[go: up one dir, main page]

JP2009160533A - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP2009160533A
JP2009160533A JP2008001528A JP2008001528A JP2009160533A JP 2009160533 A JP2009160533 A JP 2009160533A JP 2008001528 A JP2008001528 A JP 2008001528A JP 2008001528 A JP2008001528 A JP 2008001528A JP 2009160533 A JP2009160533 A JP 2009160533A
Authority
JP
Japan
Prior art keywords
water
current value
electrolysis
flow rate
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001528A
Other languages
Japanese (ja)
Other versions
JP4809950B2 (en
Inventor
Nobuo Achinami
信夫 阿知波
Yosuke Saito
洋介 齊藤
Masahiro Fujita
昌浩 藤田
Masahiko Katayose
政彦 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008001528A priority Critical patent/JP4809950B2/en
Publication of JP2009160533A publication Critical patent/JP2009160533A/en
Application granted granted Critical
Publication of JP4809950B2 publication Critical patent/JP4809950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】電解運転中に電解槽10内の電解電流に過電流が発生した場合、過電流を瞬時に阻止するとともに、長時間を要することなく正常な電解運転に円滑に復帰させる。
【解決手段】電解運転途中に電解電流に過電流が発生した場合には、制御装置30は、正常のフィードバック制御とは異なり、原水に対する高濃度塩水の供給を一旦停止し、その後、高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行う。これにより、過電流の発生は瞬時に解消され、その後の高濃度塩水の供給流量の制御によって電解電流値は漸次上昇し、電解運転は、正常な電解運転に円滑に復帰する。
【選択図】 図1
When an overcurrent is generated in an electrolytic current in an electrolytic cell 10 during an electrolytic operation, the overcurrent is instantaneously blocked and smoothly returned to a normal electrolytic operation without taking a long time.
When an overcurrent occurs in the electrolysis current during the electrolysis operation, the control device 30 temporarily stops the supply of the high-concentration salt water to the raw water, unlike the normal feedback control, and then the high-concentration salt water. The supply flow rate is gradually increased from the lowest supply flow rate within the range of the adjustable supply flow rate. As a result, the occurrence of overcurrent is eliminated instantaneously, and the electrolysis current value gradually increases by the subsequent control of the supply flow rate of the high-concentration salt water, and the electrolysis operation smoothly returns to the normal electrolysis operation.
[Selection] Figure 1

Description

本発明は、電解水生成装置に関する。   The present invention relates to an electrolyzed water generating apparatus.

電解水生成装置の一形式として、所定濃度の電解質を含有する被電解水を電解する電解槽と、前記電解槽に供給される原水に高濃度塩水を供給して所定濃度の電解質を含有する被電解水を調製する被電解水調製機構と、電解運転途中の前記電解槽内の電解電流値を検出する電流値検出手段と、前記電流値検出手段にて検出される電解電流値に基づいて前記原水に対する前記高濃度塩水の供給流量を制御して、電解電流値を設定された電解電流値にフィードバック制御する制御装置を備える電解水生成装置がある。当該形式の電解水生成装置においては、電解運転中の電解槽内の電解電流値を常に設定された電解電流値に制御することによって、設定されている特性の電解生成水を生成することを意図しているものである(特許文献1を参照)。
特開平11−114565号公報
As one type of electrolyzed water generating device, an electrolyzer that electrolyzes water to be electrolyzed containing a predetermined concentration of electrolyte, and a high concentration salt water supplied to the raw water supplied to the electrolyzer to contain an electrolyte of a predetermined concentration An electrolyzed water preparation mechanism for preparing electrolyzed water, current value detection means for detecting an electrolysis current value in the electrolytic cell during electrolysis operation, and the electrolysis current value detected by the current value detection means based on the electrolysis current value There is an electrolyzed water generating apparatus provided with a control device that controls the supply flow rate of the high-concentration salt water to the raw water and feedback-controls the electrolysis current value to the set electrolysis current value. In the electrolyzed water generation device of this type, it is intended to generate electrolyzed water having the set characteristics by always controlling the electrolysis current value in the electrolytic cell during electrolysis operation to the set electrolysis current value. (See Patent Document 1).
Japanese Patent Laid-Open No. 11-114565

このように、当該形式の電解水生成装置においては、電解運転中の電解槽内の電解電流値を常に設定された電解電流値になるように、原水に対する高濃度塩水の供給流量を制御している。このため、電解運転を一旦停止した後に電解運転を再開する場合には、制御装置に前回の電解運転での原水に対する高濃度塩水の供給流量を記憶させておき、制御装置は、電解運転の再開の始めから記憶している供給流量になるように、原水に対する高濃度塩水の供給流量を制御する手段を採っている。   As described above, in the electrolyzed water generating device of this type, the supply flow rate of the high-concentration salt water to the raw water is controlled so that the electrolysis current value in the electrolysis tank during the electrolysis operation is always set to the electrolysis current value. Yes. For this reason, when restarting the electrolysis operation after stopping the electrolysis operation, the control device stores the supply flow rate of the high-concentration salt water with respect to the raw water in the previous electrolysis operation, and the control device restarts the electrolysis operation. The means for controlling the supply flow rate of the high-concentration salt water with respect to the raw water is adopted so that the supply flow rate is memorized from the beginning.

このため、前回の電解運転終了後に、被電解水調製機構の塩水タンク内で新たに塩類を添加して高濃度塩水を調製するような場合、前回の電解運転における高濃度塩水の供給流量に基づき、原水に対する高濃度塩水の供給流量を制御すると、塩濃度が相違する場合には、高濃度塩水の供給流量が過剰になることがある。原水に対する高濃度塩水の供給流量が過剰になると、電解電流値が設定された電解電流値より上昇する現象が発生する。また、電解運転の途中に、塩水タンク内で新たに塩類を添加して高濃度塩水を調製して塩水の塩濃度が高くなった場合にも、電解電流値は設定された電解電流値より急激に上昇する現象が発生する。   For this reason, when preparing high-concentration salt water by newly adding salts in the salt water tank of the electrolyzed water preparation mechanism after the end of the previous electrolysis operation, based on the supply flow rate of the high-concentration salt water in the previous electrolysis operation If the supply flow rate of the high-concentration salt water with respect to the raw water is controlled, the supply flow rate of the high-concentration salt water may become excessive if the salt concentration is different. When the supply flow rate of the high-concentration salt water with respect to the raw water becomes excessive, a phenomenon occurs in which the electrolysis current value rises above the set electrolysis current value. Also, during the electrolysis operation, even when salt is newly added in the salt water tank to prepare high-concentration salt water and the salt concentration of the salt water becomes high, the electrolysis current value is more rapid than the set electrolysis current value. Ascending phenomenon occurs.

これらの場合、電解槽の各電極に電流を印加する電源の電源容量が大きい場合には、さほど問題はないが、電源容量に余裕がない場合には、電源容量を超える過電流が流れることがある。過電流の発生は、電源に対して大きな負荷を与えることになることから、過電流の発生は避けなければならない。また、過電流が発生すると、電源は自ら電圧降下させて、電源自身を保護する。この場合、通常のフィードバック制御では電圧降下分を検知していないないことから、制御装置は電圧降下によって減った電流を補うべく、原水に対する高濃度塩水の供給流量を増大させる。このため、電解運転を、設定された電解電流値の下での正常な電解運転に復帰させるために長時間を要することになる。従って、本発明の目的は、かかる問題に対処することにある。   In these cases, there is no problem if the power supply capacity of the power supply that applies current to each electrode of the electrolytic cell is large, but if there is not enough power supply capacity, an overcurrent exceeding the power supply capacity may flow. is there. Since the generation of overcurrent will give a large load to the power supply, the generation of overcurrent must be avoided. Further, when an overcurrent occurs, the power supply itself drops to protect the power supply itself. In this case, since the voltage drop is not detected in the normal feedback control, the control device increases the supply flow rate of the high-concentration salt water to the raw water in order to compensate for the current reduced by the voltage drop. For this reason, it takes a long time to return the electrolysis operation to the normal electrolysis operation under the set electrolysis current value. The object of the present invention is therefore to address such problems.

本発明は、電解水生成装置に関する。本発明が適用対象とする電解水生成装置は、所定濃度の電解質を含有する被電解水を電解する電解槽と、前記電解槽に供給される原水に高濃度塩水を供給して所定濃度の電解質を含有する被電解水を調製する被電解水調製機構と、電解運転途中の前記電解槽内の電解電流値を検出する電流値検出手段と、前記電流値検出手段にて検出される電解電流値に基づいて前記原水に対する前記高濃度塩水の供給流量を制御して電解電流値を設定された電解電流値にフィードバック制御する制御装置を備える形式の電解水生成装置である。   The present invention relates to an electrolyzed water generating apparatus. An electrolyzed water generating apparatus to which the present invention is applied includes an electrolyzer that electrolyzes water to be electrolyzed containing a predetermined concentration of electrolyte, and high concentration brine is supplied to the raw water supplied to the electrolyzer to provide a predetermined concentration of electrolyte. Electrolyzed water preparation mechanism for preparing electrolyzed water containing, electrolysis current value in the electrolyzer during electrolysis operation, current value detection means for detecting electrolysis current value, and electrolysis current value detected by the current value detection means Is a type of electrolyzed water generator comprising a control device that controls the supply flow rate of the high-concentration salt water to the raw water and feedback-controls the electrolysis current value to a set electrolysis current value.

しかして、本発明に係る電解水生成装置においては、前記制御装置は、電解電流値が許容される微少な変動範囲にある場合には、前記電流値検出手段にて検出される電流値に基づいて前記高濃度塩水の前記原水に対する供給流量を制御し、前記電流値検出手段にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、前記高濃度塩水の前記原水に対する供給を一旦停止し、その後、高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行うことを特徴とするものである。   Thus, in the electrolyzed water generating apparatus according to the present invention, the control device is based on the current value detected by the current value detecting means when the electrolysis current value is within a permissible range of fluctuation. Control the supply flow rate of the high-concentration salt water to the raw water, and if the electrolytic current value detected by the current value detecting means is an overcurrent value exceeding a permissible minute fluctuation range, The supply of the salt water to the raw water is temporarily stopped, and thereafter, the supply flow rate of the high-concentration salt water is controlled to gradually increase from the lowest supply flow rate within the range of the adjustable supply flow rate.

本発明に係る電解水生成装置においては、前記被電解水調整機構の塩水タンクから前記高濃度塩水を前記原水に供給する供給手段として、ダイアフラムピストン式の流量可変ポンプを採用して、前記制御装置が、前記電流値検出手段にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、前記流量可変ポンプの単位当たりのストローク数を最低のストローク数から漸次増大させる制御を行うようにすることができる。   In the electrolyzed water generating apparatus according to the present invention, a diaphragm piston type variable flow rate pump is used as a supply means for supplying the high-concentration salt water to the raw water from the salt water tank of the electrolyzed water adjusting mechanism, and the control device Is an overcurrent value that exceeds the permissible fluctuation range of the electrolysis current value detected by the current value detection means, the number of strokes per unit of the variable flow rate pump is reduced from the minimum number of strokes. Control that gradually increases can be performed.

本発明に係る電解水生成装置においては、電解運転途中に電解電流に過電流が発生した場合には、制御装置は、正常のフィードバック制御を中断して、原水に対する高濃度塩水の供給を一旦停止し、電解電流値が過電流値であることから、高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行うようにしている。このため、電解運転途中に過電流が発生しても過電流の発生が一旦阻止され、その後の高濃度塩水の供給流量の制御によって電解電流値は漸次上昇し、従来の供給流量の制御のように電解電流値が急激に上昇することがなくて、過電流の発生を瞬時に解消することができる。   In the electrolyzed water generating apparatus according to the present invention, when an overcurrent occurs in the electrolysis current during the electrolysis operation, the control apparatus interrupts normal feedback control and temporarily stops the supply of high-concentration salt water to the raw water. However, since the electrolytic current value is an overcurrent value, control is performed to gradually increase the supply flow rate of the high-concentration salt water from the lowest supply flow rate within the range of the adjustable supply flow rate. For this reason, even if an overcurrent occurs during the electrolysis operation, the generation of the overcurrent is temporarily prevented, and the electrolysis current value gradually increases due to the subsequent control of the supply flow of the high-concentration salt water. In addition, the electrolytic current value does not rapidly increase, and the occurrence of overcurrent can be eliminated instantaneously.

このため、過電流に起因する電源に対する大きな負荷は瞬時に解消される。また、制御装置は、電圧降下によって減った電流を補うべく、原水に対する高濃度塩水の供給流量を制御することもなく、このため、電解運転を、設定された電解電流値の下での正常な電解運転に、長時間を要することなく、円滑に復帰させることができる。   For this reason, the big load with respect to the power supply resulting from an overcurrent is eliminated instantly. Further, the control device does not control the supply flow rate of the high-concentration salt water with respect to the raw water in order to compensate for the current decreased due to the voltage drop. Therefore, the electrolysis operation is performed normally under the set electrolysis current value. The electrolytic operation can be smoothly resumed without requiring a long time.

本発明は、電解水生成装置に関する。本発明に係る電解水生成装置は、所定濃度の電解質を含有する被電解水を電解する電解槽と、電解槽に供給される原水に高濃度塩水を供給して所定濃度の電解質を含有する被電解水を調製する被電解水調製機構と、電解運転途中の電解槽内の電解電流値を検出する電流値検出手段と、電流値検出手段にて検出される電解電流値に基づいて原水に対する高濃度塩水の供給流量を制御して電解電流値を設定された電解電流値にフィードバック制御する制御装置を備える電解水生成装置である。   The present invention relates to an electrolyzed water generating apparatus. An electrolyzed water generating apparatus according to the present invention includes an electrolytic cell for electrolyzing water to be electrolyzed containing a predetermined concentration of electrolyte, and a high concentration salt water supplied to the raw water supplied to the electrolytic cell and containing a predetermined concentration of electrolyte. An electrolyzed water preparation mechanism for preparing electrolyzed water, a current value detecting means for detecting an electrolysis current value in the electrolytic cell during electrolysis operation, and a high value for the raw water based on the electrolysis current value detected by the current value detecting means. It is an electrolyzed water production | generation apparatus provided with the control apparatus which controls the supply flow volume of concentration salt water, and feedback-controls the electrolysis current value to the set electrolysis current value.

本発明は、電解運転途中の電解電流に過電流が発生した場合には、原水に対する高濃度塩水の供給流量の制御を適正に行って、過電流の発生を瞬時に停止させるとともに、設定された電解電流の下での正常な電解運転に速やかに復帰させるものである。図1には、本発明の一実施形態に係る電解水生成装置を概略的に示している。   In the present invention, when an overcurrent is generated in the electrolysis current during the electrolysis operation, the supply flow rate of the high-concentration salt water to the raw water is appropriately controlled, and the generation of the overcurrent is instantaneously stopped and set. It promptly returns to normal electrolysis operation under electrolysis current. FIG. 1 schematically shows an electrolyzed water generating device according to an embodiment of the present invention.

当該電解水生成装置は、有隔膜式の電解槽10、被電解水調製機構20、および、制御装置30を備える構成のものである。有隔膜式の電解槽10はそれ自体公知のもので、槽本体11は隔膜12にて一対の区画室に区画されており、各区画室には、電極13a,13bが配設されていて、各区画室は電解室R1,R2に形成されている。当該電解槽10の各電解室R1,R2の上流側部位には、被電解水を供給する被電解水供給管路14の分岐管路部がそれぞれ接続され、かつ、各電解室R1,R2の下流側部位には、電解生成水を導出する上流側導出管路15a1,15b1がそれぞれ接続されている。各上流側導出管路15a1,15b1は、流路切換弁16を介して、各下流側導出管路15a2,15b2に接続されている。   The electrolyzed water generating device is configured to include a diaphragm type electrolytic cell 10, an electrolyzed water preparation mechanism 20, and a control device 30. The diaphragm-type electrolytic cell 10 is known per se, and the cell body 11 is divided into a pair of compartments by a diaphragm 12, and electrodes 13a and 13b are arranged in each compartment. The compartments are formed in the electrolysis chambers R1 and R2. Branch portions of the electrolyzed water supply conduit 14 for supplying the electrolyzed water are connected to the upstream side portions of the electrolyzing chambers R1 and R2 of the electrolytic cell 10, and the electrolyzing chambers R1 and R2 are connected to the electrolyzing chambers R1 and R2. Upstream outlet conduits 15a1 and 15b1 for extracting electrolytically generated water are connected to the downstream portion, respectively. The upstream outlet conduits 15a1 and 15b1 are connected to the downstream outlet conduits 15a2 and 15b2 via the flow path switching valve 16, respectively.

当該電解水生成装置における電解運転では、電解運転途中、各電解室R1,R2の各電極13a,13bの極性が定期的に反転されて電解運転が継続されることから、各電極13a,13bの極性の反転に同期して流路切換弁16を切換動作すべく制御され、各上流側導出管路15a1,15b1の各下流側導出管路15a2,15b2に対する接続関係を切換えるようになっている。   In the electrolysis operation in the electrolyzed water generating apparatus, during the electrolysis operation, the polarity of each electrode 13a, 13b of each electrolysis chamber R1, R2 is periodically reversed and the electrolysis operation is continued, so that each electrode 13a, 13b Control is performed to switch the flow path switching valve 16 in synchronism with the reversal of polarity, and the connection relationship of the upstream derivation pipelines 15a1, 15b1 to the downstream derivation pipelines 15a2, 15b2 is switched.

かかる構成により、各下流側導出管路15a2,15b2の一方15a2は、例えば電解生成酸性水専用の導出管路となっており、各下流側導出管路15a2,15b2の他方15b2は、例えば電解生成アルカリ性水専用の導出管路となっている。各電極13a,13bの極性の定期的な反転、および、当該極性の反転に同期する流路切換弁16の切換動作は、制御装置30によって制御される。   With this configuration, one of the downstream outlet conduits 15a2 and 15b2 is, for example, a dedicated outlet for the electrolytically generated acidic water, and the other 15b2 of each downstream outlet conduit 15a2 and 15b2 is, for example, electrolytically generated. Derived pipeline dedicated to alkaline water. The control device 30 controls the periodic reversal of the polarity of each electrode 13a, 13b and the switching operation of the flow path switching valve 16 synchronized with the reversal of the polarity.

当該電解水生成装置の電解運転は、制御装置30によって総合的に制御され、電解運転では、電源31から各電極13a,13bに対して所定の電圧が印加されて、設定された所定の電解電流の下で、電解槽10の各電解室R1,R2内に供給される被電解水を、電解槽10の各電解室R1,R2内で電解する。   The electrolysis operation of the electrolyzed water generating apparatus is comprehensively controlled by the control device 30. In the electrolysis operation, a predetermined voltage is applied from the power source 31 to each of the electrodes 13a and 13b, and a predetermined electrolysis current is set. The electrolyzed water supplied into the electrolysis chambers R1 and R2 of the electrolyzer 10 is electrolyzed in the electrolysis chambers R1 and R2 of the electrolyzer 10.

電解運転中、一方の電解室R1で生成される電解生成酸性水は、電解生成酸性水専用の下流側導出管路15a2から導出され、また、各電極13a,13bの極性が反転された後に電解室R1で生成される電解生成アルカリ性水は、電解生成アルカリ性水専用の導出管路15b2から導出される。また、当該電解運転中、他方の電解室R2で生成される電解生成アルカリ性水は、電解生成アルカリ性水専用の下流側導出管路15b2から導出され、また、各電極13a,13bの極性が反転された後に電解室R2で生成される電解生成酸性水は、電解生成酸性水専用の導出管路15a2から導出される。   During the electrolysis operation, the electrolyzed acidic water produced in one electrolysis chamber R1 is led out from the downstream outlet conduit 15a2 dedicated to the electrolyzed acidic water, and electrolysis is performed after the polarities of the electrodes 13a and 13b are reversed. The electrolytically generated alkaline water generated in the chamber R1 is led out from the outlet line 15b2 dedicated to the electrolytically generated alkaline water. Further, during the electrolysis operation, the electrolyzed alkaline water produced in the other electrolysis chamber R2 is led out from the downstream outlet conduit 15b2 dedicated to the electrolyzed alkaline water, and the polarities of the electrodes 13a and 13b are reversed. Thereafter, the electrolytically generated acidic water generated in the electrolytic chamber R2 is led out from the outlet conduit 15a2 dedicated to the electrolytically generated acidic water.

この間、電解槽10内で発生する電解電流値は、電源31と電極13bを接続する配線の途中に介装された分流器32に接続する電流計33にて、配線を流れる電流値として計測される。電流計33で計測される電流値は、電解槽10内で発生する電解電流値に相当する。電流計33にて検出された電解電流値は、電解電流値の検出信号として制御装置30に出力される。   During this time, the value of the electrolytic current generated in the electrolytic cell 10 is measured as the value of the current flowing through the wiring by the ammeter 33 connected to the shunt 32 interposed in the middle of the wiring connecting the power source 31 and the electrode 13b. The The current value measured by the ammeter 33 corresponds to an electrolytic current value generated in the electrolytic cell 10. The electrolytic current value detected by the ammeter 33 is output to the control device 30 as an electrolytic current value detection signal.

当該電解水生成装置を構成する被電解水調製機構20は、高濃度塩水を収容する塩水タンク21と、塩水タンク21内の高濃度塩水を供給する供給管路22と、供給管路22の途中に介装された吐出流量可変型の定量ポンプ23からなるもので、供給管路22は、被電解水供給管路14に接続している原水供給管路17に接続されている。塩水タンク21には、水と大量の食塩が収容されていて、塩水タンク21内では、飽和食塩水等の所定濃度の高濃度塩水が調製されている。塩水タンク21内に収容されている高濃度塩水は、供給ポンプ23を駆動することにより、制御装置30にて制御された流量の高濃度塩水が原水供給管路17内に供給される。本実施形態では、供給ポンプ23として、ダイアフラムピストン式の流量可変ポンプを採用している。   The electrolyzed water preparation mechanism 20 that constitutes the electrolyzed water generating apparatus includes a salt water tank 21 that stores high-concentration salt water, a supply line 22 that supplies high-concentration salt water in the salt water tank 21, and a middle of the supply line 22. The supply flow line 22 is connected to the raw water supply line 17 connected to the electrolyzed water supply line 14. The salt water tank 21 contains water and a large amount of salt. In the salt water tank 21, high-concentration salt water having a predetermined concentration such as saturated saline is prepared. The high-concentration salt water stored in the salt water tank 21 is supplied into the raw water supply pipe 17 by driving the supply pump 23 so that the flow-rate high-concentration salt water controlled by the control device 30 is supplied. In the present embodiment, a diaphragm piston type variable flow rate pump is employed as the supply pump 23.

当該供給ポンプ23は、ダイアフラムピストンの一往復の動作によって吸入チェック弁および吐出チェック弁を交互に開閉して所定量の高濃度塩水を吐出し、原水供給管路17内を流れる原水中に供給すべく機能する。当該供給ポンプ23は、略0.5〜1.0mmのピストンストロークで略0.06ccの高濃度塩水を吐出するもので、単位時間当たりのストローク数を0〜720回/分(spm)の範囲で調整することができ、これにより、高濃度塩水の吐出流量を0〜40cc/分の範囲で調整することができる。制御装置30は、当該供給ポンプ23の単位時間当たりのストローク数を制御することにより、原水に対する高濃度塩水の供給流量を調整する。   The supply pump 23 alternately opens and closes the suction check valve and the discharge check valve by one reciprocating operation of the diaphragm piston, discharges a predetermined amount of high-concentration salt water, and supplies the raw water flowing in the raw water supply pipe 17. It works as much as possible. The supply pump 23 discharges about 0.06 cc of high-concentration salt water with a piston stroke of about 0.5 to 1.0 mm, and the number of strokes per unit time is in the range of 0 to 720 times / minute (spm). Thus, the discharge flow rate of the high-concentration salt water can be adjusted in the range of 0 to 40 cc / min. The control device 30 adjusts the supply flow rate of the high-concentration salt water to the raw water by controlling the number of strokes per unit time of the supply pump 23.

なお、塩水タンク21内には、1回の電解運転にて消費される量の高濃度塩水が収容されている。このため、次回の電解運転に際しては、当該塩水タンク21を、新たに調製した高濃度塩水を収容してい塩水タンクに交換される。   The salt water tank 21 contains high-concentration salt water that is consumed in one electrolysis operation. For this reason, in the next electrolysis operation, the salt water tank 21 is replaced with a salt water tank containing newly prepared high-concentration salt water.

本実施形態で使用する原水は、水道水を軟水化処理するとともに濾過処理してなるもので、原水供給管路17の途中には、軟水器18aおよびフィルター18bが介装されていて、軟水器18aおよびフィルター18bで軟水化処理および濾過処理された水道水が原水として、原水供給管路17を通して被電解水供給管路14に供給される。原水供給管路17内に供給された一定流量の高濃度塩水は、原水供給管路17内を流動する原水と混合して一定濃度の希釈塩水となる。当該希釈塩水は設定された一定濃度の塩水であって、当該電解水生成装置で電解の対象とする被電解水である。当該被電解水は、設定された一定量の電解質を含有していて、設定された一定の電気伝導度を有している。   The raw water used in the present embodiment is obtained by subjecting tap water to water softening and filtration, and a water softener 18a and a filter 18b are interposed in the middle of the raw water supply pipe 17, so that the water softener The tap water softened and filtered by the filter 18 b and the filter 18 b is supplied as raw water to the electrolyzed water supply pipe 14 through the raw water supply pipe 17. The high-concentration salt water having a constant flow rate supplied into the raw water supply pipe 17 is mixed with the raw water flowing in the raw water supply pipe 17 to become a diluted salt water having a constant concentration. The diluted salt water is salt water having a set constant concentration and is water to be electrolyzed by the electrolyzed water generating device. The electrolyzed water contains a set amount of electrolyte and has a set constant electrical conductivity.

制御装置30は、当該電解水生成装置の電解運転を総合的に制御するもので、電解運転時には、電解槽10内の電極13a,13b間に一定の電圧を印加して、設定された電解電流の下で被電解水を電解する。電解運転中は、電流計33で検出される電解電流値に基づいて、原水に対する高濃度塩水の供給流量を調整(供給ポンプのストローク数を制御)して、電解電流値をフィードバック制御する。   The control device 30 comprehensively controls the electrolysis operation of the electrolyzed water generating device. During the electrolysis operation, a constant voltage is applied between the electrodes 13a and 13b in the electrolytic cell 10 to set a set electrolysis current. Electrolyze the electrolyzed water under During the electrolysis operation, based on the electrolysis current value detected by the ammeter 33, the supply flow rate of the high-concentration salt water to the raw water is adjusted (the number of strokes of the supply pump is controlled), and the electrolysis current value is feedback-controlled.

これにより、当該電解水生成装置では、設定された電解電流の下での電解により、設定された特性の電解生成酸性水および電解生成アルカリ性水が連続して生成されて、生成された電解生成酸性水は、電解生成酸性水専用の導出管路である下流側導出管路15a2から導出され、また、生成された電解生成アルカリ性水は、電解生成アルカリ性水専用の導出管路である下流側導出管路15b2から導出される。   Thus, in the electrolyzed water generating apparatus, electrolyzed acidic water and electrolyzed alkaline water having the set characteristics are continuously generated by electrolysis under the set electrolysis current, and the generated electrolyzed acidic water is generated. The water is led out from the downstream lead-out line 15a2, which is a lead-out line dedicated to the electrolytically generated acidic water, and the generated electrolytically generated alkaline water is a downstream lead-out pipe that is a lead-out line dedicated to the electrolytically generated alkaline water. Derived from the path 15b2.

このように、当該電解水生成装置においては、電解運転中の電解槽10内の電解電流値を常に設定された電解電流値になるように、原水に対する高濃度塩水の供給流量を制御している。このため、従来の電解水生成装置では、電解運転を一旦停止した後に電解運転を再開する場合、制御装置30に前回の電解運転での原水に対する高濃度塩水の供給流量を記憶させておき、制御装置30は、電解運転の再開時の始めから、自身が記憶している供給流量になるように、原水に対する高濃度塩水の供給流量を制御する手段を採っている。   Thus, in the said electrolyzed water generating apparatus, the supply flow rate of the high concentration salt water with respect to raw | natural water is controlled so that the electrolysis current value in the electrolysis tank 10 in electrolysis operation may always become the set electrolysis current value. . For this reason, in the conventional electrolyzed water generating apparatus, when the electrolysis operation is resumed after the electrolysis operation is temporarily stopped, the control device 30 stores the supply flow rate of the high-concentration salt water with respect to the raw water in the previous electrolysis operation, and performs control. The apparatus 30 employs a means for controlling the supply flow rate of the high-concentration salt water with respect to the raw water so that the supply flow rate stored in the device 30 is maintained from the beginning when the electrolysis operation is resumed.

このため、前回の電解運転終了後に、被電解水調製機構の塩水タンク21内で新たに塩類を添加して高濃度塩水を調製するような場合、前回の電解運転における高濃度塩水の供給流量に基づき、原水に対する高濃度塩水の供給流量を制御すると、塩濃度の相違に起因して、高濃度塩水の供給流量が過剰になることがある。原水に対する高濃度塩水の供給流量が過剰になると、電解槽10内の電解電流値が設定された電解電流値より上昇する現象が発生する。また、電解運転の途中で、塩水タンク21内に新たに塩類を添加して高濃度塩水を調製して塩水の塩濃度が高くなった場合には、電解槽10内の電解電流値は設定された電解電流値より急激に上昇する現象が発生する。   For this reason, when a high concentration salt water is prepared by newly adding salts in the salt water tank 21 of the electrolyzed water preparation mechanism after the last electrolysis operation, the supply flow rate of the high concentration salt water in the previous electrolysis operation is adjusted. Based on the control of the supply flow rate of the high-concentration salt water with respect to the raw water, the supply flow rate of the high-concentration salt water may become excessive due to the difference in salt concentration. When the supply flow rate of the high-concentration salt water with respect to the raw water becomes excessive, a phenomenon occurs in which the electrolysis current value in the electrolytic cell 10 rises from the set electrolysis current value. In the middle of the electrolysis operation, when salt is newly added to the salt water tank 21 to prepare high-concentration salt water and the salt concentration of the salt water becomes high, the electrolysis current value in the electrolytic cell 10 is set. Phenomenon that rises more rapidly than the electrolytic current value occurs.

これらの場合、電解槽10の各電極13a,13bに電流を印加する電源31の電源容量が大きい場合には、さほど問題はないとしても、電源容量に余裕がない場合には、電源容量を超える過電流が流れることがある。過電流の発生は、電源31に対して大きな負荷を与えることになることから、過電流の発生は避けなければならない。   In these cases, when the power supply capacity of the power supply 31 for applying a current to the electrodes 13a and 13b of the electrolytic cell 10 is large, there is no problem, but if the power supply capacity is not sufficient, the power supply capacity is exceeded. Overcurrent may flow. Since generation of overcurrent gives a large load to the power supply 31, generation of overcurrent must be avoided.

また、過電流が発生すると、電源31は電圧降下させて自身を保護する。この場合、フィードバック制御では電圧降下分を検知していないことから、制御装置30は、電圧降下によって減った電流を補うべく、原水に対する高濃度塩水の供給流量を制御する。このため、電解運転を、設定された電解電流値の下での正常な電解運転に復帰させるために長時間を要することになる。本発明は、かかる問題に対処するものである。   Further, when an overcurrent occurs, the power source 31 drops the voltage to protect itself. In this case, since the voltage drop is not detected in the feedback control, the control device 30 controls the supply flow rate of the high-concentration salt water to the raw water in order to compensate for the current reduced by the voltage drop. For this reason, it takes a long time to return the electrolysis operation to the normal electrolysis operation under the set electrolysis current value. The present invention addresses such problems.

本発明に係る電解水生成装置においては、電解電流値が許容される微少な変動範囲にある場合には、制御装置30は、電流計33にて検出される電解電流値に基づいて高濃度塩水の原水に対する供給流量を制御すべく供給ポンプ23の駆動を制御し、電流計33にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、供給ポンプ23の駆動を一旦停止し原水に対する高濃度塩水の供給を中断し、その後、供給ポンプ23の駆動を再駆動して原水に対する高濃度塩水の供給を再開する。供給ポンプ23の駆動を再駆動するに当たっては、供給ポンプの駆動が調整できるストローク数の範囲内の最低のストローク数から漸次増大させる制御を行う。この結果、原水に対する高濃度塩水の供給流量は漸次増大することになる。   In the electrolyzed water generating apparatus according to the present invention, when the electrolysis current value is within a permissible range of fluctuation, the control device 30 can generate high-concentration salt water based on the electrolysis current value detected by the ammeter 33. When the supply pump 23 is driven to control the supply flow rate of the raw water, and the electrolysis current value detected by the ammeter 33 is an overcurrent value exceeding a permissible minute fluctuation range, the supply pump 23 is temporarily stopped to interrupt the supply of the high-concentration salt water to the raw water, and then the supply pump 23 is re-driven to restart the supply of the high-concentration salt water to the raw water. When the drive of the supply pump 23 is re-driven, control is performed to gradually increase from the minimum stroke number within the range of stroke numbers that can be adjusted for the drive of the supply pump. As a result, the supply flow rate of the high-concentration salt water to the raw water gradually increases.

図2(a)には、供給ポンプ23の駆動時の単位時間当たりのストローク数と高濃度塩水の吐出流量(供給流量)の関係を示し、図2(b)には、ストローク数(高濃度塩水の原水に対する供給流量に対応)と電解電流値との関係を示している。また、図3(a),(b)には、従来の電解水生成装置の電解再開時の初期における高濃度塩水の供給流量と、電圧と、電解電流との関係を示している。   FIG. 2 (a) shows the relationship between the number of strokes per unit time when the supply pump 23 is driven and the discharge flow rate (supply flow rate) of high-concentration salt water, and FIG. 2 (b) shows the number of strokes (high concentration). The relationship between the supply flow rate of salt water to the raw water) and the electrolysis current value is shown. FIGS. 3A and 3B show the relationship between the supply flow rate of high-concentration salt water, the voltage, and the electrolysis current at the initial stage when electrolysis is resumed in a conventional electrolyzed water generator.

なお、図2(a)に示す供給ポンプ23のストローク数は上下2段に表示しているが、上段に示すストローク数(%)は、当該供給ポンプ23は0〜720(spm)間で調整することができることから、当該ストローク数に調整範囲を100等分して、ストローク数720spmを最大の調整数を100%としたものである。また、下段に示すストーロク数(spm)は、上段のストローク数(%)に対応するストローク数である。また、図2(b)に示すグラフは、ストローク数(spm)が0でも、2A程度の電解電流が流れている現象を示しているが、この現象は、高濃度塩水を調製するために採用している原水(水道水)に含まれている電解質に起因しているものである。   The number of strokes of the supply pump 23 shown in FIG. 2 (a) is shown in two upper and lower stages, but the number of strokes (%) shown in the upper stage is adjusted between 0 and 720 (spm) for the supply pump 23. Therefore, the adjustment range is equally divided into 100 for the number of strokes, and the maximum number of adjustments is 100% for the number of strokes 720 spm. The stroke number (spm) shown in the lower part is the number of strokes corresponding to the upper part stroke number (%). The graph shown in FIG. 2 (b) shows a phenomenon in which an electrolysis current of about 2A flows even when the number of strokes (spm) is 0. This phenomenon is adopted for preparing high-concentration salt water. This is due to the electrolyte contained in the raw water (tap water).

従来の電解水生成装置の電解運転の再開時には、原水に対する高濃度塩水の供給流量の制御は、前回の高濃度塩水の供給流量に基づいて行われる。図3(a)は、電解電圧12V、電解電流10Aに設定されている電解条件の下で電解運転する場合であって、電源31として電源容量が大きい電源を採用している電解運転の例である。当該電解運転の再開の際には電解槽10内は原水で充満しているため、電解運転の開始から所定の時間の間は、電解槽10内に充満している水、および、順次塩濃度を増す被電解水の希釈水溶液がフィードバック制御の基準となる。このため、電解運転の再開時には、制御装置30は、フィードバック制御の関係から、電解運転の開始から所定時間の間は、高濃度塩水の供給流量を増加して、電解槽10内を設定された塩濃度の被電解水で充満させる制御を行う。   When the electrolysis operation of the conventional electrolyzed water generator is resumed, the supply flow rate of the high-concentration salt water to the raw water is controlled based on the previous supply flow rate of the high-concentration salt water. FIG. 3A shows an example of an electrolysis operation in which an electrolysis operation is performed under electrolysis conditions set to an electrolysis voltage of 12 V and an electrolysis current of 10 A, and a power source having a large power source capacity is adopted as the power source 31. is there. Since the inside of the electrolytic cell 10 is filled with raw water when the electrolytic operation is restarted, the water filled in the electrolytic cell 10 and the salt concentration in sequence for a predetermined time from the start of the electrolytic operation. A dilute aqueous solution of electrolyzed water that increases the amount of feedback is the reference for feedback control. For this reason, at the time of resuming the electrolysis operation, the control device 30 is set in the electrolytic cell 10 by increasing the supply flow rate of the high-concentration salt water for a predetermined time from the start of the electrolysis operation due to the feedback control. Control to fill with electrolyzed water with salt concentration.

かかる制御では、原水に対する高濃度塩水の供給と、電解槽10内が設定された塩濃度の被電解水で充満する時間に時間差があることから、原水に対する高濃度塩水の供給流量が一時的に過剰となって、電解槽内では過電流が発生することになる。図3(a)には、この場合の高濃度塩水の供給流量、電圧および電解電流の挙動を示している。また、この場合には、電源31の電源容量に余裕があることから電圧降下は存在せず、過電流は発生するものの、電圧降下に起因する問題は発生しない。   In such control, since there is a time difference between the supply of the high-concentration salt water to the raw water and the time to fill the electrolyzer 10 with the electrolyzed water having a set salt concentration, the supply flow rate of the high-concentration salt water to the raw water is temporarily Excessive current will be generated in the electrolytic cell. FIG. 3 (a) shows the behavior of the supply flow rate, voltage and electrolysis current of the high-concentration salt water in this case. Further, in this case, there is no voltage drop because the power supply capacity of the power supply 31 is sufficient, and although an overcurrent occurs, a problem caused by the voltage drop does not occur.

図3(b)も、電解電圧12V、電解電流10Aに設定されている電解条件の下で電解運転する場合であるが、電源31として電源容量が小さい電源を採用している電解運転の例である。当該電解運転の再開の際には電解槽10内は原水で充満しているため、電解運転の開始から所定の時間の間は、電解槽10内に充満している水、および、順次塩濃度を増す被電解水の希釈水溶液がフィードバック制御の基準となる。このため、電解運転の再開では、制御装置30は、フィードバック制御の関係から、電解運転の開始から所定時間の間は、高濃度塩水の供給流量を増加して、電解槽10内を設定された塩濃度の被電解水で充満させる制御を行う。    FIG. 3B also shows a case where the electrolysis operation is performed under the electrolysis conditions set to an electrolysis voltage of 12 V and an electrolysis current of 10 A, but an example of electrolysis operation in which a power source having a small power source capacity is adopted as the power source 31. is there. Since the inside of the electrolytic cell 10 is filled with raw water when the electrolytic operation is restarted, the water filled in the electrolytic cell 10 and the salt concentration in sequence for a predetermined time from the start of the electrolytic operation. A dilute aqueous solution of electrolyzed water that increases the amount of feedback is the reference for feedback control. For this reason, at the restart of the electrolysis operation, the control device 30 is set in the electrolyzer 10 by increasing the supply flow rate of the high-concentration salt water for a predetermined time from the start of the electrolysis operation due to the feedback control. Control to fill with electrolyzed water with salt concentration.

かかる制御では、原水に対する高濃度塩水の供給と、電解槽10内が設定された塩濃度の被電解水で充満する時間に時間差があることから、原水に対する高濃度塩水の供給流量が一時的に過剰となって、電解槽10内では過電流が発生することになる。この場合は、過電流に起因して電圧降下が発生し、過電流に基づくフィードバック制御では、高濃度塩水の供給流量の減少による電解電流値の低下は十分ではなく、設定された電解電流値に制御するにはフィードバック制御を繰り返し行わなければならず、設定された電解電流値に制御するには、かなりの時間を要することになる。また、この場合には、過電流に起因する電源31に対する負荷は一層大きくなる。   In such control, since there is a time difference between the supply of the high-concentration salt water to the raw water and the time to fill the electrolyzer 10 with the electrolyzed water having a set salt concentration, the supply flow rate of the high-concentration salt water to the raw water is temporarily Excessive current will be generated in the electrolytic cell 10. In this case, a voltage drop occurs due to the overcurrent, and in the feedback control based on the overcurrent, the decrease in the electrolysis current value due to the decrease in the supply flow rate of the high-concentration salt water is not sufficient, and the set electrolysis current value is reached. In order to control, it is necessary to repeatedly perform feedback control, and it takes a considerable time to control to a set electrolytic current value. In this case, the load on the power supply 31 due to the overcurrent is further increased.

本発明は、これらの問題に対処することを目的としているもので、本発明においては、電流値検出手段にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、高濃度塩水の原水に対する供給を一旦停止し、その後、高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行うものである。   The present invention aims to address these problems, and in the present invention, the electrolytic current value detected by the current value detection means is an overcurrent value that exceeds a permissible minute fluctuation range. In this case, the supply of the high-concentration salt water to the raw water is temporarily stopped, and thereafter, the supply flow rate of the high-concentration salt water is gradually increased from the lowest supply flow rate within the range of the adjustable supply flow rate.

本発明で規定する制御の一実施態様では、電解再開時の開始から所定時間の間、通常のフィードバック制御とは異なり、原水に対する高濃度塩水の供給流量を適正に制御することにより、電解運転再開時の初期における電解槽内での過電流の発生を大幅に抑制し、または、皆無に近い状態にして、電解運転中の過電流の発生に起因する問題を解消するものである。図4には、当該電解運転における高濃度塩水の供給流量と、電圧と、電解電流との関係を示している。当該電解運転は、電解電圧12V、電解電流10Aに設定されている電解条件の下で電解運転する場合である。   In one embodiment of the control defined in the present invention, the electrolysis operation is resumed by appropriately controlling the supply flow rate of the high-concentration salt water to the raw water for a predetermined time from the start of electrolysis restart, unlike the normal feedback control. The occurrence of overcurrent in the electrolytic cell in the early stage of the time is greatly suppressed, or the state is almost completely eliminated, and the problem caused by the occurrence of overcurrent during the electrolytic operation is solved. FIG. 4 shows the relationship between the supply flow rate of high-concentration salt water, the voltage, and the electrolysis current in the electrolysis operation. The electrolysis operation is a case where the electrolysis operation is performed under electrolysis conditions set to an electrolysis voltage of 12 V and an electrolysis current of 10 A.

当該電解運転の再開の際には電解槽10内は原水で充満しているため、電解運転の開始から所定の時間の間は、電解槽10内に充満している水、および、順次塩濃度を増す被電解水の希釈水溶液がフィードバック制御の基準となる。このため、電解運転の再開では、制御装置30は、フィードバック制御の関係から、電解運転の開始から所定時間の間は、高濃度塩水の供給流量を増加して、電解槽10内を設定された塩濃度の被電解水で充満させる制御を行う。   Since the inside of the electrolytic cell 10 is filled with raw water when the electrolytic operation is restarted, the water filled in the electrolytic cell 10 and the salt concentration in sequence for a predetermined time from the start of the electrolytic operation. A dilute aqueous solution of electrolyzed water that increases the amount of feedback is the reference for feedback control. For this reason, at the restart of the electrolysis operation, the control device 30 is set in the electrolyzer 10 by increasing the supply flow rate of the high-concentration salt water for a predetermined time from the start of the electrolysis operation due to the feedback control. Control to fill with electrolyzed water with salt concentration.

本発明に係る電解水生成装置においては、制御装置30は、前回の電解運転における原水に対する高濃度塩水の供給流量を記憶値として記憶していて、電解運転の再開時には当該記憶値に基づいてフィードバック制御するが、当該制御の間に電解槽10内に過電流が発生した場合には、高濃度塩水の原水に対する供給を一旦停止し、その後、高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行っている。このため、当該制御においては、電解槽10内で一旦発生した過電流を速やかに解消されるとともに、その後の制御では、電解槽10内での過電流の発生を阻止しつつ、電解槽10内の電解電流値を目標とする設定された電解電流値に速やかに移行させることができる。   In the electrolyzed water generating apparatus according to the present invention, the control device 30 stores the supply flow rate of the high-concentration salt water with respect to the raw water in the previous electrolysis operation as a memory value, and feedback is performed based on the stored value when the electrolysis operation is resumed. If an overcurrent occurs in the electrolytic cell 10 during the control, the supply of the high-concentration salt water to the raw water is temporarily stopped, and then the supply flow rate of the high-concentration salt water can be adjusted. The control is performed so as to gradually increase from the lowest supply flow rate within the range. For this reason, in the control, the overcurrent once generated in the electrolytic cell 10 is quickly eliminated, and in the subsequent control, the generation of the overcurrent in the electrolytic cell 10 is prevented while It is possible to quickly shift to the set electrolytic current value that targets the electrolytic current value.

また、本発明で規定する制御においては、電解槽10内で発生する過電流を速やかに解消されることから、過電流に起因する電源に対する大きな負荷は瞬時に解消される。また、制御装置は、電圧降下によって減った電流を補うべく、原水に対する高濃度塩水の供給流量を制御することもなく、このため、電解運転を、設定された電解電流値の下での正常な電解運転に、速やかに復帰させることができる。   Moreover, in the control prescribed | regulated by this invention, since the overcurrent which generate | occur | produces in the electrolytic cell 10 is eliminated rapidly, the big load with respect to the power supply resulting from an overcurrent is eliminated instantly. Further, the control device does not control the supply flow rate of the high-concentration salt water with respect to the raw water in order to compensate for the current decreased due to the voltage drop. Therefore, the electrolysis operation is performed normally under the set electrolysis current value. It is possible to quickly return to the electrolysis operation.

本発明の一実施形態である電解水生成装置を示す概略構成図である。It is a schematic block diagram which shows the electrolyzed water generating apparatus which is one Embodiment of this invention. 供給ポンプの駆動時の単位時間当たりのストローク数と高濃度塩水の供給流量(吐出流量)の関係を示するグラフ(a)、および、ストローク数(高濃度塩水の原水に対する供給流量に対応)と電解電流値との関係を示するグラフ(b)である。Graph (a) showing the relationship between the number of strokes per unit time when the supply pump is driven and the supply flow rate (discharge flow rate) of high-concentration salt water, and the number of strokes (corresponding to the supply flow rate for raw water of high-concentration salt water) It is a graph (b) which shows the relationship with an electrolysis electric current value. 従来の電解水生成装置の電解再開時の初期における高濃度塩水の供給流量と、電圧と、電解電流との関係を示す電源容量が大きい場合のグラフ(a)、および、電源容量が小さい場合のグラフ(b)である。The graph (a) in the case where the power supply capacity showing the relationship between the supply flow rate of high-concentration salt water, the voltage, and the electrolysis current in the initial stage of resuming electrolysis of the conventional electrolyzed water generator is large, and the case where the power capacity is small It is a graph (b). 本発明に係る電解水生成装置の電解再開時の初期における高濃度塩水の供給流量と、電圧と、電解電流との関係を示すグラフである。It is a graph which shows the relationship between the supply flow volume of the high concentration salt water in the initial stage at the time of the electrolysis restart of the electrolyzed water generating apparatus which concerns on this invention, a voltage, and an electrolysis current.

符号の説明Explanation of symbols

10…有隔膜式の電解槽、R1,R2…電解室、11…槽本体、12…隔膜、13a,13b…電極、14…被電解水供給管路、15a1,15b1…上流側導出管路、15a2,15b2…下流側導出管路、16…流路切換弁、17…原水供給管路、18a…軟水器、18b…フィルター、20…被電解水調製機構、21…塩水タンク、22…高濃度塩水供給管路、23…供給ポンプ、30…制御装置、31…電源、32…分流器、33…電流計(電解電流検出手段)。 DESCRIPTION OF SYMBOLS 10 ... Separator-type electrolytic cell, R1, R2 ... Electrolytic chamber, 11 ... Tank main body, 12 ... Diaphragm, 13a, 13b ... Electrode, 14 ... Electrolyzed water supply conduit, 15a1, 15b1 ... Upstream outlet conduit, 15a2, 15b2 ... downstream outlet conduit, 16 ... flow switching valve, 17 ... raw water supply conduit, 18a ... water softener, 18b ... filter, 20 ... electrolyzed water preparation mechanism, 21 ... salt water tank, 22 ... high concentration Salt water supply line, 23 ... supply pump, 30 ... control device, 31 ... power source, 32 ... shunt, 33 ... ammeter (electrolytic current detection means).

Claims (2)

所定濃度の電解質を含有する被電解水を電解する電解槽と、前記電解槽に供給される原水に高濃度塩水を供給して所定濃度の電解質を含有する被電解水を調製する被電解水調製機構と、電解運転途中の前記電解槽内の電解電流値を検出する電流値検出手段と、前記電流値検出手段にて検出される電解電流値に基づいて前記原水に対する前記高濃度塩水の供給流量を制御して電解電流値を設定された電解電流値にフィードバック制御する制御装置を備える電解水生成装置であり、前記制御装置は、電解電流値が許容される微少な変動範囲にある場合には、前記電流値検出手段にて検出される電流値に基づいて前記高濃度塩水の原水に対する供給流量を制御し、前記電流値検出手段にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、前記高濃度塩水の前記原水に対する供給を一旦停止し、その後、前記高濃度塩水の供給流量を、調整可能な供給流量の範囲内の最低の供給流量から漸次増大させる制御を行うことを特徴とする電解水生成装置。 Electrolysis tank for electrolyzing electrolyzed water containing an electrolyte of a predetermined concentration, and electrolyzed water preparation for preparing electrolyzed water containing an electrolyte of a predetermined concentration by supplying high-concentration salt water to raw water supplied to the electrolyzer A mechanism, current value detection means for detecting an electrolysis current value in the electrolytic cell during the electrolysis operation, and a supply flow rate of the high-concentration salt water to the raw water based on the electrolysis current value detected by the current value detection means The electrolyzed water generating device includes a control device that feedback-controls the electrolysis current value to the set electrolysis current value. When the electrolysis current value is within a permissible range of fluctuation, A small fluctuation range in which the supply flow rate to the raw water of the high-concentration salt water is controlled based on the current value detected by the current value detection unit, and the electrolytic current value detected by the current value detection unit is allowed Over If the current value, the supply of the high-concentration salt water to the raw water is temporarily stopped, and then the supply flow rate of the high-concentration salt water is gradually increased from the lowest supply flow rate within the range of the adjustable supply flow rate. An electrolyzed water generator characterized by performing control. 請求項1に記載の電解水生成装置において、前記被電解水調整機構の塩水タンクから高濃度塩水を原水に供給する供給手段として、ダイアフラムピストン式の流量可変ポンプを採用して、前記制御装置は、前記電流値検出手段にて検出される電解電流値が許容される微少な変動範囲を越える過電流値である場合には、前記流量可変ポンプの単位時間当たりのストローク数を最低のストローク数から漸次増大させる制御を行うことを特徴とする電解水生成装置。 2. The electrolyzed water generating device according to claim 1, wherein a diaphragm piston type variable flow rate pump is used as a supply means for supplying high-concentration salt water to the raw water from a salt water tank of the electrolyzed water adjusting mechanism, When the electrolytic current value detected by the current value detecting means is an overcurrent value exceeding a permissible minute fluctuation range, the number of strokes per unit time of the variable flow rate pump is determined from the minimum number of strokes. An electrolyzed water generating apparatus characterized by performing control to gradually increase.
JP2008001528A 2008-01-08 2008-01-08 Electrolyzed water generator Expired - Fee Related JP4809950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001528A JP4809950B2 (en) 2008-01-08 2008-01-08 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001528A JP4809950B2 (en) 2008-01-08 2008-01-08 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2009160533A true JP2009160533A (en) 2009-07-23
JP4809950B2 JP4809950B2 (en) 2011-11-09

Family

ID=40963757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001528A Expired - Fee Related JP4809950B2 (en) 2008-01-08 2008-01-08 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4809950B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294690A (en) * 1995-04-27 1996-11-12 Nikko Co Ltd Strongly acidic water making apparatus
JPH0938652A (en) * 1995-07-31 1997-02-10 Nikko Co Ltd Producing device of strong acid water
JPH1071392A (en) * 1996-07-05 1998-03-17 Hoshizaki Electric Co Ltd Electrolytic fresh water generator
JP2003010850A (en) * 2001-06-28 2003-01-14 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
JP2007090228A (en) * 2005-09-28 2007-04-12 Hoshizaki Electric Co Ltd Electrolytic water generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294690A (en) * 1995-04-27 1996-11-12 Nikko Co Ltd Strongly acidic water making apparatus
JPH0938652A (en) * 1995-07-31 1997-02-10 Nikko Co Ltd Producing device of strong acid water
JPH1071392A (en) * 1996-07-05 1998-03-17 Hoshizaki Electric Co Ltd Electrolytic fresh water generator
JP2003010850A (en) * 2001-06-28 2003-01-14 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
JP2007090228A (en) * 2005-09-28 2007-04-12 Hoshizaki Electric Co Ltd Electrolytic water generator

Also Published As

Publication number Publication date
JP4809950B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP6412447B2 (en) Electrolyzed water generator
CN1232887A (en) Electrolytic water generator
CN110023543A (en) The operation method of water electrolysis system and water electrolysis system
JP5367580B2 (en) Electrolyzed water generator
JP5236663B2 (en) Electrolyzed water generator
JP2009131812A (en) Electrolytic water generating apparatus
JP4809950B2 (en) Electrolyzed water generator
JP2004041829A (en) Method and apparatus for preparing electrolytic water, and water
WO2018174034A1 (en) Electrolyzed water generating device and electrolyzed water generating method
JP2010207668A (en) Electrolytic water generator
JP5097341B2 (en) Electrolyzed water generator
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
JP7022089B2 (en) Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane
JP2001327968A (en) Electrolytic water generating device
JP6627055B1 (en) Electrolyzed water generator
JP2015128755A (en) Ozone water generator
JP5097339B2 (en) Electrolyzed water generator
JP4881581B2 (en) Electrolyzed water generator
JP4705775B2 (en) Electrolyzed water generator
JP3637114B2 (en) Electrolyzed water generator
JP7288256B2 (en) Electrolyzed water generator
HK40015533A (en) Electrolyzed water generator and electrolyzed water generation method
JP4881580B2 (en) Electrolyzed water generator
JP2018183739A (en) Electrolytic water generator
JP2018183738A (en) Electrolytic water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees