JP2009172787A - Method for producing heat-treated lumber - Google Patents
Method for producing heat-treated lumber Download PDFInfo
- Publication number
- JP2009172787A JP2009172787A JP2008011511A JP2008011511A JP2009172787A JP 2009172787 A JP2009172787 A JP 2009172787A JP 2008011511 A JP2008011511 A JP 2008011511A JP 2008011511 A JP2008011511 A JP 2008011511A JP 2009172787 A JP2009172787 A JP 2009172787A
- Authority
- JP
- Japan
- Prior art keywords
- wood
- heat
- section
- temperature
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 88
- 239000002023 wood Substances 0.000 claims description 110
- 239000010875 treated wood Substances 0.000 claims description 57
- 238000001035 drying Methods 0.000 claims description 33
- 239000003921 oil Substances 0.000 abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 21
- 241000256602 Isoptera Species 0.000 abstract description 6
- 230000001846 repelling effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 22
- 235000019198 oils Nutrition 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 241000218645 Cedrus Species 0.000 description 14
- 238000005336 cracking Methods 0.000 description 14
- 235000019484 Rapeseed oil Nutrition 0.000 description 9
- 235000019486 Sunflower oil Nutrition 0.000 description 9
- 239000002600 sunflower oil Substances 0.000 description 9
- 241000218652 Larix Species 0.000 description 8
- 235000005590 Larix decidua Nutrition 0.000 description 8
- 241000218691 Cupressaceae Species 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 241000233866 Fungi Species 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 239000004567 concrete Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 240000008397 Ganoderma lucidum Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- -1 that is Substances 0.000 description 1
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Description
本発明は、腐朽耐久性、防蟻性、及び、安全性が向上された熱処理木材の製造方法に関する。 The present invention relates to a method for producing heat-treated wood with improved decay durability, ant repellency, and safety.
従来より、鉄、プラスチック、及び、コンクリートは、建築材料として使用されてきたが、1)鉄は腐食に弱いので、その表面に耐腐食性塗料で塗装することが不可欠とされており、2)プラスチックは耐候性が弱いので、その屋外使用での耐用年数が短いものとされており、そして、3)コンクリートは、アルカリ骨材反応等により期待されていた耐用年数が予想外に短い場合があるものとされている。したがって、鉄、プラスチック、及び、コンクリートについては、長く使用するために、それらに、適切な保護処理が施されたり、また、適切な維持管理が行われている。 Conventionally, iron, plastics, and concrete have been used as building materials, but 1) iron is vulnerable to corrosion, so it is indispensable to paint its surface with a corrosion-resistant paint. 2) Because plastics have low weather resistance, they are considered to have a short useful life in outdoor use, and 3) concrete may have an unexpectedly short useful life due to alkali-aggregate reaction, etc. It is supposed to be. Therefore, iron, plastic, and concrete are subjected to appropriate protection treatment and appropriate maintenance and management for long-term use.
木材は、金属、コンクリート、及び、プラスチックよりも比強度に優れているので、加工しやすいこと、二酸化炭素を固定できること、再生を可能とすること、等の特性を有しているので、今後、継続使用できる唯一の建築材料といえるが、生物資源であるという性質上、腐朽菌やシロアリの餌になりやすく、他の材料と同様に適切な保護処理を施されなければ、耐用年数が非常に短いという欠点を有している。そこで、従来においては、木材の耐用年数を延長するために、減圧方法、加圧方法等の方法により、木材に薬剤を注入して浸潤させているが、これらの方法が最も木材の期待耐用年数を長くする技術として世界的に認知されている。 Since wood has a higher specific strength than metal, concrete, and plastic, it has characteristics such as being easy to process, being able to fix carbon dioxide, and being able to be regenerated. It can be said that it is the only building material that can be used continuously, but because it is a biological resource, it tends to be a bait for decaying fungi and termites, and if it is not properly protected like other materials, its useful life is very high. It has the disadvantage of being short. Therefore, in the past, in order to extend the service life of wood, chemicals are injected and infiltrated into the wood by a method such as a decompression method or a pressurization method, but these methods are the most expected life of wood. Recognized worldwide as a technology to lengthen
前記木材の処理においては、現在、安全性に優れた新薬が世界的な規模で使用されているが、このような新薬は、化学物質であるので、住宅部材、デッキ、フェンス、外構材等の木材製品を使用する顧客の中には、薬剤で処理された木材の耐久性が良好であるということを理解しながらも、敢えて処理木材を避けて、天然の高耐久性樹種を使用する事例が増えてきている。特に、欧州ではこの傾向が強く、薬剤処理木材よりも、カラマツ心材及び高耐久性広葉樹で形成された製品が使用されている。また、所謂、殺菌剤、防虫剤及び防蟻剤として分類されている薬剤以外の成分、即ち、無水酢酸やフルフリルアルコールを木材に注入した後、化学反応させて固着させる、アセチル化処理、フルフリル化処理等の木材処理が商業化され始めている。しかしながら、液体を木材に注入する方法には、従来の薬剤注入と同じ問題、即ち、木材の浸透性の難易に製品の耐久性能が大幅に影響を受けるという問題を抱えている。 In the treatment of the wood, a new drug with excellent safety is currently used on a global scale, but since such a new drug is a chemical substance, it is a housing member, deck, fence, exterior material, etc. Some customers who use wood products understand the fact that chemical-treated wood has good durability, but dare avoid treated wood and use natural, highly durable tree species Is increasing. This tendency is particularly strong in Europe, and products made of larch heartwood and highly durable hardwood are used rather than drug-treated wood. In addition, acetylation treatment, furfuryl, in which components other than chemicals classified as so-called bactericides, insect repellents, and ant repellents, that is, acetic anhydride or furfuryl alcohol are injected into wood and then chemically reacted to fix Wood treatment such as chemical treatment is beginning to be commercialized. However, the method of injecting the liquid into the wood has the same problem as the conventional medicine injection, that is, the durability performance of the product is greatly affected by the difficulty of wood permeability.
これらの液体を木材に注入する以外の方法で注目を浴びているのが熱処理木材(特許文献1,2を参照。)である。この「熱処理木材」は、木材乾燥に通常使用されていた温度域(120℃まで)よりも遙かに高い木材温度を180〜250℃に維持しながら木材を長時間処理すると、木材中のヘミセルロースが改質されると共に、セルロースの結晶化が促進されて、木材が腐朽菌により腐朽されなくなる、という理論を商業化したものである。このような従来の熱処理木材の製造においては、植物油、高温窒素、水蒸気等の加熱媒体が用いられている。また、このような熱処理木材の製造においては、木材を加熱するだけではなく、木材の過剰な炭化を抑制するために酸素を遮断する方法も同時に考慮されている。熱処理木材の生産は、欧州において、2001年頃から本格的になり、最近では、約20万立方メートルの生産量になっている。
木材は、伐採直後では、多量の水分をその組織中に保持しているので、木材を用材として使用する場合には、水分を乾燥により除去して最も寸法の安定する平衡含水率(地域、季節により変動するが、関東地方では、平均して15%である。)までに調整する必要がある。木材が乾燥する場合、木材全体に不均一に存在する自由水が組織内部から組織外部へ移動することが必要である。この自由水が組織から無くなり、結合水のみになった時点を繊維飽和点という。木材の含水率がこの繊維飽和点以下になった時点から割れ、捻れ、反り等の欠点が各部分で発生してくる。これらは、木材組織が長さ方向、半径方向、接線方向により収縮率が異なるので、応力を発生させて組織上のひずみを解消しようとして発生する欠点である。木材を乾燥させる技術とは、このような乾燥過程で発生する欠点を最小限にして最大の経済性を生もうとする努力から発達してきたものである。 Since wood retains a large amount of moisture in its tissue immediately after logging, when using wood as a material, the moisture content is removed by drying and the equilibrium moisture content (region, season) is the most stable in size. However, in the Kanto region, the average is 15%.) When wood is dried, it is necessary for free water that exists unevenly throughout the wood to move from inside the tissue to outside the tissue. The point at which this free water disappears from the tissue and becomes only bound water is called the fiber saturation point. Defects such as cracking, twisting, and warping occur at each part from the time when the moisture content of the wood is below the fiber saturation point. These are disadvantages that occur when the wood structure has different shrinkage rates depending on the length direction, the radial direction, and the tangential direction, so that stress is generated to eliminate strain on the structure. The technique of drying wood has been developed from an effort to maximize economic efficiency by minimizing the disadvantages that occur during such drying processes.
従来においては、最小辺が50mm未満の小断面木材では、含水率12%以下に割れを発生させないで乾燥させることができたが、最小辺が50mm以上の角材や、芯持ち材や、直径が50mm以上の丸太では、割れを発生させないで乾燥することは、極めて困難であって、実質的に不可能とされていた。 In the past, small cross-section timber with a minimum side of less than 50 mm could be dried without causing cracks to a moisture content of 12% or less. For logs of 50 mm or more, it was extremely difficult and substantially impossible to dry without causing cracks.
従来の熱処理木材の製造においては、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、及び、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材に木材温度を180〜250℃に維持しながら長時間にわたり加熱処理を施して熱処理木材とすると、得られた熱処理木材に割れ、捻れ、反り等が発生するので、製品化できないという問題があった。それ故、従来においては、木材温度を180〜250℃に維持しながら長時間にわたり加熱処理を施しても、割れ、捻れ、反り等が発生しない比較的小断面の熱処理木材しか実用化されてこなかった。よって、このような小断面の熱処理木材の用途としては、断面が10〜40mmのデッキ板、フラワーポット、住宅の外壁材、窓枠、浴槽、木製浴室ユニット材等のものに限定されていた。 In the manufacture of conventional heat-treated wood, a large cross section selected from a log having a diameter of 50 mm or more in a cross section, a square member having a minimum side of 50 mm or more in a cross section, and a plate material having a minimum side of 50 mm or more in a cross section. When heat treatment is performed for a long time while maintaining the wood temperature at 180 to 250 ° C. on wood having a moisture content of 15% or more, cracking, twisting, warping, etc. occur in the obtained heat treated wood. There was a problem that could not be commercialized. Therefore, conventionally, only heat-treated wood having a relatively small cross section that does not cause cracking, twisting, warping, etc. has been put into practical use even if heat treatment is performed for a long time while maintaining the wood temperature at 180 to 250 ° C. It was. Therefore, the use of heat-treated wood having such a small cross section has been limited to deck boards, flower pots, house outer wall materials, window frames, bathtubs, wooden bathroom unit materials and the like having a cross section of 10 to 40 mm.
本発明は、かかる問題を解決することを目的としている。 The present invention aims to solve this problem.
即ち、本発明は、大きな断面を有する熱処理木材であっても、割れ、変形及び反りの発生が防止されると共に、腐朽耐久性、防蟻性及び安全性が向上された熱処理木材の製造方法を提供することを目的としている。 That is, the present invention provides a method for producing a heat-treated wood that is prevented from cracking, deforming and warping, and having improved durability against decay, ant repellency and safety even with heat-treated wood having a large cross section. It is intended to provide.
本発明者は、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、並びに、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材を過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率12%以下に乾燥し、続いて、前記乾燥した木材を前記過熱水蒸気及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理したところ、大きな断面を有する熱処理木材であっても、割れ、変形及び反りの発生が防止されると共に、腐朽耐久性、防蟻性及び安全性が向上された熱処理木材を製造することができることを見出して、本発明を完成するに至った。 The inventor has a moisture content of 15 having a large cross section selected from a log having a diameter of 50 mm or more in a cross section, a square member having a minimum side of 50 mm or more in a cross section, and a plate having a minimum side of 50 mm or more in a cross section. % Of wood is dried to a moisture content of 12% or less using at least one heating medium selected from superheated steam, microwave and heating oil while maintaining the wood temperature at 50-130 ° C. The heat-treated wood having a large cross section is obtained by heat-treating the obtained wood with at least one heating medium selected from the superheated steam and heating oil while maintaining the wood temperature at 180 to 250 ° C. for 4 to 24 hours. To produce heat-treated wood that is prevented from cracking, deformation and warping, and has improved anti-corrosion, ant-repellency and safety I have found that you can, and have completed the present invention.
即ち、請求項1に記載された発明は、上記目的を達成するために、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、並びに、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材を過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率12%以下に乾燥する第1工程と、前記第1工程で乾燥した木材を前記過熱水蒸気及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理する第2工程と、を順次有することを特徴とする熱処理木材の製造方法である。 That is, in order to achieve the above object, the invention described in claim 1 is a log having a diameter of 50 mm or more in a cross section, a square bar having a minimum side of 50 mm or more in a cross section, and a minimum side in a cross section. The wood temperature is maintained at 50 to 130 ° C. using at least one heating medium selected from superheated steam, microwave and heating oil for wood having a water content of 15% or more having a large cross section selected from a plate material of 50 mm or more. While maintaining the wood temperature at 180 to 250 ° C. using the first step of drying to a moisture content of 12% or less and the wood dried in the first step using at least one heating medium selected from the superheated steam and heating oil And a second step of heat-treating for 4 to 24 hours in sequence.
請求項2に記載された発明は、請求項1に記載された発明において、前記第2工程における加熱媒体として過熱水蒸気を用いることを特徴とするものである。 The invention described in claim 2 is characterized in that, in the invention described in claim 1, superheated steam is used as a heating medium in the second step.
請求項3に記載された発明は、請求項1に記載された発明において、前記第2工程における加熱媒体として加熱オイルを用いることを特徴とするものである。 The invention described in claim 3 is characterized in that, in the invention described in claim 1, heating oil is used as a heating medium in the second step.
請求項1に記載された本発明によれば、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、並びに、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材を過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率12%以下に乾燥する第1工程と、前記第1工程で乾燥した木材を前記過熱水蒸気及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理する第2工程と、を順次有しているので、大きな断面を有する熱処理木材であっても、割れ、変形及び反りの発生が防止されると共に、腐朽耐久性、防蟻性及び安全性が向上された熱処理木材の製造方法を提供することができる。 According to the first aspect of the present invention, a log having a cross-sectional diameter of 50 mm or more, a square member having a minimum side of 50 mm or more in a cross-section, and a plate member having a minimum side of a cross-section of 50 mm or more is selected. A wood having a large cross section with a water content of 15% or more is maintained at a wood temperature of 50 to 130 ° C. using at least one heating medium selected from superheated steam, microwave and heating oil, and the water content is reduced to 12% or less. A first step of drying, and heat treatment of the wood dried in the first step for 4 to 24 hours while maintaining the wood temperature at 180 to 250 ° C. using at least one heating medium selected from the superheated steam and heating oil And the second step to prevent the occurrence of cracking, deformation and warping even with heat-treated wood having a large cross section,朽 durability can termite and safety is to provide a method of manufacturing enhanced heat treated wood.
請求項2に記載された本発明によれば、前記第2工程における加熱媒体として過熱水蒸気を用いるので、ほとんど無酸素雰囲気で木材の熱処理が可能となり、しかも、非常に熱効率が良いので、200〜250℃の温度範囲で4〜12時間という短い時間で熱処理木材の製造が可能になる。 According to the second aspect of the present invention, since superheated steam is used as the heating medium in the second step, it is possible to heat-treat wood in an almost oxygen-free atmosphere, and furthermore, the thermal efficiency is very good. Heat-treated wood can be produced in a short time of 4 to 12 hours in a temperature range of 250 ° C.
請求項3に記載された本発明によれば、前記第2工程における加熱媒体として加熱オイルを用いるので、熱効率が良くなり、そのために、短時間で熱処理木材を製造することができる。例えば、200〜250℃の温度範囲で4〜12時間という短い時間で熱処理木材の製造が可能となる。 According to the third aspect of the present invention, since heated oil is used as the heating medium in the second step, the thermal efficiency is improved, and therefore, heat-treated wood can be produced in a short time. For example, the heat-treated wood can be produced in a short time of 4 to 12 hours in a temperature range of 200 to 250 ° C.
本発明の熱処理木材の製造方法は、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、並びに、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材を過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率12%以下に乾燥する第1工程と、前記第1工程で乾燥した木材を前記過熱水蒸気及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理する第2工程と、を順次有している。 The method for producing heat-treated wood according to the present invention is a large cross section selected from a log having a diameter of 50 mm or more in a cross section, a square member having a minimum side of 50 mm or more in a cross section, and a plate having a minimum side of 50 mm or more in a cross section. The wood having a water content of 15% or more having a water content is dried to a water content of 12% or less using a heating medium selected from superheated steam, microwave and heating oil while maintaining the wood temperature at 50 to 130 ° C. A first step and a second heat treatment of the wood dried in the first step for 4 to 24 hours while maintaining the wood temperature at 180 to 250 ° C. using at least one heating medium selected from the superheated steam and heating oil. And a process sequentially.
このように、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、並びに、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材を過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率12%以下に乾燥する第1工程と、前記第1工程で乾燥した木材を前記過熱水蒸気及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理する第2工程と、を順次有していると、大きな断面を有する熱処理木材であっても、割れ、変形及び反りの発生が防止されると共に、腐朽耐久性、防蟻性及び安全性が向上された熱処理木材の製造方法を提供することができる。 Thus, a moisture content of 15% having a large cross section selected from a log having a cross section diameter of 50 mm or more, a square member having a minimum side section of 50 mm or more, and a plate member having a minimum side section of 50 mm or more. A first step of drying the above wood to a moisture content of 12% or less while maintaining the wood temperature at 50 to 130 ° C. using at least one heating medium selected from superheated steam, microwave and heating oil; A second step of sequentially heat-treating the wood dried in one step for 4 to 24 hours while maintaining the wood temperature at 180 to 250 ° C. using at least one heating medium selected from the superheated steam and heating oil. This prevents cracking, deformation, and warping, even for heat-treated wood with a large cross section, as well as durability against decay, ant-repellency and safety. There can be provided a method for producing enhanced heat treated wood.
本発明のように、水分を含有している木材(通常の未乾燥木材)を、例えば、6〜12kwの条件で15〜30分間程度マイクロ波照射すると、木材組織に閉じこめられている水分が100℃に以上に加熱されて、高圧(加圧)水蒸気になり、これが木材の外部に排出される結果、木材の含水率が急速に低下して木材が乾燥されることになる。この組織内で発生した水蒸気は、組織内部に閉じこめられるので、圧力が高くなり、そのために、加圧水蒸気又は高圧水蒸気になって木材を加熱することになる。木材は、前記圧力に応じて発生した100℃以上の温度で乾燥されることとなる。 As in the present invention, when moisture containing wood (ordinary undried wood) is irradiated with microwaves under conditions of 6 to 12 kw for about 15 to 30 minutes, for example, the moisture contained in the wood tissue is 100. As a result of being heated to a temperature higher than 0 ° C. and becoming high-pressure (pressurized) steam, which is discharged to the outside of the wood, the moisture content of the wood rapidly decreases and the wood is dried. Since the water vapor generated in the tissue is confined inside the tissue, the pressure is increased, so that the wood is heated to become pressurized water vapor or high-pressure water vapor. The wood is dried at a temperature of 100 ° C. or higher generated according to the pressure.
本発明においては、前記第2工程における加熱媒体として好ましくは過熱水蒸気を用いる。ここでいう過熱水蒸気は、加圧条件化で温度を上昇させる加圧過熱水蒸気ではなくて、ボイラーで発生させた水蒸気を更に常圧でヒータ等により2次的に加熱して温度を高めたものであり、最高1200℃まで温度を上昇させることができる画期的な加熱媒体である。この過熱水蒸気を利用した製品は、最近電子レンジに代わる加熱調理器具として市販されているが、木材関連業界では、過熱水蒸気を利用した機械装置は、まだまだ開発・商業化されていない。このように、前記第2工程における加熱媒体として好ましくは過熱水蒸気を用いると、通常のボイラーから発生させた水蒸気よりも水滴になりにくいので、木材に与える熱量が大きくなり非常に短時間で熱処理木材の製造が可能になる。 In the present invention, superheated steam is preferably used as the heating medium in the second step. Superheated steam here is not pressurized superheated steam that raises the temperature under pressurized conditions, but steam that is generated in a boiler is further heated at normal pressure by a heater or the like to increase the temperature. It is an epoch-making heating medium that can raise the temperature up to 1200 ° C. This product using superheated steam has recently been marketed as a cooking device to replace a microwave oven, but in the wood-related industry, machinery using superheated steam has not yet been developed and commercialized. Thus, when superheated steam is preferably used as the heating medium in the second step, water droplets are less likely to form than steam generated from a normal boiler, so the amount of heat given to the wood increases and heat treated wood can be processed in a very short time. Can be manufactured.
また、本発明においては、ボイラーで生産された水蒸気を第2次的に加熱する熱源の種類には制限されるものではないが、電気による温度制御の容易なIHヒータが望ましい。熱処理木材の木材腐朽菌に対する腐朽阻止効果に関与している木材構成成分として、ヘミセルロースが関与していることが報告されている。ヘミセルロースの大幅な減少或いは消失は、木材腐朽菌の菌腐朽阻止効果に関連があるとされている。 Further, in the present invention, the type of heat source that secondarily heats the water vapor produced by the boiler is not limited, but an IH heater that is easily temperature-controlled by electricity is desirable. It has been reported that hemicellulose is involved as a wood component involved in the anti-corrosion effect of heat-treated wood against wood decay fungi. It is said that the significant reduction or disappearance of hemicellulose is related to the fungi-inhibiting effect of wood-rotting fungi.
本発明者の実験結果では、熱処理木材の処理温度と処理時間とが木材腐朽菌の腐朽阻止効果に影響を与えることが、直接的に把握されている。前記第2工程の温度が200℃以上であれば媒体の熱効率(単位時間及び木材の単位面積当たりの付与熱量)にしたがって4〜96時間の処理を行えば、未処理のスギ辺材が通常30〜50%腐朽による質量減少がある条件で全く質量減少が0%になることを把握している。 From the experiment results of the present inventor, it is directly understood that the treatment temperature and treatment time of the heat-treated wood affect the decay-preventing effect of the wood-rotting fungi. If the temperature of the second step is 200 ° C. or higher, the untreated cedar sapwood is usually 30 when the treatment is performed for 4 to 96 hours according to the thermal efficiency of the medium (unit time and amount of heat applied per unit area of wood). We know that the mass loss is 0% under the condition of mass loss due to -50% decay.
熱媒体の中でも、熱効率が最も良いのが加熱水蒸気であるが、加熱水蒸気は、本発明の過熱媒体の中でも同じ温度による処理で最も短い時間で熱処理木材の製造ができる。 Among the heat mediums, heated steam has the best thermal efficiency. Heated steam can produce heat-treated wood in the shortest time by the treatment at the same temperature among the superheated media of the present invention.
本発明においては、前記第2工程における加熱媒体として好ましくは加熱オイルを用いる。本発明で用いる好ましい加熱オイルは、加熱した場合に、加熱油から煙が発生する温度域ができるだけ高温であることである。できれば、発煙温度が200℃以上であることが望ましい。また、高温に長時間維持して、空気中の酸素にによる酸化や木材からの排出成分の影響で高粘度の流動性のない液体になりにくい性質のオイルが望ましい。一般の植物油も使用することができるが、原料とする植物の種類により熱酸化に対する安定性や発煙温度が異なるが、ヒマワリ油や菜種油又はこれらをエステル化した油が望ましい。工業的に合成された熱安定性に優れた不活性油も使用することができる。加熱オイルは、過熱水蒸気に次いで熱効率が良いので、同じ温度でも比較的短い時間で熱処理木材の製造が可能である。本発明によれば、200〜250℃、4〜12時間で十分な木材腐朽菌の腐朽阻止性能を付与された熱処理木材が製造できる。 In the present invention, heated oil is preferably used as the heating medium in the second step. A preferred heating oil used in the present invention is that the temperature range in which smoke is generated from the heating oil is as high as possible when heated. If possible, the fuming temperature is desirably 200 ° C. or higher. Further, it is desirable to use an oil that is maintained at a high temperature for a long time and is difficult to become a liquid having a high viscosity and no fluidity due to the influence of oxidation by oxygen in the air and components discharged from wood. Although general vegetable oils can be used, sunflower oil, rapeseed oil or oils obtained by esterifying these are desirable, although the stability against thermal oxidation and the smoke generation temperature differ depending on the type of plant used as a raw material. An industrially synthesized inert oil having excellent thermal stability can also be used. Since heated oil has the second highest thermal efficiency after superheated steam, heat-treated wood can be produced in a relatively short time even at the same temperature. According to the present invention, it is possible to produce heat-treated wood provided with sufficient anti-corrosion performance of wood-rotting fungi at 200 to 250 ° C. for 4 to 12 hours.
(実施例1)
平均初期含水率98%の120mm×120mm×2000mmの大きな断面を有するスギ角材20本を10KWマイクロ波を用いて30分間照射した後養生室に移して60℃で30分間保温する、というサイクルを5回繰り返して、仕上がり平均含水率11.5%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
Example 1
A cycle in which 20 cedar squares having a large cross section of 120 mm × 120 mm × 2000 mm with an average initial moisture content of 98% were irradiated for 30 minutes using 10 KW microwaves and then transferred to a curing room and kept at 60 ° C. for 30 minutes. A first step of repeating the process once and drying to a finished average moisture content of 11.5%, and a second step of immersing the wood dried in the first step in sunflower oil and heat-treating it at a temperature of 220 ° C. for 8 hours. The heat-treated wood was obtained sequentially.
(実施例2)
平均初期含水率102%の直径150mm×2000mmの大きな断面を有するスギ丸太10本を過熱水蒸気を用いて130℃の温度で8時間、120℃の温度で4時間、及び、100℃の温度で4時間、順次加熱して仕上がり平均含水率10%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 2)
Ten cedar logs having a large cross section with a diameter of 150 mm × 2000 mm having an average initial moisture content of 102% are heated at 130 ° C. for 8 hours, at 120 ° C. for 4 hours, and at 100 ° C. for 4 hours using superheated steam. A first step of heating sequentially for a time and drying to an average moisture content of 10%, and a second step of heat treating the wood dried in the first step at a temperature of 220 ° C. for 8 hours using superheated steam. After that, heat-treated wood was obtained.
(実施例3)
平均初期含水率87%の直径150mm×2000mmの大きな断面を有するヒノキ丸太15本を菜種油に浸漬して130℃の温度で24時間加熱して仕上がり平均含水率8.3%に乾燥する第1工程と、前記第1工程で乾燥した木材を菜種油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 3)
A first step of immersing 15 cypress logs having a large cross section of 150 mm × 2000 mm in diameter with an average initial moisture content of 87% in rapeseed oil and heating them at a temperature of 130 ° C. for 24 hours, followed by drying to an average moisture content of 8.3% Then, the wood dried in the first step was immersed in rapeseed oil and the second step of heat treating at 220 ° C. for 8 hours to obtain heat treated wood.
(実施例4)
平均初期含水率110%の150mm×150mm×2000mmの大きな断面を有するヒノキ角材10本を12KWマイクロ波を用いて30分間照射した後養生室に移して60℃で30分間保温する、というサイクルを5回繰り返して、仕上がり平均含水率11.3%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
Example 4
5 cycles of 10 cypress squares having a large cross section of 150 mm × 150 mm × 2000 mm with an average initial moisture content of 110% were irradiated for 30 minutes using 12 KW microwaves, then transferred to the curing room and kept at 60 ° C. for 30 minutes. Repeatedly, the first step of drying to a finished average moisture content of 11.3% and the second step of heat-treating the wood dried in the first step for 12 hours at a temperature of 220 ° C. using superheated steam After that, heat-treated wood was obtained.
(実施例5)
平均初期含水率87%の120mm×120mm×2000mmの大きな断面を有するカラマツ角材20本をヒマワリ油に浸漬して130℃の温度で24時間加熱して仕上がり平均含水率11%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 5)
The first step of immersing 20 larch squares having a large cross section of 120 mm × 120 mm × 2000 mm with an average initial moisture content of 87% in sunflower oil and heating them at a temperature of 130 ° C. for 24 hours, followed by drying to an average moisture content of 11% And the 2nd process of heat-treating the wood dried at the said 1st process at the temperature of 220 degreeC for 8 hours using superheated steam was obtained in order, and the heat-treated wood was obtained.
(実施例6)
平均初期含水率98%の直径150mm×2000mmの大きな断面を有するカラマツ丸太15本を過熱水蒸気を用いて130℃の温度で8時間、120℃の温度で4時間、及び、100℃の温度で2時間、順次加熱した後、9KWマイクロ波を用いて30分間照射して仕上がり平均含水率10%に乾燥する第1工程と、前記第1工程で乾燥した木材を菜種油を用いて220℃の温度で48時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 6)
15 larch logs having a large initial cross section with a diameter of 150 mm × 2000 mm with an average initial moisture content of 98%, using superheated steam for 8 hours at a temperature of 130 ° C., 4 hours at a temperature of 120 ° C., and 2 at a temperature of 100 ° C. After heating for hours and hours, the first step of irradiating with 9 KW microwave for 30 minutes to finish and drying to an average moisture content of 10%, and the wood dried in the first step at a temperature of 220 ° C. using rapeseed oil The heat-treated wood was obtained through the second step of heat-treating for 48 hours.
(実施例7)
平均初期含水率105%の直径150mm×2000mmの大きな断面を有するスギ丸太10本を過熱水蒸気を用いて130℃の温度で8時間、120℃の温度で4時間、及び、100℃の温度で4時間、順次加熱した後、9KWマイクロ波を用いて30分間照射して仕上がり平均含水率10.3%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 7)
Ten cedar logs having a large cross-section with a diameter of 150 mm × 2000 mm with an average initial moisture content of 105%, using superheated steam for 8 hours at a temperature of 130 ° C., 4 hours at a temperature of 120 ° C., and 4 at a temperature of 100 ° C. After heating for 1 hour, the first step of irradiating with 9 KW microwave for 30 minutes and drying to an average moisture content of 10.3%, and the wood dried in the first step at 220 ° C. using superheated steam The heat-treated wood was obtained through the second step of heat-treating at the temperature of 8 hours in sequence.
(実施例8)
平均初期含水率85%の直径150mm×2000mmの大きな断面を有するヒノキ丸太15本をヒマワリ油に浸漬して130℃の温度で24時間加熱して仕上がり平均含水率9.8%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 8)
First, 15 cypress logs having a large cross section with a diameter of 150 mm × 2000 mm having an average initial moisture content of 85% are immersed in sunflower oil, heated at a temperature of 130 ° C. for 24 hours, and finished to an average moisture content of 9.8%. The heat-treated wood was obtained through the process and the second process in which the wood dried in the first step was immersed in sunflower oil and heat-treated at a temperature of 220 ° C. for 8 hours.
(実施例9)
平均初期含水率90%の直径150mm×2000mmの大きな断面を有するカラマツ丸太15本を菜種油に浸漬して130℃の温度で24時間加熱して仕上がり平均含水率11.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
Example 9
First step of immersing 15 larch logs having a large cross section with a diameter of 150 mm × 2000 mm having an average initial moisture content of 90% in rapeseed oil and heating them at a temperature of 130 ° C. for 24 hours, followed by drying to an average moisture content of 11.5% And the 2nd process of heat-treating the wood dried at the said 1st process at the temperature of 220 degreeC for 8 hours using superheated steam was obtained in order, and the heat-treated wood was obtained.
(実施例10)
平均初期含水率95%の150mm×150mm×2000mmの大きな断面を有するスギ角材10本を過熱水蒸気を用いて130℃の温度で8時間、120℃の温度で4時間、及び、100℃の温度で4時間、順次加熱して仕上がり平均含水率11.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を菜種油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 10)
Ten cedar squares having a large cross section of 150 mm × 150 mm × 2000 mm with an average initial moisture content of 95% are used at 130 ° C. for 8 hours, 120 ° C. for 4 hours and 100 ° C. using superheated steam. A first step of sequentially heating for 4 hours and finishing to an average moisture content of 11.5%; a second step of immersing the wood dried in the first step in rapeseed oil and heat-treating at 220 ° C. for 8 hours; The heat-treated wood was obtained sequentially.
(実施例11)
平均初期含水率88%の150mm×150mm×2000mmの大きな断面を有するヒノキ角材10本を10KWマイクロ波を用いて30分間照射した後養生室に移して60℃で30分間保温する、というサイクルを5回繰り返して、仕上がり平均含水率11.3%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 11)
5 cycles of 10 cypress squares having a large cross section of 150 mm × 150 mm × 2000 mm with an average initial moisture content of 88% were irradiated for 30 minutes using 10 KW microwaves and then transferred to the curing room and kept at 60 ° C. for 30 minutes. The first step of drying to a final average moisture content of 11.3% and the second step of immersing the wood dried in the first step in sunflower oil and heat-treating at a temperature of 220 ° C. for 8 hours. The heat-treated wood was obtained sequentially.
(実施例12)
平均初期含水率90%の直径150mm×2000mmの大きな断面を有するカラマツ丸太15本を10KWマイクロ波を用いて30分間照射した後養生室に移して60℃で30分間保温する、というサイクルを5回繰り返して、仕上がり平均含水率10.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
Example 12
Five cycles of 15 larch logs having a large cross section with a diameter of 150 mm × 2000 mm with an average initial moisture content of 90% were irradiated for 30 minutes using 10 KW microwaves, then transferred to a curing room and kept at 60 ° C. for 30 minutes. Repeatedly, a first step of drying to a finished average moisture content of 10.5% and a second step of heat treating the wood dried in the first step at a temperature of 220 ° C. for 12 hours using superheated steam. Heat treated wood was obtained.
(実施例13)
平均初期含水率90%の直径150mm×2000mmの大きな断面を有するスギ丸太15本を過熱水蒸気を用いて130℃の温度で8時間、120℃の温度で4時間、及び、100℃の温度で2時間、順次加熱して仕上がり平均含水率10%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 13)
15 cedar logs having a large cross section with a diameter of 150 mm × 2000 mm with an average initial moisture content of 90% are heated at 130 ° C. for 8 hours, at 120 ° C. for 4 hours, and at 100 ° C. for 2 hours using superheated steam. A first step of heating sequentially and drying to a final average moisture content of 10%, and a second step of heat treating the wood dried in the first step at a temperature of 220 ° C. for 8 hours using superheated steam. After that, heat-treated wood was obtained.
(実施例14)
平均初期含水率88%の直径150mm×2000mmの大きな断面を有するヒノキ丸太15本を10KWマイクロ波を用いて30分間照射した後養生室に移して60℃で30分間保温する、というサイクルを5回繰り返して、仕上がり平均含水率9.8%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で4時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Example 14)
Five cycles of irradiating 15 cypress logs with a large cross-section with a diameter of 150 mm × 2000 mm with an average initial moisture content of 88% using 10 KW microwave for 30 minutes and then moving to a curing room and keeping at 60 ° C. for 30 minutes Repeatedly, the first step of drying to a finished average moisture content of 9.8% and the second step of heat treating the wood dried in the first step for 4 hours at a temperature of 220 ° C. using superheated steam. Heat treated wood was obtained.
以上、実施例1〜14における第1工程で乾燥して得た木材の外観(割れ)を検査した。前記「割れ」については、0.5mmを越えるものを割れと判定した。 As described above, the appearance (cracking) of the wood obtained by drying in the first step in Examples 1 to 14 was inspected. About said "crack", what exceeded 0.5 mm was determined to be a crack.
次に、実施例1〜14において得られた木材について、(1)第1工程で乾燥して得た木材の外観(割れ)、及び、(2)木材の外観(割れ)について試験し、(3)木材の中央部分の切断面について試験し、そして、次に示す(4)腐朽耐久性試験及び(5)防蟻試験をした。 Next, for the wood obtained in Examples 1 to 14, (1) the appearance (cracking) of the wood obtained by drying in the first step, and (2) the appearance (cracking) of the wood, 3) The cut surface of the center part of the wood was tested, and the following (4) decay durability test and (5) ant proof test were conducted.
腐朽耐久性試験
「腐朽耐久性試験」については、JISK1571に基づいて測定した。即ち、加熱処理を終了した全ての木材から5本ずつの試験材(2×2×9cm)を採取して60℃で3日間乾燥させて質量を測定した。全ての熱処理試験材に対して同数の無処理のスギ辺材試験材(2×2×9cm)を準備し、同様に60℃で3日間乾燥して質量を測定した。処理試験材と無処理試験材をステイプラーで2箇所固定し、450mLの培養瓶にスギ辺材(4×1×7cm)を収め、水道水を100mL注加して試験材(処理無処理のペア1組)を収め、蓋を閉め蒸気滅菌して放冷後、オオウズラタケを接種して、恒温器内で3ヶ月間培養した。培養期間を終了した培養瓶から試験材を取出し、余分な菌糸等の共雑物を取除き、60℃で3日間乾燥して質量を測定した。腐朽試験前後の質量の差から質量減少率を算出した。
Corrosion durability test The "corrosion durability test" was measured based on JISK1571. That is, five test materials (2 × 2 × 9 cm) were collected from all the woods that had been subjected to the heat treatment, dried at 60 ° C. for 3 days, and the mass was measured. The same number of untreated cedar sap material test materials (2 × 2 × 9 cm) were prepared for all the heat treatment test materials, and similarly dried at 60 ° C. for 3 days to measure the mass. Fix the treated test material and the untreated test material at two locations with a stapler, place the cedar sapwood (4 × 1 × 7 cm) in a 450 mL culture bottle, add 100 mL of tap water, and add the test material (untreated pair) One set) was stored, the lid was closed, steam sterilized and allowed to cool, and then inoculated with P. japonica and cultured for 3 months in a thermostat. The test material was taken out from the culture bottle after the culturing period, and extraneous matters such as excess mycelia were removed, dried at 60 ° C. for 3 days, and the mass was measured. The mass reduction rate was calculated from the difference in mass before and after the decay test.
防蟻試験
「防蟻試験」については、JISK1571に基づいて測定した。即ち、加熱処理を終了した全ての木材から5個ずつの試験材(2×2×1cm)を採取して60℃で3日間乾燥させて質量を測定した。蓋付きのコンテナーにJISK1571で使用する海砂を厚さ1cmになるように均一に敷き、水を散布した。この上に厚さ1cmのアカマツ辺材を置き、試験材を設置した。処理試験材50個に対して無処理試験材を10個ランダムに並べる方法で設置した。イエシロアリは巣から約1万頭集め、コンテナーに放した。3ヶ月経過してから試験材を取除き、共雑物を試験材からきれいにした後、水洗いして60℃で3日間乾燥し質量を測定した。シロアリ食害試験前後の質量の差から質量減少率を算出した。
Ant protection test The "ant protection test" was measured based on JISK1571. That is, five test materials (2 × 2 × 1 cm) were collected from all the woods that had been subjected to the heat treatment, dried at 60 ° C. for 3 days, and the mass was measured. Sea sand used in JISK1571 was uniformly spread over a container with a lid to a thickness of 1 cm, and water was sprayed. A pine sapwood having a thickness of 1 cm was placed thereon, and a test material was placed thereon. Ten untreated test materials were arranged at random with respect to 50 treated test materials. About 10,000 termites were collected from the nest and released into containers. After 3 months, the test material was removed, and the contaminants were cleaned from the test material, washed with water, dried at 60 ° C. for 3 days, and the mass was measured. The mass reduction rate was calculated from the difference in mass before and after the termite feeding damage test.
前記試験においては、前記「割れ」については、0.5mmを越えるものを割れと判定した。そして、JISK1571においては、質量減少率が3.4%までは、誤差と看做すとされているので、前記「腐朽耐久性試験」及び「防蟻試験」においては、質量減少率が3%以下の試験木材を合格と判定した。 In the test, with respect to the “crack”, a crack exceeding 0.5 mm was determined as a crack. In JISK1571, the mass reduction rate up to 3.4% is considered to be an error. Therefore, in the “rotation durability test” and the “ant-proof test”, the mass reduction rate is 3%. The following test timbers were judged acceptable.
試験結果は、次の表1に示される。 The test results are shown in Table 1 below.
次ぎに、比較例1〜11を記載するが、これらの比較例1〜11は、第1工程における加熱処理条件を、次の表1〜3に示されるスケジュール1(中温条件)、スケジュール2(中高温条件)、及び、スケジュール3(高温条件)として行ったものである。 Next, Comparative Examples 1 to 11 will be described. In Comparative Examples 1 to 11, the heat treatment conditions in the first step are the schedule 1 (medium temperature condition) and schedule 2 (shown in the following Tables 1 to 3). Medium and high temperature conditions) and Schedule 3 (high temperature conditions).
(比較例1)
120mm×120mm×2000mmの大きな断面を有するスギ角材20本をスケジュール1に基づいて水蒸気加熱して平均含水率21.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を加熱水蒸気を用いて220℃の温度で48時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 1)
A first step of steaming 20 cedar squares having a large cross section of 120 mm × 120 mm × 2000 mm based on Schedule 1 and drying to an average moisture content of 21.5%, and heating the steam dried wood in the first step The heat treatment wood was obtained through the second step of heat treatment for 48 hours at a temperature of 220 ° C. using
(比較例2)
直径150mm×2000mmの大きな断面を有するスギ丸太10本をスケジュール3に基づいて水蒸気加熱して平均含水率15.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 2)
A first step of heating 10 cedar logs having a large cross section with a diameter of 150 mm × 2000 mm based on schedule 3 by steam heating and drying to an average moisture content of 15.5%, and superheated steam from the wood dried in the first step The heat-treated wood was obtained through the second step of heat treatment at a temperature of 220 ° C. for 8 hours.
(比較例3)
直径150mm×2000mmの大きな断面を有するスギ丸太15本をスケジュール3に基づいて水蒸気加熱して平均含水率13.5%に乾燥する第1工程と、前記第1工程で乾燥した木材を菜種油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 3)
A first step of heating 15 cedar logs having a large cross section with a diameter of 150 mm × 2000 mm with steam based on Schedule 3 and drying to an average moisture content of 13.5%, and immersing the wood dried in the first step in rapeseed oil The heat-treated wood was obtained through the second step of heat-treating at a temperature of 220 ° C. for 8 hours.
(比較例4)
150mm×150mm×2000mmの大きな断面を有するスギ角材10本をスケジュール2に基づいて水蒸気加熱して平均含水率12.8%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 4)
A first step of heating 10 cedar squares having a large cross-section of 150 mm × 150 mm × 2000 mm by steam based on Schedule 2 and drying them to an average moisture content of 12.8%, and superheated steam from the wood dried in the first step The heat-treated wood was obtained through the second step of heat-treating at a temperature of 220 ° C. for 12 hours using
(比較例5)
120mm×120mm×2000mmの大きな断面を有するカラマツ角材20本をスケジュール1に基づいて水蒸気加熱して平均含水率15.8%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 5)
A first step of heating 20 larch squares having a large cross section of 120 mm × 120 mm × 2000 mm according to schedule 1 by steam heating and drying to an average moisture content of 15.8%, and superheated steam from the wood dried in the first step The heat-treated wood was obtained through the second step of heat-treating at a temperature of 220 ° C. for 12 hours using
(比較例6)
直径150mm×2000mmの大きな断面を有するカラマツ丸太15本をスケジュール3に基づいて水蒸気加熱して平均含水率12.3%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 6)
A first step of heating 15 larch logs having a large cross-section of 150 mm diameter x 2000 mm with steam based on Schedule 3 to dry to an average moisture content of 12.3%, and the wood dried in the first step to sunflower oil A heat treated wood was obtained through the second step of immersing and heat treating at 220 ° C. for 8 hours.
(比較例7)
直径150mm×2000mmの大きな断面を有するスギ丸太10本をスケジュール3に基づいて水蒸気加熱して平均含水率18.7%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 7)
A first step of heating 10 cedar logs having a large cross section with a diameter of 150 mm × 2000 mm with steam based on Schedule 3 and drying them to an average moisture content of 18.7%, and superheated steam from the wood dried in the first step The heat-treated wood was obtained through the second step of heat treatment at a temperature of 220 ° C. for 12 hours.
(比較例8)
直径150mm×2000mmの大きな断面を有するヒノキ丸太15本をスケジュール3に基づいて水蒸気加熱して平均含水率16.8%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 8)
A first step in which 15 cypress logs having a large cross-section of 150 mm in diameter and 2000 mm in diameter are heated by steam according to schedule 3 and dried to an average water content of 16.8%, and the wood dried in the first step is turned into sunflower oil A heat treated wood was obtained through the second step of immersing and heat treating at 220 ° C. for 8 hours.
(比較例9)
直径150mm×2000mmの大きな断面を有するカラマツ丸太10本をスケジュール3に基づいて水蒸気加熱して平均含水率12.7%に乾燥する第1工程と、前記第1工程で乾燥した木材を過熱水蒸気を用いて220℃の温度で12時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 9)
A first step of heating 10 larch logs having a large cross section with a diameter of 150 mm × 2000 mm according to schedule 3 by steam heating to an average moisture content of 12.7%, and heating the wood dried in the first step with superheated steam The heat-treated wood was obtained through the second step of heat treatment at a temperature of 220 ° C. for 12 hours.
(比較例10)
150mm×150mm×2000mmの大きな断面を有するスギ角材10本をスケジュール2に基づいて水蒸気加熱して平均含水率12.0%に乾燥する第1工程と、前記第1工程で乾燥した木材をヒマワリ油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 10)
A first step of heating 10 cedar squares having a large cross section of 150 mm × 150 mm × 2000 mm with steam based on schedule 2 and drying them to an average moisture content of 12.0%, and the wood dried in the first step to sunflower oil The heat treatment wood was obtained through the second step of heat treatment at 220 ° C. for 8 hours.
(比較例11)
150mm×150mm×2000mmの大きな断面を有するヒノキ角材10本をスケジュール2に基づいて水蒸気加熱して平均含水率12%に乾燥する第1工程と、前記第1工程で乾燥した木材を菜種油に浸漬して220℃の温度で8時間熱処理する第2工程と、を順次経て熱処理木材を得た。
(Comparative Example 11)
A first step of heating 10 cypress squares having a large cross section of 150 mm × 150 mm × 2000 mm with steam based on Schedule 2 and drying them to an average water content of 12%, and dipping the wood dried in the first step in rapeseed oil The heat treatment wood was obtained through the second step of heat treatment at 220 ° C. for 8 hours in sequence.
以上、比較例1〜11における第1工程で乾燥して得た木材の外観(割れ)を検査した。前記「割れ」については、0.5mmを越えるものを割れと判定した。 As described above, the appearance (cracking) of the wood obtained by drying in the first step in Comparative Examples 1 to 11 was inspected. About said "crack", what exceeded 0.5 mm was determined to be a crack.
次ぎに、実施例1〜11において得られた木材について、(1)第1工程で乾燥して得た木材の外観(割れ)、及び、(2)木材の外観(割れ)について試験し、(3)木材の中央部分の切断面について試験し、そして、(4)腐朽耐久性試験及び(5)防蟻試験を前記実施例1〜11と同様にして試験した。 Next, the wood obtained in Examples 1 to 11 was tested for (1) the appearance (cracking) of the wood obtained by drying in the first step, and (2) the appearance (cracking) of the wood ( 3) The cut surface of the central part of the wood was tested, and (4) decay durability test and (5) ant protection test were tested in the same manner as in Examples 1-11.
試験結果は、次の表5に示される。 The test results are shown in Table 5 below.
表1からみると、実施例1〜14では、断面における直径が50mm以上である丸太、断面における最小の辺が50mm以上である角材、及び、断面における最小の辺が50mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材は、これらを過熱水蒸気、マイクロ波及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を50〜130℃に維持しながら含水率10%前後までに乾燥する第1工程と、前記第1工程で乾燥した木材を前記過熱水蒸気、高圧水蒸気(加圧水蒸気)及び加熱オイルから選ばれる少なくとも1種の加熱媒体を用いて木材温度を180〜250℃に維持しながら4〜24時間熱処理する第2工程と、を順次経て処理されるので、割れの発生が防止されると共に、腐朽耐久性及び防蟻性が向上された熱処理木材を製造できることがわかる。また、実施例1〜14では、180〜250℃に維持しながら4〜24時間熱処理すると、加熱媒体の種類にかかわりなく、木材腐朽菌による腐朽がほとんどなくなっていること(質量減少率が3%以下)がわかる。 As seen from Table 1, in Examples 1 to 14, a log having a cross-sectional diameter of 50 mm or more, a square member having a minimum side of 50 mm or more in the cross-section, and a plate member having a minimum side of 50 mm or more in the cross-section. The wood having a large cross section and having a water content of 15% or more has a water content of 10 while maintaining the wood temperature at 50 to 130 ° C. using at least one heating medium selected from superheated steam, microwave and heating oil. % Of the wood dried in the first step and at least one heating medium selected from the superheated steam, high-pressure steam (pressurized steam) and heated oil, the wood temperature is 180 to The second step of heat treatment for 4 to 24 hours while maintaining the temperature at 250 ° C. is sequentially processed, so that the generation of cracks is prevented and the durability against decay is improved. It can be seen that produce heat treatment timber termite resistance is improved. Moreover, in Examples 1-14, when it heat-processes for 4 to 24 hours, maintaining at 180-250 degreeC, irrespective of the kind of heating medium, it is almost that decay by a wood decay fungus has disappeared (mass reduction rate is 3%). I understand below.
しかしながら、表5からみると、比較例1〜14では、従来から使用されている蒸気式乾燥機を用いたので、断面における直径が120mm以上である丸太、断面における最小の辺が120mm以上である角材、及び、断面における最小の辺が120mm以上である板材から選ばれる大きな断面を有する含水率15%以上の木材は、これらを乾燥すると、割れの発生が著しいので、熱処理木材の製造における原材料として全く使用できないことがわかる。 However, from Table 5, in Comparative Examples 1-14, since the steam dryer used conventionally is used, the log in which the diameter in a cross section is 120 mm or more, and the minimum side in a cross section is 120 mm or more. As a raw material in the manufacture of heat-treated wood, square wood and wood with a moisture content of 15% or more having a large cross section selected from a plate material having a minimum side of 120 mm or more in cross section are prone to cracking when dried. It turns out that it cannot be used at all.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008011511A JP2009172787A (en) | 2008-01-22 | 2008-01-22 | Method for producing heat-treated lumber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008011511A JP2009172787A (en) | 2008-01-22 | 2008-01-22 | Method for producing heat-treated lumber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009172787A true JP2009172787A (en) | 2009-08-06 |
Family
ID=41028461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008011511A Withdrawn JP2009172787A (en) | 2008-01-22 | 2008-01-22 | Method for producing heat-treated lumber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009172787A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013176922A (en) * | 2012-02-29 | 2013-09-09 | Dai Ichi High Frequency Co Ltd | Processing method and processing device of lignocellulose material |
KR20180116955A (en) * | 2017-04-18 | 2018-10-26 | 서울대학교산학협력단 | Method for producing green wood drying-heat treatment using superheated stream |
CN114851334A (en) * | 2022-04-21 | 2022-08-05 | 浙江峰晖竹木制品有限公司 | High-strength wood modification heat treatment equipment |
RU2837866C1 (en) * | 2024-08-22 | 2025-04-07 | Ооо "Бикос-Термодерево" | Method of steam thermal treatment of wood |
-
2008
- 2008-01-22 JP JP2008011511A patent/JP2009172787A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013176922A (en) * | 2012-02-29 | 2013-09-09 | Dai Ichi High Frequency Co Ltd | Processing method and processing device of lignocellulose material |
KR20180116955A (en) * | 2017-04-18 | 2018-10-26 | 서울대학교산학협력단 | Method for producing green wood drying-heat treatment using superheated stream |
KR101975653B1 (en) * | 2017-04-18 | 2019-05-07 | 서울대학교산학협력단 | Method for producing green wood drying-heat treatment using superheated stream |
CN114851334A (en) * | 2022-04-21 | 2022-08-05 | 浙江峰晖竹木制品有限公司 | High-strength wood modification heat treatment equipment |
CN114851334B (en) * | 2022-04-21 | 2023-12-19 | 浙江峰晖竹木制品有限公司 | High-strength wood modification heat treatment equipment |
RU2837866C1 (en) * | 2024-08-22 | 2025-04-07 | Ооо "Бикос-Термодерево" | Method of steam thermal treatment of wood |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6707572B2 (en) | Method for acetylating wood and acetylated wood | |
AU2019203769B2 (en) | Process for the acetylation of wood | |
Yang et al. | Effects of temperature and duration of heat treatment on the physical, surface, and mechanical properties of Japanese cedar wood | |
JP2009172787A (en) | Method for producing heat-treated lumber | |
JP5965670B2 (en) | Process for producing heat-treated wood | |
CN101468479A (en) | Boronic compound high-temperature heat-treatment method for lumber | |
US12220836B2 (en) | Modified wood product and a process for producing said product | |
WO2006089998A1 (en) | Method of treating a piece of wood at an elevated temperature | |
CN111086075A (en) | Preparation method of wood for preventing insect damage | |
US20180111286A1 (en) | Process of Improving the Dimensional Stability of Wood and Dimensional Stabile Wood Thereof | |
JP6762565B2 (en) | Processing disk material and manufacturing method of processing disk material | |
Natividad et al. | Physical and mechanical properties of thermally modified kauayan-tinik (Bambusa blumena Schltes f.) | |
JP5363405B2 (en) | Wood modification method and wood | |
AU2020324808A1 (en) | Method for modifying wood and products thereof | |
Vukas et al. | Heat treated wood | |
JP4131365B2 (en) | Wood preservation method and preservation wood | |
FI96930C (en) | Method for fixing modification chemicals and preventing internal cracks in wood pieces | |
JP2010083096A (en) | Wood treating method | |
JP2024027793A (en) | Decay resistance material and production method thereof | |
WO2024240719A1 (en) | Wood treatment | |
AU2020326292A1 (en) | Method for modifying wood and products thereof | |
WO2019145606A1 (en) | Method for treating wood | |
Grinins et al. | Influence of the hydro-thermal treatment on chemical composition, physical and mechanical properties of ash-tree wood. | |
BRPI0902138A2 (en) | heat radiation thermal modification process to improve dimensional stability and biological durability of solid wood |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110405 |