[go: up one dir, main page]

JP2009168649A - Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element - Google Patents

Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element Download PDF

Info

Publication number
JP2009168649A
JP2009168649A JP2008007655A JP2008007655A JP2009168649A JP 2009168649 A JP2009168649 A JP 2009168649A JP 2008007655 A JP2008007655 A JP 2008007655A JP 2008007655 A JP2008007655 A JP 2008007655A JP 2009168649 A JP2009168649 A JP 2009168649A
Authority
JP
Japan
Prior art keywords
film
temperature
indirectly heated
humidity sensor
absolute humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008007655A
Other languages
Japanese (ja)
Inventor
Sunao Toyoda
直 豊田
Hiroyuki Fukagawa
浩之 深河
Shoichi Tamura
正一 田村
Jun Kamiyama
準 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Electronics Corp
Original Assignee
Ishizuka Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Electronics Corp filed Critical Ishizuka Electronics Corp
Priority to JP2008007655A priority Critical patent/JP2009168649A/en
Publication of JP2009168649A publication Critical patent/JP2009168649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indirect heat type heat-sensitive resistance element uniformized in shape and characteristic, and an accurate absolute humidity sensor with high response speed and superior mechanical strength, using the indirect heat type heat-sensitive resistance element. <P>SOLUTION: The indirect heat type heat-sensitive resistance element comprises: a substrate; an insulating film 2 formed on the substrate; a heat-sensitive resistance film 5 formed on the insulating film; a heating resistance film 6 formed on the insulating film to surround the circumference of the heat-sensitive resistance film; and electrode pads 3c and 3d, formed on the substrate to electrically connect the heat-sensitive resistance film and the heating resistance film respectively to the outside. The absolute humidity sensor comprises a case. having two recessed part formed symmetrically and a through-hole formed in one of the recessed parts; the indirect heat type heat-sensitive resistance element. disposed in each of the recessed parts of the case; and a lid part closing the indirect heat-sensitive resistance element with the case. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子レンジなどの調理器具や、空調機器や各種産業機器などの絶対湿度の計測を行うために使用される絶対湿度センサに関するものである。   The present invention relates to an absolute humidity sensor used for measuring absolute humidity in cooking utensils such as a microwave oven, air conditioning equipment, and various industrial equipment.

電子レンジにおいては、マイクロ波加熱によって食品から発生する水蒸気に基づく加熱室内の湿度の変化を測定することによって、食品の加熱仕上がりを検出する。例えば、このような目的に使用する仕上がり検知センサのひとつとして、特開平9−325126号公報によって開示された絶対湿度センサがある。このセンサは、図11に示すように、上面が平坦な躯体中に二つの凹部1B,1Cを対称に形成し、一方の凹部1Bに上面に対して貫通した開口部1Dを設けた均熱ケース1Aに対して、カバー1Jを、それぞれの鍔部を接合して一体化するとともに、自己加熱型の二つの感温素子1E,1Fを、基板1Pを貫通して設けた二つの端子1Qの先端間に接続して支持し、一方の感温素子1Eを開口部を有する凹部1Bに基板を介して封止して感湿素子を形成し、他方の感温素子1Fを他方の凹部1Cに基板を介して封止して温度補償素子を形成して構成されている。この絶対湿度センサを構成する感温素子1E,1Fは、予め抵抗選別されて特性の揃ったサーミスタを用いることが開示されている(特開平9−325126号公報5頁[0041])。この絶対湿度センサは、感温素子1E,感温素子1Fをそれぞれ自己発熱させて、感温素子1Eが水蒸気量に応じた熱伝導の変化を検知し、他方で感温素子1Fが密閉された空間の熱伝導を補償して、二つの感温素子の電圧変化量の差分を絶対湿度に換算するものである。   In a microwave oven, the heating finish of a food is detected by measuring a change in humidity in the heating chamber based on water vapor generated from the food by microwave heating. For example, as one of finish detection sensors used for such purposes, there is an absolute humidity sensor disclosed in Japanese Patent Laid-Open No. 9-325126. As shown in FIG. 11, this sensor has a soaking case in which two concave portions 1B and 1C are formed symmetrically in a casing having a flat upper surface, and an opening 1D penetrating the upper surface is provided in one concave portion 1B. The cover 1J is integrated with 1A by joining the flanges, and two self-heating type temperature sensing elements 1E and 1F are provided at the tips of two terminals 1Q provided through the substrate 1P. The temperature sensing element 1E is sealed in a recess 1B having an opening through a substrate to form a moisture sensing element, and the other temperature sensing element 1F is mounted on the other recess 1C. The temperature compensation element is formed by sealing with a gap. It has been disclosed that thermistors having resistances selected in advance and having uniform characteristics are used for the temperature sensitive elements 1E and 1F constituting the absolute humidity sensor (Japanese Patent Laid-Open No. 9-325126, page 5 [0041]). This absolute humidity sensor causes the temperature sensing element 1E and the temperature sensing element 1F to self-heat, and the temperature sensing element 1E detects a change in heat conduction according to the amount of water vapor, while the temperature sensing element 1F is sealed. Compensating for heat conduction in the space, the difference in voltage change between the two temperature sensing elements is converted to absolute humidity.

また、他方で本出願人が検討した図12に示した傍熱型の絶対湿度センサがある。この傍熱型の絶対湿度センサは、基板71aにサーミスタ膜72aを形成し、そのサーミスタ膜72aの周囲に白金測温抵抗体膜73aを形成し、ワイヤー74aによって金属フレーム75aとサーミスタ膜72a,白金測温抵抗体膜73aとを電気的に接続して中空に釣った状態でガラス管76aによって密封したものと、基板71bにサーミスタ膜72bを形成し、そのサーミスタ膜72bの周囲に白金測温抵抗体膜73bを形成し、ワイヤー74bによって金属フレーム75bとサーミスタ膜72b,白金測温抵抗体膜73bとを電気的に接続して中空に釣った状態で開口部77bが形成されたガラス管76bによって封入したものとで構成されている。本出願人が検討した傍熱型の絶対湿度センサは、それぞれの白金測温抵抗体膜73a、73bとを共に自己加熱させて、開口部77bが形成されたガラス管76b内の白金測温抵抗体膜73bからの熱伝導によって加熱されたサーミスタ膜72bが水蒸気量に応じた熱伝導の変化を検知し、他方の密封されたガラス管76a内の白金測温抵抗体膜73aの熱伝導によって加熱されたサーミスタ膜72aが空間の熱伝導を補償して、二つのサーミスタ膜72a、72bの電圧変化量の差分を絶対湿度に換算するものである。
特開平9−325126号公報
On the other hand, there is an indirectly heated absolute humidity sensor shown in FIG. In this indirectly heated absolute humidity sensor, a thermistor film 72a is formed on a substrate 71a, a platinum resistance thermometer film 73a is formed around the thermistor film 72a, and a metal frame 75a, the thermistor film 72a, and platinum are formed by a wire 74a. A thermistor film 72b is formed on the substrate 71b and the thermistor film 72b is sealed around the thermistor film 72b in a state of being electrically connected to the resistance temperature detector film 73a and being caught in a hollow state. The body film 73b is formed, and the metal frame 75b, the thermistor film 72b, and the platinum resistance thermometer film 73b are electrically connected by the wire 74b, and the glass tube 76b in which the opening 77b is formed in a hollow state. It consists of a sealed one. The indirectly heated absolute humidity sensor examined by the present applicant is a platinum resistance temperature sensor in the glass tube 76b in which the opening 77b is formed by self-heating the platinum resistance temperature detector films 73a and 73b together. The thermistor film 72b heated by heat conduction from the body film 73b detects a change in heat conduction according to the amount of water vapor, and is heated by heat conduction of the platinum resistance thermometer film 73a in the other sealed glass tube 76a. The thermistor film 72a thus compensated for heat conduction in the space converts the difference in voltage change between the two thermistor films 72a and 72b into absolute humidity.
JP-A-9-325126

しかしながら、上述の特開平9−325126号公報に開示された絶対湿度センサは、予め抵抗選別されて特性の揃った感温素子1E,1Fを用意する必要があり、工数がかかってしまう。更に、抵抗選別された感温素子1E,1Fでも、形状(体積、表面積)のばらつきによってそれぞれ熱放散定数にばらつきが生じ、出来上がった絶対湿度センサの検知精度のばらつきを生じる問題がある。また、図11から分かるとおり、感温素子1E,1Fは、二つの端子1Qの先端間に接続されて中空に支持されているため電機的接続の難しさや外部からの振動による機械的強度が問題となる。   However, the absolute humidity sensor disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-325126 needs to prepare the temperature sensitive elements 1E and 1F that have been subjected to resistance selection in advance and have the same characteristics, which requires man-hours. Further, even in the temperature-sensitive elements 1E and 1F subjected to resistance selection, the heat dissipation constant varies due to the variation in shape (volume, surface area), and there is a problem that the detection accuracy of the completed absolute humidity sensor varies. Further, as can be seen from FIG. 11, the temperature sensitive elements 1E and 1F are connected between the tips of the two terminals 1Q and are supported in the hollow, so that there is a problem of difficulty in electrical connection and mechanical strength due to vibration from the outside. It becomes.

また、本出願人が検討した図12の傍熱型の絶対湿度センサも感温素子が中空に支持されているため電気的接続の難しさや外部からの振動による機械的強度が問題となる。   Further, the indirectly heated absolute humidity sensor of FIG. 12 examined by the present applicant also has a problem of difficulty in electrical connection and mechanical strength due to vibration from the outside because the temperature sensitive element is supported in a hollow state.

本発明は、上記課題に鑑みなされたものであり、形状が均一で特性の揃った傍熱型感温抵抗素子を提供することを目的とする。また、前記傍熱型感温抵抗素子を用い、応答スピードが速く高精度で機械的強度に優れた絶対湿度センサを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an indirectly heated thermosensitive resistance element having a uniform shape and uniform characteristics. It is another object of the present invention to provide an absolute humidity sensor that uses the indirectly heated temperature sensitive resistance element, has a high response speed, high accuracy, and excellent mechanical strength.

本発明の請求項1に係わる発明は、基板と、該基板上に形成された絶縁膜と、該絶縁膜上に形成された感温抵抗膜と、該感温抵抗膜の周囲を取り囲む前記絶縁膜上に形成された加熱用抵抗膜と、前記感温抵抗膜と前記加熱用抵抗膜とをそれぞれ外部に電気的に導出するために前記基板上に形成された電極パッドとから構成されている傍熱型感温抵抗素子である。   According to a first aspect of the present invention, there is provided a substrate, an insulating film formed on the substrate, a temperature sensitive resistance film formed on the insulating film, and the insulation surrounding the temperature sensitive resistance film. A heating resistive film formed on the film; and an electrode pad formed on the substrate for electrically deriving the temperature-sensitive resistive film and the heating resistive film to the outside. It is an indirectly heated type temperature sensitive resistance element.

本発明の請求項2に係わる発明は、空洞部が形成された基板と、前記空洞部を覆う絶縁膜と、該絶縁膜上に形成された感温抵抗膜と、該感温抵抗膜の周囲を取り囲む前記絶縁膜上に形成された加熱用抵抗膜と、前記感温抵抗膜と前記加熱用抵抗膜とをそれぞれ外部に電気的に導出するために前記絶縁膜上、もしくは前記基板上に形成された電極パッドとから構成されている傍熱型感温抵抗素子である。   According to a second aspect of the present invention, there is provided a substrate in which a cavity is formed, an insulating film covering the cavity, a temperature-sensitive resistance film formed on the insulating film, and a periphery of the temperature-sensitive resistance film A heating resistance film formed on the insulating film surrounding the insulating film, and the temperature-sensitive resistance film and the heating resistance film are formed on the insulating film or the substrate in order to electrically lead out each of them to the outside. This is an indirectly heated temperature-sensitive resistance element composed of the formed electrode pad.

本発明の請求項3に係わる発明は、前記感温抵抗膜が、薄膜サーミスタで形成されている請求項1,2に記載の傍熱型感温抵抗素子である。   The invention according to claim 3 of the present invention is the indirectly heated temperature-sensitive resistor element according to claim 1 or 2, wherein the temperature-sensitive resistor film is formed of a thin film thermistor.

本発明の請求項4に係わる発明は、前記加熱用抵抗膜が、薄膜サーミスタ、若しくは白金測温抵抗体で形成されている請求項1,2に記載の傍熱型感温抵抗素子である。   The invention according to claim 4 of the present invention is the indirectly heated thermosensitive resistor element according to claim 1, wherein the heating resistive film is formed of a thin film thermistor or a platinum resistance temperature detector.

本発明の請求項5に係わる発明は、前記基板と前記電極パッドの間に下地電極層を形成されている請求項1,2に記載の傍熱型感温抵抗素子である。   The invention according to claim 5 of the present invention is the indirectly heated thermosensitive resistor element according to claim 1 or 2, wherein a base electrode layer is formed between the substrate and the electrode pad.

本発明の請求項6に係わる発明は、前記絶縁膜と前記感温抵抗膜、及び前記加熱用抵抗膜との間に櫛歯状電極が形成された請求項1,2に記載の傍熱型感温抵抗素子である。   The invention according to claim 6 of the present invention is the indirectly heated type according to claim 1, wherein a comb-like electrode is formed between the insulating film, the temperature-sensitive resistance film, and the heating resistance film. It is a temperature sensitive resistance element.

本発明の請求項7に係わる発明は、前記感温抵抗膜と前記加熱用抵抗膜上に絶縁保護膜が形成され、該絶縁保護膜上にガラス保護膜が形成されている請求項1,2に記載の傍熱型感温抵抗素子である。   According to a seventh aspect of the present invention, an insulating protective film is formed on the temperature-sensitive resistance film and the heating resistive film, and a glass protective film is formed on the insulating protective film. The side-heat-type temperature-sensitive resistance element described in 1.

本発明の請求項8に係わる発明は、請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、二つの凹部が対称に形成され、一方の凹部に貫通孔が形成されたケースと、該ケースの凹部のそれぞれに配置された前記傍熱型感温抵抗素子と、前記傍熱型感温抵抗素子を前記ケースとで閉塞する蓋部とから構成さている絶対湿度センサである。   According to an eighth aspect of the present invention, in the absolute humidity sensor configured using the indirectly heated temperature-sensitive resistance element according to any one of the first to seventh aspects, two concave portions are formed symmetrically, and one concave portion is formed. A case in which a through-hole is formed, the indirectly heated thermosensitive resistor element disposed in each of the recesses of the case, and a lid that closes the indirectly heated thermosensitive resistor element with the case; It is an absolute humidity sensor.

本発明の請求項9に係わる発明は、請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、二つの凹部が対称に形成されたケースと、該ケースの凹部のそれぞれに配置された前記傍熱型感温抵抗素子と、一つの凹部を密封する蓋部とから構成さている絶対湿度センサである。   The invention according to claim 9 of the present invention is an absolute humidity sensor configured using the indirectly heated temperature-sensitive resistance element according to any one of claims 1 to 7, and a case in which two concave portions are formed symmetrically; It is an absolute humidity sensor comprised from the said indirectly heated type thermosensitive resistance element arrange | positioned at each of the recessed part of a case, and the cover part which seals one recessed part.

本発明の請求項10に係わる発明は、請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、貫通孔が形成されたメタルCANと密閉されたメタルCANとが熱的に結合されたケースと、前記二つのメタルCANの内部にそれぞれ配置された前記傍熱型感温抵抗素子と、から構成されている絶対湿度センサである。   According to a tenth aspect of the present invention, there is provided an absolute humidity sensor configured using the indirectly heated temperature-sensitive resistance element according to any one of the first to seventh aspects, wherein the metal CAN in which a through hole is formed and the sealed metal. It is an absolute humidity sensor composed of a case in which CAN is thermally coupled and the indirectly heated thermosensitive resistance element disposed inside each of the two metals CAN.

本発明の傍熱型感温抵抗素子は、基板上の同一平面上に感温抵抗膜の周囲を取り囲むようにして加熱用抵抗膜を形成することで熱分布を均一化させ、応答スピードを向上させることが出来る。   The indirectly heated thermosensitive resistor element of the present invention makes the heat distribution uniform by surrounding the periphery of the thermosensitive resistor film on the same plane on the substrate, thereby improving the response speed. It can be made.

本発明の傍熱型感温抵抗素子は、基板上にスパッタ法で薄膜サーミスタを同時に多数形成するので、相互の薄膜サーミスタの抵抗値ばらつきを少なくすることができ、ペアリングの工数を削減し、コストダウンすることが出来る。   The indirectly heated thermosensitive resistor element of the present invention simultaneously forms a large number of thin film thermistors on the substrate by sputtering, so that it is possible to reduce variations in the resistance values of the mutual thin film thermistors, reducing the number of pairing steps, Cost can be reduced.

本発明の傍熱型感温抵抗素子は、相互の感温抵抗素子の形状が均一なので熱放散定数を揃えることができ、検知精度が向上する。   In the indirectly heated thermosensitive resistor element of the present invention, since the shape of the mutual thermosensitive resistor element is uniform, the heat dissipation constant can be made uniform, and the detection accuracy is improved.

本発明の傍熱型感温抵抗素子は、加熱用抵抗膜に感温抵抗膜と同じ薄膜サーミスタを用いることにより、材料点数が少なくなり、工数削減が実現できる。   In the indirectly heated thermosensitive resistor element of the present invention, by using the same thin film thermistor as the thermosensitive resistor film for the heating resistive film, the number of materials is reduced, and the man-hour can be reduced.

本発明の傍熱型感温抵抗素子は、感温抵抗膜と加熱用抵抗膜が形成された基板の裏面を薄く形成することで熱容量を小さくし、検知感度を向上させることが出来る。   The indirectly heated thermosensitive resistor element of the present invention can reduce the heat capacity and improve the detection sensitivity by forming a thin back surface of the substrate on which the temperature sensitive resistance film and the heating resistance film are formed.

本発明の傍熱型感温抵抗素子は、絶縁膜と感温抵抗膜、及び加熱用抵抗膜との間に櫛歯状電極を形成することにより、抵抗調整が容易にできる。   In the indirectly heated thermosensitive resistor element of the present invention, resistance adjustment can be easily performed by forming a comb-like electrode between the insulating film, the thermosensitive resistor film, and the heating resistive film.

本発明の絶対湿度センサは、ケース内に感温素子を中空に配置すること無しに基板上に検知部を形成するので、機械的強度を向上させることが出来る。   The absolute humidity sensor of the present invention can improve the mechanical strength because the detection part is formed on the substrate without disposing the temperature-sensitive element in the case in a hollow state.

以下、本発明に係る傍熱型感温抵抗素子の第1実施態様を図1〜図6を参照して説明する。図1は本発明の傍熱型感温抵抗素子の第1の実施形態の外観を示す上面図である。図2〜図6は、図1に示した傍熱型感温抵抗素子の薄膜形成工程の一実施形態を示す図である。図2において、基板1は、1.0mm角で、厚さが50〜300μm程度のアルミナ基板からなる。次に、基板1の一表面上にスパッタ法、プラズマCVD法などを用いて二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁被膜層が、厚さ0.1〜0.5μmに成膜される。そしてフォトエッチング法を用いてパターニングし、基板1上に絶縁膜2が形成される。絶縁膜2は、熱処理時に後述する感温抵抗膜、及び加熱用抵抗膜と基板1との化学反応を防止して傍熱型感温抵抗素子としての安定な電気的特性を得るために必要なものである。   Hereinafter, a first embodiment of an indirectly heated thermosensitive resistance element according to the present invention will be described with reference to FIGS. FIG. 1 is a top view showing an appearance of a first embodiment of an indirectly heated thermosensitive resistor element of the present invention. 2-6 is a figure which shows one Embodiment of the thin film formation process of the indirectly heated type thermosensitive resistance element shown in FIG. In FIG. 2, the substrate 1 is made of an alumina substrate that is 1.0 mm square and has a thickness of about 50 to 300 μm. Next, an insulating coating layer made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like is formed on one surface of the substrate 1 to a thickness of 0.1 to 0.5 μm by sputtering, plasma CVD, or the like. Be filmed. Then, patterning is performed using a photoetching method, and an insulating film 2 is formed on the substrate 1. The insulating film 2 is necessary for preventing a chemical reaction between the temperature-sensitive resistance film, which will be described later, and the heating resistance film and the substrate 1 at the time of heat treatment, and obtaining stable electrical characteristics as an indirectly heated temperature-sensitive resistance element. Is.

次に、図3に示すように、外部へ電気的に導出するための電極パッドを形成するための金属下地膜形成の工程に進む。基板1上にスパッタリングまたは蒸着等の方法によって、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、タングステン(W)、タンタル(Ta)、Ni−Cr合金の少なくとも一種からなる金属薄膜層が形成される。続いて、フォトエッチング法によって、積層された前記金属薄膜層の不要部分を除去して、金属下地膜3a、3bが形成される。   Next, as shown in FIG. 3, the process proceeds to a step of forming a metal base film for forming an electrode pad for leading out to the outside. A metal thin film layer made of at least one of titanium (Ti), chromium (Cr), nickel (Ni), tungsten (W), tantalum (Ta), and Ni—Cr alloy is formed on the substrate 1 by a method such as sputtering or vapor deposition. It is formed. Subsequently, unnecessary portions of the stacked metal thin film layers are removed by a photoetching method to form metal base films 3a and 3b.

続いて、図4に示すように、電極パッド3a,3bと前記絶縁膜2上に感温抵抗膜となる薄膜サーミスタ、及び加熱用抵抗膜となる薄膜サーミスタと電気的に接続するための配線パターンを形成する工程に進む。まず、絶縁膜2と金属下地膜3a、3b上に、白金(Pt)、金(Au)、パラジウム(Pd)またはパラジウム合金等の少なくとも一種からなる金属薄膜層を成膜する。前記金属薄膜層を成膜後、フォトエッチング法によって、前記金属薄膜層の不要部分を除去して、金属下地膜3a、3b上に電極パッド3c、3dがそれぞれ形成され、電極パッド3cから延びる絶縁膜2上に対向する櫛型の電極4aが、電極パッド3dから延びる絶縁膜2上に対向する電極4bが形成される。   Subsequently, as shown in FIG. 4, a wiring pattern for electrically connecting to the electrode pads 3a and 3b and the thin film thermistor to be a temperature sensitive resistance film on the insulating film 2 and the thin film thermistor to be a heating resistance film. The process proceeds to the step of forming. First, a metal thin film layer made of at least one of platinum (Pt), gold (Au), palladium (Pd), or a palladium alloy is formed on the insulating film 2 and the metal base films 3a and 3b. After the metal thin film layer is formed, unnecessary portions of the metal thin film layer are removed by photoetching, and electrode pads 3c and 3d are formed on the metal base films 3a and 3b, respectively, and the insulation extends from the electrode pad 3c. A comb-shaped electrode 4a is formed on the film 2 and an electrode 4b is formed on the insulating film 2 extending from the electrode pad 3d.

続いて、図5に示すように、感温抵抗膜、及び加熱用抵抗膜を形成する工程へ進む。前工程で形成された絶縁膜2と櫛型の電極4aと電極4bとを覆うように、スパッタ法などによって、0.3〜2.0μmの厚さに薄膜サーミスタを成膜し、パターニング法を用いて絶縁膜2上に感温抵抗膜となる薄膜サーミスタ5、および加熱用抵抗膜となる薄膜サーミスタ6が形成される。加熱用抵抗膜6は、感温抵抗膜を取り囲むように成膜されている。その後、薄膜サーミスタ5,6は400〜1200℃の温度で1〜5時間の熱処理が行われる。成膜される薄膜サーミスタは、マンガン、ニッケル、コバルト、鉄などからなる複合酸化物の焼結体をターゲットとして、スパッタリング法を用いる。   Subsequently, as shown in FIG. 5, the process proceeds to a step of forming a temperature-sensitive resistance film and a heating resistance film. A thin film thermistor is formed to a thickness of 0.3 to 2.0 μm by sputtering or the like so as to cover the insulating film 2 and the comb-shaped electrodes 4a and 4b formed in the previous step, and a patterning method is performed. A thin film thermistor 5 that becomes a temperature-sensitive resistance film and a thin film thermistor 6 that becomes a heating resistance film are formed on the insulating film 2. The heating resistance film 6 is formed so as to surround the temperature-sensitive resistance film. Thereafter, the thin film thermistors 5 and 6 are heat-treated at a temperature of 400 to 1200 ° C. for 1 to 5 hours. A thin film thermistor to be formed uses a sputtering method with a sintered body of a complex oxide made of manganese, nickel, cobalt, iron, or the like as a target.

続いて、図6に示すように、絶縁保護膜と後述するガラス保護膜を形成する工程に進む。まず、0.5〜2.0μmの二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁保護膜7を感温抵抗膜、及び加熱用抵抗膜上に形成する。絶縁保護膜7は、ガラス保護膜と薄膜サーミスタ5,6との反応を防止する目的で成膜させている。さらに、薄膜サーミスタ5,6に対する耐湿性を向上させるために絶縁保護膜7上にガラスペーストをスクリーン印刷等の手段で塗布した後、400〜800℃で熱処理してガラス保護膜8を形成する。   Then, as shown in FIG. 6, it progresses to the process of forming an insulating protective film and the glass protective film mentioned later. First, an insulating protective film 7 made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like having a thickness of 0.5 to 2.0 μm is formed on the temperature sensitive resistance film and the heating resistance film. The insulating protective film 7 is formed for the purpose of preventing the reaction between the glass protective film and the thin film thermistors 5 and 6. Further, in order to improve the moisture resistance against the thin film thermistors 5 and 6, a glass paste is applied on the insulating protective film 7 by means such as screen printing, and then the glass protective film 8 is formed by heat treatment at 400 to 800 ° C.

なお、本発明の傍熱型感温抵抗素子の基板には、アルミナ基板を用いたが、シリコン基板でもよく、図7に示すように、感温抵抗膜5と加熱用抵抗膜6が形成された絶縁膜の裏面を公知のエッチング技術を用いて空洞部9を形成しても良い。基板1に空洞部9を形成した傍熱型感温抵抗素子は、感温抵抗膜5、及び加熱用抵抗膜6が成膜された基板部の熱容量が減少し、応答スピードが向上する。また、アルミナ基板でも切削などの方法で空洞部をつくり、感温抵抗膜5、及び加熱用抵抗膜6が成膜された基板部の熱容量を減少させ応答スピードを向上させても良い。またアルミナ基板以外には、窒化アルミニウム、ジルコニア、石英、ムライト、ステアタイト等のセラミック基板でもよい。また、加熱用抵抗膜6は、薄膜サーミスタを形成したが、白金測温抵抗体や、ニクロム抵抗体などの金属抵抗膜を形成して加熱用抵抗膜としてもよい。   In addition, although the alumina substrate was used for the substrate of the indirectly heated thermosensitive resistor element of the present invention, a silicon substrate may be used, and as shown in FIG. 7, a thermosensitive resistor film 5 and a heating resistor film 6 are formed. The cavity 9 may be formed on the back surface of the insulating film using a known etching technique. In the indirectly heated thermosensitive element in which the cavity portion 9 is formed in the substrate 1, the heat capacity of the substrate portion on which the temperature sensitive resistance film 5 and the heating resistance film 6 are formed is reduced, and the response speed is improved. Alternatively, a cavity portion may be formed by a method such as cutting on an alumina substrate to reduce the heat capacity of the substrate portion on which the temperature-sensitive resistance film 5 and the heating resistance film 6 are formed, thereby improving the response speed. In addition to the alumina substrate, a ceramic substrate such as aluminum nitride, zirconia, quartz, mullite, and steatite may be used. The heating resistance film 6 is a thin film thermistor, but a metal resistance film such as a platinum resistance thermometer or nichrome resistance may be formed as a heating resistance film.

上記した傍熱型感温抵抗素子は、ひとつの傍熱型感温抵抗素子の構造を示したものである。実際は基板上に上記構造を有する傍熱型感温抵抗素子が多数配列された傍熱型感温抵抗素子集合基板が形成され、個々の傍熱型感温抵抗素子に切断分離するために、ダイシングテープ等に貼着してからレーザースクライブ装置またはダイシングソー等を用いて切断する。このようにして図1に示すような個々の傍熱型感温抵抗素子が完成する。分割されたそれぞれの傍熱型感温抵抗素子は、同一バッチで製造されるので抵抗値ばらつきが少なくでき、ペアリングの工数を削減し、量産化を可能とすることが出来る。   The above-mentioned indirectly heated type temperature sensitive resistor element shows the structure of one indirectly heated type temperature sensitive resistor element. In fact, an indirectly heated thermosensitive element assembly substrate in which a number of indirectly heated thermosensitive elements having the above structure are arranged on the substrate is formed, and dicing is performed in order to cut and separate into individual indirectly heated thermosensitive elements. After sticking to a tape or the like, cut using a laser scribing device or a dicing saw. In this way, individual indirectly heated thermosensitive resistors as shown in FIG. 1 are completed. Since each of the divided indirectly heated thermosensitive resistance elements is manufactured in the same batch, variation in resistance value can be reduced, the number of pairing steps can be reduced, and mass production can be achieved.

次に絶対湿度センサを組み立てる。先ず、図8に示すメタルCANに前述した本発明の傍熱型感温抵抗素子を配置した絶対湿度センサの組み立て方法を説明する。図8(b)は、図8(a)のY−Yで切り取られる断面図である。図8(a),(b)において、貫通孔21aが形成されたメタルCAN21Aと密閉されたメタルCAN21Bとが熱的に結合されたケース20と、前記二つのメタルCAN21A、21Bの内部にそれぞれ配置された前記傍熱型感温抵抗素子S1、S2と、から構成されている。組み立て手順は、先ずメタルCAN21A、21Bのそれぞれのステム22A、22Bに傍熱型感温抵抗素子S1、S2それぞれを樹脂系の接着剤で接着固定し、ワイヤボンディングにより感温抵抗膜を電気的に導出する電極パッド、及び加熱用抵抗膜を電気的に導出する電極パッドとステムのリード30とを電気的に接続する。次にキャップ23A、23Bとステム22A、22Bとをそれぞれ接着し、キャップ23Aとキャップ23Bとを接着剤などで熱的に結合させて、絶対湿度センサHS1が完成する。   Next, an absolute humidity sensor is assembled. First, a method for assembling an absolute humidity sensor in which the above-described indirectly heated temperature sensitive resistance element of the present invention is arranged on the metal CAN shown in FIG. 8 will be described. FIG. 8B is a cross-sectional view taken along YY of FIG. 8A and 8B, a case 20 in which a metal CAN 21A in which a through-hole 21a is formed and a sealed metal CAN 21B are thermally coupled to each other and the two metals CAN 21A and 21B are respectively disposed. The indirectly heated temperature-sensitive resistance elements S1 and S2 are formed. The assembly procedure is as follows. First, the indirectly heated temperature-sensitive resistance elements S1 and S2 are bonded and fixed to the respective stems 22A and 22B of the metal CAN 21A and 21B with a resin-based adhesive, and the temperature-sensitive resistance film is electrically connected by wire bonding. The electrode pad to be led out and the electrode pad to lead out the heating resistive film electrically to the lead 30 of the stem are electrically connected. Next, the caps 23A and 23B and the stems 22A and 22B are bonded to each other, and the cap 23A and the cap 23B are thermally coupled with an adhesive or the like to complete the absolute humidity sensor HS1.

また、メタルCANを用いる代わりに、図9に示すようにセラミックパッケージに傍熱型感温抵抗素子を配置し絶対湿度センサHS2を組み立てても良い。図9(b)は、蓋部52を取り除いた際の上面図であり、図9(c)は、図9(a)のZ−Zで切り取られる絶対湿度センサの断面図である。図9(a),(b),(c)において、対称に作られた凹部51aが形成された筐体部品51と、貫通孔52aと2つの空間を形成するために仕切り部52bが形成された蓋部52と、傍熱型感温抵抗素子S1,S2とから構成されている。傍熱型感温抵抗素子S1,S2は、図に示すようにひとつの基板1の上に形成されている。組み立て手順は、先ず筐体部品51の凹部51aに傍熱型感温抵抗素子S1、S2の基板1を樹脂系の接着剤で接着固定し、ワイヤボンディングにより感温抵抗膜を電気的に導出する電極パッド3c、及び加熱用抵抗膜を電気的に導出する電極パッド3dと取り出し電極53とをそれぞれ電気的に接続する。次に蓋部52を筐体部品51に接着剤で接着固定し、絶対湿度センサHS2が完成する。なお、図9においては、傍熱型感温抵抗素子S1、S2がひとつの基板上に形成したが、基板を分離した傍熱型感温抵抗素子S1、S2であってもよい。その際には、蓋部52の仕切り部52bが、筐体部品51まで到達し、S2を密閉させる構造となる。   Further, instead of using the metal CAN, as shown in FIG. 9, an indirectly heated temperature-sensitive resistance element may be arranged in a ceramic package to assemble the absolute humidity sensor HS2. FIG. 9B is a top view when the lid 52 is removed, and FIG. 9C is a cross-sectional view of the absolute humidity sensor cut along ZZ in FIG. 9A. 9A, 9B, and 9C, a partition part 52b is formed in order to form a housing part 51 in which a recessed part 51a formed symmetrically and a through hole 52a and two spaces are formed. It is comprised from the cover part 52 and the side-heat-type thermosensitive resistance element S1, S2. The indirectly heated temperature sensitive resistance elements S1 and S2 are formed on one substrate 1 as shown in the figure. The assembly procedure is as follows. First, the substrate 1 of the indirectly heated thermosensitive resistor elements S1 and S2 is bonded and fixed to the recess 51a of the casing component 51 with a resin adhesive, and the thermosensitive resistor film is electrically derived by wire bonding. The electrode pad 3c, the electrode pad 3d that electrically derives the heating resistance film, and the extraction electrode 53 are electrically connected to each other. Next, the lid 52 is bonded and fixed to the casing component 51 with an adhesive, and the absolute humidity sensor HS2 is completed. In FIG. 9, the indirectly heated type temperature sensitive resistor elements S1 and S2 are formed on one substrate. However, the indirectly heated type temperature sensitive resistor elements S1 and S2 may be separated from each other. In that case, the partition part 52b of the cover part 52 reaches | attains the housing component 51, and becomes a structure which seals S2.

次に、絶対湿度センサの出力特性を開示する。図10(a)に示すように回路を接続し、本発明の絶対湿度センサHS1と、従来の絶対湿度センサ(図11)の出力電圧を計測した。大気温度25℃で、相対湿度0%のときの絶対湿度センサの出力をオフセットし、絶対湿度20.75g/m^3の出力をプロットした結果が図10(b)である。図10(b)から分かるとおり、本発明の絶対湿度センサのほうが、約4倍の出力電圧が計測され、検出感度が向上することができた。   Next, output characteristics of the absolute humidity sensor will be disclosed. A circuit was connected as shown in FIG. 10A, and output voltages of the absolute humidity sensor HS1 of the present invention and the conventional absolute humidity sensor (FIG. 11) were measured. FIG. 10B shows the result of offsetting the output of the absolute humidity sensor at an atmospheric temperature of 25 ° C. and a relative humidity of 0% and plotting the output of the absolute humidity of 20.75 g / m ^ 3. As can be seen from FIG. 10B, the output voltage of the absolute humidity sensor of the present invention was measured approximately four times, and the detection sensitivity could be improved.

本発明は、電子レンジなどの調理器具や、空調機器や各種産業機器などの絶対湿度の計測を行うために使用される絶対湿度センサに好適である。   The present invention is suitable for an absolute humidity sensor used to measure absolute humidity in cooking utensils such as a microwave oven, air conditioning equipment, and various industrial equipment.

本発明に係わる傍熱型感温抵抗素子を説明する図である。It is a figure explaining the side-heat type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the indirectly heated type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the indirectly heated type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the indirectly heated type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the indirectly heated type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the indirectly heated type thermosensitive resistance element concerning this invention. 本発明に係わる傍熱型感温抵抗素子の他の例を説明する図である。It is a figure explaining the other example of the side-heat-type thermosensitive resistance element concerning this invention. 本発明に係わる絶対湿度センサを説明する図である。It is a figure explaining the absolute humidity sensor concerning this invention. 本発明に係わる絶対湿度センサの他の例を説明する図である。It is a figure explaining the other example of the absolute humidity sensor concerning this invention. 絶対湿度センサの出力特性を測定した回路図、及び特性図である。It is the circuit diagram which measured the output characteristic of the absolute humidity sensor, and a characteristic diagram. 従来の絶対湿度センサを説明する図である。It is a figure explaining the conventional absolute humidity sensor. 従来の絶対湿度センサの他の例を説明する図である。It is a figure explaining the other example of the conventional absolute humidity sensor.

符号の説明Explanation of symbols

S1,S2 傍熱型感温抵抗素子
1 基板
2 絶縁膜
3c,3d 電極パッド
4a,4b 櫛歯状電極
5 感温抵抗膜
6 加熱用抵抗膜
7 絶縁保護膜
8 ガラス保護膜
HS1、HS2 絶対湿度センサ
S1, S2 Side-heat type thermosensitive resistor element 1 Substrate 2 Insulating film 3c, 3d Electrode pads 4a, 4b Comb-shaped electrode 5 Temperature sensitive resistor film 6 Heating resistive film 7 Insulating protective film 8 Glass protective film HS1, HS2 Absolute humidity Sensor

Claims (10)

基板と、該基板上に形成された絶縁膜と、該絶縁膜上に形成された感温抵抗膜と、該感温抵抗膜の周囲を取り囲む前記絶縁膜上に形成された加熱用抵抗膜と、前記感温抵抗膜と前記加熱用抵抗膜とをそれぞれ外部に電気的に導出するために前記基板上に形成された電極パッドとから構成されていることを特徴とする傍熱型感温抵抗素子。   A substrate, an insulating film formed on the substrate, a temperature-sensitive resistance film formed on the insulating film, and a heating resistance film formed on the insulating film surrounding the temperature-sensitive resistance film; An indirectly heated temperature-sensitive resistor comprising: an electrode pad formed on the substrate for electrically deriving the temperature-sensitive resistor film and the heating resistor film to the outside. element. 空洞部が形成された基板と、前記空洞部を覆う絶縁膜と、該絶縁膜上に形成された感温抵抗膜と、該感温抵抗膜の周囲を取り囲む前記絶縁膜上に形成された加熱用抵抗膜と、前記感温抵抗膜と前記加熱用抵抗膜とをそれぞれ外部に電気的に導出するために前記絶縁膜上、もしくは前記基板上に形成された電極パッドとから構成されていることを特徴とする傍熱型感温抵抗素子。   A substrate having a cavity formed therein, an insulating film covering the cavity, a temperature-sensitive resistance film formed on the insulating film, and a heating formed on the insulating film surrounding the temperature-sensitive resistance film And an electrode pad formed on the insulating film or the substrate to electrically lead out the temperature-sensitive resistance film and the heating resistance film to the outside. Side-heat-type temperature sensitive resistance element characterized by 前記感温抵抗膜が、薄膜サーミスタで形成されていることを特徴とする請求項1,2に記載の傍熱型感温抵抗素子。   The indirectly heated thermosensitive resistor element according to claim 1, wherein the thermosensitive resistor film is formed of a thin film thermistor. 前記加熱用抵抗膜が、薄膜サーミスタ、若しくは白金測温抵抗体で形成されていることを特徴とする請求項1,2に記載の傍熱型感温抵抗素子。   The indirectly heated thermosensitive resistor element according to claim 1, wherein the heating resistive film is formed of a thin film thermistor or a platinum resistance thermometer. 前記基板と前記電極パッドの間に下地電極層が形成されていることを特徴とする請求項1,2に記載の傍熱型感温抵抗素子。   The indirectly heated thermosensitive resistor element according to claim 1, wherein a base electrode layer is formed between the substrate and the electrode pad. 前記絶縁膜と前記感温抵抗膜、及び前記加熱用抵抗膜との間に櫛歯状電極が形成されたことを特徴とする請求項1,2に記載の傍熱型感温抵抗素子。   The indirectly heated thermosensitive resistor element according to claim 1, wherein a comb-like electrode is formed between the insulating film, the thermosensitive resistive film, and the heating resistive film. 前記感温抵抗膜と前記加熱用抵抗膜上に絶縁保護膜が形成され、該絶縁保護膜上にガラス保護膜が形成されていることを特徴とする請求項1,2に記載の傍熱型感温抵抗素子。   The indirectly heated type according to claim 1, wherein an insulating protective film is formed on the temperature-sensitive resistive film and the heating resistive film, and a glass protective film is formed on the insulating protective film. Temperature sensitive resistance element. 請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、二つの凹部が対称に形成され、一方の凹部に貫通孔が形成されたケースと、該ケースの凹部のそれぞれに配置された前記傍熱型感温抵抗素子と、前記傍熱型感温抵抗素子を前記ケースとで閉塞する蓋部とから構成さていることを特徴とする絶対湿度センサ。   8. An absolute humidity sensor constructed using the indirectly heated thermosensitive resistor element according to claim 1, wherein two recesses are formed symmetrically and a through hole is formed in one recess, and the case An absolute humidity sensor comprising: the indirectly heated thermosensitive resistor element disposed in each of the recesses; and a lid that closes the indirectly heated thermosensitive resistor element with the case. 請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、二つの凹部が対称に形成されたケースと、該ケースの凹部のそれぞれに配置された前記傍熱型感温抵抗素子と、一つの凹部を密封する蓋部とから構成さていることを特徴とする絶対湿度センサ。   In the absolute humidity sensor comprised using the side-heat-type thermosensitive resistance element of Claim 1 thru | or 7, the said side arrange | positioned in each of the case where two recessed parts were formed symmetrically, and the recessed part of this case An absolute humidity sensor comprising a thermo-type temperature sensitive resistance element and a lid for sealing one recess. 請求項1乃至7に記載の傍熱型感温抵抗素子を用いて構成される絶対湿度センサにおいて、貫通孔が形成されたメタルCANと密閉されたメタルCANとが熱的に結合されたケースと、前記二つのメタルCANの内部にそれぞれ配置された前記傍熱型感温抵抗素子とから構成されていることを特徴とする絶対湿度センサ。   8. An absolute humidity sensor configured using the indirectly heated thermosensitive resistor element according to claim 1, wherein a metal CAN in which a through hole is formed and a sealed metal CAN are thermally coupled to each other. An absolute humidity sensor comprising the indirectly heated temperature-sensitive resistance element disposed inside each of the two metals CAN.
JP2008007655A 2008-01-17 2008-01-17 Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element Pending JP2009168649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007655A JP2009168649A (en) 2008-01-17 2008-01-17 Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007655A JP2009168649A (en) 2008-01-17 2008-01-17 Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element

Publications (1)

Publication Number Publication Date
JP2009168649A true JP2009168649A (en) 2009-07-30

Family

ID=40969982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007655A Pending JP2009168649A (en) 2008-01-17 2008-01-17 Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element

Country Status (1)

Country Link
JP (1) JP2009168649A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290357A1 (en) * 2009-08-28 2011-03-02 Hitachi Automotive Systems, Ltd. Thermal humidity sensor
JP2012177702A (en) * 2012-04-12 2012-09-13 Hitachi Automotive Systems Ltd Thermal humidity sensor
EP2339334A3 (en) * 2009-12-28 2013-03-27 Hitachi Automotive Systems, Ltd. Thermal gas sensor
WO2013061740A1 (en) * 2011-10-28 2013-05-02 日立オートモティブシステムズ株式会社 Humidity detection device
CN103149246A (en) * 2012-09-27 2013-06-12 中国石油大学(华东) Graphene film humidity sensor
CN103308569A (en) * 2013-05-14 2013-09-18 哈尔滨工业大学 Singlechip integrated type carbon nano tube humidity sensor based on sine wave stimulation
JP2016017926A (en) * 2014-07-11 2016-02-01 Tdk株式会社 Gas sensor
JP2016050825A (en) * 2014-08-29 2016-04-11 Tdk株式会社 Gas sensor
CN110914617A (en) * 2017-05-12 2020-03-24 开利公司 Method and system for multi-sensor gas detection
WO2021078449A1 (en) * 2019-10-21 2021-04-29 Robert Bosch Gmbh Sensor comprising a membrane with an opening for measuring the concentration of an analysis fluid
CN113970613A (en) * 2021-09-15 2022-01-25 苏州芯镁信电子科技有限公司 Hydrogen sensor and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301158A (en) * 1988-05-30 1989-12-05 Toshiba Corp Gas sensor
JPH0323351U (en) * 1989-07-14 1991-03-11
JPH0688802A (en) * 1992-01-08 1994-03-29 Ricoh Seiki Co Ltd Ambient gas sensor
JPH07270366A (en) * 1994-03-31 1995-10-20 Ooizumi Seisakusho:Kk Humidity sensor
JPH08105854A (en) * 1994-10-06 1996-04-23 Yazaki Corp CO sensor
JPH09119913A (en) * 1996-10-18 1997-05-06 Sharp Corp Microcap and humidity sensor
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2005098742A (en) * 2003-09-22 2005-04-14 Oizumi Seisakusho:Kk Contact combustion type hydrogen sensor
JP2006153769A (en) * 2004-11-30 2006-06-15 Mitsuteru Kimura Gas sensor and gas-sensing device therewith
JP2007155502A (en) * 2005-12-05 2007-06-21 Ricoh Co Ltd Detector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301158A (en) * 1988-05-30 1989-12-05 Toshiba Corp Gas sensor
JPH0323351U (en) * 1989-07-14 1991-03-11
JPH0688802A (en) * 1992-01-08 1994-03-29 Ricoh Seiki Co Ltd Ambient gas sensor
JPH07270366A (en) * 1994-03-31 1995-10-20 Ooizumi Seisakusho:Kk Humidity sensor
JPH08105854A (en) * 1994-10-06 1996-04-23 Yazaki Corp CO sensor
JPH09119913A (en) * 1996-10-18 1997-05-06 Sharp Corp Microcap and humidity sensor
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2005098742A (en) * 2003-09-22 2005-04-14 Oizumi Seisakusho:Kk Contact combustion type hydrogen sensor
JP2006153769A (en) * 2004-11-30 2006-06-15 Mitsuteru Kimura Gas sensor and gas-sensing device therewith
JP2007155502A (en) * 2005-12-05 2007-06-21 Ricoh Co Ltd Detector

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290357A1 (en) * 2009-08-28 2011-03-02 Hitachi Automotive Systems, Ltd. Thermal humidity sensor
JP2011047868A (en) * 2009-08-28 2011-03-10 Hitachi Automotive Systems Ltd Thermal humidity sensor
CN102004125A (en) * 2009-08-28 2011-04-06 日立汽车系统株式会社 Thermal humidity sensor
CN102004125B (en) * 2009-08-28 2013-10-09 日立汽车系统株式会社 Thermal humidity sensor
US8359919B2 (en) 2009-08-28 2013-01-29 Hitachi Automotive Systems, Ltd. Thermal humidity sensor
EP2339334A3 (en) * 2009-12-28 2013-03-27 Hitachi Automotive Systems, Ltd. Thermal gas sensor
US8689608B2 (en) 2009-12-28 2014-04-08 Hitachi Automotive Systems, Ltd. Thermal gas sensor
CN103890574A (en) * 2011-10-28 2014-06-25 日立汽车系统株式会社 Humidity detection device
JP2013096708A (en) * 2011-10-28 2013-05-20 Hitachi Automotive Systems Ltd Humidity detecting device
WO2013061740A1 (en) * 2011-10-28 2013-05-02 日立オートモティブシステムズ株式会社 Humidity detection device
JP2012177702A (en) * 2012-04-12 2012-09-13 Hitachi Automotive Systems Ltd Thermal humidity sensor
CN103149246A (en) * 2012-09-27 2013-06-12 中国石油大学(华东) Graphene film humidity sensor
CN103308569A (en) * 2013-05-14 2013-09-18 哈尔滨工业大学 Singlechip integrated type carbon nano tube humidity sensor based on sine wave stimulation
JP2016017926A (en) * 2014-07-11 2016-02-01 Tdk株式会社 Gas sensor
JP2016050825A (en) * 2014-08-29 2016-04-11 Tdk株式会社 Gas sensor
CN110914617A (en) * 2017-05-12 2020-03-24 开利公司 Method and system for multi-sensor gas detection
CN110914617B (en) * 2017-05-12 2023-01-13 开利公司 Method and system for multi-sensor gas detection
WO2021078449A1 (en) * 2019-10-21 2021-04-29 Robert Bosch Gmbh Sensor comprising a membrane with an opening for measuring the concentration of an analysis fluid
US12265047B2 (en) 2019-10-21 2025-04-01 Robert Bosch Gmbh Sensor, including a diaphragm that is open through a clearance, for measuring the concentration of an analysis fluid
CN113970613A (en) * 2021-09-15 2022-01-25 苏州芯镁信电子科技有限公司 Hydrogen sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009168649A (en) Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element
JP6160667B2 (en) Thermal conductivity gas sensor
EP3690432B1 (en) Gas sensor
JP7188445B2 (en) gas sensor
KR101489104B1 (en) Electric element
JP2005505758A (en) Micromachining type thermal conductivity sensor with porous cover
JPH08271332A (en) Thin film temperature sensor and its manufacture
JP2017166826A (en) Gas sensor
JP2015227822A (en) Heat conduction type gas sensor
JP6340967B2 (en) Gas sensor
WO2019065127A1 (en) Gas sensor
JP6631049B2 (en) Gas detector
JP5769043B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JP6879060B2 (en) Gas sensor
JP6119701B2 (en) Gas sensor
JP5765609B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
CN213738599U (en) MEMS single-chip integrated flow temperature and humidity chemical sensor
JPH10160538A (en) Heat sensor and its manufacture
CN110017911B (en) Self-calibration temperature sensor chip and preparation method thereof
JP3386250B2 (en) Thermal dependency detector
JP2016156623A (en) Sensor element
JP2007115938A (en) Thin film thermistor
JP5761589B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
WO2017203860A1 (en) Humidity measuring apparatus
JP7156014B2 (en) Thermistor and gas sensor provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106