JP2009170026A - 不揮発性半導体記憶装置及びそのテスト方法 - Google Patents
不揮発性半導体記憶装置及びそのテスト方法 Download PDFInfo
- Publication number
- JP2009170026A JP2009170026A JP2008006484A JP2008006484A JP2009170026A JP 2009170026 A JP2009170026 A JP 2009170026A JP 2008006484 A JP2008006484 A JP 2008006484A JP 2008006484 A JP2008006484 A JP 2008006484A JP 2009170026 A JP2009170026 A JP 2009170026A
- Authority
- JP
- Japan
- Prior art keywords
- test
- column
- bit
- circuit
- failure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000010998 test method Methods 0.000 title claims description 8
- 238000012360 testing method Methods 0.000 claims abstract description 69
- 230000002950 deficient Effects 0.000 claims abstract description 45
- 230000007547 defect Effects 0.000 claims abstract description 39
- 238000012546 transfer Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 3
- 230000008439 repair process Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 102100030373 HSPB1-associated protein 1 Human genes 0.000 description 2
- 101000843045 Homo sapiens HSPB1-associated protein 1 Proteins 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 101100481702 Arabidopsis thaliana TMK1 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Images
Landscapes
- Read Only Memory (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Abstract
【課題】許容不良ビット数を切り換え設定するテストモードにより歩留まり向上を図った不揮発性半導体記憶装置を提供する。
【解決手段】テスト回路を備えた不揮発性半導体記憶装置において、前記テスト回路は、期待値を保持する期待値レジスタと、テスト読み出しデータの各転送単位毎のデータと期待値レジスタの期待値とをビット毎に一致/不一致検出する比較回路と、その比較結果に基づいて転送単位中の1ビット以上の不良をフェイルと判定する第1の判定ゲート部及び、2ビット以上の不良をフェイルと判定する第2の判定ゲート部を持つ第1の判定回路と、第1及び第2の判定ゲート部の出力に基づいて、転送単位中の1ビットまでの不良をパスと判定する第2の判定回路と、前記第1の判定回路の第1の判定ゲート部の出力と前記第2の判定回路の出力のいずれか一方を選択するセレクタとを有する。
【選択図】図5
【解決手段】テスト回路を備えた不揮発性半導体記憶装置において、前記テスト回路は、期待値を保持する期待値レジスタと、テスト読み出しデータの各転送単位毎のデータと期待値レジスタの期待値とをビット毎に一致/不一致検出する比較回路と、その比較結果に基づいて転送単位中の1ビット以上の不良をフェイルと判定する第1の判定ゲート部及び、2ビット以上の不良をフェイルと判定する第2の判定ゲート部を持つ第1の判定回路と、第1及び第2の判定ゲート部の出力に基づいて、転送単位中の1ビットまでの不良をパスと判定する第2の判定回路と、前記第1の判定回路の第1の判定ゲート部の出力と前記第2の判定回路の出力のいずれか一方を選択するセレクタとを有する。
【選択図】図5
Description
この発明は、電気的書き換え可能な不揮発性半導体記憶装置(EEPROM)に係り、特に歩留まり向上を可能とするテスト手法に関する。
EEPRPMの一つとして、 NAND型フラッシュメモリが知られている。カラムリダンダンシー方式のNAND型フラッシュメモリにおいて、カラムテストの一つにビット線オープンテストがある。ビット線オープンテストは、ビット線が切断されていないかどうかを確認するためのテストである。
具体的にビット線オープンテストは、次のように行われる。センスアンプ回路から最も遠いブロックを消去状態に設定された状態で選択し、ビット線を充電して、そのビット線が選択ブロックの選択セルで放電されるか否かをセンスアンプ回路で検出する。ビット線が放電されれば(センスアンプデータ“H”)、ビット線オープンはなく、ビット線が放電されなければ(センスアンプデータ“L”)、ビット線が切断されていることを示すことになる。
同時読み出しされる1ページのテストデータを、データ転送単位を1カラム(=1バイト)として、1カラムずつ順次、期待値レジスタに保持した期待値データ(オール“H”)と比較して、パス/フェイル判定を行う。即ちテストデータと期待値データが完全に一致した場合にはパス、1ビットでも不良があった場合にフェイルとする判定を行う。
不良カラムについては、カラム救済シーケンスにおいて冗長カラムによる置き換えを行う。不良カラム数が冗長カラム数を越えると、不良チップとして扱われ、出荷できないことになる。
上述のようなカラム不良テストの手法は、例えば特許文献1に記載されているが、近年NAND型フラッシュメモリの微細化、多値化が進むにつれて、カラム不良の増大が歩留まり低下をもたらす大きな原因となっている。
特開2007−115406号公報
この発明は、許容不良ビット数を切り換え設定するテストモードにより歩留まり向上を図った不揮発性半導体記憶装置及びそのテスト方法を提供することを目的とする。
この発明の一態様による不揮発性半導体記憶装置は、テスト読み出しデータをその期待値と比較して良否判定を行うテスト回路を備えた不揮発性半導体記憶装置において、前記テスト回路は、
前記期待値を保持する期待値レジスタと、
前記テスト読み出しデータの各転送単位毎のデータと前記期待値レジスタの期待値とをビット毎に一致/不一致検出する比較回路と、
前記比較回路の比較結果に基づいて転送単位中の1ビット以上の不良をフェイルと判定する第1の判定ゲート部及び、2ビット以上の不良をフェイルと判定する第2の判定ゲート部を持つ第1の判定回路と、
前記第1の判定回路の第1及び第2の判定ゲート部の出力に基づいて、転送単位中の1ビットまでの不良をパスと判定する第2の判定回路と、
前記第1の判定回路の第1の判定ゲート部の出力と前記第2の判定回路の出力のいずれか一方を選択するセレクタとを有する
ことを特徴とする。
前記期待値を保持する期待値レジスタと、
前記テスト読み出しデータの各転送単位毎のデータと前記期待値レジスタの期待値とをビット毎に一致/不一致検出する比較回路と、
前記比較回路の比較結果に基づいて転送単位中の1ビット以上の不良をフェイルと判定する第1の判定ゲート部及び、2ビット以上の不良をフェイルと判定する第2の判定ゲート部を持つ第1の判定回路と、
前記第1の判定回路の第1及び第2の判定ゲート部の出力に基づいて、転送単位中の1ビットまでの不良をパスと判定する第2の判定回路と、
前記第1の判定回路の第1の判定ゲート部の出力と前記第2の判定回路の出力のいずれか一方を選択するセレクタとを有する
ことを特徴とする。
この発明の他の態様による不揮発性半導体記憶装置のテスト方法は、電気的書き換え可能な不揮発性メモリセルが配列されたメモリセルアレイを備えた不揮発性半導体記憶装置のテスト方法であって、
テスト読み出しデータの各転送単位中の1ビットの不良を許容する第1のカラムテストを行って、2ビット以上の不良を含むカラムについて優先的に冗長カラムによる置換処理を行い、
前記テスト読み出しデータの各転送単位中の1ビットの不良をフェイルとする第2のカラムテストを行って、1ビット不良を含むカラムについて残りの冗長カラムによる置換処理を行い、
前記第2のカラムテストで1ビット不良を含む不良カラム数が前記残りの冗長カラム数を超えた場合にその不良カラム数をカウントし、
カウントされた不良カラム数がECC回路のエラー訂正能力の範囲にある場合に、条件緩和されたパスと判定する
ことを特徴とする。
テスト読み出しデータの各転送単位中の1ビットの不良を許容する第1のカラムテストを行って、2ビット以上の不良を含むカラムについて優先的に冗長カラムによる置換処理を行い、
前記テスト読み出しデータの各転送単位中の1ビットの不良をフェイルとする第2のカラムテストを行って、1ビット不良を含むカラムについて残りの冗長カラムによる置換処理を行い、
前記第2のカラムテストで1ビット不良を含む不良カラム数が前記残りの冗長カラム数を超えた場合にその不良カラム数をカウントし、
カウントされた不良カラム数がECC回路のエラー訂正能力の範囲にある場合に、条件緩和されたパスと判定する
ことを特徴とする。
この発明によれば、許容不良ビット数を切り換え設定するテストモードにより歩留まり向上を図った不揮発性半導体記憶装置を提供することができる。
以下、図面を参照して、この発明の実施の形態を説明する。
図1は、この発明の実施の形態によるフラッシュメモリの機能ブロック構成を示し、図2はそのメモリセルアレイ1の構成を示している。
メモリセルアレイ1は、NANDセルユニットNUをマトリクス配列して構成されている。各NANDセルユニットNUは、複数個(図2の例では32個)直列接続された電気的書き換え可能な不揮発性メモリセルM0−M31と、その両端をそれぞれビット線BL及びソース線CELSRCに接続するための選択ゲートトランジスタS1及びS2を有する。
NANDセルユニット内のメモリセルの制御ゲートは異なるワード線WL0−WL31に接続される。選択ゲートトランジスタS1,S2のゲートはそれぞれ選択ゲート線SGS,SGDに接続される。
ワード線WL0−WL31を共有するNANDセルユニットの集合は、データ消去の単位となるブロックを構成する。図2に示すように、ビット線方向に複数のブロックBLK0,BLK1,…が配置される。
ロウデコーダ3は、ロウアドレスに従ってワード線及び選択ゲート線を選択駆動するもので、ワード線ドライバ及び選択ゲート線ドライバを含む。センスアンプ回路2は、ビット線に接続されてページ単位のデータ読み出しを行うと共に、1ページの書き込みデータを保持するデータレジスタを兼ねる。
図2の例では、隣接する二つのビット線BLe,BLoが一つのセンスアンプSAを共有する方式を用いている。隣接する二つのビット線BLe,BLoは、カラムデコーダ4により選択的にセンスアンプSAに接続される。1ワード線に沿って配列されて同時に読み出し/書き込みがなされるメモリセルの集合は、1ページを構成する。図2に示す隣接する2ビット線がセンスアンプを共有する方式では、1ワード線に沿ったメモリセルの集合は、2ページを構成する。
センスアンプ回路2と外部入出力端子I/Oとの間のデータ授受は、I/Oバッファ6及びデータバス14を介して行われる。センスアンプ回路2には、カラムゲート回路が付属し、カラムデコーダ4はこのカラムゲート制御を行う。例えば入出力端子I/Oが8個(I/O0−I/O7)として、カラム制御によってセンスアンプ回路2と外部入出力端子I/Oとの間は、1バイト単位(カラム単位)でシリアルデータ転送が行われる。
入出力端子I/Oを介して供給されるアドレス“Add”は、アドレスレジスタ5を介してロウデコーダ2及びカラムデコーダ4に転送される。入出力端子I/Oを介して供給されるコマンド“CMD”は、チップ内部の状態制御回路(以下、内部コントローラという)10でデコードされる。
内部コントローラ10は、各種外部制御信号(書き込みイネーブル信号WEn、読み出しイネーブル信号REn、コマンドラッチイネーブル信号CLE、アドレスラッチイネーブル信号ALE等)とコマンドCMDに基づいて、データ書き込み及び消去のシーケンス制御及び読み出しの動作制御を行う。外部コントローラ20は、読み出しデータのエラー検出及び訂正を行うECC回路21を搭載している。
内部電圧発生回路9は、内部コントローラ10により制御されて、書き込み、消去及び読み出しの動作に必要な各種内部電圧を発生するもので、電源電圧より高い内部電圧を発生するためには昇圧回路が用いられる。ステータスレジスタ12は、チップが書き込み、消去及び読み出し動作のレディ状態にあるか、ビジー状態にあるかを示すステータス信号R/Bをチップ外部に出力する。
データレジスタ8aは、初期設定データのうち不良アドレスデータを保持する不良アドレスレジスタである。データレジスタ8bは、内部電圧発生回路9が出力する各種内部電圧を調整するための電圧調整データをはじめとする各種パラメータデータを保持する。
これらのデータレジスタ8a,8bが記憶すべきデータは、メモリセルアレイ1の初期設定データ格納ブロック(ROMフューズブロック)1aに予め書かれている。電源を投入すると、パワーオン検出回路11がこれを検出し、内部コントローラ10はその出力信号を受けて、初期設定データ格納ブロック1aの初期設定データを読み出し、これをレジスタ8a,8bに転送してセットする初期化動作を自動的に行うようになっている。
アドレス一致検出回路7は、外部アドレスと不良アドレスレジスタ8aが保持する不良アドレスとの一致検出を行って、アドレス置換制御信号を出力する。これにより、不良カラムに代わって冗長カラムを選択するという制御が行われる。
テスト回路30は、テストモードにおいて、センスアンプ回路2に読み出されるテスト読み出しデータをその期待値と比較して良否判定を行うための回路である。この実施の形態では、このテスト回路30による不良カラムテストにおいて、データ転送単位である1バイト(或いは2バイト)中、1ビットの不良をパスとして判定する“1ビット不良許容モード”を設定可能としたことを特徴としている。このテストモードを導入することにより、第1に、1バイト(ないし2バイト)中に不良カラムがないもの、1ビットの不良を含むもの、2ビット以上の不良を含むもの、を区別することが可能になる。
また、第2に、カラムリダンダンシーについて、不良の度合いの大きいカラム不良(例えば1カラム全ビット不良のようなECC救済不可能な不良)から優先的にリダンダンシー救済し、1ビット不良が冗長カラムの不足により救済できなくなった場合でも、ECC回路で救済できれば良品として出荷する、という選択ができる。これにより、歩留まり向上が可能となる。
以下、この実施の形態での不良カラムテストを説明する。
図3は、不良カラムテストの一つであるビット線オープンテストのテストシステム概略構成を示している。このテストでは、セルアレイ1の中のセンスアンプ回路2から最も遠いブロックを消去状態にして選択する。ビット線を充電して選択ブロックの選択ページの読み出しを行うと、正常なビット線は選択セルを介して放電され、オープン不良のビット線は放電されない。
例えば、正常なセンスデータを“H”、ビット線オープン不良の箇所のセンスデータを“L”として、期待値レジスタ31に予め設定した期待値データ“H”とセンスデータを比較すれば、カラム不良が検出できる。実際にはテスト回路30にデータ転送単位である1バイト(或いは2バイト)の期待値を保持する期待値レジスタ31を用意する。そして、センスアンプ回路2の1ページのテストデータを1バイト(或いは2バイト)ずつ転送バス14に転送して、比較判定回路32により順次期待値と比較して良否判定を行う。比較判定回路32は、データ転送単位ごとに許容不良ビット数に応じて区別されたパス/フェイル判定を行うもので、その詳細は後述する。
図4は、実施の形態の不良カラムテストシーケンスを示している。ここでは、カラムテストの中でリダンダンシー救済処理(即ち不良カラムの冗長カラムによる置換処理)を行うものとして、1カラム中に1ビットの不良の存在を許容してパスと判定するテストモード、即ち“1ビット不良許容モード”による第1のカラムテストと、1ビット不良許容モードなし(即ち1ビットでも不良があればフェイルと判定する)の第2のカラムテストとが行われる。1ビット不良許容モードとするか否かは、コマンド或いはパラメータにより設定される。
具体的に説明する。最初のカラムテスト(1)のステップS1は、1ビット不良許容モードのテストである。ここでは、1カラムに1ビットの不良があっても不良とはせず、2ビット以上の不良を含むカラムについて優先的にリダンダンシー救済を行うという不良カラム処理までを行う。
判定ステップS2では従って、1バイト中2ビット以上の不良を含むカラム数が不良カラムの置換のために用意されている冗長カラム数(リダンダンシー数)以下の場合、即ちすべてリダンダンシー救済された場合にパスとし、そうでなければ不良チップとする。リダンダンシー救済処理とは、具体的には救済すべき不良カラムアドレスをセルアレイのROMフューズ領域1aに書き込む処理を言う。
ついで、カラムテスト(2)のステップS3では、1ビット不良許容モードを解除したテストを行う。即ち、1バイト中1ビットでも不良であればそのカラムは不良と判定して、それらについて順次カラムリダンダンシー救済を行い、判定ステップS4では、すべてがリダンダンシー救済されたときにパス、そうでない場合にフェイルとする。
ステップS5では、1ビット不良許容モードなしでのテストステップS3でリダンダンシー救済されずに残った1ページ内の不良カラム数をカウントする。即ちここでの不良カラム数カウントは、既にリダンダンシー救済されているカラムは対象から除かれる。
この不良カラム数カウントにより、ECC回路で訂正できるカラム不良と、1ビット不良カラム数が多すぎてECC救済できないものとがランクわけされることになる。即ち判定ステップS6では、カウントされた不良カラム数がECC回路の能力で決まる許容不良カラム数のクライテリア未満の場合に、条件緩和パス(Relaxation Pass)とし、それ以外はフェイルと判定する。
これにより、不良カラム数がある程度以下の場合は、ECC回路の演算によるパフォーマンス低下を承知の上で、例えば特定用途に適用する製品として出荷することが可能になる。1ビット不良を含むカラムがECC救済不可となるほど多数ある場合は、不良チップとする。
図5は、上述の二つのモードのカラムテスト(1),(2)のパス/フェイル判定を、コマンド等に基づく切り換え信号により切り換えて行う比較判定回路32の具体構成例である。
期待値比較回路51は、期待値レジスタ31に予めセットされたデータ転送単位である1バイト(或いは2バイト)の期待値Expと、カラムアドレスをインクリメントしてセンスアンプ回路から順次1バイト(或いは2バイト)ずつ送られてくるテストデータDataとの一致/不一致を検出する回路である。1バイト単位の場合であれば、図6に示すように、1バイトの期待値Exp[7:0]と1バイトのテストデータData[7:0]とを比較する排他的論理和(EXOR)ゲート回路群により構成される。
第1の判定回路52は、比較回路51の出力CMPFLG[7:0]に基づいて、0ビット不良であるか否かの判定と、1ビット不良であるかそれ以上の不良があるかの判定とを行う。転送単位が1バイトの場合であれば、図7に示すように、1ビット以上の不良をフェイルとする第1の判定ゲート部52−1と、2ビット以上の不良をフェイルと判定する第2の判定ゲート部52−2とを有する。
判定ゲート部52−1は、比較回路51の比較結果CMPFLG[7:0]を2ビットずつ入力して完全一致か否かを検出するANDゲートG1である。その出力FAIL0<1:0>は、完全一致の場合(即ち1ビットの不良もない場合)にFAIL0=“H”(=“1”)、それ以外はFAIL0=“L”(=“0”)となる。
判定ゲート部52−2は、比較結果CMPFLG[7:0]を2ビットずつまとめた4ビットのうち1ビットずつを除いたものの積をとるANDゲートG2−G5を備えて、1ビットの不良を許容したパス/フェイル判定を行う。その出力FAIL1<1:0>は、1ビットまでの不良の場合、ゲートG2−G5の出力がすべて“H”であり、FAIL1=“H”(=“1”)となる。2ビット以上の不良がある場合は、ゲートG2−G5の出力のいずれかが“L”となり、FAIL1=“L”(=“0”)となる。
更に、第2の判定回路53は、第1の判定回路52の出力に基づいて、1ビット不良許容モードでのパス判定を行う。具体的には図8に示すように、第1の判定ゲート部52−1の出力FAIL0<1:0>と、第2の判定ゲート部52−2の出力FAIL1<1:0>のすべての組み合わせについて積をとるANDゲートG11−G14により、1ビット不良許容モードのパス信号PASS1=“H”(=“1”)を出力する。
セレクタ54は、コマンド等に基づいて生成されるモード選択信号により、判定回路52の第1の判定ゲート部52−1から得られるパス信号PASS0(FAIL1<1:0>)と、判定回路53のパス信号(FAIL1<1:0>)のいずれかを選択する。各モードでのテスト結果出力は、図示しないリダンダンシー用レジスタにカラム毎に保持される。
そして、まず判定回路53の出力に基づいて、図4で説明したように2ビット以上の不良を含むカラムについての優先的にリダンダンシー処理が行われる。冗長カラムが残っている場合にはさらに判定回路52の出力に基づいて、1ビット不良を含むカラムについてリダンダンシー処理が行われる。また、リダンダンシー数が足りない場合にも、直ちに不良チップとせず、ECC回路の能力との関係で一定範囲を条件緩和されたパスとする処理も行われる。
図9,図10及び図11はそれぞれ、2バイト単位で転送比較を行う場合について、図5の比較回路51,判定回路52及び53の具体構成を示している。即ち比較回路51は、図9に示すように、16ビットずつの期待値Exp[15:0]とテストデータData[15:0]とを1ビットずつ比較するEXORゲート群である。
図10の判定回路52は、比較結果CMPFGLG[15:0]に基づいて、4ビットずつまとめて4端子に入力する点を除き、図7と同様であり、1ビット以上の不良をフェイルとする判定ゲート部52−1と、2ビット以上の不良をフェイルと判定する判定ゲート部52−2とから構成される。
図11の判定回路53は、FAIL0<3:0>とFAIL1<3:0>の組み合わせについて積をとるANDゲートG11−G14により、1ビット不良許容モードのパス信号PASS1=“H”(=“1”)を出力する。
なおここまで、データ転送単位中の1ビット不良を許容する1ビット不良許容モードを持たせる実施の形態を説明したが、更にデータ転送単位中の2ビット不良を許容する2ビット不良許容モードを持たせることも有効である。この場合、図4のテストシーケンスは、最初のカラムテスト(1)のステップS1のまえに、2ビット不良許容モードのカラムテストを付加し、そのカラムテスト内で3ビット以上の不良を含むカラムを優先的にリダンダンシー救済処理する、というように変更される。
1…メモリセルアレイ、2…センスアンプ回路、3…ロウデコーダ、4…カラムデコーダ、5…アドレスレジスタ、6…I/Oバッファ、7…アドレス一致検出回路、8a,8b…レジスタ、9…内部電圧発生回路、10…状態制御回路(内部コントローラ)、11…パワーオン検出回路、12…ステータスレジスタ、14…データバス、20…メモリコントローラ、21…ECC回路、30…テスト回路、31…期待値レジスタ、32…比較判定回路、51…期待値比較回路、52…第1の判定回路、52−1…第1の判定ゲート部、52−2…第2の判定ゲート部、53…第2の判定回路(1ビット不良許容モード)、54…セレクタ。
Claims (5)
- テスト読み出しデータをその期待値と比較して良否判定を行うテスト回路を備えた不揮発性半導体記憶装置において、前記テスト回路は、
前記期待値を保持する期待値レジスタと、
前記テスト読み出しデータの各転送単位毎のデータと前記期待値レジスタの期待値とをビット毎に一致/不一致検出する比較回路と、
前記比較回路の比較結果に基づいて転送単位中の1ビット以上の不良をフェイルと判定する第1の判定ゲート部及び、2ビット以上の不良をフェイルと判定する第2の判定ゲート部を持つ第1の判定回路と、
前記第1の判定回路の第1及び第2の判定ゲート部の出力に基づいて、転送単位中の1ビットまでの不良をパスと判定する第2の判定回路と、
前記第1の判定回路の第1の判定ゲート部の出力と前記第2の判定回路の出力のいずれか一方を選択するセレクタとを有する
ことを特徴とする不揮発性半導体記憶装置。 - 前記第2の判定回路の出力に基づいて、2ビット以上の不良を含むカラムにつき優先的に冗長カラムによる置換処理が行われる
ことを特徴とする請求項1記載の不揮発性半導体記憶装置。 - 前記第2の判定回路の出力に基づいて、2ビット以上の不良を含むカラムにつき優先的に冗長カラムによる置換処理が行われ、
ついで前記第1の判定回路の第1の判定ゲート部の出力に基づいて、1ビットの不良を含むカラムにつき残りの冗長カラムによる置換処理が行われる
ことを特徴とする請求項1記載の不揮発性半導体記憶装置。 - 前記テスト読み出しデータは、ビット線オープン、ビット線ショート及びセンスアンプ不良のいずれかを検出するカラム不良テストの読み出しデータである
ことを特徴とする請求項1記載の不揮発性半導体記憶装置。 - 電気的書き換え可能な不揮発性メモリセルが配列されたメモリセルアレイを備えた不揮発性半導体記憶装置のテスト方法であって、
テスト読み出しデータの各転送単位中の1ビットの不良を許容する第1のカラムテストを行って、2ビット以上の不良を含むカラムについて優先的に冗長カラムによる置換処理を行い、
前記テスト読み出しデータの各転送単位中の1ビットの不良をフェイルとする第2のカラムテストを行って、1ビット不良を含むカラムについて残りの冗長カラムによる置換処理を行い、
前記第2のカラムテストで1ビット不良を含む不良カラム数が前記残りの冗長カラム数を超えた場合にその不良カラム数をカウントし、
カウントされた不良カラム数がECC回路のエラー訂正能力の範囲にある場合に、条件緩和されたパスと判定する
ことを特徴とする不揮発性半導体記憶装置のテスト方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008006484A JP2009170026A (ja) | 2008-01-16 | 2008-01-16 | 不揮発性半導体記憶装置及びそのテスト方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008006484A JP2009170026A (ja) | 2008-01-16 | 2008-01-16 | 不揮発性半導体記憶装置及びそのテスト方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009170026A true JP2009170026A (ja) | 2009-07-30 |
Family
ID=40971033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008006484A Withdrawn JP2009170026A (ja) | 2008-01-16 | 2008-01-16 | 不揮発性半導体記憶装置及びそのテスト方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009170026A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010095506A1 (ja) * | 2009-02-19 | 2012-08-23 | Jnc株式会社 | テトラヒドロピランおよび2,2’,3,3’−テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子 |
JP2014078290A (ja) * | 2012-10-09 | 2014-05-01 | Toshiba Corp | 不揮発性半導体記憶装置 |
-
2008
- 2008-01-16 JP JP2008006484A patent/JP2009170026A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010095506A1 (ja) * | 2009-02-19 | 2012-08-23 | Jnc株式会社 | テトラヒドロピランおよび2,2’,3,3’−テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子 |
JP2014078290A (ja) * | 2012-10-09 | 2014-05-01 | Toshiba Corp | 不揮発性半導体記憶装置 |
US9502116B2 (en) | 2012-10-09 | 2016-11-22 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9037929B2 (en) | Semiconductor memory device and method of operating the same | |
JP4102338B2 (ja) | 半導体記憶装置 | |
US7739559B2 (en) | Semiconductor device and program data redundancy method therefor | |
KR101098656B1 (ko) | 반도체 기억 장치 및 그 판독 방법 | |
CN101763904B (zh) | 非易失性存储装置及其操作方法 | |
US7505315B2 (en) | Nonvolatile semiconductor storage apparatus | |
US8498153B2 (en) | Semiconductor memory device and method of operating the same | |
US10395753B2 (en) | Semiconductor memory device and programming method thereof | |
JP6144729B2 (ja) | 半導体記憶装置 | |
JP6391172B2 (ja) | メモリシステム | |
US9613720B2 (en) | Semiconductor storage device | |
US8331147B2 (en) | Nonvolatile semiconductor memory device | |
JP6131207B2 (ja) | 半導体記憶装置 | |
KR20080079556A (ko) | 불휘발성 메모리 장치 및 그 구동방법 | |
JP2012198953A (ja) | 不揮発性半導体メモリ | |
JP6088675B1 (ja) | 半導体記憶装置 | |
US7577030B2 (en) | Semiconductor storage device | |
US9177672B2 (en) | Methods of operating memory involving identifiers indicating repair of a memory cell | |
US20110238889A1 (en) | Semiconductor memory device from which data can be read at low power | |
JP2009170026A (ja) | 不揮発性半導体記憶装置及びそのテスト方法 | |
JP2013030251A (ja) | メモリシステム | |
US9142300B2 (en) | Memory system including nonvolatile memory | |
US8923068B2 (en) | Low margin read operation with CRC comparision | |
JP2006004478A (ja) | 不揮発性半導体記憶装置 | |
JP4750813B2 (ja) | 不揮発性半導体記憶装置とその自己テスト方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110405 |