JP2009185384A - High flexible copper foil with low roughness and, manufacturing method therefor - Google Patents
High flexible copper foil with low roughness and, manufacturing method therefor Download PDFInfo
- Publication number
- JP2009185384A JP2009185384A JP2009014475A JP2009014475A JP2009185384A JP 2009185384 A JP2009185384 A JP 2009185384A JP 2009014475 A JP2009014475 A JP 2009014475A JP 2009014475 A JP2009014475 A JP 2009014475A JP 2009185384 A JP2009185384 A JP 2009185384A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- electrolytic copper
- surface roughness
- less
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/12—Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0726—Electroforming, i.e. electroplating on a metallic carrier thereby forming a self-supporting structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、電解銅箔に関し、より詳しくは、耐屈曲性に優れた電解銅箔及びその製造方法に関する。 The present invention relates to an electrolytic copper foil, and more particularly, to an electrolytic copper foil excellent in bending resistance and a method for producing the same.
電子機器の電子回路にはプリント基板が多く用られているが、その中でも特にフレキシブルプリント基板(FPC)は屈曲性があって基板自体が薄いことからテープキャリアにドライバーICを実装するTAB方式(Tape Automated Bonding)に適用されてきた。近年、より狭い空間でより高密度の実装を行う実装方法としてベアーICチップをフィルムキャリアテープ上に直接搭載するCOF方式(Chip On Film)が開発され、配線の狭ピッチ化に伴って微細加工が可能なフレキシブルプリント基板が求められるようになった。
特に、このようなフレキシブルプリント基板は、ハードディスク内の稼動部や携帯電話のヒンジ部などの屈曲性や柔軟性、高密度の実装が求められる電子機器に広く使われている。これにより、フレキシブルプリント基板を構成する銅箔により高い屈曲性を求めるようになった。
このような実情の下で銅箔の屈曲性を改善する手段として、銅箔の厚さを薄くすることが知られている。この場合、屈曲時の屈曲部外周に生じる変形が減少して屈曲性が向上する。しかし、銅箔を薄くすることだけでは設計に制約を受けるという限界がある。
Printed circuit boards are often used for electronic circuits in electronic devices. Among them, the flexible printed circuit board (FPC) is particularly flexible, and the board itself is thin. Therefore, a TAB method (Tape method) in which a driver IC is mounted on a tape carrier. (Automated Bonding). In recent years, a COF method (Chip On Film) in which a bare IC chip is directly mounted on a film carrier tape has been developed as a mounting method for performing higher-density mounting in a narrower space. Possible flexible printed circuit boards have come to be sought.
In particular, such flexible printed circuit boards are widely used in electronic devices that require flexibility, flexibility, and high-density mounting, such as operating parts in hard disks and hinges of mobile phones. As a result, high flexibility is demanded from the copper foil constituting the flexible printed circuit board.
Under such circumstances, as a means for improving the flexibility of the copper foil, it is known to reduce the thickness of the copper foil. In this case, the deformation generated on the outer periphery of the bent portion during bending is reduced, and the flexibility is improved. However, there is a limit that design is restricted only by making the copper foil thinner.
また、屈曲性に優れた銅箔として圧延銅箔が知られている。圧延銅箔の製造方法としては、銅をインゴットに鋳造し、圧延と焼鈍を繰り返して箔状にする。この方法によって製造された銅箔は伸び率も高く、表面が平滑であるため、クラックが生じ難く曲げに対する耐性に優れる。しかし、圧延銅箔は高価であり、製造時の機械的な制約によって銅箔の幅が1m以上のものは製造することが困難であった。また、薄い圧延銅箔を安定的に製造することも困難であり、薄くして屈曲性を高めるためにはハーフエッチングなどの処理を行う必要があった。
一方、安価で厚さの調整も比較的に容易に行える銅箔として電解銅箔がある。該電解銅箔の製造方法は、まず硫酸銅を主成分にした電気分解液の中にドラムと呼ばれる直径2m〜3mの大きい筒状の陰極を半分ほど沈ませて、それを包み囲むように陽極を設ける。そして、ドラム上に銅を電析させながらこれを回転させ、析出した銅を順次引き剥がして巻き取って製造する。
In addition, a rolled copper foil is known as a copper foil having excellent flexibility. As a manufacturing method of rolled copper foil, copper is cast into an ingot, and rolling and annealing are repeated to form a foil. The copper foil produced by this method has a high elongation rate and a smooth surface, so that cracks are hardly generated and resistance to bending is excellent. However, the rolled copper foil is expensive, and it is difficult to produce a copper foil having a width of 1 m or more due to mechanical restrictions during production. In addition, it is difficult to stably produce a thin rolled copper foil, and it has been necessary to perform a process such as half-etching in order to reduce the thickness and improve the flexibility.
On the other hand, there is an electrolytic copper foil as a copper foil that is inexpensive and can be adjusted in thickness relatively easily. The electrolytic copper foil is produced by first submerging a cylindrical cathode having a diameter of 2 m to 3 m, called a drum, in an electrolytic solution mainly composed of copper sulfate, and wrapping it around the anode. Is provided. Then, this is rotated while electrodepositing copper on the drum, and the deposited copper is sequentially peeled off and wound up.
しかし、このような電解銅箔は圧延銅箔に比べて著しく屈曲性が落ちるという問題点が存在する。よって、電解銅箔の屈曲性を改善させるためにさまざまな努力が行われた。
特許文献1には、製箔工程を経て製造された未処理銅箔を熱処理して平均結晶粒径を熱処理工程前の2〜8倍に成長させる方法が開示されている。
特許文献2には、熱処理によって結晶粒径を2μm以上に調節し、銅箔の表面粗度(Rz)を2.5μm以下に調節する方法が開示されている。
特許文献3は、カーボン含有量を18ppm以下に調節することによって微細パターン化が可能な電解銅箔を開示している。
However, there is a problem that such an electrolytic copper foil is significantly less flexible than a rolled copper foil. Therefore, various efforts have been made to improve the flexibility of the electrolytic copper foil.
Patent Document 1 discloses a method in which an untreated copper foil produced through a foil-making process is heat-treated to grow the average crystal grain size to 2 to 8 times that before the heat-treating process.
Patent Document 2 discloses a method in which the crystal grain size is adjusted to 2 μm or more by heat treatment, and the surface roughness (Rz) of the copper foil is adjusted to 2.5 μm or less.
Patent Document 3 discloses an electrolytic copper foil that can be finely patterned by adjusting the carbon content to 18 ppm or less.
本発明は、電解銅箔の耐屈曲性を改善するための新たな方法を提示することを目的とする。すなわち、電解銅箔の耐屈曲性に影響を及ぼすS面(光沢面)とM面(粗面)の表面粗度、炭素及び硫黄含有量、重量偏差、結晶配向性、屈曲因子、ヴィッカース硬度、単位面積当たりのノジュール数などの因子を調節することで最適の耐屈曲性を具現しようとする。
本発明の他の目的及び長所は、以下の説明によって理解することができ、本発明の実施例によってより明らかに分かるであろう。また、本発明の目的及び長所は、特許請求の範囲に示された手段及びその組合せによって実現できることを容易に分かるであろう。
An object of this invention is to show the new method for improving the bending resistance of electrolytic copper foil. That is, the surface roughness of the S surface (glossy surface) and the M surface (rough surface), carbon and sulfur content, weight deviation, crystal orientation, bending factor, Vickers hardness, which affect the bending resistance of the electrolytic copper foil, By adjusting factors such as the number of nodules per unit area, the optimum bending resistance will be realized.
Other objects and advantages of the present invention can be understood by the following description, and become more apparent from the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized by the instrumentalities and combinations set forth in the appended claims.
本発明者らは電解銅箔の耐屈曲性を改善するために鋭意検討した結果、特定の特性を持つ未処理銅箔を使用し、該未処理銅箔の表面を電気化学的または化学的に処理することで上述した課題を解決できることを見出し、本発明の完成に至った。 As a result of intensive studies to improve the bending resistance of the electrolytic copper foil, the present inventors used an untreated copper foil having specific characteristics, and electrochemically or chemically treated the surface of the untreated copper foil. It has been found that the above-described problems can be solved by processing, and the present invention has been completed.
本発明の一態様による電解銅箔は、電気分解を通じて生成された未処理銅箔を表面処理することで得られる。このように得られた電解銅箔は、ヴィッカース硬度(Vickers Hardness)が310Hv以下、望ましくは100〜310Hvであることを特徴とする。
また、本発明による電解銅箔は屈曲因子(F)が0.01以上であることを特徴とする(ここで、F=K×E×Tであり、K(屈曲相関係数)=0.001mm2/kgf、E:伸び率、T:引張強度を表す)。
さらに、本発明による電解銅箔は、粗面(M面)の表面粗度(Rz)が1.0〜3.5μm、光沢面(S面)の表面粗度(Rz)が0.5〜2.5μm、炭素含有量が0.1%以下、硫黄含有量が0.05%以下、結晶配向性(結晶配向性=[I(200)/Iall]×100、ここで、I(200):銅箔の表面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度、Iall:(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和)が10%〜100%であることが望ましい。
The electrolytic copper foil according to one embodiment of the present invention can be obtained by surface-treating an untreated copper foil generated through electrolysis. The electrolytic copper foil thus obtained has a Vickers Hardness of 310 Hv or less, preferably 100 to 310 Hv.
Further, the electrolytic copper foil according to the present invention is characterized in that the bending factor (F) is 0.01 or more (where F = K × E × T and K (bending correlation coefficient) = 0. 001 mm 2 / kgf, E: Elongation rate, T: Represents tensile strength).
Furthermore, the electrolytic copper foil according to the present invention has a rough surface (M surface) having a surface roughness (Rz) of 1.0 to 3.5 μm and a glossy surface (S surface) having a surface roughness (Rz) of 0.5 to 3.5. 2.5 μm, carbon content is 0.1% or less, sulfur content is 0.05% or less, crystal orientation (crystal orientation = [I (200) / I all ] × 100, where I (200 ): Relative peak intensity of diffraction lines on the (200) plane among diffraction lines obtained by X-ray diffraction analysis on the surface of the copper foil, I all : (110), (111), (200), ( 311) The sum of the relative peak intensities of diffraction lines on each surface is preferably 10% to 100%.
さらに、本発明による電解銅箔は、重量偏差が2g/m2以下、単位面積当たりのノジュール数が20個/100μm2〜200個/100μm2であることが望ましい。 Furthermore, the electrolytic copper foil according to the present invention desirably has a weight deviation of 2 g / m 2 or less and a number of nodules per unit area of 20/100 μm 2 to 200/100 μm 2 .
本発明の他の態様による電解銅箔の製造方法は、結晶配向性(結晶配向性=[I(200)/Iall]×100、ここで、I(200):銅箔の表面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度、Iall:(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和)が10%〜100%である未処理電解銅箔を製造する製箔工程と、前記未処理電解銅箔の表面を電気化学的または化学的に処理することで電解銅箔のヴィッカース硬度が310Hv以下、望ましくは100〜310Hvである値を持つ表面処理電解銅箔を製造する表面処理工程と、を含む。
また、前記表面処理工程を経た電解銅箔は、屈曲因子(F)が0.01以上の値を持つことを特徴とする(ここで、F=K×E×Tであり、K(屈曲相関係数)=0.001mm2/Kgf、E:伸び率、T:引張強度を表す)。
さらに、前記表面処理工程を経た電解銅箔は、単位面積当たりのノジュール数が20個/100μm2〜200個/100μm2、粗面(M面)の表面粗度(Rz)が1.0〜3.5μm、光沢面(S面)の表面粗度(Rz)が0.5〜2.5μm、炭素含有量が0.1%以下、硫黄含有量が0.05%以下、重量偏差が2g/m2以下であることを特徴とする。
The method for producing an electrolytic copper foil according to another aspect of the present invention has crystal orientation (crystal orientation = [I (200) / I all ] × 100, where I (200): relative to the surface of the copper foil. Relative peak intensity of diffraction lines on (200) plane among diffraction lines obtained by X-ray diffraction analysis, I all : (110), (111), (200), (311) Relative diffraction lines on each plane The foil-making process for producing an untreated electrolytic copper foil having a sum of peak intensities of 10% to 100%, and the surface of the untreated electrolytic copper foil is electrochemically or chemically treated to produce an electrolytic copper foil. A surface treatment step of producing a surface-treated electrolytic copper foil having a value of Vickers hardness of 310 Hv or less, preferably 100 to 310 Hv.
Moreover, the electrolytic copper foil that has undergone the surface treatment step is characterized in that the bending factor (F) has a value of 0.01 or more (where F = K × E × T, and K (bending phase)). Number of relationships) = 0.001 mm 2 / Kgf, E: Elongation rate, T: Represents tensile strength).
Furthermore, the electrolytic copper foil subjected to the surface treatment step has a nodule number per unit area of 20/100 μm 2 to 200/100 μm 2 , and a rough surface (M surface) has a surface roughness (Rz) of 1.0 to 1.0. The surface roughness (Rz) of the glossy surface (S surface) is 0.5 to 2.5 μm, the carbon content is 0.1% or less, the sulfur content is 0.05% or less, and the weight deviation is 2 g. / M 2 or less.
本発明のさらに他の態様は、前述した製造方法によって製造された電解銅箔の少なくとも一表面にポリイミド樹脂層を塗布したフレキシブル銅張積層板、及び銅張積層板を適用したフレキシブルプリント基板に関する。 Still another embodiment of the present invention relates to a flexible copper-clad laminate in which a polyimide resin layer is applied to at least one surface of an electrolytic copper foil produced by the above-described production method, and a flexible printed board to which the copper-clad laminate is applied.
本発明による電解銅箔は、微細回路加工が可能であり、耐屈曲性に優れる。よって、低コストで圧延銅箔と同等なレベルのフレキシブル回路基板用電解銅箔を具現することが可能である。 The electrolytic copper foil according to the present invention is capable of fine circuit processing and is excellent in bending resistance. Therefore, it is possible to implement an electrolytic copper foil for a flexible circuit board at a low cost and at the same level as a rolled copper foil.
本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
以下、本発明を詳しく説明する。
本発明の電解銅箔は、工程の段階に応じて以下のような用語を使う。まず、図1に示された通常の電解製箔装置を通じて製造された銅箔を「未処理銅箔」と称し、該未処理銅箔の表面に電気化学的または化学的表面処理を施したものを「表面処理銅箔」と称する。
まず、本発明による未処理銅箔は図1の電解製箔装置を通じて製造される。図面を参照すれば、電解液10が供給され続ける容器Cの中に陰極として機能するドラム20、及びアノード30が設けられる。前記ドラム20は矢印方向に回転し、ドラム20とアノード30とは電解液10が介在され得るように離隔される。
The present invention will be described in detail below.
The electrolytic copper foil of the present invention uses the following terms depending on the stage of the process. First, the copper foil manufactured through the ordinary electrolytic foil making apparatus shown in FIG. 1 is referred to as “untreated copper foil”, and the surface of the untreated copper foil is subjected to electrochemical or chemical surface treatment. Is referred to as “surface-treated copper foil”.
First, the untreated copper foil according to the present invention is manufactured through the electrolytic foil making apparatus of FIG. Referring to the drawing, a
電解銅箔の製造の際には、前記ドラム20とアノード30間に電流が印加される。このとき、ドラム20は矢印方向に回転している状態である。これにより、ドラム20の表面に電解銅箔40が電着された後、ガイドロール50を介して巻き取られる。
前記電解液10は硫酸銅を主成分にし、これにゼラチン、HEC、SPS、及び窒化物のような各種添加剤が添加され、電流密度は10ASD〜80ASDであることが望ましい。このような未処理電解銅箔の製造についての詳細な内容は、本出願人によって先出願された韓国特許登録第0694382号及び第0571561号を参照することができるため、ここでは省略する。
In manufacturing the electrolytic copper foil, a current is applied between the
The
前記未処理電解銅箔は、電解液の組成、電流密度、または添加剤の種類及び含量を調節することによって重量偏差、(200)集合組織の割合、炭素含有量、硫黄含有量、表面粗度などの因子を調節することができる。
このように製造された前記未処理銅箔40は結晶配向性が10%〜100%でなければならない。ここで、結晶配向性とは、電解銅箔のS面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度をI(200)とし、(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和をIallとするとき、[I(200)/Iall]の百分率を意味する。
The untreated electrolytic copper foil has a weight deviation, a (200) texture ratio, a carbon content, a sulfur content, and a surface roughness by adjusting the composition, current density, or type and content of the additive. And other factors can be adjusted.
The
このように、未処理銅箔の集合組織のうち(200)集合組織が優勢な場合、応力集中部と結晶組織との配向性が逆になって耐屈曲性が良くなる。
また、前記未処理銅箔はノジュール処理(または粗面化処理)、耐薬品処理、耐熱処理、防錆処理、シラン処理などの表面処理工程を経て表面処理銅箔として完成される。このような表面処理工程については、本出願人によって先出願された韓国特許登録第0610751号に具体的に開示されているため、ここでは省略する。
Thus, when the (200) texture is dominant among the texture of the untreated copper foil, the orientation of the stress concentration portion and the crystal structure is reversed, and the bending resistance is improved.
The untreated copper foil is completed as a surface-treated copper foil through surface treatment steps such as nodule treatment (or surface roughening treatment), chemical resistance treatment, heat resistance treatment, rust prevention treatment, and silane treatment. Since such a surface treatment process is specifically disclosed in Korean Patent Registration No. 0610751 filed earlier by the present applicant, it is omitted here.
前記表面処理工程で使われる各種有機物質の種類や含量などに応じて銅箔のヴィッカース硬度、重量偏差、炭素含有量、硫黄含有量などに微細な変化があり得る。
このように最終完成された本発明による表面処理電解銅箔は、粗面(M面)の表面粗度(Rz)が1.0〜3.5μm、光沢面(S面)の表面粗度(Rz)が0.5〜2.5μmであることが望ましい。前記M面及びS面の表面粗度が3.5μm以上になれば応力が集中して破断し易く、前記M面の表面粗度が1.0μm以下になれば、銅箔に接着されるポリイミドとの密着力が減少する。
The Vickers hardness, weight deviation, carbon content, sulfur content, and the like of the copper foil may vary depending on the types and contents of various organic substances used in the surface treatment process.
The surface-treated electrolytic copper foil according to the present invention finally completed in this way has a rough surface (M surface) with a surface roughness (Rz) of 1.0 to 3.5 μm and a glossy surface (S surface) with a surface roughness ( Rz) is preferably 0.5 to 2.5 μm. If the surface roughness of the M surface and S surface is 3.5 μm or more, stress concentrates and breaks easily, and if the surface roughness of the M surface is 1.0 μm or less, polyimide adhered to the copper foil Adhesion with is reduced.
また、前記表面処理電解銅箔は、炭素含有量が0.1%以下、硫黄含有量が0.05%以下であることが特徴である。電解銅箔の炭素含有量が0.1%以上になれば、フレキシブル回路基板(FCCL)の製造時、熱を受けて銅箔内部の炭素が二酸化炭素になりながら微細破断が生じる。これと同様に、電解銅箔の硫黄含有量が0.05%以上になれば、フレキシブル回路基板(FCCL)の製造時、熱を受けて銅箔内部の硫黄が二酸化硫黄になりながら微細破断が生じる。
さらに、前記表面処理電解銅箔の耐屈曲性を表す特性値として、下記数式で表される屈曲因子Fを考慮することができる。
The surface-treated electrolytic copper foil is characterized in that the carbon content is 0.1% or less and the sulfur content is 0.05% or less. If the carbon content of the electrolytic copper foil is 0.1% or more, when the flexible circuit board (FCCL) is manufactured, heat is received and the carbon inside the copper foil becomes carbon dioxide, resulting in fine fracture. Similarly, if the sulfur content of the electrolytic copper foil is 0.05% or more, when the flexible circuit board (FCCL) is manufactured, the copper foil undergoes heat and the microfracture occurs while the copper foil becomes sulfur dioxide. Arise.
Furthermore, as a characteristic value representing the bending resistance of the surface-treated electrolytic copper foil, a bending factor F represented by the following mathematical formula can be considered.
ここで、K(屈曲相関係数)=0.001mm2/kgf、E:伸び率、T:引張強度を表す。 Here, K (flexural correlation coefficient) = 0.001 mm 2 / kgf, E: elongation rate, and T: tensile strength.
前記屈曲因子Fは良好な耐屈曲性を具現するため、少なくとも0.01以上の値を持たなければならないが、もし前記屈曲因子Fが0.01を下回るようになれば、表面処理電解銅箔の疲労寿命が短くなって屈曲部(bending part)に適用したときに破断され易いという問題点がある。さらに、前記屈曲因子Fは高いほど良好な耐屈曲性の具現が可能であるが、0.7以下であることが望ましい。 The bending factor F must have a value of at least 0.01 in order to realize good bending resistance. If the bending factor F falls below 0.01, the surface-treated electrolytic copper foil There is a problem that the fatigue life of the steel sheet becomes short and is easily broken when applied to a bending part. Further, the higher the bending factor F, the better the bending resistance can be realized, but it is desirable that the bending factor F is 0.7 or less.
また、前記表面処理電解銅箔は対面角136度のダイヤモンド製ピラミッド状の圧子で適当な荷重を加えて跡形を作り、接触面の単位面積当たりの圧力を硬度として表したヴィッカース硬度が310Hv以下、望ましくは100〜310Hvの値を持つことが特徴である。電解銅箔のヴィッカース硬度が100Hvを下回る場合には、銅箔製造及びFCCL(Flexible Copper Clad Laminate)の製造過程で表面欠陥が生じて耐屈曲性の低下をもたらし、310Hvを上回る場合には、FCCLの製造時、結晶成長が起こらず屈曲性が低下する。
このような前記表面処理電解銅箔の重量偏差は2g/m2以下であり、単位面積当たりのノジュール数は20個/100μm2〜200個/100μm2であることが望ましい。前記重量偏差が2g/m2以上であれば、重量が高い部分に応力が集中して破断され易い。また、前記単位面積当たりのノジュール数が、20個以下であればノジュールの下部に応力が集中して破断され易く、200個以上であれば銅箔とポリイミド間の密着強度が弱くなる。
Further, the surface-treated electrolytic copper foil is formed with a trace by applying an appropriate load with a diamond pyramid-shaped indenter with a facing angle of 136 degrees, and the Vickers hardness expressed as pressure per unit area of the contact surface is 310 Hv or less, Desirably, it has a value of 100 to 310 Hv. When the Vickers hardness of the electrolytic copper foil is less than 100 Hv, surface defects occur in the copper foil manufacturing and FCCL (Flexible Copper Clad Laminate) manufacturing process, resulting in a decrease in flexural resistance. When the electrolytic copper foil exceeds 310 Hv, the FCCL At the time of manufacture, crystal growth does not occur and flexibility is lowered.
The surface-treated electrolytic copper foil has a weight deviation of 2 g / m 2 or less, and the number of nodules per unit area is preferably 20/100 μm 2 to 200/100 μm 2 . When the weight deviation is 2 g / m 2 or more, stress concentrates on a portion having a high weight and is easily broken. Moreover, if the number of nodules per unit area is 20 or less, stress concentrates on the lower part of the nodules and is easily broken, and if it is 200 or more, the adhesion strength between the copper foil and the polyimide is weakened.
一般に、表面処理工程によって電解銅箔の表面粗度(Rz)(S面及びM面)、屈曲因子、及びヴィッカース硬度は変化するが、(200)集合組織の割合(すなわち、結晶配向性)は変化しない。
また、前記表面処理電解銅箔のM面単独またはM面及びS面の両方にポリイミド樹脂層のような絶縁層を積層することで銅張積層板(片面銅張積層板または両面銅張積層板)を製造することができる。前記ポリイミド樹脂層は公知のジアミンと酸無水物を溶媒の存在下で重合して製造することができる。また、該銅張積層板を適用してフレキシブル回路基板(FCCL)を製造することもできる。
In general, the surface roughness (Rz) (S-plane and M-plane), bending factor, and Vickers hardness of the electrolytic copper foil change depending on the surface treatment process, but the (200) texture ratio (ie, crystal orientation) is It does not change.
Also, a copper-clad laminate (single-sided copper-clad laminate or double-sided copper-clad laminate) by laminating an insulating layer such as a polyimide resin layer on the M surface alone or both the M surface and S surface of the surface-treated electrolytic copper foil ) Can be manufactured. The polyimide resin layer can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent. Moreover, a flexible circuit board (FCCL) can also be manufactured by applying the copper-clad laminate.
上述した製箔工程及び表面処理工程の実施及び銅張積層板の具現についての具体的な例は韓国特許公開第2007−0014067号、韓国特許公開第2006−0129965号、韓国特許公開第2006−0093280号、特開平9−272994号、特開平7−268678号、特開2006−52441号、韓国特許公開第2005−0114701号、特開平8−283886号、及び特開2000−182623号に詳しく記載されている。 Specific examples of the implementation of the above-described foil making process and surface treatment process and implementation of the copper clad laminate are Korean Patent Publication No. 2007-0014067, Korean Patent Publication No. 2006-0129965, Korean Patent Publication No. 2006-0093280. JP-A-9-272994, JP-A-7-268678, JP-A-2006-524441, Korean Patent Publication No. 2005-0114701, JP-A-8-283886, and JP-A-2000-182623. ing.
以下、本発明を実施例を挙げてより詳しく説明するが、本発明はこれによって限定されることはない。また、以下の実施例において、特に説明しない限り各種評価は下記によるものである。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited by this. In the following examples, unless otherwise specified, various evaluations are as follows.
1)表面粗度(Rz)
M面とS面の表面粗度は10点平均表面粗さであり、JISB 0601−1994規格に従う粗さを表す。超深度形状測定顕微鏡を用いて2000倍で銅箔面の長さ方向に測定した。
2)結晶配向性
銅箔のS面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度をI(200)とし、(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和をIallとするとき、[I(200)/Iall]の百分率を意味する。すなわち、結晶配向性(%)=[I(200)/Iall]×100
3)屈曲因子
0.001mm2/kgfの値を持つ屈曲相関係数をK、伸び率をE、引張強度をTとするとき、屈曲因子(F)=[K×E×T]を意味する。
ここで、伸び率(E)と引張強度(T)はIPC−TM−650 Test Methods Manual規格に従って測定した。
4)MIT屈曲試験
MIT屈曲試験装置によってMIT屈曲試験を行った。下記の条件下で屈曲を繰り返し、試験片が断線されるまでの回数を屈曲回数として求めた。
JIS C 6471屈曲半径:0.38mm、荷重:500g、屈曲速度:90回/分、屈曲角度:135゜
5)ヴィッカース硬度(Vickers Hardness)
S面を研磨(Polishing)してからピラミッド型ダイヤモンド製圧子をS面に当て、下記の条件下で押圧してピット(Pit:凹んだ部分)を作って荷重を除去した後、硬度計で測定した。
荷重(Indenting Load):150mN、時間(Dwell Time):15秒
1) Surface roughness (Rz)
The surface roughness of the M plane and the S plane is a 10-point average surface roughness, and represents the roughness according to the JISB 0601-1994 standard. It measured in the length direction of the copper foil surface by 2000 times using the ultra-deep shape measuring microscope.
2) Crystal orientation Of the diffraction lines obtained by X-ray diffraction analysis on the S plane of the copper foil, the relative peak intensity of the (200) plane diffraction lines is I (200), and (110), (111 ), (200), (311) when the sum of the relative peak intensities of the diffraction lines of each face and I all, refers to the percentage of [I (200) / I all ]. That is, crystal orientation (%) = [I (200) / I all ] × 100
3) Bending factor When the bending correlation coefficient having a value of 0.001 mm 2 / kgf is K, the elongation is E, and the tensile strength is T, it means the bending factor (F) = [K × E × T]. .
Here, the elongation (E) and tensile strength (T) were measured according to the IPC-TM-650 Test Methods Manual standard.
4) MIT flex test An MIT flex test was performed using an MIT flex test apparatus. The bending was repeated under the following conditions, and the number of times until the test piece was disconnected was determined as the number of bendings.
JIS C 6471 bending radius: 0.38 mm, load: 500 g, bending speed: 90 times / minute, bending angle: 135 ° 5) Vickers hardness (Vickers Hardness)
After polishing the S surface, a pyramid diamond indenter is applied to the S surface and pressed under the following conditions to create pits (pits), remove the load, and then measure with a hardness meter did.
Load (Indenting Load): 150 mN, Time (Dwell Time): 15 seconds
[実施例1]
図1に示された装置の電解槽に電解液(硫酸銅を主成分にし、ゼラチン、HEC、SPS、及びチッ化物を添加)を充填した後、その両極間に電流を流して未処理電解銅箔を製造した。このように製造された未処理電解銅箔に表面処理装置を用いてノジュール処理、防錆処理、耐熱処理、耐薬品処理、シラン処理を施し、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 1]
The electrolytic cell of the apparatus shown in FIG. 1 is filled with an electrolytic solution (copper sulfate as a main component and gelatin, HEC, SPS, and nitride are added), and then an untreated electrolytic copper is passed between the electrodes. A foil was produced. The untreated electrolytic copper foil thus manufactured is subjected to a nodule treatment, a rust prevention treatment, a heat treatment, a chemical treatment, and a silane treatment using a surface treatment apparatus, and has a thickness of 12 μm and an S-surface roughness of 2. 5 μm, M-plane surface roughness of 3.5 μm, carbon content of 0.1%, sulfur content of 0.04%, weight deviation of 2.0 g / m 2 , crystal orientation of 35%, bending factor An electrolytic copper foil having 0.18, the number of nodules per unit area of 25/100 μm 2 , and a Vickers hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例2]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.0μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 2]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.0 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例3]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が2.0μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 3]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1. The thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 2.0 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例4]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.02%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 4]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 02%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例5]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.01%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 5]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.01%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例6]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が0.5g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 6]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 0.5 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例7]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が100%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 7]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 100%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例8]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.3、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 8]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.3, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例9]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.5、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 9]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.5, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例10]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が170個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 10]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, nodule number per unit area 170/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[実施例11]
前記実施例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が203Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Example 11]
The foil-making process and the surface treatment process were performed in the same manner as in Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 203 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例1]
図1に示された装置の電解槽に電解液(硫酸銅を主成分にし、ゼラチン、HEC、SPS、及びチッ化物を添加)を充填した後、その両極間に電流を流して未処理電解銅箔を製造した。このように製造された未処理電解銅箔を表面処理装置を用いてノジュール処理、防錆処理、耐熱処理、耐薬品処理、シラン処理のうち少なくともいずれか1つを行い、厚さが12μm、S面表面粗度が3.0μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 1]
The electrolytic cell of the apparatus shown in FIG. 1 is filled with an electrolytic solution (copper sulfate as a main component and gelatin, HEC, SPS, and nitride are added), and then an untreated electrolytic copper is passed between the electrodes. A foil was produced. The untreated electrolytic copper foil thus manufactured is subjected to at least one of nodule treatment, rust prevention treatment, heat treatment, chemical treatment treatment, and silane treatment using a surface treatment apparatus, and the thickness is 12 μm, S Surface surface roughness is 3.0 μm, M surface roughness is 3.5 μm, carbon content is 0.1%, sulfur content is 0.04%, weight deviation is 2.0 g / m 2 , crystal orientation An electrolytic copper foil having a thickness of 35%, a bending factor of 0.18, a number of nodules per unit area of 25/100 μm 2 , and a Vickers hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例2]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が0.8μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 2]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 0.8 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例3]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が5.7μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 3]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 5.7 μm, and the carbon content was 0.00. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例4]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.5%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 4]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 5%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, nodule number per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例5]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.2%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 5]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.2%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例6]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が4.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 6]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 4.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例7]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が5%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 7]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 5%, bending factor 0.18, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例8]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.005、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 8]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.005, number of nodules per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例9]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.002、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 9]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.002, nodule number per unit area 25/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例10]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が15個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 10]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 15/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例11]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が314個/100μm2、ヴィッカース硬度が145Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 11]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 314/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 145 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例12]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が25個/100μm2、ヴィッカース硬度が78Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 12]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 25 / 100μm 2 , Vickers An electrolytic copper foil having a hardness of 78 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
[比較例13]
前記比較例1と同様の方法で製箔工程及び表面処理工程を行い、厚さが12μm、S面表面粗度が2.5μm、M面表面粗度が3.5μm、炭素含有量が0.1%、硫黄含有量が0.04%、重量偏差が2.0g/m2、結晶配向性が35%、屈曲因子が0.18、単位面積当たりのノジュール数が28個/100μm2、ヴィッカース硬度が352Hvである電解銅箔を得た。
該表面処理電解銅箔に対してMIT屈曲試験を行い、その結果を表1に示した。
[Comparative Example 13]
The foil-making process and the surface treatment process were performed in the same manner as in Comparative Example 1, and the thickness was 12 μm, the S-surface roughness was 2.5 μm, the M-surface roughness was 3.5 μm, and the carbon content was 0.1. 1%, sulfur content 0.04%, weight deviation 2.0 g / m 2 , crystal orientation 35%, bending factor 0.18, number of nodules per unit area 28/100 μm 2 , Vickers An electrolytic copper foil having a hardness of 352 Hv was obtained.
The surface-treated electrolytic copper foil was subjected to an MIT bending test, and the results are shown in Table 1.
上記表1から分かるように、本発明の実施例による電解銅箔はMIT回数が少なくとも100回以上を記録する一方、比較例の電解銅箔はMIT回数が100回を下回っている。すなわち、比較例の電解銅箔に比べて本発明の電解銅箔がより優れた耐屈曲性特性を有する。
以上、本発明を限定された実施例及び図面によって説明したが、本発明はこれに限定されるものでなく、本発明が属する技術分野で通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
As can be seen from Table 1 above, the electrolytic copper foil according to the example of the present invention records the number of MITs of at least 100 or more, while the electrolytic copper foil of the comparative example has the number of MITs of less than 100. That is, the electrolytic copper foil of the present invention has superior bending resistance characteristics as compared with the electrolytic copper foil of the comparative example.
The present invention has been described with reference to the embodiments and drawings. However, the present invention is not limited to the embodiments, and the technical idea and patent of the present invention can be obtained by those who have ordinary knowledge in the technical field to which the present invention belongs. It goes without saying that various modifications and variations are possible within the equivalent scope of the claims.
10 電解液
20 ドラム
30 アノード
40 未処理電解銅箔
50 ガイドロール
10
Claims (12)
前記電解銅箔のヴィッカース硬度(Vickers Hardness)が310Hv以下であることを特徴とする電解銅箔。 An electrolytic copper foil obtained by surface-treating an untreated copper foil produced through electrolysis,
The electrolytic copper foil, wherein the electrolytic copper foil has a Vickers Hardness of 310 Hv or less.
(2)炭素含有量が0.1%以下、硫黄含有量が0.05%以下であり、
(3)結晶配向性(結晶配向性=[I(200)/Iall]×100、ここで、I(200):銅箔の表面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度、Iall:(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和)が10%〜100%であることを特徴とする請求項3に記載の電解銅箔。 (1) The surface roughness (Rz) of the rough surface (M surface) is 1.0 to 3.5 μm, and the surface roughness (Rz) of the glossy surface (S surface) is 0.5 to 2.5 μm.
(2) The carbon content is 0.1% or less, the sulfur content is 0.05% or less,
(3) Crystal orientation (crystal orientation = [I (200) / I all ] × 100, where I (200): the diffraction line obtained by X-ray diffraction analysis on the surface of the copper foil Among them, the relative peak intensity of diffraction lines on the (200) plane, I all : (110), (111), (200), (311) the sum of the relative peak intensities of diffraction lines on each plane is 10% to 100%. The electrolytic copper foil according to claim 3, wherein the electrolytic copper foil is present.
(1)結晶配向性(結晶配向性=[I(200)/Iall]×100、ここで、I(200):銅箔の表面に対してX線回折分析して得られた回折線のうち(200)面の回折線の相対ピーク強度、Iall:(110)、(111)、(200)、(311)各面の回折線の相対ピーク強度の和)が10%〜100%である未処理電解銅箔を製造する製箔工程と、
(2)前記未処理電解銅箔の表面を電気化学的または化学的に処理することでヴィッカース硬度が310Hv以下の値を持つ表面処理電解銅箔を製造する表面処理工程と、を含むことを特徴とする電解銅箔の製造方法。 A method for producing an electrolytic copper foil,
(1) Crystal orientation (crystal orientation = [I (200) / I all ] × 100, where I (200): the diffraction line obtained by X-ray diffraction analysis on the surface of the copper foil Among them, the relative peak intensity of diffraction lines on the (200) plane, I all : (110), (111), (200), (311) the sum of the relative peak intensities of diffraction lines on each plane is 10% to 100%. A foil-making process for producing an untreated electrolytic copper foil;
(2) A surface treatment step of producing a surface-treated electrolytic copper foil having a Vickers hardness of 310 Hv or less by electrochemically or chemically treating the surface of the untreated electrolytic copper foil. A method for producing an electrolytic copper foil.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20080010737 | 2008-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009185384A true JP2009185384A (en) | 2009-08-20 |
Family
ID=41068904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009014475A Pending JP2009185384A (en) | 2008-02-01 | 2009-01-26 | High flexible copper foil with low roughness and, manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009185384A (en) |
KR (1) | KR20090084770A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156470A (en) * | 2011-01-28 | 2012-08-16 | Nippon Steel Chem Co Ltd | Method of manufacturing flexible circuit board |
WO2015087566A1 (en) * | 2013-12-13 | 2015-06-18 | 三井金属鉱業株式会社 | Electrolytic copper foil and manufacturing method therefor |
JPWO2013183632A1 (en) * | 2012-06-07 | 2016-02-01 | タツタ電線株式会社 | Shield film and shield printed wiring board |
TWI623650B (en) * | 2016-10-03 | 2018-05-11 | 長春石油化學股份有限公司 | Copper foil having uniform thickness and method of manufacturing same |
TWI651421B (en) * | 2015-11-09 | 2019-02-21 | 南韓商Kcf科技有限公司 | Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same |
CN109661117A (en) * | 2018-11-28 | 2019-04-19 | 惠州中京电子科技有限公司 | The rework method of copper tumor after a kind of pcb board is electric |
US11839024B2 (en) * | 2020-07-15 | 2023-12-05 | Dupont Electronics, Inc. | Composite and copper clad laminate made therefrom |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101126831B1 (en) * | 2009-09-02 | 2012-03-23 | 엘에스엠트론 주식회사 | A Copper Foil And Method For Producing The Same |
TWI542739B (en) * | 2014-03-21 | 2016-07-21 | 長春石油化學股份有限公司 | Electrolytic copper foil |
CN112072432B (en) * | 2020-09-17 | 2021-12-14 | 松山湖材料实验室 | Copper flexible connection structure, lithium ion battery cathode copper tab structure and preparation method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190189A (en) * | 1987-02-03 | 1988-08-05 | Nippon Steel Corp | Metal foil manufacturing method |
JPH07235744A (en) * | 1993-12-28 | 1995-09-05 | Nikko Gould Foil Kk | Increased high-temperature elongation copper foil for printing circuit and its manufacture |
JPH10330983A (en) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | Electrolytic copper foil and its production |
JP2001234325A (en) * | 2000-02-28 | 2001-08-31 | Nikko Materials Co Ltd | High strength electrolytic copper foil for particle getter, thin film deposition system having the copper foil disposed inside, and method for manufacturing the electrolytic copper foil |
JP2001329390A (en) * | 2000-05-18 | 2001-11-27 | Mitsui Mining & Smelting Co Ltd | Electrolyzer of electrolytic copper foil and electrolytic copper foil obtained in the electrolyzer |
JP2006299320A (en) * | 2005-04-19 | 2006-11-02 | Ls Cable Ltd | Low-roughness copper foil having high strength and method for producing the same |
-
2009
- 2009-01-26 JP JP2009014475A patent/JP2009185384A/en active Pending
- 2009-02-02 KR KR1020090008086A patent/KR20090084770A/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190189A (en) * | 1987-02-03 | 1988-08-05 | Nippon Steel Corp | Metal foil manufacturing method |
JPH07235744A (en) * | 1993-12-28 | 1995-09-05 | Nikko Gould Foil Kk | Increased high-temperature elongation copper foil for printing circuit and its manufacture |
JPH10330983A (en) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | Electrolytic copper foil and its production |
JP2001234325A (en) * | 2000-02-28 | 2001-08-31 | Nikko Materials Co Ltd | High strength electrolytic copper foil for particle getter, thin film deposition system having the copper foil disposed inside, and method for manufacturing the electrolytic copper foil |
JP2001329390A (en) * | 2000-05-18 | 2001-11-27 | Mitsui Mining & Smelting Co Ltd | Electrolyzer of electrolytic copper foil and electrolytic copper foil obtained in the electrolyzer |
JP2006299320A (en) * | 2005-04-19 | 2006-11-02 | Ls Cable Ltd | Low-roughness copper foil having high strength and method for producing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156470A (en) * | 2011-01-28 | 2012-08-16 | Nippon Steel Chem Co Ltd | Method of manufacturing flexible circuit board |
JPWO2013183632A1 (en) * | 2012-06-07 | 2016-02-01 | タツタ電線株式会社 | Shield film and shield printed wiring board |
WO2015087566A1 (en) * | 2013-12-13 | 2015-06-18 | 三井金属鉱業株式会社 | Electrolytic copper foil and manufacturing method therefor |
JP2015113521A (en) * | 2013-12-13 | 2015-06-22 | 三井金属鉱業株式会社 | Electrolytic copper foil and method for producing the same |
US10283728B2 (en) | 2013-12-13 | 2019-05-07 | Mitsui Mining & Smelting Co., Ltd. | Electrolytic copper foil and manufacturing method therefor |
TWI651421B (en) * | 2015-11-09 | 2019-02-21 | 南韓商Kcf科技有限公司 | Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same |
TWI623650B (en) * | 2016-10-03 | 2018-05-11 | 長春石油化學股份有限公司 | Copper foil having uniform thickness and method of manufacturing same |
CN109661117A (en) * | 2018-11-28 | 2019-04-19 | 惠州中京电子科技有限公司 | The rework method of copper tumor after a kind of pcb board is electric |
CN109661117B (en) * | 2018-11-28 | 2021-07-06 | 惠州中京电子科技有限公司 | Reworking method for PCB (printed circuit board) electric copper nodules |
US11839024B2 (en) * | 2020-07-15 | 2023-12-05 | Dupont Electronics, Inc. | Composite and copper clad laminate made therefrom |
Also Published As
Publication number | Publication date |
---|---|
KR20090084770A (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009185384A (en) | High flexible copper foil with low roughness and, manufacturing method therefor | |
JP4429979B2 (en) | Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier | |
JP3346774B2 (en) | High tensile strength electrolytic copper foil and method for producing the same | |
JP5417538B1 (en) | Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board | |
JP2003193211A (en) | Rolled copper foil for copper-clad laminates | |
JP2010006071A (en) | Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board | |
KR20160086377A (en) | Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method | |
JP2014148691A (en) | Surface-treated copper foil and laminate plate using the same, copper foil, printed wiring board, electronic apparatus, and method for manufacturing printed wiring board | |
JP2005048269A (en) | Surface treated copper foil, and board obtained by using the same | |
JP2009242945A (en) | Surface treating method of copper foil for printed circuit, copper foil produced by the same, and plating apparatus | |
JP2012246567A (en) | Ultrathin copper foil with support therefor, and method for manufacturing the same | |
KR101168613B1 (en) | Electrolytic copper foil improved in structure of surface treatment layer and method for producing the same, and copper clad laminate and printed circuit board having the same | |
US20070090086A1 (en) | Two-layer flexible printed wiring board and method for manufacturing the two-layer flexible printed wiring board | |
JP5855244B2 (en) | Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board | |
KR102479331B1 (en) | Surface treated copper foil, copper clad laminate, and printed wiring board | |
KR101126831B1 (en) | A Copper Foil And Method For Producing The Same | |
KR101126969B1 (en) | High flexuous copper foil and method for producing the same | |
JP2001226795A (en) | Roughening treated copper foil and producing method therefor | |
JP2007107038A (en) | Copper or copper alloy foil for circuit | |
JP4430020B2 (en) | Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board | |
KR100992959B1 (en) | Electrolytic Copper Foil Having High Flexibility And Its Manufacturing Method | |
KR100958976B1 (en) | Electrolytic Copper Foil Having High Flexibility And Its Manufacturing Method | |
JP5940010B2 (en) | Surface roughening copper foil, method for producing the same, and circuit board | |
TWI806296B (en) | Surface treated copper foil, copper clad laminate and printed wiring board | |
JP7027602B1 (en) | Surface-treated copper foil, copper-clad laminate and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120522 |