[go: up one dir, main page]

JP2009163233A - Heat shrinkable label and manufacturing method thereof - Google Patents

Heat shrinkable label and manufacturing method thereof Download PDF

Info

Publication number
JP2009163233A
JP2009163233A JP2008316158A JP2008316158A JP2009163233A JP 2009163233 A JP2009163233 A JP 2009163233A JP 2008316158 A JP2008316158 A JP 2008316158A JP 2008316158 A JP2008316158 A JP 2008316158A JP 2009163233 A JP2009163233 A JP 2009163233A
Authority
JP
Japan
Prior art keywords
film
heat
shrinkage
longitudinal direction
shrinkable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008316158A
Other languages
Japanese (ja)
Inventor
Yukinobu Mukoyama
幸伸 向山
Takuro Endo
卓郎 遠藤
Masatoshi Hashimoto
正敏 橋本
Katsuhiko Nose
克彦 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008316158A priority Critical patent/JP2009163233A/en
Publication of JP2009163233A publication Critical patent/JP2009163233A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • B29C66/73712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73715General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable heat-shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Wrappers (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a label to be bonded to a vessel at high speed with excellent finish and made of heat shrinkable polyester film shrinking mainly in the longitudinal direction suitable for mounting on the vessel, and to provide a light-weight heat shrinkable label having good appearance, excellent ray cutting performance, even when printing is applied. <P>SOLUTION: This heat shrinkable label is made of at least a monoaxially stretched heat shrinkable polyester film and is molded into a tubular shape by overlapping an end part of the film on a predetermined position of the film, irradiating the portion where the films are overlapped with laser, and welding them. This heat shrinkable label is molded by using the heat shrinkable polyester film having heat shrinkage ratio in hot water in the longitudinal direction of 15% or more and less than 40% when treated in the hot water at 90°C for 10 seconds and having the direction of main shrinkage having white color or a cavity as its longitudinal direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は熱収縮性ラベルに関し、特に光線カット性を有しており、ペットボトル(ポリエチレンテレフタレート(PET)ボトル)やガラスボトル等のボトルを被覆するための熱収縮性ラベルとその製造方法に関する。   The present invention relates to a heat-shrinkable label, and more particularly to a heat-shrinkable label for covering bottles such as PET bottles (polyethylene terephthalate (PET) bottles) and glass bottles, and a method for producing the same.

近年、包装品の外観向上のための外装、内容物の直接的な衝突を避けるための包装、ガラス瓶またはプラスチックボトルの保護と商品の表示を兼ねたラベル包装等の用途に、各種樹脂からなる熱収縮性プラスチックフィルムが広範に使用されている。それらの熱収縮性プラスチックフィルムのうち、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルムは、PET容器、ポリエチレン容器、ガラス容器等の各種の容器において、ラベルやキャップシールあるいは集積包装の目的で使用される。   In recent years, heat from various resins has been used for exterior packaging to improve the appearance of packages, packaging to avoid direct collision of contents, label packaging that protects glass bottles or plastic bottles and displays products. Shrinkable plastic films are widely used. Among these heat-shrinkable plastic films, stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc. are used in various containers such as PET containers, polyethylene containers, glass containers, labels, cap seals or Used for integrated packaging purposes.

ところが、ポリ塩化ビニル系フィルムは、収縮特性には優れるものの、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリ塩化ビニル系フィルムをPET容器等の収縮ラベルとして用いると、容器をリサイクル利用する際に、ラベルと容器を分別しなければならない、という問題もある。一方、ポリスチレン系フィルムは、収縮後の仕上がり外観性が良好であるものの、耐溶剤性に劣るため、印刷の際に特殊な組成のインキを使用しなければならない、という不具合がある。また、ポリスチレン系フィルムは、高温で焼却する必要がある上に、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。   However, although the polyvinyl chloride film has excellent shrinkage properties, it has low heat resistance and also has problems such as generation of hydrogen chloride gas during incineration and causing dioxins. In addition, when a polyvinyl chloride film is used as a shrink label for a PET container or the like, there is also a problem that when the container is recycled, the label and the container must be separated. On the other hand, the polystyrene film has a good finished appearance after shrinkage, but has poor solvent resistance, and therefore has a problem that an ink having a special composition must be used for printing. In addition, the polystyrene film needs to be incinerated at a high temperature and has a problem that a large amount of black smoke is generated with a strange odor during incineration.

このため、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系フィルムが、熱収縮性ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。   For this reason, polyester films having high heat resistance, easy incineration, and excellent solvent resistance have come to be widely used as heat-shrinkable labels, which increases the circulation of PET containers. Along with this, usage tends to increase.

これまで、熱収縮性ポリエステル系フィルムとしては、幅方向に大きく収縮させるものが広く利用されている。幅方向が主収縮方向である熱収縮性ポリエステル系フィルムは、幅方向への収縮特性を発現させるため幅方向に高倍率の延伸が施されているが、主収縮方向と直交する長手方向に関しては、低倍率の延伸が施されているだけであることが多く、延伸されていないものもある。このような長手方向に低倍率の延伸を施したフィルムや、幅方向のみしか延伸されていないフィルムは、長手方向の機械的強度が劣るという欠点がある。   Up to now, as the heat-shrinkable polyester film, those which are largely shrunk in the width direction have been widely used. The heat-shrinkable polyester film whose width direction is the main shrinkage direction is stretched at a high magnification in the width direction in order to develop shrinkage characteristics in the width direction. In many cases, low-stretching is only performed, and some are not stretched. Such a film that has been stretched at a low magnification in the longitudinal direction or a film that has been stretched only in the width direction has a disadvantage that the mechanical strength in the longitudinal direction is inferior.

また、ボトルのラベルは、環状にしてボトルに装着した後に周方向に熱収縮させなければならないため、幅方向に熱収縮する熱収縮性フィルムをラベルとして装着する際には、フィルムの幅方向が周方向となるように環状体(チューブ)を形成した上で、その環状体を所定の長さ毎に切断してボトルに装着しなければならない。したがって、幅方向に熱収縮する熱収縮性フィルムからなるラベルをボトルに装着するのは、生産速度が高速になればなるほど困難になってくる。   In addition, since the label of the bottle must be circular and heat-shrinked in the circumferential direction after being attached to the bottle, when the heat-shrinkable film that heat-shrinks in the width direction is attached as a label, the width direction of the film is After an annular body (tube) is formed so as to be in the circumferential direction, the annular body must be cut into predetermined lengths and attached to the bottle. Therefore, it becomes more difficult to attach a label made of a heat-shrinkable film that heat-shrinks in the width direction to the bottle as the production speed increases.

このため、最近では、フィルムロールから直接ボトルの周囲に装着することが可能な長手方向に熱収縮するフィルムが求められている。さらに、近年では、お弁当等の合成樹脂製の片開き容器の周囲を帯状のフィルムで覆うことによって容器を閉じた状態で保持するラッピング方法が開発されており、長手方向に収縮するフィルムは、そのような包装用途にも適している。したがって、長手方向に収縮するフィルムは、今後、需要が飛躍的に増大するものと見込まれる。   For this reason, recently, there has been a demand for a film that is heat-shrinkable in the longitudinal direction and can be mounted directly around the bottle from a film roll. Furthermore, in recent years, a wrapping method for holding a container closed by covering the periphery of a synthetic resin single-open container such as a lunch box with a strip-shaped film has been developed. It is also suitable for such packaging applications. Therefore, the demand for the film shrinking in the longitudinal direction is expected to increase dramatically in the future.

こういったことから、出願人らは、主収縮方向が長手方向であり、主収縮方向と直交する方向(幅方向)における機械的強度の高い熱収縮性フィルムを得るべく鋭意検討し、その結果、横延伸−中間熱処理−縦延伸という特殊なプロセスによって、主収縮方向が長手方向であり、かつ幅方向における機械的強度の高い熱収縮性フィルムが得られることを見い出し、当該熱収縮性フィルムについて、先に提案した(特願2006−165212号)。   From these facts, the applicants diligently studied to obtain a heat-shrinkable film having a high mechanical strength in a direction (width direction) perpendicular to the main shrinkage direction in which the main shrinkage direction is the longitudinal direction. The heat shrinkable film is found to be obtained by a special process of transverse stretching-intermediate heat treatment-longitudinal stretching in which the main shrinkage direction is the longitudinal direction and the mechanical strength is high in the width direction. And previously proposed (Japanese Patent Application No. 2006-165212).

しかしながら、上記横延伸−中間熱処理−縦延伸というプロセスによって得られる熱収縮性フィルムは、主収縮方向が長手方向であり幅方向における機械的強度に優れるものの、長手方向の温湯収縮率や熱収縮応力が高すぎるものも存在し、フィルムロールから直接ボトルの周囲に胴巻きした後に熱収縮させた際の収縮仕上がり性が必ずしも良好であるとは言えなかった。また、フィルムロールから直接ボトルの周囲に胴巻きする際には、ある程度ボトルにフィルムが密着するように巻き付けることができるので、長手方向の温湯収縮率や熱収縮応力をさほど高くする必要はなく、逆に、長手方向の温湯収縮率や熱収縮応力が高すぎると、却って、ボトルの周囲に巻き付けて熱収縮させた際にボトルを締め付ける力が強くなりすぎて、ボトルを開栓する際に噴きこぼれが生じる虞れがある。   However, the heat-shrinkable film obtained by the process of transverse stretching-intermediate heat treatment-longitudinal stretching has the main shrinkage direction as the longitudinal direction and excellent mechanical strength in the width direction, but the hot water shrinkage rate and heat shrinkage stress in the longitudinal direction. In some cases, the shrinkage finish is not necessarily good when the film is heat-shrinked after being wound around the bottle directly from the film roll. Moreover, when the body roll is directly wound around the bottle from the film roll, it is possible to wind the film so that the film is in close contact with the bottle to some extent, so there is no need to increase the hot water shrinkage rate or heat shrinkage stress in the longitudinal direction. In addition, if the hot water shrinkage rate or heat shrinkage stress in the longitudinal direction is too high, the force of tightening the bottle becomes too strong when it is wrapped around the bottle and thermally shrunk, and the bottle spills when opening the bottle. May occur.

さらに、中央部に“くびれ”を有する形状のペットボトルのラベルとして使用する場合には、長手方向の温湯収縮率や熱収縮応力が高すぎると、熱収縮させた後の仕上がり状態が悪くなってしまうおそれもあった。加えて、上記した横延伸−中間熱処理−縦延伸というプロセスによって得られる熱収縮性フィルムの中には、靭性(粘り強さ)やタフネス性が不十分なものも存在し、このような靭性やタフネス性が不十分なフィルムに後加工を施すと、強いテンションが加わった場合にフィルムが破断して、大規模なトラブルが発生してしまう虞れがあった。   Furthermore, when used as a label for a PET bottle having a “neck” at the center, if the hot water shrinkage rate or heat shrinkage stress in the longitudinal direction is too high, the finished state after heat shrinkage will deteriorate. There was also a risk. In addition, some of the heat-shrinkable films obtained by the process of transverse stretching, intermediate heat treatment, and longitudinal stretching described above have insufficient toughness (toughness) and toughness, and such toughness and toughness are also present. When a film having insufficient properties is post-processed, there is a possibility that a large-scale trouble may occur due to the film breaking when a strong tension is applied.

また、これらの長手方向に収縮するフィルムをボトル等の容器に装着してフィルム連続体(ラベル)を成形するには、容器に適当な長さのフィルムの一端を貼着し、容器外周にフィルムを巻付けてもう一方のフィルム端が上になるようにフィルム端同士を重ね合わせて貼り合せる方法が用いられる(例えば特許文献1)。これらの容器とフィルム、あるいはフィルム端同士の貼着には、粘着剤による貼着、接着剤による貼着、溶剤による貼着、熱シールによる貼着が挙げられる。   In addition, in order to form a film continuum (label) by attaching a film shrinking in the longitudinal direction to a container such as a bottle, one end of a film having an appropriate length is stuck on the container, and the film is placed on the outer periphery of the container. Is used, and the film ends are overlapped and bonded so that the other film end faces up (for example, Patent Document 1). Examples of the adhesion between these containers and films, or film edges include adhesion with an adhesive, adhesion with an adhesive, adhesion with a solvent, and adhesion with a heat seal.

しかしながら、これらのフィルムを容器に装着する工程で用いる貼着方法として、粘着剤を用いた場合には充分な接着力が得られず、収縮のための熱処理の際にラベルのずれや剥がれが発生してしまうが、接着剤として例えばホットメルト接着剤を用いた場合には、接着剤の熱によるラベルのゆがみや、後工程での収縮不足等が起こり易いという問題があった。また、意匠性や強度の観点からボトル等の容器の形状として凹凸が大きく複雑な容器の使用も増加しているが、フィルムをこれらの複雑な形状の容器に直接貼着しようとすると、容器の凹部に位置するフィルム重なり部分の圧着が困難となり、接着剤等を用いて貼着する方法では、うまく接着できない場合があった。   However, as a sticking method used in the process of attaching these films to a container, sufficient adhesive strength cannot be obtained when a pressure sensitive adhesive is used, and label displacement or peeling occurs during heat treatment for shrinkage. However, when, for example, a hot melt adhesive is used as the adhesive, there has been a problem that label distortion due to the heat of the adhesive and insufficient shrinkage in subsequent processes are likely to occur. In addition, from the viewpoint of design and strength, the use of complicated containers with large irregularities is increasing as the shape of containers such as bottles, but if you try to stick the film directly to these complicated shaped containers, It is difficult to press the overlapping portion of the film located in the concave portion, and the method of sticking using an adhesive or the like sometimes fails to bond well.

一方、溶剤接着も考えられるが、容器が立った状態でラベルが巻き付けられるため、溶剤接着では溶剤の粘度が低過ぎて垂れや飛び散りにより塗布が不均一になったり、周囲を汚染したりするといった問題がある。さらに、生産性向上の観点から高速装着を考慮すれば短時間で接着処理することが重要であり、ヒートシール法も考えられるが、ヒートシール法では高速かつ均一な処理が困難であった。   On the other hand, solvent adhesion is also possible, but since the label is wrapped with the container standing, the solvent viscosity is too low in solvent adhesion, and the application becomes uneven due to dripping or splashing, and the surroundings are contaminated. There's a problem. Furthermore, considering high-speed mounting from the viewpoint of improving productivity, it is important to perform the adhesive treatment in a short time, and a heat seal method is also conceivable. However, high-speed and uniform treatment is difficult with the heat seal method.

ところで、このような熱収縮性ラベルは、PETボトルがリサイクルされる場合には、ボトルと分別する必要がある。ボトルとラベルを分別する方法の一つとして、両者を混合したまま粉砕し、それを水中で撹拌することにより比重差を利用して分別する方法がある。この方法を採用する場合、ボトルの主原料であるPETは比重が約1.4なので、ラベル用の樹脂の比重をそれ以下にする必要がある。ラベル用のポリエステル樹脂そのものの比重を下げることは困難なので、フィルム内部に空洞を多数含有させて、見かけ密度を下げる方法が考えられている(特許文献2および3参照)。しかし、これらのフィルムは以下の問題があった。
イ.空洞を設けることにより表面の荒れが大きくなり、印刷したラベルの外観が不良となり美観が損なわれる。
ロ.白色度が不足、または全光線透過率が高すぎたため、内容物が透けて見えたり、表印刷したラベルの外観が不良となり美観が損なわれる。
ハ.両面の粗さのバランスが悪く、美観と装着性が両立されていない。
ニ.収縮後の見かけ比重が高く、ボトルとの比重差による分別回収が困難である。
ホ.溶剤や膨潤剤による接着ができなかったため、接合部の外観不良や作業性の悪さがある。
By the way, such a heat-shrinkable label needs to be separated from the bottle when the PET bottle is recycled. As one method for separating the bottle and the label, there is a method in which both are pulverized while being mixed, and the mixture is stirred in water to separate using the difference in specific gravity. When this method is adopted, the specific gravity of PET, which is the main raw material of the bottle, is about 1.4. Since it is difficult to lower the specific gravity of the polyester resin for labeling, a method of reducing the apparent density by incorporating a large number of cavities inside the film has been considered (see Patent Documents 2 and 3). However, these films have the following problems.
I. By providing the cavity, the roughness of the surface is increased, the appearance of the printed label becomes poor, and the aesthetic appearance is impaired.
B. Since the whiteness is insufficient or the total light transmittance is too high, the contents can be seen through, and the appearance of the label printed on the surface becomes poor and the aesthetic appearance is impaired.
C. The balance of roughness on both sides is poor, and aesthetics and wearability are not compatible.
D. The apparent specific gravity after shrinkage is high, and it is difficult to separate and collect due to the specific gravity difference from the bottle.
E. Since adhesion with a solvent or a swelling agent could not be performed, there are poor appearance and poor workability of the joint.

一方、最近では、容器の内容物の紫外線からの保護を目的として収縮ラベルを使用するケースが増えている。具体的なカット性は内容物によって異なるが、食品・飲料の場合、長波長領域の紫外線である360nm〜400nmの波長で内容物の変質や着色等が起こるため、長波長領域、特に380nmおよび400nmのカット性が重要である。しかしながら、従来の熱収縮性ラベルでは上記の長波長領域の紫外線をカットするものはなかった。   On the other hand, recently, shrinkage labels are increasingly used for the purpose of protecting the contents of containers from ultraviolet rays. Although the specific cut property varies depending on the contents, in the case of foods and beverages, alteration or coloring of the contents occurs at a wavelength of 360 nm to 400 nm, which is ultraviolet light in the long wavelength region, so that the long wavelength region, particularly 380 nm and 400 nm. The cutting ability is important. However, none of the conventional heat-shrinkable labels cuts the ultraviolet rays in the long wavelength region described above.

また、従来、熱収縮性ラベルは、通常、フィルムの内側に図柄印刷した後に、白色印刷を施している。印刷インキの厚みは通常3μm程度であり光線遮断をするには不充分であった。このため、白色印刷を2回実施する方法で光線遮断を試みているが、品質要因(インキの厚みによる収縮特性の変化等)や、納期およびコスト的にも不利であった。
特開2005−292195号公報 特公平7−33063号公報 特開平5−111960号公報
Conventionally, heat-shrinkable labels are usually subjected to white printing after pattern printing on the inside of the film. The thickness of the printing ink is usually about 3 μm, which is insufficient for light blocking. For this reason, light blocking is attempted by a method of performing white printing twice, but this is disadvantageous in terms of quality factors (change in shrinkage characteristics due to ink thickness, etc.), delivery time, and cost.
JP 2005-292195 A Japanese Patent Publication No. 7-33063 JP-A-5-111960

本発明は、上記各諸問題を解消して、容器に装着する際に高速に接着でき、仕上がり性が良好で、さらには容器に装着するのに適した長手方向を主収縮方向とする熱収縮性ポリエステルフィルムからなるラベルを提供することを課題としている。   The present invention solves the above-mentioned problems, can be bonded at high speed when mounted on a container, has good finish, and further has a heat shrinkage whose main shrinkage direction is the longitudinal direction suitable for mounting on a container. It is an object to provide a label made of a conductive polyester film.

また、本発明のもう一つの課題は、軽量で美観に優れ、印刷や加工を施さなくとも光線カット性を有し、印刷を施した場合にも優れた美観を有する熱収縮性ポリエステル系ラベルを提供することにある。   Another object of the present invention is to provide a heat-shrinkable polyester-based label that is lightweight and excellent in aesthetics, has light-cutting properties without printing or processing, and has excellent aesthetics even when printed. It is to provide.

上記課題を解決し得た本発明は、少なくとも1軸に延伸された熱収縮性ポリエステル系フィルムからなり、フィルム端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することにより、チューブ状に成形された熱収縮性ラベルであって、
上記熱収縮性ポリエステル系フィルムが、エチレンテレフタレートを主たる構成ユニットとし、エチレングリコール以外のグリコール由来のユニットおよび/またはテレフタル酸以外のジカルボン酸由来のユニットがポリエステル全ユニット100モル%中15モル%以上40モル%以下であるポリエステルから構成されていると共に、下記要件(1)〜(5)を満たす主収縮方向が長手方向の熱収縮性ポリエステル系フィルムであることを特徴とする熱収縮性ラベルである。
(1)90℃の温水中で10秒間に亘って処理した場合における長手方向の温湯熱収縮率が15%以上40%未満である、
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向と直交する幅方向の温湯熱収縮率が−5%以上5%以下である、
(3)90℃で10秒間に亘って処理した場合における長手方向の最大熱収縮応力が2.5MPa以上7.0MPa以下である、
(4)フィルムの長手方向の破断前ヤング率が0.05GPa以上0.15GPa以下である、
(5)白色度が70以上または空洞を有する。
The present invention that has solved the above-mentioned problems is composed of a heat-shrinkable polyester film stretched at least uniaxially. The film end is overlapped at a predetermined position of the film, and a laser is irradiated to the overlapping portion of the films. A heat-shrinkable label formed into a tube shape by welding,
The heat-shrinkable polyester film has ethylene terephthalate as a main constituent unit, and a unit derived from glycol other than ethylene glycol and / or a unit derived from dicarboxylic acid other than terephthalic acid is at least 15 mol% in 100 mol% of all polyester units 40 The heat-shrinkable label is characterized by being a heat-shrinkable polyester film composed of a polyester having a mol% or less and satisfying the following requirements (1) to (5) in which the main shrinkage direction is a heat-shrinkable polyester film in the longitudinal direction. .
(1) The hot-water heat shrinkage in the longitudinal direction when treated for 10 seconds in 90 ° C. warm water is 15% or more and less than 40%.
(2) The hot water heat shrinkage in the width direction orthogonal to the longitudinal direction when treated in 90 ° C. warm water for 10 seconds is −5% or more and 5% or less,
(3) The maximum heat shrinkage stress in the longitudinal direction when treated at 90 ° C. for 10 seconds is 2.5 MPa or more and 7.0 MPa or less,
(4) Young's modulus before break in the longitudinal direction of the film is 0.05 GPa or more and 0.15 GPa or less,
(5) The whiteness is 70 or more or has a cavity.

上記熱収縮性ポリエステル系ラベルにおいては、熱収縮性ポリエステル系フィルムの80℃の温水中で長手方向に3%収縮させた後の単位厚み当たりの幅方向の直角引裂強度が、100N/mm以上300N/mm以下であることが好ましい。   In the heat-shrinkable polyester label, the right-angled tear strength per unit thickness after shrinkage of the heat-shrinkable polyester film in warm water at 80 ° C. in the longitudinal direction by 3% is 100 N / mm or more and 300 N. / Mm or less is preferable.

上記フィルム同士の重なった部分を溶着するために用いるレーザーは、炭酸ガスレーザーであることが好ましい。   The laser used for welding the overlapped portions of the films is preferably a carbon dioxide laser.

本発明には、上記各要件を満足するポリエステルフィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することにより、チューブ状に成形することを特徴とする熱収縮性ラベルの製造方法も含まれる。   The present invention is characterized in that the end of the polyester film satisfying each of the above requirements is overlaid at a predetermined position of the film, and the portion where the films overlap is irradiated with a laser and welded to form a tube shape. Also included is a method of manufacturing a heat shrinkable label.

上記製造方法においては、容器に装着する前に、予め、フィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することによりチューブ状に成形し、その後、容器に装着する工程を含んでいてもよいし、容器に直接フィルムを巻回した後、フィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することによりチューブ状に成形する製造方法であってもよい。   In the above manufacturing method, before mounting on the container, the end of the film is preliminarily stacked at a predetermined position of the film, and the portion where the films overlap is irradiated with a laser to form a tube, and then The film may be attached to the container, or after the film is wound directly on the container, the end of the film is overlaid at a predetermined position of the film, and the part where the films overlap is irradiated with a laser to be welded. The manufacturing method which shape | molds in a tube shape may be sufficient.

本発明によれば、容器に装着する際に高速に接着でき、仕上がり性が良好で、さらには容器に装着するのに適した長手方向を主収縮方向とする熱収縮性ポリエステルフィルムからなるラベルを提供することができた。また、本発明の熱収縮性ラベルは、軽量で美観に優れ、印刷や加工を施さなくとも光線カット性を有し、印刷を施した場合にも優れた美観を有する。従って、PETボトル、ガラスボトル等のボトル用の熱収縮性ラベルとして有用である。   According to the present invention, a label made of a heat-shrinkable polyester film that can be bonded at high speed when mounted on a container, has good finish, and has a main shrinkage direction as a main shrinkage direction suitable for mounting on a container. Could be provided. The heat-shrinkable label of the present invention is lightweight and excellent in aesthetics, has light-cutting properties without being printed or processed, and has excellent aesthetics even when printed. Therefore, it is useful as a heat-shrinkable label for bottles such as PET bottles and glass bottles.

本発明は、少なくとも1軸に延伸され、主収縮方向が長手方向である熱収縮性ポリエステル系フィルムから得られるチューブ状に成形された熱収縮性ラベルであって、フィルム端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することにより、チューブ状に成形されたものである熱収縮性ラベルに関する。   The present invention relates to a heat-shrinkable label formed into a tube shape obtained from a heat-shrinkable polyester-based film that is stretched at least uniaxially and whose main shrinkage direction is a longitudinal direction. It is related with the heat-shrinkable label which is what was shape | molded in the tube shape by irradiating a laser to the part which the films overlapped, and welding.

[ポリエステルについて]
本発明で使用する熱収縮性ポリエステル系フィルムの原料として用いられるポリエステルを構成するジカルボン酸成分としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等のジカルボン酸成分が好ましい。3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)は用いないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムは、必要な高収縮率を達成しにくくなる。
[About polyester]
Examples of the dicarboxylic acid component constituting the polyester used as a raw material for the heat-shrinkable polyester film used in the present invention include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, orthophthalic acid and other aromatic dicarboxylic acids, adipic acid, and azelaic acid. Preferred are aliphatic dicarboxylic acids such as sebacic acid and decanedicarboxylic acid, and dicarboxylic acid components such as alicyclic dicarboxylic acids. It is preferable not to use a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid, and their anhydrides). The heat-shrinkable polyester film obtained using the polyester containing these polyvalent carboxylic acids is difficult to achieve the necessary high shrinkage rate.

本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。炭素数8個以上のジオール(たとえばオクタンジオール等)や、3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)は用いないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムは、必要な高収縮率を達成しにくくなる。   Examples of the diol component constituting the polyester used in the present invention include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, hexanediol, and 1,4-cyclohexanedimethanol. And alicyclic diols such as bisphenol A and aromatic diols such as bisphenol A. It is preferable not to use a diol having 8 or more carbon atoms (for example, octanediol) or a trihydric or higher polyhydric alcohol (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.). The heat-shrinkable polyester film obtained by using polyesters containing these diols or polyhydric alcohols is difficult to achieve the necessary high shrinkage rate.

本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、エチレンテレフタレートユニットを主たる構成ユニットとする。「主たる」というのは、ポリエステルを構成する全ユニット100モル%中、60モル%以上であることを意味する。このポリエステルは、エチレングリコール以外のグリコール由来のユニットおよび/またはテレフタル酸以外のジカルボン酸由来のユニットがポリエステル全ユニット100モル%中15モル%以上40モル%以下である。エチレングリコール以外のグリコール由来のユニットおよび/またはテレフタル酸以外のジカルボン酸由来のユニットは17モル%以上が好ましく、20モル%以上がより好ましい。エチレングリコール以外のグリコールとしては、ネオペンチルグリコールと1,4−シクロヘキサンジメタノールが、収縮仕上がり性等の点で好ましい。テレフタル酸以外のジカルボン酸としてはイソフタル酸が好ましい。ただし、エチレングリコール以外のグリコール由来のユニットおよび/またはテレフタル酸以外のジカルボン酸由来のユニットが40モル%を超えると、フィルムの耐溶剤性が低下して、印刷工程でインキの溶媒(酢酸エチル等)によってフィルムの白化が起きたり、フィルムの耐破れ性が低下したりするため好ましくない。また、これらのユニットの含有量は、37モル%以下であるとより好ましく、35モル%以下であると特に好ましい。なお、エチレングリコール以外のグリコール由来のユニットとは、エチレングリコール以外のグリコールと例えばテレフタル酸とからなるエステルユニットであり、テレフタル酸以外のジカルボン酸由来のユニットとは、テレフタル酸以外のジカルボン酸と例えばエチレングリコールとからなるエステルユニットを意味する。   The polyester used for the heat-shrinkable polyester film of the present invention has an ethylene terephthalate unit as a main constituent unit. The “main” means that it is 60 mol% or more in 100 mol% of all units constituting the polyester. In this polyester, units derived from glycols other than ethylene glycol and / or units derived from dicarboxylic acids other than terephthalic acid are 15 mol% or more and 40 mol% or less in 100 mol% of all polyester units. The unit derived from glycol other than ethylene glycol and / or the unit derived from dicarboxylic acid other than terephthalic acid is preferably at least 17 mol%, more preferably at least 20 mol%. As glycols other than ethylene glycol, neopentyl glycol and 1,4-cyclohexanedimethanol are preferable in terms of shrinkage finishing properties and the like. As dicarboxylic acids other than terephthalic acid, isophthalic acid is preferred. However, if the unit derived from glycol other than ethylene glycol and / or the unit derived from dicarboxylic acid other than terephthalic acid exceeds 40 mol%, the solvent resistance of the film is lowered, and the ink solvent (such as ethyl acetate) is reduced in the printing process. ), Whitening of the film occurs or the tear resistance of the film decreases. Further, the content of these units is more preferably 37 mol% or less, and particularly preferably 35 mol% or less. The unit derived from glycol other than ethylene glycol is an ester unit composed of glycol other than ethylene glycol and terephthalic acid, for example, and the unit derived from dicarboxylic acid other than terephthalic acid is a dicarboxylic acid other than terephthalic acid and, for example, This means an ester unit composed of ethylene glycol.

また、熱収縮性ポリエステル系フィルムに用いるポリエステル中には、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことが好ましい。特に、ジエチレングリコールは、ポリエステル重合時の副生成成分のため、存在し易いが、本発明で使用するポリエステルでは、ジエチレングリコールの含有率が4モル%未満であることが好ましい。本発明で用いるポリエステルの極限粘度は、好ましくは0.50以上、さらに好ましくは0.60以上、特に好ましくは0.65以上である。ポリエステルの極限粘度が0.50未満であると結晶性が高くなり、十分な収縮率が得られなくなり、好ましくない。   Moreover, it is preferable not to contain diethylene glycol, triethylene glycol, and polyethylene glycol as much as possible in the polyester used for the heat-shrinkable polyester film. In particular, although diethylene glycol is likely to be present because it is a by-product component during polyester polymerization, it is preferable that the content of diethylene glycol is less than 4 mol% in the polyester used in the present invention. The intrinsic viscosity of the polyester used in the present invention is preferably 0.50 or more, more preferably 0.60 or more, and particularly preferably 0.65 or more. If the intrinsic viscosity of the polyester is less than 0.50, the crystallinity becomes high and a sufficient shrinkage cannot be obtained, which is not preferable.

また、フィルムの易滑性を向上させるために、有機滑剤、無機の滑剤等の微粒子を含有せしめることも好ましい。必要に応じて、安定剤、着色剤、酸化防止剤、消泡剤等の添加剤を含有するものであつても良い。滑り性を付与する微粒子としては、カオリン、クレー、炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、酸化アルミニウム、酸化チタン、リン酸カルシウム、フツ化リチウム等の公知の不活性外部粒子、ポリエステル樹脂の溶融製膜に際して不溶な高融点有機化合物、架橋ポリマー、ポリエステル合成時に使用する金属化合物触媒、例えば、アルカリ金属化合物、アルカリ土類金属化合物等によってポリエステル製造時にポリマー内部に形成される内部粒子等が挙げられる。上記微粒子は、フィルム中、0.005〜0.9質量%が好ましく、平均粒径としては0.001〜3.5μmが好ましい。   In order to improve the slipperiness of the film, it is also preferable to incorporate fine particles such as an organic lubricant and an inorganic lubricant. As needed, you may contain additives, such as a stabilizer, a coloring agent, antioxidant, and an antifoamer. Fine particles imparting slipperiness include known inert external particles such as kaolin, clay, calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride, and the like in the melt film formation of polyester resin. Examples thereof include insoluble high-melting-point organic compounds, cross-linked polymers, and metal compound catalysts used at the time of polyester synthesis, for example, internal particles formed inside the polymer during the production of the polyester by alkali metal compounds, alkaline earth metal compounds and the like. The fine particles are preferably 0.005 to 0.9% by mass in the film, and the average particle size is preferably 0.001 to 3.5 μm.

[要件(1)]
本発明の熱収縮性ラベルに用いられる熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理(浸漬)したときに、収縮前後の長さから、下式1により算出したフィルムの主収縮方向(長手方向)の熱収縮率(すなわち、90℃の湯温熱収縮率)が、15%以上40%未満であることが必要である。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%) 式1
[Requirement (1)]
The heat-shrinkable polyester film used for the heat-shrinkable label of the present invention has the following formula from the length before and after shrinkage when treated (immersed) in 90 ° C. warm water for 10 seconds under no load. The heat shrinkage rate in the main shrinkage direction (longitudinal direction) of the film calculated by 1 (that is, the hot water heat shrinkage rate at 90 ° C.) needs to be 15% or more and less than 40%.
Thermal shrinkage rate = {(length before shrinkage−length after shrinkage) / length before shrinkage} × 100 (%) Formula 1

90℃における長手方向の湯温熱収縮率が15%未満であると、収縮量が小さいために、熱収縮した後のラベルにシワやタルミが生じてしまうので好ましくなく、反対に、90℃における長手方向の湯温熱収縮率が40%以上であると、ラベルとして、胴巻き方式で巻き付けた後の熱収縮時に収縮に歪みが生じ易くなったり、いわゆる“飛び上がり”が発生してしまうので好ましくない。90℃における長手方向の湯温熱収縮率は、17%以上であると好ましく、19%以上であるとより好ましく、21%以上であると特に好ましい。また、90℃における長手方向の湯温熱収縮率は、38%以下であると好ましく、36%以下であるとより好ましく、34%以下であると特に好ましい。   If the hot water thermal contraction rate in the longitudinal direction at 90 ° C. is less than 15%, the shrinkage amount is small, and therefore, it is not preferable because wrinkles and tarmi are generated on the label after thermal contraction. When the hot water heat shrinkage rate in the direction is 40% or more, the shrinkage tends to occur during heat shrinkage after winding as a label by the body winding method, or so-called “jumping” occurs, which is not preferable. The hot water heat shrinkage in the longitudinal direction at 90 ° C. is preferably 17% or more, more preferably 19% or more, and particularly preferably 21% or more. Further, the hot water heat shrinkage in the longitudinal direction at 90 ° C. is preferably 38% or less, more preferably 36% or less, and particularly preferably 34% or less.

[要件(2)]
熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから上式1により算出したフィルムの幅方向の湯温熱収縮率が、−5%以上5%以下であるものを用いる。90℃における幅方向の湯温熱収縮率が−5%未満であると、ボトルのラベルとして使用する際に良好な収縮外観を得ることができないので好ましくなく、反対に、90℃における幅方向の湯温熱収縮率が5%を上回ると、ラベルとして用いた場合に熱収縮時に収縮に歪みが生じ易くなるので好ましくない。90℃における幅方向の湯温熱収縮率は、−4%以上であると好ましく、−3%以上であるとより好ましく、−2%以上であると特に好ましい。また、90℃における幅方向の湯温熱収縮率は、4%以下であると好ましく、3%以下であるとより好ましく、2%以下であると特に好ましい。
[Requirement (2)]
The heat-shrinkable polyester film has a hot-water heat shrinkage ratio in the width direction of the film calculated by the above equation 1 from the length before and after shrinkage when treated in warm water at 90 ° C. for 10 seconds without load. -5% to 5%. If the hot shrinkage in the width direction at 90 ° C. is less than −5%, a good shrink appearance cannot be obtained when used as a bottle label, and conversely, the hot water in the width direction at 90 ° C. When the thermal shrinkage rate exceeds 5%, it is not preferable because the shrinkage tends to occur at the time of thermal shrinkage when used as a label. The hot water heat shrinkage in the width direction at 90 ° C. is preferably −4% or more, more preferably −3% or more, and particularly preferably −2% or more. Moreover, the hot water temperature thermal contraction rate in the width direction at 90 ° C. is preferably 4% or less, more preferably 3% or less, and particularly preferably 2% or less.

[要件(3)]
本発明の熱収縮性ポリエステル系フィルムは、90℃で10秒間に亘って処理したときの長手方向の最大熱収縮応力が、2.5MPa以上7.0MPa以下であることも必要である。90℃における長手方向の最大熱収縮応力が2.5MPa未満であると、ボトルのラベルとして使用する際に、胴巻き後の熱収縮時に収縮不足を生じて良好な外観を得ることができなくなるので好ましくなく、反対に、90℃における長手方向の最大熱収縮応力が7.0MPaを上回ると、胴巻き後の熱収縮時に収縮歪みが生じ易くなるので好ましくない。90℃における長手方向の最大熱収縮応力は、3.0MPa以上であると好ましく、3.5MPa以上であるとより好ましく、4.0MPa以上であると特に好ましい。また、90℃における長手方向の最大熱収縮応力は、6.5MPa以下であると好ましく、6.0MPa以下であるとより好ましく、5.5MPa以下であると特に好ましい。
[Requirement (3)]
The heat-shrinkable polyester film of the present invention needs to have a maximum heat shrinkage stress in the longitudinal direction of 2.5 MPa to 7.0 MPa when treated at 90 ° C. for 10 seconds. When the maximum heat shrinkage stress in the longitudinal direction at 90 ° C. is less than 2.5 MPa, it is preferable that when used as a bottle label, the shrinkage is insufficient at the time of heat shrinkage after body winding, and a good appearance cannot be obtained. On the other hand, if the maximum heat shrinkage stress in the longitudinal direction at 90 ° C. exceeds 7.0 MPa, it is not preferable because shrinkage distortion is likely to occur during heat shrinkage after body winding. The maximum heat shrinkage stress in the longitudinal direction at 90 ° C. is preferably 3.0 MPa or more, more preferably 3.5 MPa or more, and particularly preferably 4.0 MPa or more. Further, the maximum heat shrinkage stress in the longitudinal direction at 90 ° C. is preferably 6.5 MPa or less, more preferably 6.0 MPa or less, and particularly preferably 5.5 MPa or less.

[要件(4)]
本発明の熱収縮性ポリエステル系フィルムは、以下の方法で算出される長手方向の破断前ヤング率が、0.05GPa以上0.15GPa以下であることも重要である。
[Requirement (4)]
It is also important that the heat-shrinkable polyester film of the present invention has a longitudinal Young's modulus in the longitudinal direction calculated by the following method of 0.05 GPa or more and 0.15 GPa or less.

・破断前ヤング率の測定方法
ASTM−D882にしたがって、所定の大きさ(長さ150mm×幅10mm)に切り出したフィルム試料を、25℃、65%RHの雰囲気下で、引張試験機を用いて、試料長が100mmとなるように両端(長手方向に沿った両端)を掴んで、200mm/分の引張速度にて引っ張った場合の応力−歪み曲線を測定する。そして、破断時の伸長倍率の90%の倍率まで伸長した時点(破断時の伸長倍率から逆算)から破断時点までにおける応力と歪みとの比の平均値を、破断前ヤング率として算出する。
・ Measurement method of Young's modulus before breakage A film sample cut into a predetermined size (length 150 mm × width 10 mm) according to ASTM-D882 is used in a 25 ° C. and 65% RH atmosphere using a tensile tester. The both ends (both ends along the longitudinal direction) are gripped so that the sample length becomes 100 mm, and a stress-strain curve is measured when the sample is pulled at a pulling speed of 200 mm / min. Then, the average value of the ratio of stress to strain from the time when the wire is stretched up to 90% of the stretch magnification at the time of breakage (back calculation from the stretch magnification at the time of breakage) to the time of breakage is calculated as the Young's modulus before breakage.

長手方向の破断前ヤング率が0.05GPaを下回ると、フィルムの靭性やタフネス性が不十分となり、後加工時に強いテンションが加わった場合にフィルムが破断し易くなるので好ましくなく、反対に、長手方向の破断前ヤング率が0.15GPaを上回ると、フィルムの靭性やタフネス性が高すぎてフィルムを切断する際のカット性が悪くなるので好ましくない。なお、長手方向の破断前ヤング率は、0.06GPa以上であると好ましく、0.07GPa以上であるとより好ましく、0.08GPa以上であると特に好ましい。また、長手方向の破断前ヤング率は、0.14GPa以下であると好ましく、0.13GPa以下であるとより好ましく、0.12GPa以下であると特に好ましい。   If the Young's modulus before break in the longitudinal direction is less than 0.05 GPa, the film is not preferable because the toughness and toughness of the film are insufficient and the film is easily broken when a strong tension is applied during post-processing. When the Young's modulus before breaking in the direction exceeds 0.15 GPa, the toughness and toughness of the film are too high, and the cutability at the time of cutting the film is not preferable. The Young's modulus before breaking in the longitudinal direction is preferably 0.06 GPa or more, more preferably 0.07 GPa or more, and particularly preferably 0.08 GPa or more. The Young's modulus before break in the longitudinal direction is preferably 0.14 GPa or less, more preferably 0.13 GPa or less, and particularly preferably 0.12 GPa or less.

[要件(5)]
次に、要件(5)について説明する。本発明の熱収縮性ラベル製造用フィルムは、白色度が70以上であるか、空洞を含有していなければならない。白色度は好ましくは75以上、より好ましくは80以上である。70未満では内容物が透けて見えたり、印刷物が見えにくかったりで外観に劣る。なお、白色度は、JIS L10151981−B法により求めた値である。本発明においては、フィルムの全光線透過率は30%以下が好ましい。より好ましくは25%以下、さらに好ましくは20%以下、特に好ましくは15%以下である。30%を超えると内容物が透けて見えたり、印刷物が見えにくかったりと外観に劣る。
[Requirement (5)]
Next, requirement (5) will be described. The film for producing a heat-shrinkable label of the present invention must have a whiteness of 70 or more or contain a cavity. The whiteness is preferably 75 or more, more preferably 80 or more. If it is less than 70, the contents may be seen through, or the printed matter may be difficult to see. The whiteness is a value obtained by the JIS L1015 1981- B method. In the present invention, the total light transmittance of the film is preferably 30% or less. More preferably, it is 25% or less, more preferably 20% or less, and particularly preferably 15% or less. If it exceeds 30%, the contents may be seen through, or the printed matter may be difficult to see.

熱収縮性フィルムに適度な白色度を付与するには、例えば、フィルム内部に微細な空洞を含有させることが好ましい。例えば発泡材等を混合して押出してもよいが、ポリエステル中に非相溶な熱可塑性樹脂(以下、単に非相溶樹脂ということがある)を混合し、少なくとも1軸方向に延伸することにより、空洞を得る方法が好ましい。非相溶樹脂の種類は任意であり、ポリエステルに非相溶性のものであれば特に制限されるものではない。具体的には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート樹脂、ポリスルホン系樹脂、セルロース系樹脂等が挙げられる。特に空洞の形成性の点からは、ポリスチレン系樹脂、ポリメチルペンテン系樹脂やポリプロピレン系樹脂等のポリオレフィン系樹脂が好ましい。   In order to give an appropriate whiteness to the heat-shrinkable film, for example, it is preferable to contain fine cavities inside the film. For example, foamed materials and the like may be mixed and extruded, but by mixing an incompatible thermoplastic resin (hereinafter sometimes simply referred to as an incompatible resin) in polyester and stretching it in at least one axial direction. A method of obtaining a cavity is preferred. The type of the incompatible resin is arbitrary, and is not particularly limited as long as it is incompatible with the polyester. Specific examples include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, from the viewpoint of forming the cavity, a polyolefin resin such as a polystyrene resin, a polymethylpentene resin, or a polypropylene resin is preferable.

ポリスチレン系樹脂とは、ポリスチレン構造を基本構成要素として含む熱可塑性樹脂を指し、アタクティックポリスチレン、シンジオタクティックポリスチレン、アイソタクティックポリスチレン等のホモポリマーの外、その他の成分をグラフトあるいはブロック共重合した改質樹脂、例えば耐衝撃性ポリスチレン樹脂やスチレン−ブタジエンブロック共重合体等、さらにはこれらのポリスチレン系樹脂と相溶性を有する熱可塑性樹脂、例えばポリフェニレンエーテルとの混合物を含む。   Polystyrene resin refers to a thermoplastic resin containing a polystyrene structure as a basic component, and graft or block copolymerization of other components in addition to homopolymers such as atactic polystyrene, syndiotactic polystyrene, isotactic polystyrene, etc. Modified resins, such as impact-resistant polystyrene resins and styrene-butadiene block copolymers, and also thermoplastic resins having compatibility with these polystyrene resins, such as polyphenylene ether, are included.

また、ポリメチルペンテン系樹脂とは、80モル%以上、好ましくは90モル%以上が4−メチルペンテン−1から誘導される単位を有するポリマーであり、他の成分としてはエチレン、プロピレン、ブテン−1、3−メチルブテン−1等からの誘導単位が例示される。ポリメチルペンテン系樹脂のメルトフローレートは200g/10分以下であることが好ましく、より好ましくは30g/10分以下である。これは、メルトフローレートが200g/10分を超える場合には、フィルムの軽量化効果が得られにくくなるからである。   The polymethylpentene resin is a polymer having units derived from 4-methylpentene-1 at 80 mol% or more, preferably 90 mol% or more, and other components include ethylene, propylene, butene- Examples are derived units from 1,3-methylbutene-1, and the like. The melt flow rate of the polymethylpentene resin is preferably 200 g / 10 min or less, more preferably 30 g / 10 min or less. This is because when the melt flow rate exceeds 200 g / 10 min, it is difficult to obtain the effect of reducing the weight of the film.

また、本発明におけるポリプロピレン系樹脂には、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン等のホモポリマーの外、その他の成分をグラフトあるいはブロック共重合した改質樹脂も含まれる。   The polypropylene resin in the present invention includes modified resins obtained by grafting or block copolymerizing other components in addition to homopolymers such as isotactic polypropylene and syndiotactic polypropylene.

上記非相溶樹脂の量は、目的とする白色度の程度によって異なってくるが、ポリエステル原料と非相溶樹脂との重合体混合物全体に対して、3質量%〜39質量%であるのが好ましく、より好ましくは8質量%〜35質量%であり、さらに好ましくは10質量%〜30質量%である。非相溶樹脂量が少なすぎると、空洞の生成量を多くすることに限界があり、所望の白色度が得られがたい場合がある。一方、非相溶樹脂量が多すぎると、ポリエステルフィルムの持つ耐熱性や強度、特に、腰の強さが損なわれる場合がある。   The amount of the incompatible resin varies depending on the target degree of whiteness, but is 3% by mass to 39% by mass with respect to the entire polymer mixture of the polyester raw material and the incompatible resin. More preferably, it is 8 mass%-35 mass%, More preferably, it is 10 mass%-30 mass%. If the amount of incompatible resin is too small, there is a limit to increasing the amount of voids generated, and it may be difficult to obtain a desired whiteness. On the other hand, if the amount of the incompatible resin is too large, the heat resistance and strength of the polyester film, particularly the strength of the waist may be impaired.

なお、本発明で用いられる熱収縮性フィルムが後述するように内部に多数の空洞を含有する層Aを有する場合は、この空洞含有層Aを形成するポリエステル原料と非相溶樹脂の合計100質量%に対し、非相溶樹脂の量を上記範囲に設定することが好ましい。   In addition, when the heat-shrinkable film used in the present invention has a layer A containing a large number of cavities inside as described later, a total of 100 masses of the polyester raw material and the incompatible resin forming the cavities-containing layer A It is preferable to set the amount of the incompatible resin in the above range with respect to%.

前記ポリエステルと非相溶樹脂とを混合してなる重合体混合物の調製にあたっては、例えば、各樹脂のチップを混合し、押出機内で溶融混練した後、押出してもよいし、予め混練機によって両樹脂を混練したものを、さらに押出機より溶融押出ししてもよい。また、ポリエステルの重合工程において非相溶樹脂を添加し、攪拌分散して得たチップを溶融押出してもかまわない。   In preparing the polymer mixture obtained by mixing the polyester and the incompatible resin, for example, the chips of each resin may be mixed and melt-kneaded in an extruder, and then extruded, or both may be preliminarily mixed by a kneader. A kneaded resin may be further melt extruded from an extruder. In addition, a chip obtained by adding an incompatible resin in the polyester polymerization step and stirring and dispersing may be melt-extruded.

本発明におけるフィルムは、内部に多数の空洞を含有する層Aの少なくとも片面にA層よりも空洞の少ない層Bを設けることが好ましい。この構成にするためには異なる原料をA、Bそれぞれ異なる押出機に投入、溶融し、T−ダイの前またはダイ内にて溶融状態で貼り合わせ、冷却ロールに密着固化させた後、後に述べる方法で延伸することが好ましい。このとき、原料としてB層の非相溶樹脂はA層よりも少ないことが好ましい。こうすることによりB層の空洞が少なく、また表面の荒れが少なくなり、印刷の美観を損なわないフィルムとなる。また、フィルム中に空洞が多数存在しない部分が存在しないため、フィルムの腰が弱くならず装着性に優れるフィルムとなる。また、B/A/B、あるいはB/A/Cといった3層構造にしてもよい。C層を設ける場合は、空洞の含有量は任意であるが、収縮時のボトルとフィルムの滑りを制御するための前記微粒子を添加することが可能である。A層とB層の厚み比は好ましくはA/B=2/1以上、より好ましくは4/1以上、さらに好ましくは6/1以上である。1/1未満では、印刷性の美観と比重を下げることの両立が困難である。B/A/Bは収縮処理後の好ましくないカーリングを抑制する上で好ましい。   The film in the present invention is preferably provided with a layer B having fewer cavities than the A layer on at least one side of the layer A containing a large number of cavities inside. In order to achieve this configuration, different raw materials are charged into different extruders A and B, melted, bonded in a molten state before or in the T-die, and solidified in close contact with the cooling roll, and then described later. It is preferable to stretch by the method. At this time, it is preferable that the incompatible resin of the B layer is less than the A layer as a raw material. By doing so, there are few cavities in the B layer, the surface is less rough, and the film does not impair the aesthetics of printing. Further, since there is no portion where there are not many cavities in the film, the film does not become weak and the film has excellent wearability. Further, a three-layer structure such as B / A / B or B / A / C may be used. When the C layer is provided, the content of the cavities is arbitrary, but the fine particles for controlling slippage between the bottle and the film during shrinkage can be added. The thickness ratio of the A layer and the B layer is preferably A / B = 2/1 or more, more preferably 4/1 or more, and further preferably 6/1 or more. If it is less than 1/1, it is difficult to achieve both the aesthetics of printability and the reduction of specific gravity. B / A / B is preferable for suppressing undesirable curling after the shrinkage treatment.

[直角引裂強度]
本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で長手方向に3%収縮させた後に、以下の方法で単位厚み当たりの幅方向の直角引裂強度を求めたときに、その幅方向の直角引裂強度が100N/mm以上300N/mm以下であることが好ましい。
[Right-angle tear strength]
The heat-shrinkable polyester film of the present invention was shrunk 3% in the longitudinal direction in warm water at 80 ° C., and then the right-angled tear strength per unit thickness was determined by the following method. The right-angled tear strength is preferably 100 N / mm or more and 300 N / mm or less.

・直角引裂強度の測定方法
熱収縮前のフィルムを主収縮方向が長手方向になるように切断し、矩形の枠に長手方向の両端部を固定する。このとき、枠の長さより3%長くなるように試料を弛ませて枠に固定する。80±0.5℃の温水中に試料を枠ごと浸漬し、弛んだフィルムが枠内で緊張状態となるまで、約5秒、フィルムを主収縮方向に3%収縮させる。続いて、25℃の水に浸漬した後、取り出してよく水気を拭き取る。
-Method for measuring right-angle tear strength Cut the film before heat shrink so that the main shrink direction is the longitudinal direction, and fix both ends in the longitudinal direction to a rectangular frame. At this time, the sample is loosened and fixed to the frame so as to be 3% longer than the length of the frame. The sample is immersed together with the frame in warm water of 80 ± 0.5 ° C., and the film is contracted by 3% in the main contraction direction for about 5 seconds until the loose film becomes a tension state in the frame. Then, after immersing in 25 degreeC water, it may take out and wipe off moisture.

続いて、上記収縮後のフィルムから、JIS K 7128−3に準じて、所定の大きさの試験片をサンプリングする。その後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件で、フィルムの幅方向における引張破壊時の強度(N)の測定を行う。そして、下式2を用いて単位厚み(mm)当たりの直角引裂強度(N/mm)を算出する。
直角引裂強度=引張破壊時の強度÷厚み 式2
Subsequently, a test piece of a predetermined size is sampled from the film after shrinkage according to JIS K 7128-3. Thereafter, both ends of the test piece are gripped with a universal tensile tester, and the strength (N) at the time of tensile fracture in the width direction of the film is measured under the condition of a tensile speed of 200 mm / min. Then, the right angle tear strength (N / mm) per unit thickness (mm) is calculated using the following formula 2.
Right angle tear strength = strength at tensile fracture ÷ thickness Equation 2

80℃の温水中で長手方向に3%収縮させた後の直角引裂強度が100N/mmより小さいと、ラベルとして使用した場合に、運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性があるので好ましくなく、反対に、直角引裂強度が300N/mmより大きいと、ラベルを引き裂く際のカット性(引き裂き易さ)が不良となるため好ましくない。直角引裂強度は、125N/mm以上であるとより好ましく、150N/mm以上であるとさらに好ましく、175N/mm以上であると特に好ましい。また、直角引裂強度は、275N/mm以下であるとより好ましく、250N/mm以下であるとさらに好ましく、225N/mm以下であると特に好ましい。   If the right-angled tear strength after shrinking 3% in the longitudinal direction in warm water at 80 ° C is less than 100 N / mm, when used as a label, it may be easily broken by an impact such as dropping during transportation. On the other hand, if the right-angled tear strength is greater than 300 N / mm, the cutability (ease of tearing) when tearing the label becomes unfavorable. The right-angle tear strength is more preferably 125 N / mm or more, further preferably 150 N / mm or more, and particularly preferably 175 N / mm or more. The right-angled tear strength is more preferably 275 N / mm or less, further preferably 250 N / mm or less, and particularly preferably 225 N / mm or less.

[フィルムの製造方法]
本発明のラベルに用いられる熱収縮性ポリエステル系フィルムは、上記したポリエステル原料と非相溶樹脂との重合体混合物(必要により微粒子等を添加してもよい)を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す方法により、二軸延伸して熱処理することによって得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用する。
[Film Production Method]
The heat-shrinkable polyester film used for the label of the present invention is obtained by melting and extruding a polymer mixture of the above-described polyester raw material and an incompatible resin (which may contain fine particles if necessary) using an extruder. It can be obtained by forming a stretched film and biaxially stretching and heat-treating the unstretched film by the method shown below. The polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. Usually, two or more kinds of chip-like polyester are mixed and used as a raw material for the film.

原料樹脂を溶融押し出しする際には、ポリエステル原料を、ホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200〜300℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。   When the raw material resin is melt-extruded, the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder. In extruding, any existing method such as a T-die method or a tubular method can be employed.

そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。   And an unstretched film can be obtained by rapidly cooling the sheet-like molten resin after extrusion. In addition, as a method of rapidly cooling the molten resin, a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.

さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸した後に、一旦、熱処理し、その後、所定の条件で長手方向に延伸(縦延伸)し、この縦延伸後のフィルムを急冷することによって、本発明のラベルに用いられる熱収縮性ポリエステル系フィルムが得られる。以下、熱収縮性ポリエステル系フィルムを得るための好ましい二軸延伸・熱処理方法について、従来の熱収縮性ポリエステル系フィルムの二軸延伸・熱処理方法との差異を考慮しつつ詳細に説明する。   Further, as will be described later, the obtained unstretched film is stretched in the width direction under predetermined conditions, and then once heat-treated, and then stretched in the longitudinal direction (longitudinal stretching) under the predetermined conditions. By rapidly cooling the subsequent film, a heat-shrinkable polyester film used for the label of the present invention is obtained. Hereinafter, a preferable biaxial stretching / heat treatment method for obtaining a heat-shrinkable polyester film will be described in detail in consideration of differences from the conventional biaxial stretching / heat treatment method of a heat-shrinkable polyester film.

[熱収縮性ポリエステル系フィルムの好ましい延伸・熱処理方法]
通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを延伸することによって製造される。従来から長手方向に収縮する熱収縮性ポリエステル系フィルムについての要求は高かったものの、未延伸フィルムを単純に長手方向に延伸するだけでは、幅の広いフィルムが製造できないため生産性が悪い上、厚み斑の良好なフィルムを製造することができない。また、予め幅方向に延伸した後に長手方向に延伸する方法を採用すると、長手方向への収縮量が不十分となったり、幅方向に不必要に収縮するものとなってしまう。
[Preferable stretching and heat treatment method for heat-shrinkable polyester film]
A normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction in which it is desired to shrink. Although there was a high demand for heat-shrinkable polyester films that shrink in the longitudinal direction from the past, simply stretching an unstretched film in the longitudinal direction makes it impossible to produce a wide film, resulting in poor productivity and thickness. A film with good spots cannot be produced. Moreover, if the method of extending | stretching to a longitudinal direction after extending | stretching previously to the width direction is employ | adopted, the shrinkage | contraction amount to a longitudinal direction will become inadequate, or it will shrink | contract unnecessarily in the width direction.

例えば、特開平8−244114号公報には、長手方向の機械的特性を向上させるために未延伸フィルムを所定の条件下で縦−横−縦の順に延伸する方法が示されているが、発明者らのパイロット機での追試によれば、この方法では、主収縮方向である長手方向への収縮性の十分なフィルムを得ることができない上、製造されたフィルムロールに幅方向のシワが発生し易くなることが判明した。加えて、長手方向への収縮性を上げるべく縦方向の延伸倍率(1段目の縦延伸倍率あるいは2段目の縦延伸倍率)を増加させると、最終的に長手方向に延伸する際にフィルムの破断が多発して連続的に安定した製造を行うことが困難であることも判明した。また、上記追試によって得られたフィルムは、製造されたフィルムロールに長手方向のシワが発生した。   For example, JP-A-8-244114 discloses a method of stretching an unstretched film in the order of length-width-length under predetermined conditions in order to improve the mechanical properties in the longitudinal direction. According to their pilot test, it was not possible to obtain a film with sufficient shrinkage in the longitudinal direction, which is the main shrinkage direction, and wrinkles in the width direction were produced on the produced film roll. It became clear that it became easy to do. In addition, if the longitudinal stretching ratio (the first stage longitudinal stretching ratio or the second stage longitudinal stretching ratio) is increased to increase the contractibility in the longitudinal direction, the film is finally stretched in the longitudinal direction. It has also been found that it is difficult to carry out a continuous and stable production due to frequent breaks. Moreover, the film obtained by the said additional test wrinkled in the longitudinal direction on the manufactured film roll.

本発明者らは、最終的に長手方向の収縮量を大きくするためには、特開平8−244114号公報のように長手方向および幅方向に二軸延伸した後に長手方向に延伸する方法は不利であり、単純に幅方向に延伸した後に長手方向に延伸する方が有利ではないかと考えた。そして、そのような幅方向の延伸後に長手方向に延伸する方法(以下、単に、横−縦延伸法という)において、各延伸工程における条件によりフィルムの長手方向の湯温収縮率等の特性がどのように変化するかについて鋭意検討した。その結果、横−縦延伸法によるフィルム製造の際に、後述する(a)の手段(幅方向への延伸後に中間熱処理を施すことによる収縮応力の制御)を施すことにより、長手方向の温湯収縮率や熱収縮応力を高くすることができ、連続的に安定して製造することが可能となることを突き止めた。   In order to finally increase the amount of shrinkage in the longitudinal direction, the present inventors have disadvantaged the method of stretching in the longitudinal direction after biaxial stretching in the longitudinal direction and the width direction as disclosed in JP-A-8-244114. It was considered that it would be advantageous to simply stretch in the width direction and then stretch in the longitudinal direction. And in such a method of stretching in the longitudinal direction after stretching in the width direction (hereinafter, simply referred to as a transverse-longitudinal stretching method), the characteristics such as the hot water shrinkage in the longitudinal direction of the film depend on the conditions in each stretching step. We studied earnestly about how it changes. As a result, when the film is produced by the transverse-longitudinal stretching method, the hot water shrinkage in the longitudinal direction is performed by applying the means (a) described later (control of the shrinkage stress by applying an intermediate heat treatment after stretching in the width direction). It has been found that the rate and heat shrinkage stress can be increased, and it becomes possible to produce continuously and stably.

ところが、そのような(a)の手段を施した熱収縮性フィルム(すなわち、「横延伸−中間熱処理−縦延伸」という特殊なプロセスによって得られる熱収縮性フィルム)は、主収縮方向が長手方向であり幅方向における機械的強度に優れるものの、長手方向の温湯収縮率や熱収縮応力が高すぎるものも存在し、フィルムロールから直接ボトルの周囲に胴巻きした後に熱収縮させた際の収縮仕上がり性が必ずしも良好であるとは言えないことが判明した。加えて、単純に「横延伸−中間熱処理−縦延伸」というプロセスを採用しただけでは、フィルムの靭性、粘性やタフネス性が必ずしも良好であるとは言えないことが判明した。   However, the heat-shrinkable film subjected to the means (a) (that is, a heat-shrinkable film obtained by a special process of “lateral stretching-intermediate heat treatment-longitudinal stretching”) has a main shrinking direction in the longitudinal direction. Although it has excellent mechanical strength in the width direction, there are some that have too high rate of hot water shrinkage and heat shrinkage stress in the longitudinal direction, and the shrinkage finish when the film rolls directly around the bottle and then heat shrinks. Was not necessarily good. In addition, it has been found that simply adopting the process of “lateral stretching—intermediate heat treatment—longitudinal stretching” does not necessarily mean that the toughness, viscosity and toughness of the film are good.

それゆえ、本発明者らは、横延伸−中間熱処理−縦延伸を施した後のフィルムを処理することによって、胴巻き後の熱収縮時の収縮仕上がり性を改善できないか否かについて鋭意検討した。その結果、横延伸−中間熱処理−縦延伸というプロセス後のフィルムに、後述する(b)の手段(縦延伸後における最終的な熱セットおよび幅方向への緩和処理の実施)を講じることにより、胴巻き後の熱収縮時の収縮仕上がり性が飛躍的に改善できることを見出し、本発明を案出するに至った。以下、上記(a),(b)の各手段について順次説明する。   Therefore, the present inventors have intensively studied whether or not the shrinkage finish property at the time of thermal shrinkage after body winding can be improved by treating the film after being subjected to transverse stretching-intermediate heat treatment-longitudinal stretching. As a result, the film after the process of transverse stretching-intermediate heat treatment-longitudinal stretching is subjected to the means of (b) described later (final heat setting after longitudinal stretching and implementation of relaxation treatment in the width direction), It has been found that the shrinkage finishing performance at the time of heat shrinkage after body winding can be drastically improved, and the present invention has been devised. Hereinafter, the means (a) and (b) will be sequentially described.

(a)幅方向への延伸後の中間熱処理による収縮応力の制御
本発明の横−縦延伸法によるフィルムの製造においては、未延伸フィルムを幅方向に延伸した後に、75℃以上140℃以下で、1.0秒以上20.0秒以下に亘って、熱処理(以下、中間熱処理という)することが必要である。この中間熱処理を行うことによって、ラベルとした場合に収縮斑が生じないフィルムを得ることが可能となる。そのように横延伸後に特定の中間熱処理を施すことにより収縮斑が生じないフィルムを得ることが可能となる理由は明らかではないが、特定の中間熱処理を施すことによって、幅方向への分子配向をある程度残存させつつ、幅方向の収縮応力を低減させることが可能となるためではないかと考えている。なお、熱処理の温度の下限は、85℃以上であると好ましく、90℃以上であるとより好ましい。また、熱処理の温度の上限は、135℃以下であると好ましく、130℃以下であるとより好ましい。一方、熱処理の時間は、1.0秒以上20.0秒以下の範囲内で原料組成に応じて適宜調整すればよい。
(A) Control of shrinkage stress by intermediate heat treatment after stretching in the width direction In the production of a film by the transverse-longitudinal stretching method of the present invention, after stretching an unstretched film in the width direction, the temperature is 75 ° C or more and 140 ° C or less. It is necessary to perform heat treatment (hereinafter referred to as intermediate heat treatment) for 1.0 second to 20.0 seconds. By performing this intermediate heat treatment, it is possible to obtain a film that does not cause shrinkage spots when used as a label. The reason why it is possible to obtain a film that does not cause shrinkage spots by performing a specific intermediate heat treatment after transverse stretching is not clear, but by performing a specific intermediate heat treatment, molecular orientation in the width direction can be improved. It is thought that it may be possible to reduce the shrinkage stress in the width direction while remaining to some extent. In addition, the minimum of the temperature of heat processing is preferable in it being 85 degreeC or more, and it is more preferable in it being 90 degreeC or more. Moreover, the upper limit of the temperature of heat processing is preferable in it being 135 degrees C or less, and it is more preferable in it being 130 degrees C or less. On the other hand, the heat treatment time may be appropriately adjusted according to the raw material composition within a range of 1.0 second to 20.0 seconds.

(b)縦延伸後の最終セットおよび幅方向の緩和処理
本発明の横−縦延伸法によるフィルムの製造においては、上記のとおり、横延伸後に中間熱処理を施してから長手方向に延伸した後に、テンター内で幅方向の両端際をクリップによって把持した状態で90℃以上140℃以下の温度で加熱しながら幅方向に1%以上30%以下の範囲内で緩和させることが必要である。本発明の熱収縮性フィルムのように、長手方向の温湯熱収縮率(90℃)が15%以上40%未満といった比較的低い温湯熱収縮率を有する熱収縮性フィルムを得るためには、単純に縦方向への延伸倍率を調整することによって長手方向の温湯熱収縮率を調整するだけでは、フィルムの長尺方向に亘って所望する温湯熱収縮率を精度良く発現させるのは困難である。したがって、一旦、所望とする温湯熱収縮率を発現し得る延伸倍率よりも高い倍率となるように縦方向へ延伸した後に、フィルムに最終的な熱セット(最終セット)を加えると同時に幅方向への緩和処理を施すことにより、温湯熱収縮率を低減させて、所望する温湯熱収縮率となるように調整するのが好ましい。このように、フィルムを高い倍率で縦方向に延伸した後に最終的な熱セットを加えながら幅方向に適度な量だけ緩和させて、最終的なフィルムの縦方向および幅方向の温湯熱収縮率を微調整することによって、ラベルとして胴巻き方式で容器に巻き付けた後に熱収縮させた際の収縮仕上がり性を良好なものとすることが可能となる。緩和温度が90℃を下回ったり140℃を上回ったりすると、幅方向の温湯熱収縮率の微調整が困難となるので好ましくない。また、緩和量が1%を下回ると、幅方向の温湯熱収縮率の微調整が困難となるので好ましくなく、反対に、緩和量が30%を上回ると、長手方向の温湯熱収縮率の微調整が困難となるので好ましくない。
(B) Final set after longitudinal stretching and relaxation treatment in the width direction In the production of the film by the transverse-longitudinal stretching method of the present invention, as described above, after the intermediate heat treatment is performed after the transverse stretching, It is necessary to relax within a range of 1% or more and 30% or less in the width direction while heating at a temperature of 90 ° C. or more and 140 ° C. or less while holding both ends of the width direction in the tenter with clips. In order to obtain a heat-shrinkable film having a relatively low hot-water heat shrinkage rate of 15% or more and less than 40% like the heat-shrinkable film of the present invention, Further, it is difficult to accurately express the desired hot water heat shrinkage rate in the longitudinal direction of the film only by adjusting the hot water heat shrinkage rate in the longitudinal direction by adjusting the draw ratio in the longitudinal direction. Therefore, once the film is stretched in the machine direction so as to have a higher magnification than the draw ratio at which a desired hot water heat shrinkage ratio can be exhibited, the final heat set (final set) is applied to the film and simultaneously in the width direction. It is preferable to reduce the hot water heat shrinkage rate by performing the relaxation treatment so that the desired hot water heat shrinkage rate is obtained. In this way, after stretching the film in the machine direction at a high magnification, it is relaxed by an appropriate amount in the width direction while applying the final heat set, and the hot film heat shrinkage in the machine direction and width direction of the final film is reduced. By fine adjustment, it is possible to improve the shrinkage finish when the label is wound around the container by the body winding method and then thermally contracted. When the relaxation temperature is lower than 90 ° C or higher than 140 ° C, it is difficult to finely adjust the hot water heat shrinkage in the width direction, which is not preferable. On the other hand, if the relaxation amount is less than 1%, fine adjustment of the hot water heat shrinkage rate in the width direction becomes difficult, which is not preferable. On the contrary, if the relaxation amount exceeds 30%, the hot water heat shrinkage rate in the longitudinal direction is small. Since adjustment becomes difficult, it is not preferable.

上記した(a),(b)の手段を講じることによって、靭性、粘性やタフネス性の良好な熱収縮性ポリエステル系フィルムを得ることが可能となり、胴巻き後の熱収縮時の収縮仕上がり性も極めて良好になる。また、上記した(a),(b)の手段のうち、いずれかのみが、フィルムの長手方向における熱収縮性、低い自然収縮率、安定した製膜性、および、胴巻き後の収縮時の収縮仕上がり性、靭性やタフネス性に有効に寄与するものではなく、(a),(b)の手段を組み合わせて用いることにより、非常に効率的に、長手方向における適度な熱収縮性、低い自然収縮率、安定した製膜性、および、良好な収縮仕上がり性、靭性、タフネス性等を発現させることが可能となるものと考えられる。   By taking the measures (a) and (b) described above, it becomes possible to obtain a heat-shrinkable polyester film having good toughness, viscosity and toughness, and the shrinkage finish at the time of heat-shrinking after body winding is also extremely high. Become good. Further, only one of the above-described means (a) and (b) is the heat shrinkability in the longitudinal direction of the film, the low natural shrinkage rate, the stable film forming property, and the shrinkage at the time of shrinkage after the body winding. It does not contribute effectively to the finish, toughness and toughness, but by combining the means (a) and (b), it is very efficient, moderate heat shrinkability in the longitudinal direction, and low natural shrinkage. It is considered that it is possible to develop the rate, stable film forming property, good shrinkage finish property, toughness, toughness and the like.

なお、上記した本発明の横−縦延伸法によるフィルムの製造においては、未延伸フィルムの幅(横)方向への延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、Tg+5℃以上Tg+40℃以下の温度で2.5倍以上6.0倍以下の倍率となるように行う必要がある。延伸温度がTg+5℃を下回ると、延伸時に破断を起こし易くなるので好ましくなく、反対にTg+40℃を上回ると、幅方向の厚み斑が悪くなるので好ましくない。なお、横延伸の温度は、Tg+10℃以上であると好ましく、Tg+15℃以上であるとより好ましく、Tg+35℃以下であると好ましく、Tg+30℃以下であるとより好ましい。また、幅方向の延伸倍率が2.5倍を下回ると、生産性が悪いばかりでなく幅方向の厚み斑が悪くなるので好ましくなく、反対に6.0倍を上回ると、延伸時に破断を起こし易くなる上、緩和させるのに多大なエネルギーと大掛かりな装置が必要となり、生産性が悪くなるので好ましくない。なお、横延伸倍率は、3.0倍以上であると好ましく、3.5倍以上であるとより好ましく、5.5倍以下であると好ましく、5.0倍以下であるとより好ましい。   In the production of the film by the transverse-longitudinal stretching method of the present invention described above, the unstretched film is stretched in the width (transverse) direction in a state where both ends in the width direction are held by clips in the tenter, Tg + 5 It is necessary to carry out so that the magnification is 2.5 times or more and 6.0 times or less at a temperature of ℃ to Tg + 40 ℃. If the stretching temperature is lower than Tg + 5 ° C., it is not preferable because breakage is likely to occur during stretching. On the other hand, if it exceeds Tg + 40 ° C., thickness unevenness in the width direction is deteriorated, which is not preferable. The temperature of transverse stretching is preferably Tg + 10 ° C. or higher, more preferably Tg + 15 ° C. or higher, preferably Tg + 35 ° C. or lower, and more preferably Tg + 30 ° C. or lower. Further, if the draw ratio in the width direction is less than 2.5 times, not only the productivity is deteriorated but also the thickness unevenness in the width direction is deteriorated, which is not preferable. On the other hand, if it exceeds 6.0 times, breakage occurs at the time of drawing. In addition, it is not preferable because a large amount of energy and a large apparatus are required for relaxation, and productivity deteriorates. The transverse draw ratio is preferably 3.0 times or more, more preferably 3.5 times or more, preferably 5.5 times or less, and more preferably 5.0 times or less.

本発明の横−縦延伸法によるフィルムの製造においては、中間熱処理を施したフィルムを長手方向に延伸する前に、フィルム端縁際の十分に横延伸されていない肉厚部分(主として横延伸時のクリップ把持部分)をトリミングしてもよい(特に、原料として結晶性の高い樹脂を使用する場合には、トリミングするのが好ましい)。具体的には、フィルムの左右の端縁近傍に位置し、中央部分の厚みの約1.1〜1.3倍の厚みの部分(肉厚部分)を、カッター等の工具を用いて切断し、この肉厚部分を除去しつつ、残りの部分のみを長手方向に延伸する方法を採用することができる。   In the production of a film by the transverse-longitudinal stretching method of the present invention, before the film subjected to the intermediate heat treatment is stretched in the longitudinal direction, a thick portion that is not sufficiently transversely stretched at the edge of the film (mainly during transverse stretching) May be trimmed (particularly, when a highly crystalline resin is used as a raw material, trimming is preferable). Specifically, it is located in the vicinity of the left and right edges of the film, and a portion (thick portion) having a thickness of about 1.1 to 1.3 times the thickness of the central portion is cut using a tool such as a cutter. A method of stretching only the remaining part in the longitudinal direction while removing the thick part can be employed.

フィルム端部をトリミングする際には、トリミングする前のフィルムの表面温度が50℃以下となるように冷却しておくことが好ましい。そのようにフィルムを冷却することにより、切断面を乱すことなくトリミングすることが可能となる。また、フィルム端部のトリミングは、通常のカッター等を用いて行うことができるが、周状の刃先を有する丸刃を用いると、局部的に刃先が鈍くなる事態が起こらず、フィルム端部を長期間に亘ってシャープに切断し続けることができ、長手方向への延伸時における破断を誘発する事態が生じないので好ましい。   When trimming the film edge, it is preferable to cool the film so that the surface temperature of the film before trimming is 50 ° C. or lower. By cooling the film in this way, trimming can be performed without disturbing the cut surface. In addition, trimming of the film edge can be performed using a normal cutter or the like, but if a round blade having a circumferential cutting edge is used, a situation in which the cutting edge is locally dulled does not occur, and the film edge is This is preferable because it can continue to be cut sharply over a long period of time and does not cause a breakage during stretching in the longitudinal direction.

原料として結晶性の高い樹脂を使用する場合には、長手方向への延伸前にフィルムの端部をトリミングすることによって、一旦熱固定したフィルムを均一に長手方向へ延伸することが可能となり、破断のない安定したフィルムの連続製造が可能となる。さらに、フィルムを均一に長手方向へ延伸することが可能となるため、長手方向の厚み斑の小さなフィルムを得ることができる。その上、フィルムの端部をトリミングすることによって、長手方向への延伸時におけるボーイングが回避され、左右の物性差の小さなフィルムを得ることが可能となる。   When using a highly crystalline resin as a raw material, trimming the edge of the film before stretching in the longitudinal direction makes it possible to stretch the film once heat-set uniformly in the longitudinal direction, and break it. It is possible to continuously produce a stable film without any problems. Furthermore, since the film can be uniformly stretched in the longitudinal direction, a film having a small thickness unevenness in the longitudinal direction can be obtained. In addition, by trimming the end of the film, bowing during stretching in the longitudinal direction is avoided, and a film having a small difference in physical properties between the left and right can be obtained.

熱収縮性ポリエステル系フィルムの厚みは、特に限定するものではないが、ラベル用熱収縮性フィルムとして10〜200μmが好ましく、20〜100μmがより好ましい。   Although the thickness of the heat-shrinkable polyester film is not particularly limited, the heat-shrinkable film for labels is preferably 10 to 200 μm, and more preferably 20 to 100 μm.

[レーザー溶着]
本発明の熱収縮性ラベルは、熱収縮性ポリエステル系フィルムの一方端を他方端に重ね合わせ、この重なった部分を、フィルム外表面からレーザー照射し、フィルムとフィルムの接触面を部分的に溶融させて接触面を密着させ、冷却することにより、両者を接合、一体化することにより得られる。
[Laser welding]
The heat-shrinkable label of the present invention is obtained by superimposing one end of a heat-shrinkable polyester film on the other end and irradiating the overlapped portion with a laser beam from the outer surface of the film to partially melt the contact surface between the film and the film. By bringing the contact surfaces into close contact with each other and cooling, the two are joined and integrated.

レーザー溶着に使用されるレーザー光源としては、各波長のレーザーに対応する吸収剤が含まれていれば、種々のレーザー、例えば、固体レーザー(Nd:YAG励起、半導体レーザー励起等)、半導体レーザー(650〜980nm)、チューナブルダイオードレーザー(630〜1550nm)、チタンサファイアレーザー(Nd:YAG励起、690〜1000nm)、炭酸ガス(CO2)レーザー(10600nm)等が利用できる。これらのレーザー光源のうち、炭酸ガスレーザーであれば特定の吸収剤を添加せずとも無色透明な熱収縮性ポリエステル系フィルム同士の接着が可能であり、種々の印刷やデザインにも対応できるため、炭酸ガスレーザーを照射してラベルを製造することが好ましい。 As a laser light source used for laser welding, various kinds of lasers such as solid lasers (Nd: YAG excitation, semiconductor laser excitation, etc.), semiconductor lasers (as long as an absorber corresponding to each wavelength laser is included) are used. 650 to 980 nm), tunable diode laser (630 to 1550 nm), titanium sapphire laser (Nd: YAG excitation, 690 to 1000 nm), carbon dioxide gas (CO 2 ) laser (10600 nm), and the like can be used. Among these laser light sources, carbon dioxide laser can be bonded between colorless and transparent heat-shrinkable polyester film without adding a specific absorbent, and can be used for various printing and designs. It is preferable to produce a label by irradiating a carbon dioxide laser.

レーザーの照射条件としては、使用する熱収縮性ポリエステル系フィルムの組成や厚み等により適宜調整する必要があるが、例えば炭酸ガスレーザーの場合、走査速度20m/min〜200m/min、ビーム径1〜4mm、焦点距離20〜100mm、出力10〜100W程度の条件が好ましい。この範囲を外れる条件では、レーザーによる十分なフィルムの部分溶融が得られず接着性が低くなり、収縮装着時や商品流通時にラベルが剥がれてしまったり、レーザーによりフィルムの溶融が進みすぎてフィルムが接着せず、切断されてしまったりする場合がある。   As laser irradiation conditions, it is necessary to adjust appropriately according to the composition and thickness of the heat-shrinkable polyester film to be used. For example, in the case of a carbon dioxide laser, the scanning speed is 20 m / min to 200 m / min, the beam diameter is 1 to The conditions of 4 mm, focal length 20 to 100 mm, and output 10 to 100 W are preferable. Under conditions outside this range, sufficient partial melting of the film by the laser cannot be obtained, resulting in poor adhesion, labels may be peeled off during shrinkage mounting or product distribution, or the film may melt too much due to the laser. It may be cut off without being bonded.

本発明では、溶剤や粘着剤等を用いることなく、フィルムをレーザー溶着により接合するので、溶剤臭等もなく、クリーンな状態でラベルを生産でき、かつ高速で接着強度の十分なラベルを得ることができる。また、レーザー光の強度や照射時間(露光量など)などを調整することにより、接着強度を調整することもでき、例えば、比較的少ない露光量で、接合強度を小さくすることもできる。そのため、必要に応じて、ラベルを容器から剥離しやすくしてリサイクルしやすくすることもできる。   In the present invention, since the film is bonded by laser welding without using a solvent, a pressure sensitive adhesive, etc., a label can be produced in a clean state without a solvent odor, and a label having sufficient adhesive strength can be obtained at high speed. Can do. Further, the adhesive strength can be adjusted by adjusting the intensity of the laser light, the irradiation time (exposure amount, etc.), and the bonding strength can be reduced with a relatively small exposure amount, for example. Therefore, if necessary, the label can be easily peeled from the container to facilitate recycling.

[ラベルの製造方法]
次に、本発明の熱収縮性ラベルの製造法について説明する。まず、熱収縮性ポリエステル系フィルムに、必要によりラベルの図柄を印刷し、ロール状に巻き取る。ロールからフィルムを繰り出し、フィルムを容器の外周に合わせた適当なサイズの筒状体に巻き付けながら、フィルム端部の上にフィルムが重ね合わさるように筒状体の全周を覆う。フィルムを重ね合わせた部分にレーザーを照射してフィルムとフィルムの接触面を部分的に溶融させて接触面を密着させ、冷却することにより両者を接合、一体化し、チューブ状に形成した後に、接着部に沿って余分なフィルムを切断することにより、本発明の熱収縮性ラベルが得られる。ロールからフィルムを繰り出した後、予めフィルムを所定の長さに切断し、切断したフィルムを筒状体に巻き付けながらフィルム端部にもう一方の端部を重ね合わせて筒状体の全周を覆い、重ね合わせた部分にレーザーを照射してフィルムとフィルムの接触面を接合することによっても、本発明のラベルを得ることが出来る。得られたラベルを容器の所望の位置に装着し、収縮処理を施すことでラベルが容器に密着した包装体が製造できる。また、フィルムを容器の全周を覆うように容器に直接巻き付け、フィルムを重ね合わせた部分にレーザーを照射して本発明のラベルを得ることもできる。この場合もロールから繰り出したフィルムをそのまま容器に巻き付けてもよいし、繰り出したフィルムを所定の長さに切断した後に容器に巻き付けてもよい。
[Label production method]
Next, the manufacturing method of the heat-shrinkable label of this invention is demonstrated. First, a label design is printed on a heat-shrinkable polyester film, if necessary, and wound into a roll. The film is fed out from the roll, and the entire circumference of the cylindrical body is covered so that the film is superimposed on the end of the film while the film is wound around a cylindrical body of an appropriate size that matches the outer periphery of the container. Laser irradiation is applied to the overlapped part of the film to partially melt the contact surface of the film and bring the contact surface into close contact. By cooling, the two are joined, integrated, formed into a tube, and then bonded. The heat-shrinkable label of the present invention can be obtained by cutting excess film along the portion. After unwinding the film from the roll, the film is cut into a predetermined length in advance, and the other end is overlapped on the end of the film while the cut film is wound around the tubular body to cover the entire circumference of the tubular body The label of the present invention can also be obtained by irradiating the overlapped portion with a laser to join the contact surfaces of the films. A package in which the label is in close contact with the container can be manufactured by attaching the obtained label to a desired position of the container and applying a shrinkage treatment. Alternatively, the label of the present invention can be obtained by wrapping the film directly around the container so as to cover the entire circumference of the container and irradiating the laser beam onto the overlapped portion of the film. Also in this case, the film fed out from the roll may be wound around the container as it is, or the film fed out may be wound around the container after being cut into a predetermined length.

以下、実施例により本発明を詳細に説明するが、本発明は、これら実施例に何ら制限されるものではない。まず、実施例および比較例において作製したフィルムおよびラベルの評価方法について説明する。フィルムの評価結果は表3に、ラベルの評価結果は表4にまとめた。なお、以下の説明において、「部」とあるのは「質量部」を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to these Examples at all. First, the evaluation method of the film and label produced in the Example and the comparative example is demonstrated. The evaluation results of the films are summarized in Table 3, and the evaluation results of the labels are summarized in Table 4. In the following description, “part” means “part by mass”.

[熱収縮率(温湯熱収縮率)]
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた。フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、フィルムの縦および横方向の寸法を測定し、式1に従って、それぞれ熱収縮率を求めた。熱収縮率の大きい方向を主収縮方向とした。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%) 式1
[Heat shrinkage (hot water heat shrinkage)]
The film was cut into a 10 cm × 10 cm square, and heat-shrinked in hot water at a predetermined temperature ± 0.5 ° C. for 10 seconds under no load. The film was immediately immersed in water at 25 ° C. ± 0.5 ° C. for 10 seconds, and then the vertical and horizontal dimensions of the film were measured. The direction in which the heat shrinkage rate is large was taken as the main shrinkage direction.
Thermal shrinkage rate = {(length before shrinkage−length after shrinkage) / length before shrinkage} × 100 (%) Formula 1

[最大熱収縮応力値]
フィルムを、主収縮方向×直交方向=200mm×15mmのサイズにカットした。(株)ボールドウィン社製 万能引張試験機 STM−50を、温度90℃に調整した上で、カットしたフィルムをセットし、10秒間保持したときの応力値の最大値を求めた。
[Maximum heat shrinkage stress value]
The film was cut into a size of main shrinkage direction × orthogonal direction = 200 mm × 15 mm. Baldwin Co., Ltd. Universal Tensile Tester STM-50 was adjusted to a temperature of 90 ° C., the cut film was set, and the maximum stress value was determined when held for 10 seconds.

[破断前ヤング率の測定方法]
ASTM−D882にしたがって、長さ150mm×幅10mmに切り出したフィルム試料を、25℃、65%RHの雰囲気下で、(株)島津製作所社製オートグラフを用いて、試料長が100mmとなるように両端(長手方向に沿った両端)を掴んで、200mm/分の引張速度にて引っ張った場合の応力−歪み曲線を測定した。そして、破断時の伸長倍率の90%の倍率まで伸長した時点(破断時の伸長倍率から逆算)から破断時点までにおける応力と歪みとの比の平均値を、破断前ヤング率として算出した。
[Measurement method of Young's modulus before fracture]
In accordance with ASTM-D882, a film sample cut into a length of 150 mm and a width of 10 mm is set to a sample length of 100 mm using an autograph manufactured by Shimadzu Corporation under an atmosphere of 25 ° C. and 65% RH. A stress-strain curve was measured when both ends (both ends along the longitudinal direction) were gripped and pulled at a pulling speed of 200 mm / min. Then, the average value of the ratio of stress to strain from the time of elongation to the magnification of 90% of the elongation at break (back calculation from the elongation at break) to the time of break was calculated as the Young's modulus before break.

[白色度]
白色度は、JIS L10151981−B法により、日本電色工業(株)製のZ−1001DPを用いて測定した。
[Whiteness]
The whiteness was measured according to JIS L1015 1981- B method using Z-1001DP manufactured by Nippon Denshoku Industries Co., Ltd.

[全光線透過率]
日本電色工業(株)製のNDH−1001DPにて全光線透過率を求めた。
[Total light transmittance]
Total light transmittance was determined with NDH-1001DP manufactured by Nippon Denshoku Industries Co., Ltd.

[直角引裂強度の測定方法]
熱収縮前のフィルムを主収縮方向が長手方向になるように切断し、矩形の枠に長手方向の両端部を固定する。このとき、枠の長さより3%長くなるように試料を弛ませて枠に固定する。80±0.5℃の温水中に試料を枠毎、浸漬し、弛んだフィルムが枠内で緊張状態となるまで、約5秒、フィルムを主収縮方向に3%収縮させる。続いて、25℃の水に浸漬した後、取りだしてよく水気を拭き取る。
[Measurement method of right-angle tear strength]
The film before heat shrinkage is cut so that the main shrinkage direction is the longitudinal direction, and both ends in the longitudinal direction are fixed to a rectangular frame. At this time, the sample is loosened and fixed to the frame so as to be 3% longer than the length of the frame. The sample is immersed frame by frame in warm water of 80 ± 0.5 ° C., and the film is contracted by 3% in the main contraction direction for about 5 seconds until the loose film becomes a tension state in the frame. Subsequently, after dipping in water at 25 ° C., the water may be removed and wiped off.

続いて、上記収縮後のフィルムから、JIS K 7128−3に準じて、図1に示す形状の試験片Fを切り出した。なお、切り出しに際しては、試験片の長手方向をフィルムの主収縮方向とした。その後、万能引張試験機(商品名「テンシロン」;東洋精機社製)で試験片の両端を掴み、引張速度200mm/分の条件で、フィルムの幅方向における引張破壊時の強度(N)の測定を行った。下式2を用いて単位厚み(mm)当たりの直角引裂強度(N/mm)を算出した。
直角引裂強度=引張破壊時の強度÷厚み 式2
Then, the test piece F of the shape shown in FIG. 1 was cut out from the film after shrinkage according to JIS K 7128-3. When cutting out, the longitudinal direction of the test piece was set as the main shrinkage direction of the film. Then, grip both ends of the test piece with a universal tensile tester (trade name “Tensilon”; manufactured by Toyo Seiki Co., Ltd.), and measure the strength (N) at the time of tensile fracture in the width direction of the film at a tensile speed of 200 mm / min. Went. The right angle tear strength (N / mm) per unit thickness (mm) was calculated using the following formula 2.
Right angle tear strength = strength at tensile fracture ÷ thickness Equation 2

[Tg(ガラス転移温度)]
セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを採取し、−40℃から120℃まで、昇温速度10℃/分で昇温し、熱流速曲線(DSC曲線)を測定した。DSC曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移温度)とした。
[Tg (glass transition temperature)]
Using a differential scanning calorimeter (model: DSC220) manufactured by Seiko Denshi Kogyo Co., Ltd., 5 mg of an unstretched film was sampled and heated from −40 ° C. to 120 ° C. at a heating rate of 10 ° C./min. The curve (DSC curve) was measured. A tangent line was drawn before and after the inflection point of the DSC curve, and the intersection was defined as Tg (glass transition temperature).

[ラベル密着性]
ボトルに装着された熱収縮後のラベルとボトルとを軽くねじったときのラベルのズレ具合を官能評価した。ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×とした。
[Label adhesion]
Sensory evaluation was performed on the degree of label displacement when the bottle after heat shrinkage and the label attached to the bottle were lightly twisted. When the label did not move, it was marked as “◯”, and when the label slipped or the label and the bottle were displaced, “x” was marked.

[ラベル貼り合わせ部の接着性]
ボトルに装着された熱収縮後のラベルについて、フィルム同士が貼り合わせられた部分の表面に出ているほうのフィルム端を手(爪)で引掻いたときのフィルムの剥がれかたを官能評価した。剥がれず充分接着しているものを○、接着しているが軽い力で剥がれるものを△、接着してないものを×とした。
[Adhesiveness of label bonding part]
For the label after heat shrinkage attached to the bottle, sensory evaluation of how the film was peeled off when the film end on the surface of the part where the films were bonded together was scratched by hand (nail) . Those that did not peel off and adhered well were marked with ◯, those that adhered but peeled off with a light force were marked with Δ, and those that did not adhere were marked with ×.

[収縮仕上がり性]
ボトルへの熱収縮装着後の仕上がり性の評価は目視で行い、基準は下記の通りとした。
◎:シワ、飛び上り、収縮不足の何れも未発生で、かつ色の斑も見られない
○:シワ、飛び上り、または収縮不足が確認できないが、若干、色の斑が見られる
△:飛び上り、収縮不足の何れも未発生だが、ネック部の斑が見られる
×:シワ、飛び上り、収縮不足が発生
[Shrink finish]
Evaluation of the finish after heat shrinkage attachment to the bottle was performed visually, and the criteria were as follows.
◎: No wrinkles, jumping up or insufficient shrinkage, and no color spots are observed. ○: Wrinkles, jumping up or insufficient shrinkage cannot be confirmed, but some color spots are seen. Neither ascending nor insufficient shrinkage has occurred, but spots on the neck are observed. ×: Wrinkles, jumping up, insufficient shrinkage occurred

[ラベル開封性]
予め主収縮方向と直交する方向に長さ2mmのノッチを入れておいたラベルを、PETボトルに装着し、熱収縮させた。ただし、ノッチはボトルを立てた際のラベルの上側に設けた。その後、ラベルを装着したボトルを5℃で24時間冷蔵し、冷蔵庫から取り出した直後のボトルのラベルをノッチ部から指先で引裂いた。縦方向に綺麗に裂け、ラベルをボトルから簡単に外すことができたボトルの本数を数え、全サンプル50本に対する割合(%)を算出した。
[Label openability]
A label having a notch with a length of 2 mm in a direction perpendicular to the main shrinkage direction was attached to a PET bottle and thermally shrunk. However, the notch was provided on the upper side of the label when the bottle was erected. Thereafter, the bottle with the label attached was refrigerated at 5 ° C. for 24 hours, and the label of the bottle immediately after being taken out of the refrigerator was torn with a fingertip from the notch portion. The number of bottles that were torn up in the vertical direction and the label could be easily removed from the bottles was counted, and the ratio (%) to 50 samples was calculated.

[ポリエステルフィルム1]
エチレングリコール70モル%、ネオペンチルグリコール30モル%およびテレフタル酸100モル%とからなるポリエステル1(IV:0.72dl/g)70部、ポリエチレンテレフタレート(IV:0.75dl/g:以下、ポリエステル2)30部、ポリスチレン(「G797N」:日本ポリスチレン社製)10部、および二酸化チタン(「TA−300」:富士チタン社製:平均粒径0.39μm)10部を混合し、A層用原料とした。B層用には、上記ポリエステル1とポリエステル2を70:30(質量比)で混合したものを用いた。A層およびB層の原料をそれぞれ別々の2軸スクリュー押出機に投入、混合、溶融したものをフィードブロックで接合し、これをT−ダイスより280℃で溶融押出しし、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ200μmでB/A/Bの積層構造を持つ未延伸フィルムを得た(B/A/B=10μm/180μm/10μm)。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/minであった。また、未延伸フィルムのTgは67℃であった。その後、その未延伸フィルムを、横延伸ゾーン、中間ゾーン、中間熱処理ゾーンを連続的に設けたテンター(第1テンター)に導いた。なお、当該テンターにおいては、横延伸ゾーンと中間熱処理ゾーンとの中間に位置した中間ゾーンの長さは、約40cmに設定されている。また、中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、延伸ゾーンからの熱風および熱処理ゾーンからの熱風が遮断されていた。
[Polyester film 1]
70 parts of polyester 1 (IV: 0.72 dl / g) composed of 70 mol% of ethylene glycol, 30 mol% of neopentyl glycol and 100 mol% of terephthalic acid, polyethylene terephthalate (IV: 0.75 dl / g: hereinafter, polyester 2 ) 30 parts, 10 parts of polystyrene (“G797N”: manufactured by Nippon Polystyrene Co., Ltd.), and 10 parts of titanium dioxide (“TA-300”: manufactured by Fuji Titanium Co., Ltd .: average particle size of 0.39 μm) are mixed to prepare a raw material for the A layer. It was. For the B layer, a mixture of the above polyester 1 and polyester 2 at 70:30 (mass ratio) was used. The raw materials of layer A and layer B are put into separate twin screw extruders, mixed and melted, joined together with a feed block, melt-extruded from a T-die at 280 ° C, and cooled to a surface temperature of 30 ° C. The unstretched film having a thickness of 200 μm and having a laminated structure of B / A / B was obtained (B / A / B = 10 μm / 180 μm / 10 μm) by winding on a rotating metal roll and quenching. At this time, the take-up speed of the unstretched film (the rotation speed of the metal roll) was about 20 m / min. Moreover, Tg of the unstretched film was 67 degreeC. Thereafter, the unstretched film was led to a tenter (first tenter) in which a transverse stretching zone, an intermediate zone, and an intermediate heat treatment zone were continuously provided. In the tenter, the length of the intermediate zone located between the transverse stretching zone and the intermediate heat treatment zone is set to about 40 cm. In addition, in the intermediate zone, when the strip-shaped paper piece is hung in a state where the film is not passed through, the hot air from the stretching zone and the hot air from the heat treatment zone are blown so that the paper piece hangs almost completely in the vertical direction. It was cut off.

テンターに導かれた未延伸フィルムを、フィルム温度が90℃になるまで予備加熱した後、横延伸ゾーンで横方向に85℃で3.7倍に延伸し、中間ゾーンを通過させた後に(通過時間=約1.2秒)、中間熱処理ゾーンへ導き、幅方向に10%緩和させながら、105℃で6.0秒間に亘って熱処理した。厚み60μmの横一軸延伸フィルムが得られた。続いて、テンターの後方に設けられた左右一対のトリミング装置(周状の刃先を有する丸刃によって構成されたもの)を利用して、横一軸延伸フィルムの端縁際(中央のフィルム厚みの約1.2倍の厚みの部分)を切断し、切断部位の外側に位置したフィルムの端部を連続的に除去した。   The pre-stretched film led to the tenter is preheated until the film temperature reaches 90 ° C., and then stretched 3.7 times at 85 ° C. in the transverse direction in the transverse stretching zone, and after passing through the intermediate zone (pass Time = about 1.2 seconds), the heat treatment was conducted at 105 ° C. for 6.0 seconds while being led to the intermediate heat treatment zone and relaxed by 10% in the width direction. A transversely uniaxially stretched film having a thickness of 60 μm was obtained. Subsequently, using a pair of left and right trimming devices (configured by a round blade having a circumferential cutting edge) provided behind the tenter, the edge of the laterally uniaxially stretched film (about the thickness of the film at the center) A portion having a thickness of 1.2 times) was cut, and the end portion of the film located outside the cut site was continuously removed.

上記の端部をトリミングしたフィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が70℃になるまで予備加熱した後、表面温度95℃に設定された延伸ロール間で2.2倍に延伸した。その後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。なお、冷却前のフィルムの表面温度は約75℃であり、冷却後のフィルムの表面温度は約25℃であった。また、70℃から25℃に冷却するまでに要した時間は約1.0秒であり、フィルムの冷却速度は、45℃/秒であった。   The film with the end trimmed is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated on a preheating roll until the film temperature reaches 70 ° C., and then set to a surface temperature of 95 ° C. The film was stretched 2.2 times between the stretched rolls. Thereafter, the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C. The surface temperature of the film before cooling was about 75 ° C., and the surface temperature of the film after cooling was about 25 ° C. The time required for cooling from 70 ° C. to 25 ° C. was about 1.0 second, and the film cooling rate was 45 ° C./second.

冷却後のフィルムをテンター(第2テンター)へ導き、当該第2テンター内で115℃の雰囲気下で、幅方向に15%緩和させながら5.0秒間に亘って熱処理し、その後冷却した。冷却後、両端部を裁断除去することによって、約30μmの二軸延伸フィルムを所定の長さに亘って巻き取り、熱収縮性ポリエステルフィルム1からなるフィルムロールを得た。各層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。   The cooled film was guided to a tenter (second tenter), and was heat-treated for 5.0 seconds in an atmosphere of 115 ° C. while being relaxed by 15% in the width direction, and then cooled. After cooling, both end portions were cut and removed, whereby a biaxially stretched film of about 30 μm was wound up over a predetermined length to obtain a film roll made of the heat-shrinkable polyester film 1. The composition of each layer is shown in Table 1, the production conditions are shown in Table 2, and the characteristics of the film are shown in Table 3.

[ポリエステルフィルム2]
フィルム1の製造においてA層の原料に添加したポリスチレン10部に代えてポリプロピレン樹脂(「FO−50F」:グランドポリマー社製)10部に変更した以外はフィルム1の製造例と同様の方法によってフィルム2を連続的に製造した。各層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。
[Polyester film 2]
The film was produced in the same manner as in the production example of film 1, except that 10 parts of polypropylene resin ("FO-50F": manufactured by Grand Polymer Co., Ltd.) was used instead of 10 parts of polystyrene added to the raw material of layer A in the production of film 1. 2 was produced continuously. The composition of each layer is shown in Table 1, the production conditions are shown in Table 2, and the characteristics of the film are shown in Table 3.

[ポリエステルフィルム3]
ポリエステル1とポリエステル2との混合比(質量比)を90:10に変更すると共に、縦延伸倍率を2.4倍に変更し、縦延伸後のフィルムを第2テンター内で幅方向に熱緩和させる際の温度を120℃に変更し、当該幅方向の緩和時における緩和量を20%に変更した以外は、フィルム1の製造例と同様の方法によってフィルム3を連続的に製造した。A層には、フィルム1と同様にポリスチレンと二酸化チタンが添加されている。なお、未延伸フィルムのTgは67℃であった。各層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。
[Polyester film 3]
While changing the mixing ratio (mass ratio) of polyester 1 and polyester 2 to 90:10, the longitudinal stretching ratio is changed to 2.4 times, and the film after longitudinal stretching is thermally relaxed in the width direction in the second tenter. The film 3 was continuously produced by the same method as in the production example of the film 1 except that the temperature during the treatment was changed to 120 ° C. and the relaxation amount during relaxation in the width direction was changed to 20%. As in the film 1, polystyrene and titanium dioxide are added to the A layer. In addition, Tg of the unstretched film was 67 degreeC. The composition of each layer is shown in Table 1, the production conditions are shown in Table 2, and the characteristics of the film are shown in Table 3.

[ポリエステルフィルム4]
フィルム1の製造例と同様にして得られた厚さ240μm(B/A/B=12μm/216μm/12μm)の未延伸フィルムについて、第1テンターにおける横延伸倍率を4.0倍に変更するとともに、縦延伸倍率を2.4倍に変更し、縦延伸後のフィルムを第2テンター内で幅方向に緩和させる際の温度を120℃に変更した以外は、フィルム1の製造例と同様の方法によって熱収縮性フィルム4を連続的に製造した。各層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。
[Polyester film 4]
For an unstretched film having a thickness of 240 μm (B / A / B = 12 μm / 216 μm / 12 μm) obtained in the same manner as in the production example of film 1, the transverse stretch ratio in the first tenter was changed to 4.0 times. The method similar to the production example of the film 1 except that the longitudinal stretching ratio was changed to 2.4 times, and the temperature when the film after longitudinal stretching was relaxed in the width direction in the second tenter was changed to 120 ° C. Thus, the heat-shrinkable film 4 was continuously produced. The composition of each layer is shown in Table 1, the production conditions are shown in Table 2, and the characteristics of the film are shown in Table 3.

[ポリエステルフィルム5]
フィルム1の製造例におけるA層の原料のみを用いて単一層の厚さ200μmの未延伸フィルムを得て約30μmの二軸延伸フィルムを得た以外はフィルム1と同様の方法で二軸延伸熱収縮性ポリエステル系フィルム5を連続的に製造した。層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。
[Polyester film 5]
Biaxially stretched heat in the same manner as film 1 except that only a raw material of layer A in the production example of film 1 was used to obtain an unstretched film having a single layer thickness of 200 μm and a biaxially stretched film of about 30 μm. A shrinkable polyester film 5 was continuously produced. The composition of the layers is shown in Table 1, the production conditions are shown in Table 2, and the film properties are shown in Table 3.

[ポリエステルフィルム6(比較用)]
ポリスチレンおよび二酸化チタンを用いずに、フィルム5(単層)と同様にして二軸延伸熱収縮性ポリエステル系フィルムを連続的に製造した。層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。
[Polyester film 6 (for comparison)]
A biaxially stretched heat-shrinkable polyester film was continuously produced in the same manner as the film 5 (single layer) without using polystyrene and titanium dioxide. The composition of the layers is shown in Table 1, the production conditions are shown in Table 2, and the film properties are shown in Table 3.

[ポリエステルフィルム7(比較用)]
ポリスチレンおよび二酸化チタンを用いなかった以外は、フィルム5(単層)と同様にして得られた180μmの未延伸フィルムを、横延伸ゾーン、中間熱処理ゾーンを連続的に設けたテンター(第1テンター)に導いた。そして、テンターに導かれた未延伸フィルムを、フィルム温度が90℃になるまで予備加熱した後、横延伸ゾーンで横方向に75℃で4.0倍に延伸した後、中間熱処理ゾーンへ導き、110℃で6.0秒間に亘って熱処理することによって、厚み45μmの横一軸延伸フィルムを得た。続いて、この横一軸延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が70℃になるまで予備加熱した後に、表面温度90℃に設定された延伸ロール間で1.5倍に延伸した。この縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。冷却速度は、45℃/秒であった。
[Polyester film 7 (for comparison)]
A tenter (first tenter) in which a 180 μm unstretched film obtained in the same manner as film 5 (single layer) was used except that polystyrene and titanium dioxide were not used, and a transverse stretch zone and an intermediate heat treatment zone were continuously provided. Led to. And after preheating the unstretched film guided to the tenter until the film temperature reaches 90 ° C., the film is stretched 4.0 times at 75 ° C. in the transverse direction in the transverse stretching zone, and then led to the intermediate heat treatment zone. The film was heat-treated at 110 ° C. for 6.0 seconds to obtain a horizontal uniaxially stretched film having a thickness of 45 μm. Subsequently, the laterally uniaxially stretched film is led to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, and preheated until the film temperature reaches 70 ° C. on the preheating roll, and then the surface temperature is set to 90 ° C. The film was stretched 1.5 times between the stretched rolls. The longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C. The cooling rate was 45 ° C./second.

そして、冷却後のフィルムをテンター(第2テンター)へ導き、当該第2テンター内で110℃の雰囲気下で5.0秒間に亘って熱処理し、両縁部を裁断除去することによって、約30μmの二軸延伸フィルム(熱収縮性フィルム)を所定の長さに亘って巻き取り、フィルム7のロールを得た。層の組成を表1に、製造条件を表2に、フィルムの特性を表3に示した。   Then, the cooled film is guided to a tenter (second tenter), and heat-treated for 5.0 seconds in an atmosphere of 110 ° C. in the second tenter, and both edges are cut and removed, thereby removing about 30 μm. The biaxially stretched film (heat-shrinkable film) was wound up over a predetermined length to obtain a roll of film 7. The composition of the layers is shown in Table 1, the production conditions are shown in Table 2, and the film properties are shown in Table 3.

Figure 2009163233
Figure 2009163233

Figure 2009163233
Figure 2009163233

Figure 2009163233
Figure 2009163233

表3から明らかなように、本発明のラベル用フィルム1〜5は、長手方向(主収縮方向)の温湯収縮率、幅方向の温湯収縮率、最大熱収縮応力、破断前ヤング率、白色度がいずれも本発明の範囲に入っており、全光線透過率や直角引裂強度も良好であった。また、フィルムロールにシワが発生することもなかった。   As is apparent from Table 3, the films for labels 1 to 5 of the present invention have hot water shrinkage in the longitudinal direction (main shrinkage direction), hot water shrinkage in the width direction, maximum heat shrinkage stress, Young's modulus before breaking, and whiteness. Are within the scope of the present invention, and the total light transmittance and the right-angle tear strength were also good. Moreover, wrinkles were not generated on the film roll.

しかし、比較用のフィルム6、7は、空洞を有していないため、白色度と全光線透過率の点で劣っていた。さらに、比較用フィルム7では、直交方向の温湯収縮率や破断前ヤング率も劣っていることがわかった。   However, the comparative films 6 and 7 were inferior in terms of whiteness and total light transmittance because they did not have cavities. Furthermore, it was found that the comparative film 7 was inferior in hot water shrinkage in the orthogonal direction and Young's modulus before breaking.

実施例1
上記ポリエステルフィルム1のロールを用いて、東洋インキ製造(株)の草・金・白色のインキで3色印刷を施し、100mm幅にスリットし、印刷済みのフィルムロールを準備した。立てた状態の直径70mm×高さ150mmの紙製の円柱状筒体に上記印刷済みフィルムロールを印刷面が内側にかつフィルム長手方向が筒体の胴周方向に平行になるように巻き出しながら、フィルムを巻き付けた。フィルムが丁度筒体の外周を一周し、フィルム同士が重なり合った箇所に、最大出力40Wの発振機を用いて、レーザー光波長:10.6μm、出力:20W、焦点距離:20mm、レーザー走査速度50m/minの条件で炭酸ガスレーザーを照射して、巻きつけたフィルムを溶着して連続体とし、熱収縮性ラベルを作製した。これを立てた状態の290mlアルミニウムボトル缶(胴部の最大直径68mm、ネック部の直径30mm)に、フィルムの一端が缶の底部に沿うように、印刷面がボトル缶の外面に対面するように被せてラベルを装着し、長さ3mで92℃に保温された水蒸気炉シュリンクトンネルに送入し、10秒かけて通過させることにより、ラベルを収縮させてボトル缶の外周に密着させ、包装体(収縮後のラベル付き容器)を得た。収縮仕上がり性およびラベル貼り合わせ部の接着性ともに良好な包装体であった。ラベルとしての評価結果を表4に示す。
Example 1
Using the polyester film 1 roll, three-color printing was performed with grass, gold, and white ink from Toyo Ink Manufacturing Co., Ltd., slit into a width of 100 mm, and a printed film roll was prepared. The above-mentioned printed film roll is unwound on an upright paper cylinder having a diameter of 70 mm and a height of 150 mm so that the printing surface is inward and the longitudinal direction of the film is parallel to the cylinder circumferential direction of the cylinder Wound the film. At the place where the film just goes around the outer periphery of the cylinder and the films overlap each other, using an oscillator with a maximum output of 40 W, laser light wavelength: 10.6 μm, output: 20 W, focal length: 20 mm, laser scanning speed 50 m A carbon dioxide laser was irradiated under the condition of / min, and the wound film was welded to form a continuous body to produce a heat-shrinkable label. With the 290 ml aluminum bottle can upright (maximum diameter of the barrel is 68 mm, diameter of the neck is 30 mm), the printing surface faces the outer surface of the bottle so that one end of the film is along the bottom of the can Put the label on it, put it into a steam furnace shrink tunnel that is 3m long and kept at 92 ° C, and let it pass for 10 seconds, so that the label shrinks and adheres to the outer periphery of the bottle can. (Container with label after shrinkage) was obtained. The package had good shrinkage finish and good adhesion at the label bonding part. The evaluation results as labels are shown in Table 4.

実施例2
熱収縮性ポリエステルフィルムとして、ポリエステルフィルム2を用いる以外は、実施例1と同様の方法で包装体を得た。ラベルとしての評価結果を表4に示す。
Example 2
A package was obtained in the same manner as in Example 1 except that the polyester film 2 was used as the heat-shrinkable polyester film. The evaluation results as labels are shown in Table 4.

実施例3
熱収縮性ポリエステルフィルムとして、ポリエステルフィルム3を用いる以外は、実施例1と同様の方法で包装体を得た。ラベルとしての評価結果を表4に示す。
Example 3
A package was obtained in the same manner as in Example 1 except that the polyester film 3 was used as the heat-shrinkable polyester film. The evaluation results as labels are shown in Table 4.

実施例4
熱収縮性ポリエステルフィルムとして、ポリエステルフィルム4を用い、フィルム端同士の溶着の際の炭酸ガスレーザーの照射条件として、出力を30Wにした以外は、実施例1と同様の方法で包装体を得た。ラベルとしての評価結果を表4に示す。
Example 4
A polyester film 4 was used as a heat-shrinkable polyester film, and a package was obtained in the same manner as in Example 1 except that the output was set to 30 W as the carbon dioxide laser irradiation condition at the time of film edge welding. . The evaluation results as labels are shown in Table 4.

実施例5
熱収縮性ポリエステルフィルムとして、ポリエステルフィルム5を用い、フィルム端同士の接着の際の炭酸ガスレーザーの照射条件として、走査速度を30m/minにした以外は、実施例1と同様の方法で包装体を得た。ラベルとしての評価結果を表4に示す。
Example 5
A packaging body in the same manner as in Example 1 except that the polyester film 5 is used as the heat-shrinkable polyester film, and the scanning speed is set to 30 m / min as the irradiation condition of the carbon dioxide laser at the time of bonding the film ends. Got. The evaluation results as labels are shown in Table 4.

比較例1
フィルム端同士の貼り合わせを、市販のエチレン−酢酸ビニル系ホットメルト接着剤(軟化点85℃)を用いて行う以外は、実施例1と同様の方法によって包装体を得た。ホットメルト接着剤塗布時の熱により収縮仕上がり性が悪くなり、またラベル貼り合わせ部も手で軽く剥がれ、充分な接着性が得られなかった。
Comparative Example 1
A package was obtained by the same method as in Example 1 except that the film edges were bonded to each other using a commercially available ethylene-vinyl acetate hot melt adhesive (softening point: 85 ° C.). Due to the heat at the time of applying the hot melt adhesive, the shrink finish was deteriorated, and the label-laminated part was peeled lightly by hand, and sufficient adhesiveness was not obtained.

比較例2
フィルム端同士の貼り合わせを、1,3−ジオキソランを用いて溶剤接着により行う以外は、実施例1と同様の方法によってラベルの装着を試みたが、溶剤が垂れたり飛び散ったりしたため、均一な塗布ができず、フィルムの貼り合わせがうまくできなかった。
Comparative Example 2
The attachment of the label was tried by the same method as in Example 1 except that the film edges were bonded together by solvent adhesion using 1,3-dioxolane. The film could not be laminated successfully.

比較例3
熱収縮性ポリエステルフィルムとしてポリエステルフィルム6を用いる以外は、実施例1と同様の方法で包装体を得た。白色度・全光線透過率(表3)以外の点では特に問題はなかった。
Comparative Example 3
A package was obtained in the same manner as in Example 1 except that the polyester film 6 was used as the heat-shrinkable polyester film. There was no problem in particular except for the whiteness and the total light transmittance (Table 3).

比較例4
熱収縮性ポリエステルフィルムとして、ポリエステルフィルム7を用いる以外は、実施例1と同様の方法で包装体を得た。収縮仕上がり性が不十分であった。
Comparative Example 4
A package was obtained in the same manner as in Example 1 except that the polyester film 7 was used as the heat-shrinkable polyester film. The shrink finish was insufficient.

Figure 2009163233
Figure 2009163233

本発明の熱収縮性ラベルは、PETボトル、ガラスボトル等のボトル用ラベルに好適である。   The heat-shrinkable label of the present invention is suitable for bottle labels such as PET bottles and glass bottles.

直角引裂強度を測定する際の試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of the test piece at the time of measuring a right-angled tear strength.

符号の説明Explanation of symbols

F フィルム   F film

Claims (7)

少なくとも1軸に延伸された熱収縮性ポリエステル系フィルムからなり、フィルム端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することにより、チューブ状に成形された熱収縮性ラベルであって、
上記熱収縮性ポリエステル系フィルムが、エチレンテレフタレートを主たる構成ユニットとし、エチレングリコール以外のグリコール由来のユニットおよび/またはテレフタル酸以外のジカルボン酸由来のユニットがポリエステル全ユニット100モル%中15モル%以上40モル%以下であるポリエステルから構成されていると共に、下記要件(1)〜(5)を満たす主収縮方向が長手方向の熱収縮性ポリエステル系フィルムであることを特徴とする熱収縮性ラベル。
(1)90℃の温水中で10秒間に亘って処理した場合における長手方向の温湯熱収縮率が15%以上40%未満である、
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向と直交する幅方向の温湯熱収縮率が−5%以上5%以下である、
(3)90℃で10秒間に亘って処理した場合における長手方向の最大熱収縮応力が2.5MPa以上7.0MPa以下である、
(4)フィルムの長手方向の破断前ヤング率が0.05GPa以上0.15GPa以下である、
(5)白色度が70以上または空洞を有する。
It is made of a heat-shrinkable polyester film stretched at least uniaxially, and is formed into a tube shape by overlapping the film end portion at a predetermined position of the film and irradiating the overlapping portion of the film with laser. A heat shrinkable label,
The heat-shrinkable polyester film has ethylene terephthalate as a main constituent unit, and a unit derived from glycol other than ethylene glycol and / or a unit derived from dicarboxylic acid other than terephthalic acid is at least 15 mol% in 100 mol% of all polyester units 40 A heat-shrinkable label characterized by being a heat-shrinkable polyester film comprising a polyester having a mol% or less and satisfying the following requirements (1) to (5) in which the main shrinkage direction is a longitudinal direction.
(1) The hot-water heat shrinkage in the longitudinal direction when treated for 10 seconds in 90 ° C. warm water is 15% or more and less than 40%.
(2) The hot water heat shrinkage in the width direction orthogonal to the longitudinal direction when treated in 90 ° C. warm water for 10 seconds is −5% or more and 5% or less,
(3) The maximum heat shrinkage stress in the longitudinal direction when treated at 90 ° C. for 10 seconds is 2.5 MPa or more and 7.0 MPa or less,
(4) Young's modulus before break in the longitudinal direction of the film is 0.05 GPa or more and 0.15 GPa or less,
(5) The whiteness is 70 or more or has a cavity.
上記熱収縮性ポリエステル系フィルムを80℃の温水中で長手方向に3%収縮させた後の単位厚み当たりの幅方向の直角引裂強度が100N/mm以上300N/mm以下である請求項1に記載の熱収縮性ラベル。   2. The perpendicular tear strength in the width direction per unit thickness after the heat-shrinkable polyester film is shrunk in the longitudinal direction by 3% in warm water at 80 ° C. is 100 N / mm or more and 300 N / mm or less. Heat shrinkable label. フィルム同士の重なった部分を溶着するために用いるレーザーが、炭酸ガスレーザーである請求項1または2に記載の熱収縮性ラベル。   The heat-shrinkable label according to claim 1 or 2, wherein the laser used for welding the overlapping portions of the films is a carbon dioxide gas laser. 請求項1〜3のいずれかに記載の熱収縮性ラベルを製造する方法であって、請求項1に記載された熱収縮性ポリエステル系フィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することにより、チューブ状に成形することを特徴とする熱収縮性ラベルの製造方法。   It is a method of manufacturing the heat-shrinkable label according to any one of claims 1 to 3, wherein the ends of the heat-shrinkable polyester film described in claim 1 are overlapped at predetermined positions of the film, A method for producing a heat-shrinkable label, which is formed into a tube shape by irradiating and welding the overlapped portion with a laser. フィルム同士の重なった部分を溶着するために用いるレーザーが、炭酸ガスレーザーである請求項4に記載の熱収縮性ラベルの製造方法。   The method for producing a heat-shrinkable label according to claim 4, wherein the laser used for welding the overlapping portions of the films is a carbon dioxide gas laser. 容器に装着する前に、予め、フィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することによりチューブ状に成形し、その後、容器に装着する工程を含む請求項4または5に記載の熱収縮性ラベルの製造方法。   Prior to mounting on a container, the end of the film is preliminarily stacked at a predetermined position on the film, and the part where the films overlap is irradiated with a laser to form a tube, and then mounted on the container The manufacturing method of the heat-shrinkable label of Claim 4 or 5 containing. 容器に直接フィルムを巻回した後、フィルムの端部をフィルムの所定位置に重ね、フィルム同士が重なった部分にレーザーを照射して溶着することによりチューブ状に成形することを特徴とする請求項4または5に記載の熱収縮性ラベルの製造方法。
The film is directly wound around a container, and then the end of the film is overlapped at a predetermined position of the film, and the portion where the films overlap is irradiated with a laser to form a tube shape. 6. A method for producing a heat-shrinkable label according to 4 or 5.
JP2008316158A 2007-12-13 2008-12-11 Heat shrinkable label and manufacturing method thereof Withdrawn JP2009163233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316158A JP2009163233A (en) 2007-12-13 2008-12-11 Heat shrinkable label and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007322189 2007-12-13
JP2008316158A JP2009163233A (en) 2007-12-13 2008-12-11 Heat shrinkable label and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009163233A true JP2009163233A (en) 2009-07-23

Family

ID=40965856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316158A Withdrawn JP2009163233A (en) 2007-12-13 2008-12-11 Heat shrinkable label and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009163233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152885A1 (en) * 2015-03-25 2016-09-29 東洋紡株式会社 Heat-shrinkable polyester-based film and packaging body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152885A1 (en) * 2015-03-25 2016-09-29 東洋紡株式会社 Heat-shrinkable polyester-based film and packaging body
KR20170129783A (en) * 2015-03-25 2017-11-27 도요보 가부시키가이샤 Heat-shrinkable polyester-based film and packaging body
US9944012B2 (en) 2015-03-25 2018-04-17 Toyobo Co., Ltd. Heat-shrinkable polyester film and package
KR102408694B1 (en) 2015-03-25 2022-06-14 도요보 가부시키가이샤 Heat-shrinkable polyester-based film and packaging body

Similar Documents

Publication Publication Date Title
WO2009107591A1 (en) Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
JP5761282B2 (en) Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
KR102463003B1 (en) Heat-shrinkable polyester film and packaging material
JP5151015B2 (en) Heat-shrinkable polyester film and label and method for producing the same
JP2004181863A (en) Heat shrinkable polyester type film roll and its manufacturing process
JP2007016120A (en) Heat-shrinkable polyester film and label, and method for production thereof
JP4968034B2 (en) Heat-shrinkable polyester film and method for producing the same
JP5761281B2 (en) Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
JP5993635B2 (en) Heat-shrinkable polyester film and method for producing the same
JP2009143143A (en) Heat shrinkable label and manufacturing method therefor
JP2005194466A (en) Heat shrinkable polyester base film and heat shrinkable label
JP2009143607A (en) Package
JP5200519B2 (en) Package
JP2009163233A (en) Heat shrinkable label and manufacturing method thereof
JP2004051888A (en) Heat shrinkable polyester film
JP2009143044A (en) Heat-shrinkable polyester film and manufacturing method therefor
JP2008284794A (en) Heat shrinkable label and method for manufacturing the same
JP5092450B2 (en) Heat-shrinkable polyester film and method for producing the same
JP5637272B2 (en) label
JP2009143097A (en) Heat shrinkable label and manufacturing method therefor
JP2005263938A (en) Heat-shrinkable polyester film
JP4636067B2 (en) Method for producing heat-shrinkable polyester film
JP2009160788A (en) Heat-shrinkable polyester film and its manufacturing method
JP2009143605A (en) Package
JP4867985B2 (en) Heat-shrinkable polyester film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306