1)ジオール部位をもつ蛍光色素および
(2)2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸但し、金属錯体部位の金属は亜鉛または銅である)
The present invention is as follows.
[1] A method for detecting phosphate ions, in which an analyte is a fluorescent dye having a diol moiety and a phenylboronic acid having a 2,2'-dipicolylamine metal complex moiety (provided that the metal at the metal complex moiety is zinc Or copper) and detecting the generated fluorescence.
[2] The method according to [1], wherein the phenylboronic acid having a 2,2′-dipiconylamine zinc complex moiety is at least one of the compounds represented by the following formulae.
[3] The method according to [1], wherein the phenylboronic acid having a 2,2′-dipiconylamine copper complex moiety is a compound represented by the following formula:
[4] The method according to any one of [1] to [3], wherein the fluorescent dye having a diol moiety is Alizarin Red S.
[5] The method according to any one of [1] to [4], wherein the mixing and fluorescence detection are performed in a neutral aqueous medium.
[6] The phosphate ion is a pyrophosphate ion, adenosine triphosphate ion (ATP), adenosine diphosphate ion (ADP), adenosine monophosphate ion (AMP), phytate ion, or inositol phosphate ion [1] ] The method according to any one of [5].
[7] The method according to any one of [1] to [6], wherein the fluorescence detection is measured as a fluorescence intensity near a fluorescence maximum wavelength.
[8] A phosphate ion detection kit containing the following reagents.
(1) a fluorescent dye having a diol moiety and
(2) Phenylboronic acid having a 2,2'-dipiconylamine metal complex site, where the metal of the metal complex site is zinc or copper)

本発明の特徴は自己組織化法を利用した点にある。すなわち、化学センサーに必要な被検査物質認識部位と光学的応答部位をそれぞれ分子部品で提供し、被検査物質であるリン酸イオン類が添加されると目的に沿う自発組織化がおこり、センサーとして機能する方法である。   A feature of the present invention is that a self-organizing method is used. In other words, the test substance recognition site and the optical response site required for chemical sensors are provided as molecular components, and when phosphate ions, which are test substances, are added, spontaneous organization along the purpose occurs. Is a way to work.

本発明の方法によれば、以下の利点がある。
ジオール部位をもつ蛍光色素と2,2'-ジピコリルアミン亜鉛錯体部位をもつフェニルボロン酸を中性の水系媒質に混ぜるだけで、センサー機能が発現する。また、ビス(ジコピコリル亜鉛錯体)型フェニルボロン酸(2・2Zn)を用いたシステムでは、フィチン酸イオンに対して、レシオ検出を見いだした。異なる二波長の蛍光強度比で定量をおこなうことができるので、初期状態での強度差や退色、自家蛍光の影響を軽減でき、精密測定に有利な方法となる。
The method of the present invention has the following advantages.
A sensor function can be achieved by simply mixing a fluorescent dye with a diol moiety and a phenylboronic acid with a 2,2'-dipicolylamine zinc complex moiety into a neutral aqueous medium. In the system using bis (dicopicolylzinc complex) -type phenylboronic acid (2 · 2Zn), we found ratio detection for phytate ions. Since the quantification can be performed with the fluorescence intensity ratios of two different wavelengths, it is possible to reduce the influence of the intensity difference, fading, and autofluorescence in the initial state, which is an advantageous method for precise measurement.

本発明は、リン酸イオンの検出方法である。この方法は、被検体を、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸(但し、金属錯体部位の金属は亜鉛または銅である)と混合し、発生する蛍光を検出することを含む。   The present invention is a method for detecting phosphate ions. In this method, an analyte is mixed with a fluorescent dye having a diol moiety and phenylboronic acid having a 2,2′-dipiconylamine metal complex moiety (where the metal of the metal complex moiety is zinc or copper), Detecting the fluorescence generated.

2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸は、金属錯体部位の金属が亜鉛または銅である。金属錯体部位の金属が亜鉛である、2,2'-ジピコリルアミン亜鉛錯体部位をもつフェニルボロン酸の例としては、以下の式で表される化合物を挙げることができる。これらの化合物は、いずれも新規化合物であり、実施例に記載の方法によって合成できる。   In phenylboronic acid having a 2,2′-dipiconylamine metal complex site, the metal of the metal complex site is zinc or copper. Examples of phenylboronic acid having a 2,2′-dipicolylamine zinc complex moiety in which the metal of the metal complex moiety is zinc include compounds represented by the following formulae. These compounds are all novel compounds and can be synthesized by the methods described in the examples.

金属錯体部位の金属が銅である、2,2'-ジピコリルアミン銅錯体部位をもつフェニルボロン酸の例としては、以下の式で表される化合物を挙げることができる。この化合物は、新規化合物であり、実施例に記載の方法によって合成できる。
Examples of the phenylboronic acid having a 2,2′-dipicolylamine copper complex moiety in which the metal of the metal complex moiety is copper include compounds represented by the following formulae. This compound is a novel compound and can be synthesized by the methods described in the Examples.

ジオール部位をもつ蛍光色素は、アリザリン系色素、ピロカテコールバイオレット、フラボノール、またクマリン誘導体であるエスクレチンや4-メチルエスクレチンがある。より具体的には、例えば、アリザリンレッドSやアリザリンコンプレックスオンがより好ましい。   Fluorescent dyes having a diol moiety include alizarin dyes, pyrocatechol violet, flavonols, and coumarin derivatives esculetin and 4-methylesculetin. More specifically, for example, alizarin red S and alizarin complex-on are more preferable.

本発明の方法は、被検体を、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸と混合し、次いで蛍光検出を行うが、これら混合および蛍光検出は、中性の水系媒質中で行うことができる。混合の際のジオール部位をもつ蛍光色素と2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸との比率は、例えば、1当量から5当量を超えない範囲が望ましく、これらの範囲を念頭に適宜条件(測定温度も含めて)を設定することができる。   In the method of the present invention, an analyte is mixed with a fluorescent dye having a diol moiety and a phenylboronic acid having a 2,2′-dipicolylamine metal complex moiety, and then fluorescence detection is performed. It can be carried out in a neutral aqueous medium. The ratio of the fluorescent dye having a diol moiety and the phenylboronic acid having a 2,2′-dipicolylamine metal complex moiety at the time of mixing is preferably, for example, in a range not exceeding 1 equivalent to 5 equivalents. Conditions (including the measured temperature) can be set as appropriate in mind.

また、ジオール部位をもつ蛍光色素の濃度は10-5 mol/Lオーダーの濃度で、2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸の濃度は、10-5から10-4mol/Lのオーダーの範囲であることができる。 The concentration of the fluorescent dye having a diol moiety is on the order of 10 −5 mol / L, and the concentration of a phenylboronic acid having a 2,2′-dipicolylamine metal complex moiety is from 10 −5 to 10 −4 mol. Can be in the range of / L order.

中性の水系媒質とは、例えば、pH6〜8の水溶液であり、pH調整のための緩衝剤を含むこともできる。   The neutral aqueous medium is, for example, an aqueous solution having a pH of 6 to 8, and may contain a buffer for adjusting the pH.

検出対象であるリン酸イオンは、例えば、ピロリン酸イオン、アデノシン三リン酸イオン(ATP)、アデノシンニリン酸イオン(ADP)、アデノシンモノリン酸イオン(AMP)、フィチン酸イオン、イノシトールリン酸イオン等であることができる。   The phosphate ions to be detected are, for example, pyrophosphate ions, adenosine triphosphate ions (ATP), adenosine diphosphate ions (ADP), adenosine monophosphate ions (AMP), phytate ions, inositol phosphate ions, etc. Can be.

特筆すべきことに、ジオール部位をもつ蛍光色素であるアリザリンレッドSと2,2'-ジピコリルアミン亜鉛錯体型フェニルボロン酸(1・Zn)組み合わせたキットでは、縮合リン酸イオン類に対して選択的応答が観測され、その序列は、ピロリン酸イオン>ATP>ADP>AMPであった。   Of special note is the kit that combines alizarin red S, a fluorescent dye with a diol moiety, and 2,2'-dipicolylamine zinc complex-type phenylboronic acid (1Zn) against condensed phosphate ions. A selective response was observed, the order of which was pyrophosphate ion> ATP> ADP> AMP.

蛍光検出は、定性的な測定の場合には、単に蛍光の発生の有無を肉眼で確認することができる。また、定量または半定量を行う場合には、蛍光最大波長付近での蛍光強度として測定することもできる。また、検出対象であるリン酸イオンの種類、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸の種類の組み合わせによっては、異なる二波長の蛍光強度比で定量をおこなうことができる場合もある。その場合には、初期状態での強度差や退色、自家蛍光の影響を軽減でき、精密測定に有利な方法となる。   In the case of fluorescence detection, in the case of qualitative measurement, the presence or absence of fluorescence can be simply confirmed with the naked eye. In addition, when quantification or semi-quantification is performed, it can be measured as the fluorescence intensity near the fluorescence maximum wavelength. In addition, depending on the combination of the type of phosphate ion to be detected, the fluorescent dye having a diol moiety, and the type of phenylboronic acid having a 2,2'-dipicolylamine metal complex moiety, the fluorescence intensity ratio of two different wavelengths In some cases, quantification can be performed. In that case, the influence of the intensity difference, fading, and autofluorescence in the initial state can be reduced, which is an advantageous method for precise measurement.

本発明は、以下の試薬を含むリン酸イオンの検出用キットを包含する。
(1)ジオール部位をもつ蛍光色素および
(2)2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸(但し、金属錯体部位の金属は亜鉛または銅である)
(1)および(2)の試薬は、いずれも適量を容器に梱包したものであることができる。
The present invention includes a phosphate ion detection kit containing the following reagents.
(1) a fluorescent dye having a diol moiety and
(2) Phenylboronic acid having a 2,2'-dipiconylamine metal complex site (provided that the metal of the metal complex site is zinc or copper)
Each of the reagents (1) and (2) can be an appropriate amount packed in a container.

さらに、本発明のキットは、上記試薬に加えて、緩衝剤を含む水溶液を含むこともできる。   Furthermore, the kit of the present invention can also contain an aqueous solution containing a buffering agent in addition to the above reagents.

実施例1 合成
1.N-3-boronobenzyl-N',N'-bis(2-pyridylmethyl)ethylenediamine (1) の合成
Example 1 Synthesis
1.Synthesis of N-3-boronobenzyl-N ', N'-bis (2-pyridylmethyl) ethylenediamine (1)

Ar雰囲気下、N,N-bis(2-pyridylmethyl)ethylenediamine1 (4.60 g, 19.0 mmol) と3-formyl phenylboronic acid (2.85 g, 19.0 mmol) を凍結脱気したdryエタノール (380 mL) に溶解させ、モレキュラーシーブス3A (10 g) の存在下、室温で一晩攪拌する。TLCで反応を確認後、NaBH4 (1.44 mg, 38.1 mmol) のdryエタノール溶液を加えて、さらに1時間撹拌する。反応終了後、モレキュラーシーブスを取り除き、溶媒を留去する。残渣をAcOEt-H2Oで水層に抽出し、さらに塩化メチレンで有機層に抽出する。有機層を無水硫酸ナトリウムで撹拌乾燥し、ひだ折りろ過の後に溶媒を留去する。得られた粗生成物を6 wt%シリカゲルカラムクロマトグラフィー (グラジエント:CH2Cl2−MeOH) で分離し、さらに酢酸エチル、ジエチルエーテルで洗浄することにより淡黄色固体を得る。(843.9 mg, 12 %) In an Ar atmosphere, N, N-bis (2-pyridylmethyl) ethylenediamine 1 (4.60 g, 19.0 mmol) and 3-formyl phenylboronic acid (2.85 g, 19.0 mmol) were dissolved in dry ethanol (380 mL) that had been degassed by freezing. Stir overnight in the presence of Molecular Sieves 3A (10 g) at room temperature. After confirming the reaction by TLC, a dry ethanol solution of NaBH 4 (1.44 mg, 38.1 mmol) is added, and the mixture is further stirred for 1 hour. After completion of the reaction, the molecular sieves are removed and the solvent is distilled off. The residue is extracted into the aqueous layer with AcOEt-H 2 O and further extracted into the organic layer with methylene chloride. The organic layer is stirred and dried with anhydrous sodium sulfate, and the solvent is distilled off after fold filtration. The obtained crude product is separated by 6 wt% silica gel column chromatography (gradient: CH 2 Cl 2 -MeOH), and further washed with ethyl acetate and diethyl ether to obtain a pale yellow solid. (843.9 mg, 12%)

1H NMR (400 MHz, 50 mM in CD3OD): δ 8.25 (d, J = 4.5 Hz, Pyr-H1, 2H), 7.64 (td, J = 7.7, J = 1.7 Hz, Pyr-H, 2H), 7.63 (t, J = 7.4 Hz, Ar-H11 ,1H), 7.58 (s, Ar-H12, 1H), 7.28 (t, J=7.4 Hz, Ar-H10, 1H), 7.17-7.23 (m, Pyr-H2,4, Ar-H9, 5H), 4.11 (s, Ar-CH2-NH, 2H), 3.87 (s, Pyr-CH2-N, 4H), 3.25 (t, J = 5.4 Hz, NH-CH2-CH2, 2H), δ 3.04 (t, J = 5.5 Hz, CH2-CH2-NH2, 2H); 13C NMR (100.7 MHz, 50 mM in CH3OH-d4): δ159.9, 149.8, 138.6, 135.3, 135.1, 131.4, 128.3, 127.2, 124.9, 123.8, 60.6, 53.0, 52.7, 46.4; ESI MS: m/z 376 ([M + H]+); elemental analysis: anal. calcd for C21H25BN4O2・0.3H2O: C 66.09; H 6.76; N 14.68 %, found: C 65.96; H 6.64; N 14.28 %. 1 H NMR (400 MHz, 50 mM in CD 3 OD): δ 8.25 (d, J = 4.5 Hz, Pyr-H 1 , 2H), 7.64 (td, J = 7.7, J = 1.7 Hz, Pyr-H, 2H), 7.63 (t, J = 7.4 Hz, Ar-H 11 , 1H), 7.58 (s, Ar-H 12 , 1H), 7.28 (t, J = 7.4 Hz, Ar-H 10 , 1H), 7.17 -7.23 (m, Pyr-H 2,4 , Ar-H 9 , 5H), 4.11 (s, Ar-CH 2 -NH, 2H), 3.87 (s, Pyr-CH 2 -N, 4H), 3.25 ( t, J = 5.4 Hz, NH-CH 2 -CH 2 , 2H), δ 3.04 (t, J = 5.5 Hz, CH 2 -CH 2 -NH 2 , 2H); 13 C NMR (100.7 MHz, 50 mM in CH 3 OH-d 4 ): δ159.9, 149.8, 138.6, 135.3, 135.1, 131.4, 128.3, 127.2, 124.9, 123.8, 60.6, 53.0, 52.7, 46.4; ESI MS: m / z 376 ([M + H .] +); elemental analysis: anal calcd for C 21 H 25 BN 4 O 2 · 0.3H 2 O: C 66.09; H 6.76; N 14.68%, found: C 65.96; H 6.64; N 14.28%.

N-3-boronobenzyl-N',N'-bis(2-pyridylmethyl)ethylenediamine zinc (II) complex (1・Zn) の合成
Synthesis of N-3-boronobenzyl-N ', N'-bis (2-pyridylmethyl) ethylenediamine zinc (II) complex (1Zn)

化合物 (1) (514.4 mg, 1.37 mmol) とZn(NO3)2・6H2O (407.6 mg, 1.37 mmol) をMeOH (45 ml) に溶解させ、室温で60分攪拌する。反応終了をTLCで確認し、evaporationした後、THFで再沈殿することにより、黄色固体を得る。なお、真空乾燥してもTHFが除けなかったため、MeOHに溶解させ凍結乾燥する操作を繰り返した後、固体をジエチルエーテルで洗浄し、40 ℃で加熱しながら乾燥した。(687.9 mg, 89 %) Compound (1) (514.4 mg, 1.37 mmol) and Zn (NO 3 ) 2 · 6H 2 O (407.6 mg, 1.37 mmol) are dissolved in MeOH (45 ml) and stirred at room temperature for 60 minutes. The completion of the reaction is confirmed by TLC, evaporated and then reprecipitated with THF to obtain a yellow solid. Since THF could not be removed even after vacuum drying, the operation of dissolving in MeOH and freeze-drying was repeated, and then the solid was washed with diethyl ether and dried while heating at 40 ° C. (687.9 mg, 89%)

1H NMR (400 MHz, 98 mM in CD3OD): δ 8.74 (d, J = 4.6 Hz, Pyr-H1, 2H), 8.13 (app.t, J = 7.7 Hz, Pyr-H3, 2H), 7.66 (t, J = 6.4 Hz, Pyr-H2, 2H), 7.61 (d, J = 7.9 Hz, Pyr-H4, 2H), 7.54 (s, Ar-H12, 1H), 7.50 (d, J = 6.7 Hz, Ar-H11, 1H), 7.33 (d, J = 7.4 Hz, Ar-H9, 1H), 7.29-7.22 (m, Ar-H10, 1H), 4.38, 4.25 (dd, J=17.0 Hz, Pyr-CH2-N, 4H), 4.11(brs, H8, 1H), 3.49 (brs, H8, 1H), 2.95 (br, NH-CH2-CH2, 2H), 2.63 (s, CH2-CH2-NH2, 2H); 13C NMR (100.7 MHz, 98 mM in CH3OH-d4): d 157.1, 149.7, 142.6, 136.3, 136.03, 135.6, 134.9, 134.4, 132.4, 131.8, 129.1, 126.2, 125.7, 59.1, 54.2, 53.4, 44.6; ESI Mass: m/z 219 ([M - 2(NO3 -)]2+; elemental analysis: anal. calcd for C21H25BN6O8Zn・0.5 H2O・0.5 MeOH: C 42.70; H 4.78; N 14.23 %, found: C 42.50; H 4.42; N 14.11 %. 1 H NMR (400 MHz, 98 mM in CD 3 OD): δ 8.74 (d, J = 4.6 Hz, Pyr-H 1 , 2H), 8.13 (app.t, J = 7.7 Hz, Pyr-H 3 , 2H ), 7.66 (t, J = 6.4 Hz, Pyr-H 2 , 2H), 7.61 (d, J = 7.9 Hz, Pyr-H 4 , 2H), 7.54 (s, Ar-H 12 , 1H), 7.50 ( d, J = 6.7 Hz, Ar-H 11 , 1H), 7.33 (d, J = 7.4 Hz, Ar-H 9 , 1H), 7.29-7.22 (m, Ar-H 10 , 1H), 4.38, 4.25 ( dd, J = 17.0 Hz, Pyr-CH 2 -N, 4H), 4.11 (brs, H 8 , 1H), 3.49 (brs, H 8 , 1H), 2.95 (br, NH-CH 2 -CH 2 , 2H ), 2.63 (s, CH 2 -CH 2 -NH 2 , 2H); 13 C NMR (100.7 MHz, 98 mM in CH 3 OH-d 4 ): d 157.1, 149.7, 142.6, 136.3, 136.03, 135.6, 134.9 , 134.4, 132.4, 131.8, 129.1 , 126.2, 125.7, 59.1, 54.2, 53.4, 44.6; ESI Mass: m / z 219 ([M - 2 (NO 3 -)] 2+; elemental analysis:. anal calcd for C 21 H 25 BN 6 O 8 Zn ・ 0.5 H 2 O ・ 0.5 MeOH: C 42.70; H 4.78; N 14.23%, found: C 42.50; H 4.42; N 14.11%.

実施例2 合成
3,5-bis((bis(pyridin-2-ylmethyl)amino)methyl)benzylamine (7)
Example 2 Synthesis
3,5-bis ((bis (pyridin-2-ylmethyl) amino) methyl) benzylamine (7)

Ar雰囲気下、dry DMF (100 ml) にモノフタルイミド体 (3)2 (8.00 g, 18.91 mmol) と炭酸カリウム (11.10 g, 80.31 mmol) を加えて室温で攪拌し、そこへdry DMF (20 ml) に溶解させた 2,2'-ジピコリルアミン (8.67 g, 43.51 mmol) をゆっくりと滴下して90分間攪拌した。反応終了後、ろ過により不溶物を取り除き、溶媒を減圧留去することで粗製体 (4) を得た。続いて、Ar雰囲気下、先の粗製体 (4) と、ヒドラジン一水和物 (2.0 ml, 40.77 mmol) をdry EtOH (200 ml) に溶解させて一晩加熱還流した。反応終了後、溶媒を減圧留去して、その残渣を塩化メチレンに抽出、イオン交換水により洗浄した。その有機相を硫酸ナトリウムにより乾燥させた後、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO2, eluent; CH2Cl2/MeOH/aqueous ammonia = 100:5:2) により精製し、黄色いタール状の5を得た。(収量 5.17 g, 収率 52 %) Under an Ar atmosphere, dry DMF (100 ml) was mixed with monophthalimide (3) 2 (8.00 g, 18.91 mmol) and potassium carbonate (11.10 g, 80.31 mmol) and stirred at room temperature, and then dry DMF (20 ml) ) 2,2′-dipicolylamine (8.67 g, 43.51 mmol) dissolved slowly was added dropwise and stirred for 90 minutes. After completion of the reaction, insoluble matters were removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product (4). Subsequently, the crude product (4) and hydrazine monohydrate (2.0 ml, 40.77 mmol) were dissolved in dry EtOH (200 ml) and refluxed overnight under an Ar atmosphere. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was extracted into methylene chloride and washed with ion-exchanged water. The organic phase was dried over sodium sulfate and the solvent was distilled off under reduced pressure. The obtained residue was purified by column chromatography (SiO 2 , eluent; CH 2 Cl 2 / MeOH / aqueous ammonia = 100: 5: 2) to obtain 5 as a yellow tar. (Yield 5.17 g, Yield 52%)

1H NMR (200 MHz, CDCl3) δ 3.69 (s, 4H, Ph-CH2-N), 3.81 (s, 8H, N-CH2), 3.84 (s, 2H, NH2-CH2-Ph), 7.09-7.16(m, 4H, pyridine-H), 7.21 (s, 2H, Ph-H), 7.39 (s, 1H, Ph-H), 7.59-7.66 (m, 8H, pyridine-H), 8.49-8.52 (m, 4H, pyridine-H); FAB+ MS (m/z) 530 [M+H]+ (matrix; 3-nitrobenzyl alcohol) 1 H NMR (200 MHz, CDCl 3 ) δ 3.69 (s, 4H, Ph-CH 2 -N), 3.81 (s, 8H, N-CH 2 ), 3.84 (s, 2H, NH 2 -CH 2 -Ph ), 7.09-7.16 (m, 4H, pyridine-H), 7.21 (s, 2H, Ph-H), 7.39 (s, 1H, Ph-H), 7.59-7.66 (m, 8H, pyridine-H), 8.49-8.52 (m, 4H, pyridine-H); FAB + MS (m / z) 530 [M + H] + (matrix; 3-nitrobenzyl alcohol)

3-((3,5-bis((bis(pyridin-2-ylmethyl)amino)methyl)benzylamino)methyl)phenylboronic acid (2)
3-((3,5-bis ((bis (pyridin-2-ylmethyl) amino) methyl) benzylamino) methyl) phenylboronic acid (2)

Ar雰囲気下、ビスジピコリルアミン体 (5) (5.17 g, 9.76 mmol) と3-ホルミルフェニルボロン酸 (1.47 g, 9.80 mmol) を凍結脱気したdry EtOH (150 ml) に溶解させ、MS3A (ca.10 g) 存在下、室温で8時間攪拌した。その後、水素化ホウ素ナトリウム (748.2 mg, 19.78 mmol) を加えてさらに1時間攪拌した。反応終了後、桐山ろ過により不溶物を取り除き、ろ液を濃縮して酢酸エチルに抽出し、イオン交換水により洗浄した後、硫酸ナトリウムにより乾燥させた。その有機相を濃縮してカラムクロマトグラフィー (SiO2, eluent; gradient MeOH (0-100 % (v/v) ) in CH2Cl2 ) により薄い黄色粉末の2を得た。(収量 2.95 g, 収率 47 %) Under Ar atmosphere, bisdipicolylamine (5) (5.17 g, 9.76 mmol) and 3-formylphenylboronic acid (1.47 g, 9.80 mmol) were dissolved in freeze-degassed dry EtOH (150 ml), and MS3A ( The mixture was stirred at room temperature for 8 hours in the presence of ca.10 g). Thereafter, sodium borohydride (748.2 mg, 19.78 mmol) was added, and the mixture was further stirred for 1 hour. After completion of the reaction, insoluble matters were removed by Kiriyama filtration, the filtrate was concentrated, extracted into ethyl acetate, washed with ion-exchanged water, and dried over sodium sulfate. The organic phase was concentrated and column chromatography (SiO 2 , eluent; gradient MeOH (0-100% (v / v)) in CH 2 Cl 2 ) gave 2 as a pale yellow powder. (Yield 2.95 g, Yield 47%)

1H NMR (400 MHz, CD3OD) δ 3.68 (s, 4H, Ph-CH2-N), δ3.76 (s, 8H, N-CH2), 3.99 (s, 2H, NH-CH2 or CH2-NH), 4.04 (s, 2H, NH-CH2 or CH2-NH), 7.15 (d, J = 6.40 Hz, 1H, Ph-H), 7.22-7.27 (m, 5H, Ph-H, pyridine-H ), 7.33 (s, 2H, Ph-H), 7.47 (s, 1H, Ph-H), 7.51 (s, 1H, Ph-H), 7.56 (d, J = 7.2 Hz, 2H, Ph-H), 7.65 (d, 4H, J = 7.8 Hz, pyridine-H), 7.74 (td, 4H, J = 7.7, 1.7 Hz, pyridine-H), 8.40-8.41(m, 4H, pyridine-H); ESI MS (m/z) 664 [M+H]+ (solvent; CH3OH); Anal. Calc. for C40H42BN7O2・0.1MeOH:C,72.05; H, 6.41; N, 14.70. Found C, 71.97; H, 6.19; N, 14.94 % 1 H NMR (400 MHz, CD 3 OD) δ 3.68 (s, 4H, Ph-CH 2 -N), δ 3.76 (s, 8H, N-CH 2 ), 3.99 (s, 2H, NH-CH 2 or CH 2 -NH), 4.04 (s, 2H, NH-CH 2 or CH 2 -NH), 7.15 (d, J = 6.40 Hz, 1H, Ph-H), 7.22-7.27 (m, 5H, Ph- H, pyridine-H), 7.33 (s, 2H, Ph-H), 7.47 (s, 1H, Ph-H), 7.51 (s, 1H, Ph-H), 7.56 (d, J = 7.2 Hz, 2H , Ph-H), 7.65 (d, 4H, J = 7.8 Hz, pyridine-H), 7.74 (td, 4H, J = 7.7, 1.7 Hz, pyridine-H), 8.40-8.41 (m, 4H, pyridine- H); ESI MS (m / z) 664 [M + H] + (solvent; CH 3 OH); Anal.Calc. For C 40 H 42 BN 7 O 2 .0.1 MeOH: C, 72.05; H, 6.41; N, 14.70. Found C, 71.97; H, 6.19; N, 14.94%

3-((3,5-bis((bis(pyridin-2-ylmethyl)amino)methyl)benzylamino)methyl)phenylboronic acid zinc(II) complex (2・2Zn)
3-((3,5-bis ((bis (pyridin-2-ylmethyl) amino) methyl) benzylamino) methyl) phenylboronic acid zinc (II) complex (2 ・ 2Zn)

リガンド (2) (1.87 g, 2.81 mmol) と硝酸亜鉛六水和物 (1.70 g, 5.71 mmol) をアセトン (50 ml) に溶解させて室温で30分間攪拌した。反応終了後、析出した白色固体をろ過により収集し、水に溶解させた。その後、不溶物をろ過により除去し、凍結乾燥させることで白色粉末の2-2Znを得た。(収量 2.83 g, 収率 97 %)   Ligand (2) (1.87 g, 2.81 mmol) and zinc nitrate hexahydrate (1.70 g, 5.71 mmol) were dissolved in acetone (50 ml) and stirred at room temperature for 30 minutes. After completion of the reaction, the precipitated white solid was collected by filtration and dissolved in water. Thereafter, insoluble matters were removed by filtration and freeze-dried to obtain 2-2Zn as a white powder. (Yield 2.83 g, 97% yield)

1H NMR (400 MHz, D2O) δ 3.82 (s, 4H, Ph-CH2-N), 3.98 (s, 2H, NH-CH2 or CH2-NH), 4.09 (s, 2H, NH-CH2 or CH2-NH), 4.00, 4.19 (dd, J = 16.3 Hz, 4H, N-CH2), 7.18-7.22 (m, 2H, Ph-H), 7.41-7.50 (m, 7H, Ph-H, pyridine-H), 7.59 (t, J = 6.0 Hz, 4H, pyridine-H), 7.64 (s, 1H, Ph-H), 7.73 (d, 1H, J = 6.5 Hz, Ph-H), 8.03 (t, J = 7.2 Hz, 4H, pyridine-H), 8.58 (d, J = 4.1 Hz, 4H, pyridine-H); ESI MS (m/z) 978 [M+H−NO3]+ (solvent; CH3OH); Anal. Calc. for C40H42BN11O14Zn2・5H2O: C, 42.42; H, 4.63; N, 13.60. Found C, 42.60; H, 4.64; N, 13.83 % 1 H NMR (400 MHz, D 2 O) δ 3.82 (s, 4H, Ph-CH 2 -N), 3.98 (s, 2H, NH-CH 2 or CH 2 -NH), 4.09 (s, 2H, NH -CH 2 or CH 2 -NH), 4.00, 4.19 (dd, J = 16.3 Hz, 4H, N-CH 2 ), 7.18-7.22 (m, 2H, Ph-H), 7.41-7.50 (m, 7H, Ph-H, pyridine-H), 7.59 (t, J = 6.0 Hz, 4H, pyridine-H), 7.64 (s, 1H, Ph-H), 7.73 (d, 1H, J = 6.5 Hz, Ph-H ), 8.03 (t, J = 7.2 Hz, 4H, pyridine-H), 8.58 (d, J = 4.1 Hz, 4H, pyridine-H); ESI MS (m / z) 978 [M + H−NO 3 ] + (solvent; CH 3 OH); Anal.Calc.for C 40 H 42 BN 11 O 14 Zn 2・ 5H 2 O: C, 42.42; H, 4.63; N, 13.60. Found C, 42.60; H, 4.64; N, 13.83%

文献
1. K. Hanaoka, K. Kikuchi, Y. Urano and T. Nagano, Chem. Soc., Perkin Trans. 2, 2001, 1840 - 1843.
2. W. T. S. Huck, L. J. Prins, R. H. Fokkens, N. M. M. Nibbering, F. C. J. M. van Veggel and D. N. Reinhoudt, J. Am. Chem. Soc., 1998, 120, 6240-6246.
Literature
1. K. Hanaoka, K. Kikuchi, Y. Urano and T. Nagano, Chem. Soc., Perkin Trans. 2, 2001, 1840-1843.
2. WTS Huck, LJ Prins, RH Fokkens, NMM Nibbering, FCJM van Veggel and DN Reinhoudt, J. Am. Chem. Soc., 1998, 120, 6240-6246.

実施例3
生体重要化学種であるピロリン酸イオン検出システム
Example 3
Pyrophosphate ion detection system, an important biological species

アリザリンレッドS(ARS)(50 μM)と実施例1で合成した1・Zn(250 μM)を、NaCl(10 mM)を含むMeOH-10 mM HEPES buffer (1:1 v/v)、 pH 7.4に溶解させ、PPi添加(0 - 500 μM)にともなう蛍光スペクトル(λex = 480 nm)を25℃で測定したところ。蛍光強度の増加が観測された(図1)。 Alizarin Red S (ARS) (50 μM) and 1 · Zn (250 μM) synthesized in Example 1 were mixed with MeOH-10 mM HEPES buffer (1: 1 v / v) containing NaCl (10 mM), pH 7.4. Fluorescence spectrum (λ ex = 480 nm) with PPi addition (0-500 μM) was measured at 25 ° C. An increase in fluorescence intensity was observed (Figure 1).

図2は、各種アニオン(PPi(ピロリン酸イオン)、 Pi(リン酸イオン)、 ATP、 ADP、 AMP、 クエン酸)を添加して濃度を変化させた場合の586 nmにおける蛍光変化(励起波長480 nm)を示す。アリザリンレッドS(ARS)(50 μM)と実施例1で合成した1・Zn(250 μM)を、NaCl(10 mM)を含むMeOH-10 mM HEPES buffer (1:1 v/v)、 pH 7.4に溶解させた系を用いた。PPiに対する選択性が示唆され、特に他のリン酸間連体より応答性が大きかった意義は大きい。   Figure 2 shows changes in fluorescence at 586 nm (excitation wavelength: 480) when various anions (PPi (pyrophosphate ion), Pi (phosphate ion), ATP, ADP, AMP, citric acid) are added and the concentration is changed. nm). Alizarin Red S (ARS) (50 μM) and 1 · Zn (250 μM) synthesized in Example 1 were mixed with MeOH-10 mM HEPES buffer (1: 1 v / v) containing NaCl (10 mM), pH 7.4. The system dissolved in was used. The selectivity to PPi was suggested, and the significance of the greater responsiveness than other interphosphate complexes was particularly significant.

実施例4
イノシトールリン酸エステルを標的とした関連システム
Example 4
Related systems targeting inositol phosphates

ARS(10 μM)と2・2Zn(10 μM)を10 mM HEPES buffer (pH 7.4)に溶解させ、フィチン酸イオン添加(0 - 200 μM)にともなう蛍光スペクトル(λex = 470 nm)を25℃で測定した(図3)。フィチン酸イオン無添加の溶液では、610 nm付近に発光極大を示す蛍光が観測されるが、フィチン酸イオンの添加に伴って、その蛍光バンドの減少とともに新たに560 nm付近に発光極大をもつケ蛍光スペクトルが観測された。そこで、I650(650 nmにおける蛍光強度)とI550(550 nmにおける蛍光強度)の比(I560/I650)をとったレシオ検出(励起波長470 nm)を試みた(アニオン濃度依存性)(図4)。他のイノシトールリン酸系イオン(cis,cis-1,3,5-シクロヘキサントリオールトリフォスフェート)に比べて、フィチン酸イオン選択性を示した。 Dissolve ARS (10 μM) and 2.2Zn (10 μM) in 10 mM HEPES buffer (pH 7.4), and obtain the fluorescence spectrum (λ ex = 470 nm) with phytate ion addition (0-200 μM) at 25 ° C. (Figure 3). In the solution without phytate ion added, fluorescence showing an emission maximum near 610 nm is observed, but with the addition of phytate ion, the fluorescence band decreases and a new emission maximum near 560 nm is observed. A fluorescence spectrum was observed. Therefore, ratio detection (excitation wavelength 470 nm) was attempted (excitation wavelength 470 nm) by taking the ratio of I 650 (fluorescence intensity at 650 nm) to I 550 (fluorescence intensity at 550 nm) (I 560 / I 650 ). (Figure 4). It showed phytate ion selectivity compared to other inositol phosphate ions (cis, cis-1,3,5-cyclohexanetriol triphosphate).

実施例5
N-3-boronobenzyl-N',N'-bis(2-pyridylmethyl)ethylenediamine copper (II) complex (1・Cu) の合成
リガンド(1) (30.0 mg, 0.080 mmol) とCu(NO3)2・3H2O (19.4 mg, 0.080 mmol) をMeOH (3 ml) に溶解させ、室温で60分攪拌した。反応終了をTLCで確認したのち、溶媒留去と凍結乾燥を施すことで青色固体を得た。(45.2 mg, 100 %)
ESI Mass: m/z 218.7354 ([M - 2(NO3 -)]2+.
Example 5
Synthesis of N-3-boronobenzyl-N ', N'-bis (2-pyridylmethyl) ethylenediamine copper (II) complex (1 ・ Cu)
Ligand (1) (30.0 mg, 0.080 mmol) and Cu (NO 3 ) 2 · 3H 2 O (19.4 mg, 0.080 mmol) were dissolved in MeOH (3 ml) and stirred at room temperature for 60 minutes. After confirming the completion of the reaction by TLC, a blue solid was obtained by evaporating the solvent and freeze-drying. (45.2 mg, 100%)
ESI Mass: m / z 218.7354 ( [M - 2 (NO 3 -)] 2+.

実施例6
ARS(50 μM)と1-Cu(250 μM)をMeOH-10 mM HEPES buffer (1:1, v/v) containing 10 mM NaCl (pH 7.4)に溶解させ、各種アニオン(PPi(ピロリン酸イオン)、 Pi(リン酸イオン)、クエン酸)を添加した場合の蛍光変化を測定した(25 ℃. λex = 480 nm, λem = 590 nm.、図5)。PPiおよびATPに対する選択性が示唆され、クエン酸イオンに対する応答性が大きいことも分かった。
Example 6
ARS (50 μM) and 1-Cu (250 μM) are dissolved in MeOH-10 mM HEPES buffer (1: 1, v / v) containing 10 mM NaCl (pH 7.4), and various anions (PPi (pyrophosphate ion) , Pi (phosphate ion), citric acid) was added (25 ° C., λex = 480 nm, λem = 590 nm, FIG. 5). The selectivity for PPi and ATP was suggested, and it was also found that the responsiveness to citrate ion was large.

本発明は、臨床検査等の生化学検査の分野および環境化学の検査分野に有用である。   The present invention is useful in the field of biochemical tests such as clinical tests and the field of environmental chemistry tests.

実施例3で得られた蛍光強度の増加の結果を示す。The result of the increase in the fluorescence intensity obtained in Example 3 is shown. 各種アニオン(PPi(ピロリン酸イオン)、 Pi(リン酸イオン)、 ATP、 ADP、 AMP、 クエン酸)を添加した場合の蛍光変化を示す。Changes in fluorescence when various anions (PPi (Pyrophosphate ion), Pi (Phosphate ion), ATP, ADP, AMP, Citric acid) are added. 実施例4で得られたフィチン酸イオン添加にともなう蛍光スペクトルの変化の結果を示す。The result of the change of the fluorescence spectrum accompanying the phytate ion addition obtained in Example 4 is shown. 各種アニオン(フィチン酸、CTP3、Pi(リン酸イオン)、 F-、酢酸)を添加した場合の蛍光変化を示す。Various anions (phytic acid, CTP3, Pi (phosphate ion), F -, acetate) shows the fluorescence change when added. 各種アニオン(PPi(ピロリン酸イオン)、 Pi(リン酸イオン)、クエン酸)を添加した場合の蛍光変化を測定した結果を示す。The result of having measured the fluorescence change at the time of adding various anions (PPi (pyrophosphate ion), Pi (phosphate ion), citric acid) is shown.

Claims (8)

リン酸イオンの検出方法であって、被検体を、ジオール部位をもつ蛍光色素および2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸(但し、金属錯体部位の金属は亜鉛または銅である)と混合し、発生する蛍光を検出することを含む前記方法。 A method for detecting phosphate ions, wherein an analyte is a fluorochrome having a diol moiety and a phenylboronic acid having a 2,2'-dipicolylamine metal complex moiety (provided that the metal of the metal complex moiety is zinc or copper). And) detecting the fluorescence generated. 2,2'-ジピコリルアミン亜鉛錯体部位をもつフェニルボロン酸が以下の式で表される化合物の少なくとも1つである請求項1に記載の方法。
The method according to claim 1, wherein the phenylboronic acid having a 2,2'-dipicolylamine zinc complex moiety is at least one of the compounds represented by the following formulae.
2,2'-ジピコリルアミン銅錯体部位をもつフェニルボロン酸が以下の式で表される化合物である請求項1に記載の方法。
The method according to claim 1, wherein the phenylboronic acid having a 2,2'-dipiconylamine copper complex moiety is a compound represented by the following formula.
ジオール部位をもつ蛍光色素がアリザリンレッドSである請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the fluorescent dye having a diol moiety is alizarin red S. 前記混合および蛍光検出を中性の水系媒質中で行う請求項1〜4のいずれかに記載の方法。 The method according to claim 1, wherein the mixing and fluorescence detection are performed in a neutral aqueous medium. リン酸イオンが、ピロリン酸イオン、アデノシン三リン酸イオン(ATP),アデノシンニリン酸イオン(ADP),アデノシンモノリン酸イオン(AMP),またはフィチン酸イオン、イノシトールリン酸イオンである請求項1〜5のいずれかに記載の方法。 The phosphate ion is pyrophosphate ion, adenosine triphosphate ion (ATP), adenosine diphosphate ion (ADP), adenosine monophosphate ion (AMP), phytate ion, or inositol phosphate ion. The method in any one of. 前記蛍光検出を、蛍光最大波長付近での蛍光強度として測定する請求項1〜6のいずれかに記載の方法。 The method according to claim 1, wherein the fluorescence detection is measured as a fluorescence intensity in the vicinity of a fluorescence maximum wavelength. 以下の試薬を含むリン酸イオンの検出用キット。
(1)ジオール部位をもつ蛍光色素および
(2)2,2'-ジピコリルアミン金属錯体部位をもつフェニルボロン酸但し、金属錯体部位の金属は亜鉛または銅である)
A phosphate ion detection kit comprising the following reagents:
(1) a fluorescent dye having a diol moiety and
(2) Phenylboronic acid having a 2,2'-dipiconylamine metal complex site, where the metal of the metal complex site is zinc or copper)
JP2008027508A 2008-02-07 2008-02-07 Phosphate ion detection method and detection kit Pending JP2009186350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027508A JP2009186350A (en) 2008-02-07 2008-02-07 Phosphate ion detection method and detection kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027508A JP2009186350A (en) 2008-02-07 2008-02-07 Phosphate ion detection method and detection kit

Publications (1)

Publication Number Publication Date
JP2009186350A true JP2009186350A (en) 2009-08-20

Family

ID=41069737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027508A Pending JP2009186350A (en) 2008-02-07 2008-02-07 Phosphate ion detection method and detection kit

Country Status (1)

Country Link
JP (1) JP2009186350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145702A1 (en) * 2014-03-27 2015-10-01 国立大学法人東京医科歯科大学 Diphosphate compound detector and diphosphate compound detection method
JP2016045065A (en) * 2014-08-22 2016-04-04 国立大学法人山形大学 Transistor heavy metal ion sensor
JP2017032468A (en) * 2015-08-04 2017-02-09 国立大学法人山形大学 Ethanolamine phosphate sensor and manufacturing method thereof
CN110057805A (en) * 2019-06-24 2019-07-26 烟台大学 A kind of method of atriphos fluorescence detection aquatic products freshness
CN110308031A (en) * 2019-07-24 2019-10-08 广州翰德泽信医药科技有限公司 A kind of stable fungi fluorescent staining liquid
WO2020040113A1 (en) * 2018-08-20 2020-02-27 キッコーマン株式会社 Histamine measurement method and kit
WO2022224469A1 (en) * 2021-04-19 2022-10-27 住友ゴム工業株式会社 Phenylboronic acid compound, modified polymer, polymer composition, and tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145702A1 (en) * 2014-03-27 2015-10-01 国立大学法人東京医科歯科大学 Diphosphate compound detector and diphosphate compound detection method
JP2016045065A (en) * 2014-08-22 2016-04-04 国立大学法人山形大学 Transistor heavy metal ion sensor
JP2017032468A (en) * 2015-08-04 2017-02-09 国立大学法人山形大学 Ethanolamine phosphate sensor and manufacturing method thereof
WO2020040113A1 (en) * 2018-08-20 2020-02-27 キッコーマン株式会社 Histamine measurement method and kit
CN110057805A (en) * 2019-06-24 2019-07-26 烟台大学 A kind of method of atriphos fluorescence detection aquatic products freshness
CN110057805B (en) * 2019-06-24 2019-09-27 烟台大学 A method for detecting the freshness of aquatic products by fluorescence of adenosine triphosphate
CN110308031A (en) * 2019-07-24 2019-10-08 广州翰德泽信医药科技有限公司 A kind of stable fungi fluorescent staining liquid
WO2022224469A1 (en) * 2021-04-19 2022-10-27 住友ゴム工業株式会社 Phenylboronic acid compound, modified polymer, polymer composition, and tire

Similar Documents

Publication Publication Date Title
Bretonniere et al. Design, synthesis and evaluation of ratiometric probes for hydrogencarbonate based on europium emission
JP5228190B2 (en) Peroxynitrite fluorescent probe
JP2009186350A (en) Phosphate ion detection method and detection kit
JP6351511B2 (en) Synthesis of asymmetric Si rhodamine and rhodol
EP3096143B1 (en) Iron(ii) ion detection agent and detection method using same
JPH115796A (en) Indacene derivative
Sen et al. Cell permeable fluorescent receptor for detection of H 2 PO 4− in aqueous solvent
Saleh et al. A ratiometric and selective fluorescent chemosensor for Ca (II) ions based on a novel water-soluble ionic Schiff-base
Gu et al. A novel bifunctional fluorescent and colorimetric probe for detection of mercury and fluoride ions
CN115124519B (en) Fluorescent reagent for detecting dimethyl chlorophosphate and preparation method thereof
CN109438319B (en) Compound for detecting leucine aminopeptidase and preparation method and application thereof
Wu et al. A ratiometric fluorescent chemosensor for Cr3+ based on monomer–excimer conversion of a pyrene compound
CN106967102A (en) A kind of enhanced fluorescence probe of hydrogen peroxide based on Rhodamine Derivatives
US20030049714A1 (en) Novel fluorogenic substrates for hydrolytic enzymes
JP6958781B2 (en) Fluorescent compound or salt thereof, ionic compound detection agent and ionic compound detection method
He et al. Design and synthesis of luminescence chemosensors based on alkynyl phosphine gold (I)–copper (I) aggregates
Eçik et al. Synthesis of BODIPY-cyclotetraphosphazene triad systems and their sensing behaviors toward Co (II) and Cu (II)
Yu et al. Synthesis, characterization and photophysical properties of a new Cu2+ selective phosphorescent sensor
CN114605343B (en) Fluorescent group LAN-OH, fluorescent sensor LAN-beta gal, preparation method and application thereof
EP2683714B1 (en) Ii (pi)-conjugated fluoroionophores and method for determining an alkali ion
KR101007238B1 (en) Rhodamine derivative having a binaphthyl group, preparation method thereof and method for detecting copper ions using the same
WO2013109292A1 (en) A highly selective pyrophosphate sensor
KR101471527B1 (en) Rhodol thiophosphinate compound having selectivity for mercury and method for monitoring mercury ion using the same
Wu et al. Light-on fluorescent chemosensor for fluoride in aqueous solution based on ternary complex of Zr-EDTA and 4′-N, N-dimethylamino-6-methyl-3-hydroxylflavone
KR20170080864A (en) Composition for detecting zinc ion comprising dipicolylamine-hydroxynaphthalimide compound