JP2009183198A - Fermented oil and method for producing the same - Google Patents
Fermented oil and method for producing the same Download PDFInfo
- Publication number
- JP2009183198A JP2009183198A JP2008026005A JP2008026005A JP2009183198A JP 2009183198 A JP2009183198 A JP 2009183198A JP 2008026005 A JP2008026005 A JP 2008026005A JP 2008026005 A JP2008026005 A JP 2008026005A JP 2009183198 A JP2009183198 A JP 2009183198A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- oils
- pour point
- fatty acid
- fats
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Edible Oils And Fats (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
本発明は油脂の低流動点化と低酸化に関するものである。 The present invention relates to low pour point and low oxidation of fats and oils.
油脂は、菜種油、ヒマワリ油、大豆油、パーム油などの植物由来油脂と動物由来油脂がある。バイオマス由来の燃料は、大気中の二酸化炭素を光合成によって吸収・固定化したもので、燃焼によって排出する二酸化炭素は本来大気中に存在したものである。固定と排出の循環が速やかで、総じて大気中の炭素(二酸化炭素)量を増やさない点でカーボン・ニュートラルであると評価され、カーボン・ニュートラルという概念は、バイオディーゼルの環境改善効果を評価するにあたって非常に大切なものである。 Oils and fats include vegetable oils and animal oils such as rapeseed oil, sunflower oil, soybean oil and palm oil. Biomass-derived fuel is obtained by absorbing and fixing carbon dioxide in the atmosphere by photosynthesis, and carbon dioxide emitted by combustion originally exists in the atmosphere. It is evaluated as carbon neutral in that the cycle of fixation and emission is quick and generally does not increase the amount of carbon (carbon dioxide) in the atmosphere. The concept of carbon neutral is used to evaluate the environmental improvement effect of biodiesel. It is very important.
油脂の由来が異なることで、油脂の耐酸化、低温流動特性などの特性は変化し、特性の多くは油脂の脂肪酸構成に依存している。油脂の脂肪酸がメチルエステル化されたものの耐酸化、低温流動特性などの特性も脂肪酸のそれとほぼ同様の傾向を示す。油脂の化学的基本構造は、グリセロールと3つの脂肪酸がエーテル結合した分子量の大きなトリグリセリドである。油脂の燃料としての高粘度、高引火点の問題点は、この分子量が大きいことに起因しており、これを改善するためにはトリグリセリドの低分子化が必要である。多くの国々において、バイオディーゼルはモノアルキルエステルと定義されているため、バイオディーゼルを製造するにはモノアルキルエステルが最終的に生成されるような低分子化方法を採用しなければならない。 Due to the different origins of fats and oils, characteristics such as oxidation resistance and low-temperature flow characteristics of fats and oils change, and many of the characteristics depend on the fatty acid composition of the fats and oils. The fatty acid of fats and oils converted into a methyl ester has characteristics such as oxidation resistance and low-temperature fluidity that are almost the same as those of fatty acids. The basic chemical structure of fats and oils is a triglyceride with a large molecular weight in which glycerol and three fatty acids are ether-bonded. The problems of high viscosity and high flash point as a fuel for oils and fats are due to the large molecular weight, and in order to improve this, it is necessary to lower the molecular weight of triglycerides. In many countries, biodiesel is defined as a monoalkyl ester, and thus a low molecular weight process must be employed to produce biodiesel so that the monoalkyl ester is finally produced.
油脂は軽油などの化石燃料と異なり芳香族化合物などを含まないため、短期的、慢性的な毒性報告例はないが、食した場合にグリセリンを構成する脂肪酸分子の長鎖構造が巨大であると、ヒト細胞が、ある発癌物質でイニシエーション作用を受けた後に発癌プロモーターとして、細胞の癌化を促進する作用があることが報告されている。グリセリンの脂肪酸分子構造をできるだけ小さくすると低流動点化できる。また、脂肪酸の酸化度を下げて発癌プロモーター活性を下げることができる。 Fats and oils do not contain aromatic compounds unlike fossil fuels such as light oil, so there are no reports of short-term or chronic toxicity, but the long-chain structure of fatty acid molecules that make up glycerin when eaten is huge It has been reported that human cells have an action of promoting canceration of cells as an oncogenic promoter after undergoing an initiation action with a certain carcinogen. The pour point can be lowered by making the fatty acid molecular structure of glycerin as small as possible. In addition, the oncogenic promoter activity can be lowered by lowering the degree of oxidation of fatty acids.
油脂の低温流動特性について述べる。内燃油脂は動粘度、流動点、CFPP(Cold Filter Plugging Point)、引火点によって特1号から特3号まで5クラスに分類されている。軽油の燃料性状としての低温流動特性は、曇り点、流動点、CFPPによって規定される。軽油を冷却すると長鎖脂肪酸と長鎖一価アルコールのエステルである融点の高いロウ分が析出し始め、この温度を曇り点(CP)という。さらに冷却していくと析出したロウが成長し、軽油全体の流動性を失う流動点(PP)に達する。ロウ結晶は、核形成後成長し、結晶面を形成して停止することを繰り返して不連続に成長し、通常200μmの粗大な菱形板状結晶を示す。これがさらに相互に付着して三次元網目構造を形成する。そこに多量の油を吸着・吸収することにより油全体の流動性が失われ、約2%のロウ析出で油脂は凝固するといわれている。パーム油など飽和脂肪酸含有率の高い植物油で精製した燃料の曇り点(CP)と流動点(PP)は高い値を示している。特にステアリン酸メチルエステルの影響が顕著である。かかる燃料の低温流動特性が燃料の普及を妨げており、この改善方法の開発が急務となっている。 The low temperature flow characteristics of fats and oils are described. Internal combustion oils and fats are classified into 5 classes from No. 1 to No. 3 according to kinematic viscosity, pour point, CFPP (Cold Filter Plugging Point), and flash point. The low temperature flow characteristics as a fuel property of light oil are defined by cloud point, pour point, and CFPP. When the light oil is cooled, a wax having a high melting point, which is an ester of a long-chain fatty acid and a long-chain monohydric alcohol, starts to precipitate, and this temperature is called a cloud point (CP). When further cooled, the precipitated wax grows and reaches a pour point (PP) at which the entire light oil loses its fluidity. The wax crystal grows after nucleation, grows discontinuously by repeatedly forming and stopping the crystal plane, and usually shows a coarse rhomboid plate-like crystal of 200 μm. This further adheres to each other to form a three-dimensional network structure. By adsorbing and absorbing a large amount of oil there, the fluidity of the whole oil is lost, and it is said that the fats and oils coagulate with about 2% wax precipitation. The cloud point (CP) and pour point (PP) of fuel refined with vegetable oil having a high saturated fatty acid content such as palm oil show high values. In particular, the influence of stearic acid methyl ester is remarkable. Such low-temperature flow characteristics of fuel hinder the spread of fuel, and the development of this improvement method is urgently needed.
酸化安定性(OSI:Oxidative Stability Index)について述べる。燃料中の不飽和脂肪酸メチルエステル、特にリノール酸およびリノレン酸のメチルエステルは酸化を受けやすく、酸化安定性はこれらの含有量に大きく依存する。酸化は燃料装置の劣化を招くため、不飽和度が低く、酸化安定性がきわめて高いものを製造する必要がある。低温流動特性の向上には長鎖脂肪酸をグリセライドからできるだけ切り離し、同時に酸化安定性(OSI:Oxidative Stability Index)を向上させる飽和脂肪酸の含有率が高いものが期待されている。 Oxidative stability (OSI) will be described. Unsaturated fatty acid methyl esters in fuel, especially methyl esters of linoleic acid and linolenic acid, are susceptible to oxidation, and oxidation stability is highly dependent on their content. Since oxidation causes deterioration of the fuel device, it is necessary to manufacture a product having a low degree of unsaturation and extremely high oxidation stability. In order to improve low-temperature flow characteristics, it is expected that long-chain fatty acids are separated from glycerides as much as possible, and at the same time, a high content of saturated fatty acids that improve oxidative stability (OSI: Oxidative Stability Index).
現在までのバイオディーゼル製造方法には以下の方法がある。一つめは、アルカリ触媒方法である。トリグリセリドの低分子化方法としてメタノール、エタノール、イソプロパノールなどの単価アルコールで多価アルコールのグリセロールと置換させるalcholysis反応が標準的な方法として採用されている。メタノールとアルカリ触媒NaOHを用いた反応で、この反応が可逆・逐次的に進行する。反応系における油脂とメタノールとは混ざり合わず、不均一相を形成する。この不均一反応に及ぼす操作因子には、温度、触媒濃度、油脂とメタノールのモル比、攪拌強度が挙げられる。モノグリセリドの触媒反応は可逆的であり、反応を正方向に促進させるためには速やかなグリセロールの分離が必須である。ついでアルカリ触媒の除去を目的とした水洗洗浄が一般的に行われる。しかし、このようにアルカリ触媒法での油脂の流動点降下を目的とする方法は反応が複数必要であり、反応過程で酸化反応をともなうことから、さらに還元反応を追加する必要があるのが問題である。 The biodiesel production methods to date include the following methods. The first is an alkali catalyst method. As a method for reducing the molecular weight of triglyceride, an alcholysis reaction in which monohydric alcohol such as methanol, ethanol, isopropanol or the like is substituted for glycerol of polyhydric alcohol is adopted as a standard method. In the reaction using methanol and the alkali catalyst NaOH, this reaction proceeds reversibly and sequentially. The fats and methanol in the reaction system do not mix and form a heterogeneous phase. The operating factors affecting this heterogeneous reaction include temperature, catalyst concentration, molar ratio of fat and methanol, and stirring strength. The catalytic reaction of monoglyceride is reversible, and rapid glycerol separation is essential to promote the reaction in the forward direction. Next, washing with water for the purpose of removing the alkali catalyst is generally performed. However, the method aiming at lowering the pour point of fats and oils in the alkali catalyst method requires a plurality of reactions and involves an oxidation reaction in the reaction process, so it is a problem that an additional reduction reaction needs to be added. It is.
二つめは、酸触媒及び固体触媒を用いた方法である。酸触媒を用いた場合には遊離脂肪酸のエステル化とトリグリセリドのalcholysisが同時に起こり、アルカリ触媒を用いる場合のように遊離脂肪酸の前処理が不要となる。しかし、これまで酸触媒を用いた燃料化の工業的生産は行われていない。これは、酸触媒による反応が、アルカリ触媒の反応に比べて著しく遅いためである。 The second is a method using an acid catalyst and a solid catalyst. When an acid catalyst is used, esterification of free fatty acid and alcholysis of triglyceride occur simultaneously, and pretreatment of free fatty acid becomes unnecessary as in the case of using an alkali catalyst. However, no industrial production of fuel using an acid catalyst has been performed so far. This is because the reaction using an acid catalyst is significantly slower than the reaction using an alkali catalyst.
三つめは、二段階超臨界メタノール法(Saka-Dadan法)である。超臨界メタノールは触媒を使用することなく遊離脂肪酸のエステル化およびトリグリセリドのalcholysisを起こす機能を有している。また、原料中の30%に及ぶ水分の影響も受けず、廃食油をはじめ多様な原料を燃料に変換できる方法である。超臨界(350℃、20−40MPa)では疎水性の油脂とメタノールが溶媒和し、均一な反応系を形成する。これによって反応速度は著しく向上する。しかし、この反応条件下で生成された不飽和脂肪酸の二重結合がシス型からトランス型に変化することが見出された。この結合状態は脂肪酸メチルエステルの融点を高めることになり、低温流動性に対して悪影響を与えることとなる。 The third is the two-stage supercritical methanol method (Saka-Dadan method). Supercritical methanol has the function of causing esterification of free fatty acids and alcholysis of triglycerides without using a catalyst. In addition, it is a method that can convert various raw materials such as waste cooking oil into fuel without being affected by 30% of water in the raw materials. In the supercritical state (350 ° C., 20-40 MPa), hydrophobic oil and methanol solvate to form a uniform reaction system. This significantly improves the reaction rate. However, it has been found that the double bond of the unsaturated fatty acid produced under this reaction condition changes from cis form to trans form. This bonding state increases the melting point of the fatty acid methyl ester and adversely affects the low temperature fluidity.
四つめは、THF(テトラヒドロフラン)を用いた均一系反応による燃料化である。テトラヒドロフラン(THF)は、無毒・不活性で水、アルコール類、エステル類、炭化水素類に可溶であり、かつ密度が0.8892g/mLで、沸点67℃とメタノールの物性ときわめて類似している。この反応系においてメチルエステル相とグリセロール相の分離はTHF非含有系に比して速やかに起こり、またTHFとメタノールの沸点がほぼ同じであることから、エステル相およびグリセロール相からのこれらの分離は不均一系と同様に行える。しかし、この反応系ではフラン化合物のコストが高く問題が多い。 The fourth is fuelization by homogeneous reaction using THF (tetrahydrofuran). Tetrahydrofuran (THF) is non-toxic and inert, soluble in water, alcohols, esters and hydrocarbons, has a density of 0.8892 g / mL, has a boiling point of 67 ° C and is very similar to the physical properties of methanol. Yes. In this reaction system, the separation of the methyl ester phase and the glycerol phase occurs more quickly than in the THF-free system, and since the boiling points of THF and methanol are almost the same, these separations from the ester phase and the glycerol phase are It can be done in the same way as a heterogeneous system. However, in this reaction system, the cost of the furan compound is high and there are many problems.
軽油は石油から精製過程で分画される燃料である。エタノールとの親和性が弱くお互いに混ざり合いにくく希釈することが難しい。 Light oil is a fuel that is fractionated from petroleum in the refining process. It is difficult to dilute because it has a weak affinity with ethanol and is difficult to mix with each other.
パーム油に関しては絞りたてた後にボイリングして油を精製しているため脂肪酸が酸化して毒性を持ち、発癌プロモーター活性がある。パーム油は、オレンジ色をした常温で固体の油脂で、独特の芳香と甘味を持つ。主な成分はパルミチン酸、オレイン酸、リノール酸で、その他ステアリン酸、ミリスチン酸が含まれている。植物油では珍しく常温で固体で、飽和脂肪酸であるパルミチン酸を多く含むため組成全体としては牛脂に近い。パーム油のオレンジ色は、ベータカロチンに由来し、元々のパーム油にはベータカロチンが豊富に含まれる。レチノイン酸、ビタミンA、コエンザイムQ10、などは精製段階で煮沸するため色が失われ白色になる。パーム油はこのような健康維持サプリメントとしての利点と脂肪酸直鎖構造が長いため酸化されやすいという欠点を併せ持つ。
本発明の課題は脂肪酸の酸化を防ぎながら酵素が油脂の脂肪酸とグリセリンのエーテル結合を開裂し、さらにマイクロ波を照射してその反応を促進させ、バイオエタノールを混合して流動点降下と不飽和度を下げて油脂を低酸化分子に変換することである。 The subject of the present invention is that the enzyme cleaves the ether bond between fatty acid and glycerin in fats and oils while preventing oxidation of fatty acid, and further promotes the reaction by irradiating with microwave, mixing bioethanol to lower the pour point and unsaturated. It is to convert the fats and oils to low oxidation molecules at a reduced degree.
本発明者は前記課題を解決すべく鋭意研究し、油脂に酵素を作用させマイクロ波を照射しバイオエタノールを混合し流動点を測定したところ、凝固点の降下を見出し非酸化的にその反応がなされたことで本発明を完成させた。 The present inventor has eagerly studied to solve the above problems, and when an enzyme is allowed to act on oils and fats, microwaves are irradiated, bioethanol is mixed, and the pour point is measured. This completes the present invention.
本発明によれば酵素とマイクロ波照射、バイオエタノール混合で油脂の流動点の降下及び不飽和度を下げさせられるので装置が安価となり、いわゆる化学触媒を用いないので残留化学物質の問題が無く、CO2排出量がカーボンニュートラルであることから環境負荷の低い油脂を提供できる。また、油脂中の脂肪酸の酸化を低減化するので、燃焼装置の劣化を防ぐことができる。さらに、食用とした場合には健康油となりうる。 According to the present invention, the lowering of the pour point of oil and fat and the degree of unsaturation can be lowered by mixing the enzyme with microwave irradiation and bioethanol, so that the apparatus becomes inexpensive and there is no problem of residual chemical substances because no so-called chemical catalyst is used. Since the CO 2 emission amount is carbon neutral, it is possible to provide oils and fats with low environmental impact. Moreover, since the oxidation of the fatty acid in fats and oils is reduced, deterioration of the combustion apparatus can be prevented. Furthermore, when used as an edible, it can be a health oil.
酵素をつくる微生物はグラム陽性桿菌で、通称バチルスミドウスジ菌(Bacillus midousuji)と言い、至適発育温度が65℃の好熱菌である。1995年に米国コロンビア大学と慈恵医大で冷凍保存を始めて16SリボソームRNAの塩基配列で近縁関係を作ると基準株はGeobacillus thermodenitrificansに97%相同で、増殖曲線モデルの計算式と実測値から計算すると、二分裂時間が6.9〜7.6分となった。通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素は、トリプチケースソイ寒天培地(BBL)に65℃、3時間新鮮培養後に菌苔をとって同培地に再塗布し、再培養をしたものを集菌し超音波破砕後に凍結乾燥し、乳ばちで細かく粉体化したものを用いた。多量の通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素を準備する場合は安価なcorn steep liquorを用いてもよい。 The microorganism that produces the enzyme is a Gram-positive bacillus, commonly called Bacillus midousuji, and is a thermophilic bacterium with an optimum growth temperature of 65 ° C. In 1995, when cryopreservation was started at Columbia University and Jikei University in the United States and a close relationship was established with the base sequence of 16S ribosomal RNA, the reference strain was 97% homologous to Geobacillus thermodenitrificans. The split time was 6.9 to 7.6 minutes. The crude enzyme obtained from Bacillus midousuji, commonly called Bacillus midousuji, was freshly cultured on trypticase soy agar medium (BBL) at 65 ° C. for 3 hours, and then re-applied to the same medium after re-applying to the same medium. Bacteria were collected, lyophilized after ultrasonic crushing, and finely pulverized with milk dust. An inexpensive corn steep liquor may be used when preparing a large amount of a crude enzyme obtained from the so-called Bacillus midousuji.
通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素の作用について述べる。基質をベンゼン環2環構造とすると、代謝経路はグルタチオン−S−トランスフェラーゼ様酵素がグルタチオンを利用して硫黄を付加親水化し、還元的にベンゼン環を開裂したと思われる中間代謝産物が認められる。2環を結ぶエーテル結合を切断した状態である。グリセロールの脂肪酸とのエーテル結合を切断し、トリグリセリドのalcholysisと脂肪酸をモノアルキルエステル化していくものと予想している。 The action of the crude enzyme obtained from the so-called Bacillus midousuji is described. When the substrate is a benzene ring bicyclic structure, an intermediate metabolite that appears to be a hydropathic glutathione-S-transferase-like enzyme using glutathione to add sulfur to hydrophilization and reductively cleave the benzene ring is observed. This is a state in which an ether bond connecting two rings is cut. It is expected that the ether bond between glycerol and fatty acid will be cleaved, and triglyceride alcholysis and fatty acid will be monoalkyl esterified.
マイクロ波による生体分子の切断作用について述べる。乾燥条件下においてウイルス粒子、細菌、芽胞細菌、菌類、胞子、種子の生命体がマイクロ波照射を受けることによりそのゲノムDNA、核外DNA、RNA、タンパク質その他の生体高分子がそれぞれ切断される現象を見出した。マイクロ波とは波長30cm−0.3mm、周波数1GHz−1THzの電磁波である。国際単位系における電波の周波数による分類では、マイクロ波はデシメートル波の一部、センチ波、ミリ波、サブミリ波の一部が含まれる。いわゆる純粋な誘電体である絶縁体では、電子は原子あるいは分子内に束縛されているため電流は流れないが、交番電界をかけることにより振動する。これは次のように説明される。誘電体物質を構成する各々の原子あるいは分子において、負の電荷(電子)の分布とそれと対をなす正の電荷(正イオン)の分布の中心が偏位した状態の「電気双極子」は、各々外部から加える電界の向きに応じ向きを揃えようとするが、周波数が高くなるにつれ追従できなくなり、振動や回転による分子相互の摩擦により分子内の原子間の結合を解きほぐす。このエネルギー損失が「誘電損失」である。装置は、マイクロ波発振器と、加熱物質を設置し照射するための金属壁で囲まれた容器や導波管、アンテナなどの「アプリケータ」から成る。マイクロ波の照射により、鏡の部分がランダムに切断される。 The biomolecule cutting action by microwave will be described. Phenomenon in which genome DNA, extranuclear DNA, RNA, protein and other biopolymers are cleaved by microwave irradiation of living organisms such as virus particles, bacteria, spore bacteria, fungi, spores and seeds under dry conditions I found. The microwave is an electromagnetic wave having a wavelength of 30 cm-0.3 mm and a frequency of 1 GHz-1 THz. In the classification based on the frequency of radio waves in the international unit system, the microwave includes a part of a decimeter wave, a part of a centimeter wave, a millimeter wave, and a submillimeter wave. In an insulator, which is a so-called pure dielectric, no current flows because electrons are confined in atoms or molecules, but vibrates when an alternating electric field is applied. This is explained as follows. In each atom or molecule constituting the dielectric material, the “electric dipole” in which the center of the distribution of the negative charge (electron) and the distribution of the positive charge (positive ion) paired with it is shifted, Each attempts to align the direction according to the direction of the electric field applied from the outside, but as the frequency increases, it becomes unable to follow, and the bonds between atoms within the molecule are broken by the friction between the molecules due to vibration and rotation. This energy loss is “dielectric loss”. The device consists of a microwave oscillator and an “applicator” such as a container, waveguide, antenna, etc. surrounded by a metal wall for placing and irradiating a heated material. The part of the mirror is randomly cut by the microwave irradiation.
本発明の対象である脂肪酸の分子量を小さくし、流動点を降下させ酸化度を低減させた油脂としてはパーム油がある。パーム油は世界的に生産量が大きく安定していて安価である。パーム油は食品の添加物として利用されているが、トロピカルオイル一般に知られているように流動点が12℃と高いこと、ヒト細胞への発癌プロモーター活性が懸念されている。トリグリセリドなどの油脂のエーテル結合を開裂し、モノグリセリドと脂肪酸分子にし流動点を降下させること、還元的に行われ酸化度を低減するので飽和脂肪酸の含有率が高く、発癌プロモーター活性を抑え、油脂を健康食品に転換することができ、優良な燃料を安価に製造することができる。 Palm oil is an example of a fat that has a reduced molecular weight, lowers the pour point, and reduces the degree of oxidation. Palm oil has a large and stable production volume worldwide and is inexpensive. Palm oil is used as an additive for foods. However, as is generally known in tropical oils, there is a concern that the pour point is as high as 12 ° C. and carcinogenic promoter activity on human cells. Cleavage the ether bond of fats and oils such as triglycerides, lowering the pour point to monoglycerides and fatty acid molecules, reducing the degree of oxidation because it is done reductively, high content of saturated fatty acids, suppressing carcinogenic promoter activity, It can be converted into health food, and excellent fuel can be manufactured at low cost.
本発明では、通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素を使用できるが、より効率的にグリセリンと脂肪酸のエーテル結合を開裂するのにアルデヒド基、ヒドロキシル基を添加してもよい。常温でも活性がみられるが、好熱菌酵素なので60℃以上の温度帯で反応を行うと反応速度が早い。 In the present invention, a crude enzyme obtained from the so-called Bacillus midousuji can be used, but an aldehyde group or a hydroxyl group may be added to more efficiently cleave the ether bond between glycerin and fatty acid. Although activity is observed even at room temperature, the reaction rate is fast when the reaction is carried out in a temperature range of 60 ° C. or higher because it is a thermophilic bacterium.
基質に対する通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素の量比は1000分の1程度でよい。反応温度と時間によって量を節約する。ガラス製容器に入れたパーム油1mLを2区画準備し、通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素を量比で1000分の1(0.1%)使用し、処理時間を(1)24時間、(2)72時間 とし、反応温度を65℃とした。対照は非酵素添加とした。反応後のパーム油を4℃冷蔵庫に静置し流動状態を観察した。観察結果(1)24時間の粗酵素反応区画では非反応区画に対して10℃での固化時間が著しく遅くなることが確認され、粗酵素反応区画では20分間であったのに比較対比し、非反応区画では10分間であった。観察結果(2)72時間の粗酵素反応区画では非反応区画に対比して10℃での固化時間がさらに延長することが観察された。マイクロ波照射区画では18時間で固化が認められなっかたのに比較対比して、非マイクロ波照射区画では10分間で固化が確認された。本発明で使用することのできるマイクロ波の周波数は100MHz〜100GHzであり、より好適に使用できるのは100MHz〜10GHzである。より効率的に油脂中の脂肪酸分子に見られる炭化水素の側鎖を切断するのに炭化水素分子に直接配位する不整分子物質(電気双極子)を添加する方法も考えられる。 The ratio of the crude enzyme obtained from the so-called Bacillus midousuji to the substrate may be about 1/1000. Save volume by reaction temperature and time. Two sections of 1 mL of palm oil in a glass container were prepared, and the crude enzyme obtained from the so-called Bacillus midousuji was used in 1/1000 (0.1%) in a quantitative ratio, and the treatment time was ( 1) 24 hours, (2) 72 hours, and the reaction temperature was 65 ° C. The control was non-enzyme added. The palm oil after reaction was left still in a 4 degreeC refrigerator, and the fluid state was observed. Observation result (1) It was confirmed that the solidification time at 10 ° C. was significantly delayed in the crude enzyme reaction zone for 24 hours compared to the non-reaction zone, and compared with 20 minutes in the crude enzyme reaction zone, It was 10 minutes in the unreacted compartment. Observation result (2) It was observed that the solidification time at 10 ° C. was further extended in the 72-hour crude enzyme reaction zone as compared to the non-reaction zone. In contrast to the fact that solidification was not observed in 18 hours in the microwave irradiation section, solidification was confirmed in 10 minutes in the non-microwave irradiation section. The frequency of the microwave that can be used in the present invention is 100 MHz to 100 GHz, and more preferably 100 MHz to 10 GHz. A method of adding an irregular molecular substance (electric dipole) that coordinates directly to the hydrocarbon molecule is also conceivable in order to cleave the hydrocarbon side chain found in the fatty acid molecule in the oil and fat more efficiently.
マイクロ波を照射する時間は15分から20分以上であることが好ましい。15分以内であるとグリセリン分子に結合している脂肪酸に電磁波を十分に吸収させることができないことによって、不整分子の振動が得られないことから脂肪酸の炭化水素側鎖の切断がなされない。 The microwave irradiation time is preferably 15 minutes to 20 minutes or more. If it is within 15 minutes, the fatty acid bonded to the glycerin molecule cannot sufficiently absorb the electromagnetic wave, so that the vibration of the irregular molecule cannot be obtained, so that the hydrocarbon side chain of the fatty acid is not cleaved.
マイクロ波照射を間歇的に行う場合は、装置内の水蒸気による温度上昇や電磁波照射装置のアンテナ部の加熱による装置内の温度上昇がみられるので、装置全体を冷却しながら行う。例えば15分〜20分照射を行い、油脂の温度上昇を観察しながらさらに15分〜20分照射するようにして繰り返して行う。 When performing microwave irradiation intermittently, since the temperature rise by the water vapor | steam in an apparatus and the temperature rise in an apparatus by the heating of the antenna part of an electromagnetic wave irradiation apparatus are seen, it carries out, cooling the whole apparatus. For example, irradiation is performed for 15 minutes to 20 minutes, and repeated for 15 minutes to 20 minutes while observing the temperature rise of the oil.
ガラス製容器に入れたパーム油1mLを2区画準備し、1000Wのマイクロ波発生装置(シャープ社製RE-SD50-S)を使用し、処理時間を(1)20分、(2)40分 とした。2.45GHzのマイクロ波を照射した。マイクロ波照射後のパーム油を10℃の冷蔵庫に静置し流動状態を観察した。装置内の温度上昇に伴なうパーム油の温度上昇に対してはガラス製容器を適宜、冷凍庫に静置して冷却した。観察結果は(1)20分間のマイクロ波照射区画では非マイクロ波照射区画に対して10℃での固化時間が著しく遅くなることが確認され、マイクロ波照射区画では20分間であったのに比較対比し、非マイクロ波照射区画では10分間であった。観察結果(2)40分間のマイクロ波照射区画では非マイクロ波照射区画に対比して10℃での固化時間がさらに延長することが観察された。マイクロ波照射区画では18時間で固化が認められなかったのに比較対比して、非マイクロ波照射区画では10分間で固化が確認された。 Prepare 2 sections of 1 mL of palm oil in a glass container, and use a 1000 W microwave generator (RE-SD50-S manufactured by Sharp Corporation). Processing time is (1) 20 minutes, (2) 40 minutes did. 2. 45 GHz microwave was irradiated. The palm oil after microwave irradiation was left still in a 10 degreeC refrigerator, and the fluid state was observed. With respect to the temperature rise of palm oil accompanying the temperature rise in the apparatus, the glass container was appropriately placed in a freezer and cooled. The observation results were as follows: (1) It was confirmed that the solidification time at 10 ° C. was significantly delayed in the microwave irradiation section for 20 minutes, compared with 20 minutes in the microwave irradiation section. In contrast, the non-microwave irradiation section was 10 minutes. Observation result (2) It was observed that the solidification time at 10 ° C. was further extended in the microwave irradiation section for 40 minutes as compared with the non-microwave irradiation section. In contrast to the fact that solidification was not observed in 18 hours in the microwave irradiation section, solidification was confirmed in 10 minutes in the non-microwave irradiation section.
同様の条件で、通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素、マイクロ波、エタノール添加(10%)を処理する組み合わせでは、表1に示すように流動点が降下することが観察された。 Under the same conditions, the pour point is observed to drop as shown in Table 1 in the combination of the crude enzyme obtained from the so-called Bacillus midousuji, microwave, and ethanol addition (10%). It was.
油脂を構成する脂肪酸分子の鎖構造が中鎖以上であると食した場合に、発癌物質でイニシエーション作用を受けたヒト細胞に、油脂には発癌プロモーターとしての癌化を促進する作用があることが報告されている。そのため油脂の脂肪酸分子構造をできるだけ小さくして低流動点化し、飽和脂肪酸含量を多くして発癌プロモーター活性を下げる必要がある。 When the chain structure of fatty acid molecules constituting fats and oils is eaten as medium chain or higher, human cells that have undergone an initiation action with carcinogens may have the effect of promoting canceration as a carcinogenic promoter. It has been reported. Therefore, it is necessary to make the fatty acid molecular structure of fats and oils as small as possible to lower the pour point, increase the saturated fatty acid content, and lower the tumor promoter activity.
パーム油は植物油で常温で固体で、飽和脂肪酸であるパルミチン酸を多く含むため組成全体としては牛脂に近い。従来からパーム油に関しては、絞りたてた後にボイリングして油を精製しているため脂肪酸が酸化して毒性を持ち、発癌プロモーター活性がそのまま残るという問題があった。また、パーム油は、オレンジ色をした常温で固体の油脂で、独特の芳香と甘味を持ち、主な成分は前述したパルミチン酸、その他オレイン酸、リノール酸、ステアリン酸、ミリスチン酸である。パーム油のオレンジ色は、ベータカロチンに由来し、元々のパーム油にはベータカロチンが豊富に含まれる。従来レチノイン酸、ビタミンA、コエンザイムQ10などは精製段階で元々のパーム油が煮沸されるため失われてしまい、色は白色になる。本発明である通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素を使用する方法では低温で反応させるため健康油としての主な成分がそのまま残り、さらに脂肪酸が非酸化的に直鎖構造切断されるため、油脂は毒性と発癌プロモーター活性を減弱させ健康油となる。 Palm oil is a vegetable oil that is solid at room temperature and contains a large amount of palmitic acid, which is a saturated fatty acid. Conventionally, palm oil has been refrigerated and purified by boiling, so that there is a problem that fatty acid is oxidized and toxic, and carcinogenic promoter activity remains as it is. Palm oil is an orange-colored oil that is solid at room temperature and has a unique aroma and sweetness. The main components are palmitic acid, oleic acid, linoleic acid, stearic acid, and myristic acid described above. The orange color of palm oil is derived from beta-carotene, and the original palm oil is rich in beta-carotene. Conventionally, retinoic acid, vitamin A, coenzyme Q10 and the like are lost because the original palm oil is boiled in the purification stage, and the color becomes white. In the method of using the crude enzyme obtained from the so-called Bacillus midousuji which is the present invention, the main component as a health oil remains as it is because it is reacted at a low temperature, and the fatty acid is non-oxidatively cleaved in a linear structure. Therefore, oils and fats reduce health and carcinogenic promoter activity and become health oils.
パーム油など地球にやさしい植物由来の油脂の流動点を降下させ、酵素的に酸化度を低減するので飽和脂肪酸の含有率が高く、環境に対する負荷を軽減した優良な燃料を安価に製造できる。また、通称バチルスミドウスジ菌(Bacillus midousuji)から得られた粗酵素を使用して低温で反応させるため、健康油としての主な成分がそのまま残り、さらに脂肪酸が非酸化的に直鎖構造切断されるため、毒性と発癌プロモーター活性を減弱させた健康油の製造が容易となる。 The pour point of earth-friendly plant-derived fats and oils such as palm oil is lowered and the degree of oxidation is enzymatically reduced, so the content of saturated fatty acids is high, and an excellent fuel with reduced environmental burden can be produced at low cost. In addition, since the reaction is carried out at a low temperature using a crude enzyme obtained from the so-called Bacillus midousuji, the main components as health oil remain, and the fatty acid is non-oxidatively cleaved in a linear structure. Therefore, it becomes easy to produce health oil with reduced toxicity and carcinogenic promoter activity.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008026005A JP5243809B2 (en) | 2008-02-06 | 2008-02-06 | Fermented oil and production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008026005A JP5243809B2 (en) | 2008-02-06 | 2008-02-06 | Fermented oil and production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009183198A true JP2009183198A (en) | 2009-08-20 |
JP5243809B2 JP5243809B2 (en) | 2013-07-24 |
Family
ID=41067171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008026005A Expired - Fee Related JP5243809B2 (en) | 2008-02-06 | 2008-02-06 | Fermented oil and production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5243809B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002483A1 (en) * | 2010-06-30 | 2012-01-05 | マイクロ波環境化学株式会社 | Oily substance production process, and oily substance production device |
US9370762B2 (en) | 2011-11-11 | 2016-06-21 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus |
US9573112B2 (en) | 2011-11-11 | 2017-02-21 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus |
US11224852B2 (en) | 2011-06-29 | 2022-01-18 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus and chemical reaction method |
US11229895B2 (en) | 2011-11-11 | 2022-01-25 | Microwave Chemical Co., Ltd. | Chemical reaction method using chemical reaction apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002505073A (en) * | 1997-11-26 | 2002-02-19 | ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク | Waste biodegradable bacteria |
JP2002301466A (en) * | 2001-01-30 | 2002-10-15 | Takasago Thermal Eng Co Ltd | Method and apparatus for purifying pollutants |
JP2002336815A (en) * | 2001-05-15 | 2002-11-26 | Kurita Water Ind Ltd | Solid waste treatment method |
JP2004340445A (en) * | 2003-05-14 | 2004-12-02 | Tokyo Sosai:Kk | Crematorium with dioxin biological purification device |
JP2005278750A (en) * | 2004-03-29 | 2005-10-13 | Mariusu:Kk | Method for decomposing dioxins by using enzyme |
JP2005319395A (en) * | 2004-05-10 | 2005-11-17 | Sadayori Hoshina | Decomposition method of high bod specimen, urea, ammonia, and nitrate |
-
2008
- 2008-02-06 JP JP2008026005A patent/JP5243809B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002505073A (en) * | 1997-11-26 | 2002-02-19 | ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク | Waste biodegradable bacteria |
JP2002301466A (en) * | 2001-01-30 | 2002-10-15 | Takasago Thermal Eng Co Ltd | Method and apparatus for purifying pollutants |
JP2002336815A (en) * | 2001-05-15 | 2002-11-26 | Kurita Water Ind Ltd | Solid waste treatment method |
JP2004340445A (en) * | 2003-05-14 | 2004-12-02 | Tokyo Sosai:Kk | Crematorium with dioxin biological purification device |
JP2005278750A (en) * | 2004-03-29 | 2005-10-13 | Mariusu:Kk | Method for decomposing dioxins by using enzyme |
JP2005319395A (en) * | 2004-05-10 | 2005-11-17 | Sadayori Hoshina | Decomposition method of high bod specimen, urea, ammonia, and nitrate |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002483A1 (en) * | 2010-06-30 | 2012-01-05 | マイクロ波環境化学株式会社 | Oily substance production process, and oily substance production device |
US10457930B2 (en) | 2010-06-30 | 2019-10-29 | Microwave Chemical Co., Ltd. | Oil-based material-producing method and oil-based material-producing apparatus |
US11224852B2 (en) | 2011-06-29 | 2022-01-18 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus and chemical reaction method |
US9370762B2 (en) | 2011-11-11 | 2016-06-21 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus |
US9573112B2 (en) | 2011-11-11 | 2017-02-21 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus |
US10464040B2 (en) | 2011-11-11 | 2019-11-05 | Microwave Chemical Co., Ltd. | Chemical reaction method |
US11229895B2 (en) | 2011-11-11 | 2022-01-25 | Microwave Chemical Co., Ltd. | Chemical reaction method using chemical reaction apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5243809B2 (en) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hidalgo et al. | Advances in direct transesterification of microalgal biomass for biodiesel production | |
Gude et al. | Microwave energy potential for biodiesel production | |
Alsultan et al. | A short review on catalyst, feedstock, modernised process, current state and challenges on biodiesel production | |
Kumar et al. | Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia | |
Roschat et al. | Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand | |
Ahmad et al. | Microalgae as a sustainable energy source for biodiesel production: a review | |
Alajmi et al. | Recent trends in biodiesel production from commonly used animal fats | |
Levine et al. | Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification | |
Lam et al. | Catalytic transesterification of high viscosity crude microalgae lipid to biodiesel: effect of co-solvent | |
Kareem et al. | Enzymatic biodiesel production from palm oil and palm kernel oil using free lipase | |
Caballero et al. | Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1, 3-regiospecific alcoholysis of sunflower oil | |
JP5243809B2 (en) | Fermented oil and production method | |
Roschat et al. | Biodiesel production by ethanolysis of palm oil using SrO as a basic heterogeneous catalyst | |
Cui et al. | Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation | |
Wang et al. | Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock–A review | |
Santin et al. | Comparison of macauba and soybean oils as substrates for the enzymatic biodiesel production in ultrasound-assisted system | |
Raspe et al. | Effect of additives and process variables on enzymatic hydrolysis of macauba kernel oil (Acrocomia aculeata) | |
Loong et al. | Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization | |
Quayson et al. | Biodiesel-mediated biodiesel production: a recombinant Fusarium heterosporum lipase-catalyzed transesterification of crude plant oils | |
Jamil et al. | State-of-the-art catalysts for clean fuel (methyl esters) production—a comprehensive review | |
KR20170057790A (en) | Medium composition utilizing starch-enriched brewery waste and method for producing the same | |
Varma et al. | Biodiesel from fats: Fatty acid feedstock as a circular economy solution | |
Gude et al. | Microwave enhanced methods for biodiesel production and other environmental applications | |
Uliana et al. | Acidity reduction of enzymatic biodiesel using alkaline washing | |
Korbag et al. | Trans-esterification of non-edible oil with a CaO–MgO heterogeneous catalyst to produce biodiesel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160412 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5243809 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |