[go: up one dir, main page]

JP2009158335A - Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell - Google Patents

Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
JP2009158335A
JP2009158335A JP2007336153A JP2007336153A JP2009158335A JP 2009158335 A JP2009158335 A JP 2009158335A JP 2007336153 A JP2007336153 A JP 2007336153A JP 2007336153 A JP2007336153 A JP 2007336153A JP 2009158335 A JP2009158335 A JP 2009158335A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
electrolyte secondary
electrode mixture
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007336153A
Other languages
Japanese (ja)
Inventor
Kenji Asaoka
賢司 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007336153A priority Critical patent/JP2009158335A/en
Publication of JP2009158335A publication Critical patent/JP2009158335A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative pole plate for a non-aqueous electrolyte secondary cell excellent in cycle characteristics, a manufacturing method therefor, and a non-aqueous electrolyte secondary cell. <P>SOLUTION: The negative pole plate for a non-aqueous electrolyte secondary cell is formed with a negative pole mixture layer that includes a negative active substance composed of a carbonaceous material, on the surface of a negative pole axis body, wherein the negative pole mixture layer includes at least two layers, a negative pole mixture layer of a first layer on the negative pole axis body side contains lithium with higher concentration than that of a negative pole mixture layer of another layer, and the volume shared by the negative pole mixture layer of the first layer is 30 to 65 percent of that of the entire negative pole mixture layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サイクル特性が良好な非水電解質二次電池用負極極板、その製造方法及びその負極極板を用いた非水電解質二次電池に関する。   The present invention relates to a negative electrode plate for a nonaqueous electrolyte secondary battery having good cycle characteristics, a method for producing the same, and a nonaqueous electrolyte secondary battery using the negative electrode plate.

今日の携帯電話機、携帯型パーソナルコンピュータ、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。中でも、負極活物質として黒鉛等の炭素質材料の粒子を用いた非水電解質二次電池は、安全性が高く、かつ、高容量であるために広く用いられている。   Non-aqueous electrolyte secondary typified by lithium-ion secondary battery with high energy density and high capacity as a driving power source for portable electronic devices such as mobile phones, portable personal computers, portable music players, etc. Batteries are widely used. Among these, nonaqueous electrolyte secondary batteries using particles of a carbonaceous material such as graphite as a negative electrode active material are widely used because of their high safety and high capacity.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(偏平な箱形)であることが多いことから、発電要素を角形外装缶に収容して形成した角形の非水電解質二次電池が多く使用されている。このような角形の非水電解質二次電池は一般的には以下のようにして作製される。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for accommodating the battery is often a square (flat box shape), so the power generation element is accommodated in a rectangular outer can. The formed rectangular nonaqueous electrolyte secondary battery is often used. Such a rectangular non-aqueous electrolyte secondary battery is generally manufactured as follows.

すなわち、細長いシート状の銅箔等からなる負極芯体の両面に負極活物質を含有する負極合剤を塗布した負極極板と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極活物質を含有する正極合剤を塗布した正極極板とを用意する。そして、負極極板と正極極板との間に微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極極板及び正極極板をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の巻回電極体を作製する。次いで、この円筒状電極体をプレス機で押し潰し、角形の電池外装缶に挿入できるような形に成型した後、これを角形外装缶に収容し、電解液を注液して角形の非水電解質二次電池としている。   That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied to both sides of a negative electrode core made of a long sheet-like copper foil, and a positive electrode on both sides of a positive electrode core made of a long, thin sheet-like aluminum foil A positive electrode plate coated with a positive electrode mixture containing an active material is prepared. A separator made of a microporous polyethylene film or the like is disposed between the negative electrode plate and the positive electrode plate, and the negative electrode plate and the positive electrode plate are insulated from each other by the separator in a spiral shape on a cylindrical core. A cylindrical wound electrode body is produced by winding. Next, the cylindrical electrode body is crushed with a press machine and formed into a shape that can be inserted into a rectangular battery outer can. Then, the cylindrical electrode body is accommodated in the rectangular outer can, and an electrolytic solution is poured into the rectangular non-aqueous battery. It is an electrolyte secondary battery.

このような従来の角形の非水電解質二次電池の構成を図面を用いて説明する。図1は下記特許文献1に開示されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極極板11と負極極板12とがセパレータ13を介して巻回された偏平状の巻回電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。巻回電極体14は、正極極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極極板12は、封口板16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して集電体19を介して電気的に接続されている。   The configuration of such a conventional rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing a rectangular nonaqueous electrolyte secondary battery disclosed in Patent Document 1 below, cut in the vertical direction. In this nonaqueous electrolyte secondary battery 10, a flat wound electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 is accommodated in a rectangular battery outer can 15. The battery outer can 15 is sealed with a sealing plate 16. The wound electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 is formed on the inner surface of the battery outer can 15 that also serves as a positive electrode terminal. Direct contact and electrical connection. The negative electrode plate 12 is formed at the center of the sealing plate 16 and is electrically connected to a negative electrode terminal 18 attached via an insulator 17 via a current collector 19.

そして、電池外装缶15は、正極極板11と電気的に接続されているので、負極極板12と電池外装缶15との短絡を防止するために、巻回電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極極板12と電池外装缶15とを電気的に絶縁状態にしている。この角形の非水電解質二次電池は、巻回電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。このような角形の非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   Since the battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the battery outer can 15, the upper end of the wound electrode body 14 and the sealing plate The insulating spacer 20 is inserted between the negative electrode plate 12 and the battery outer can 15 so as to be electrically insulated. In this rectangular nonaqueous electrolyte secondary battery, after the wound electrode body 14 is inserted into the battery outer can 15, the sealing plate 16 is laser welded to the opening of the battery outer can 15, and then the electrolyte injection hole 21. The nonaqueous electrolytic solution is injected from the above, and the electrolytic solution injection hole 21 is sealed. Such a rectangular non-aqueous electrolyte secondary battery has an excellent effect that there is little wasted space during use, and the battery performance and battery reliability are high.

この非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料が広く用いられている。その理由は、炭素質材料は、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有しているためである。   As a negative electrode active material used in this non-aqueous electrolyte secondary battery, carbonaceous materials such as graphite and amorphous carbon are widely used. The reason is that the carbonaceous material has a discharge potential comparable to that of lithium metal or lithium alloy, but has high safety because dendrites do not grow, and further has excellent initial efficiency and good potential flatness. Moreover, it is because it has the outstanding property that density is also high.

そして、この非水電解質二次電池における正極活物質としてしては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)又はLiFePOなどが一種単独もしくは複数種を混合して用いられている。
特開2001−273931号公報
As a positive electrode active material in this nonaqueous electrolyte secondary battery, Li x MO 2 capable of reversibly inserting and extracting lithium ions (where M is at least one of Co, Ni, and Mn) A lithium transition metal composite oxide represented by: LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like is used singly or in combination.
JP 2001-273931 A

これらの非水電解質二次電池は、他の種類の電池に比して高容量化及び高エネルギー密度化を達成することができる。しかし、上述のような携帯型電子機器の高性能化、小型化及び軽量化の要請から、更なる高容量化が望まれている。この非水電解質二次電池の高容量化の方法としては、活物質を含む合剤層の充填密度を上げる方法がある。しかし、活物質を含む合剤層の充填密度を上げると、活物質を含む合剤層内の空隙が減少し、活物質を含む合剤層内に保持することができる電解液量が減少する。特に活物質を含む合剤層の芯体側では、電解液の供給量が活物質を含む合剤層の表面に比べて少ないため、芯体の表面近傍でリチウムイオンの濃度の低下が生じてしまい、活物質を含む合剤層内での電池反応が不均一化してサイクル特性の劣化として現れる。このような芯体の表面近傍でのリチウムイオンの濃度の低下現象は、正極活物質よりも密度が小さい負極活物質を含む負極合剤の場合の方が、圧延度が高いために、大きく現れる。   These nonaqueous electrolyte secondary batteries can achieve higher capacity and higher energy density than other types of batteries. However, due to the demand for higher performance, smaller size, and lighter weight of the portable electronic device as described above, further increase in capacity is desired. As a method for increasing the capacity of this non-aqueous electrolyte secondary battery, there is a method for increasing the packing density of the mixture layer containing the active material. However, when the packing density of the mixture layer containing the active material is increased, voids in the mixture layer containing the active material are reduced, and the amount of electrolyte that can be held in the mixture layer containing the active material is reduced. . In particular, on the core side of the mixture layer containing the active material, the supply amount of the electrolytic solution is smaller than the surface of the mixture layer containing the active material, so that the concentration of lithium ions decreases near the surface of the core body. The battery reaction in the mixture layer containing the active material becomes non-uniform and appears as deterioration of cycle characteristics. Such a decrease in the concentration of lithium ions in the vicinity of the surface of the core appears more greatly in the case of a negative electrode mixture containing a negative electrode active material having a density lower than that of the positive electrode active material because the degree of rolling is higher. .

発明者は、このような従来技術の問題点を解決すべく種々実験を重ねた結果、負極極板の製造時に負極芯体側の負極合剤層にリチウム塩を多く添加しておくことにより解決できることを見出し、本発明を完成するに至ったのである。   The inventor has conducted various experiments to solve the problems of the prior art, and as a result, can be solved by adding a large amount of lithium salt to the negative electrode mixture layer on the negative electrode core body side during the production of the negative electrode plate. As a result, the present invention has been completed.

すなわち、本発明は、サイクル特性が良好な非水電解質二次電池が得られる負極極板、その製造方法及びこの負極極板を用いた非水電解質二次電池を提供することを目的とする。   That is, an object of the present invention is to provide a negative electrode plate from which a nonaqueous electrolyte secondary battery having good cycle characteristics can be obtained, a method for producing the same, and a nonaqueous electrolyte secondary battery using the negative electrode plate.

上記目的を達成するため、本発明の非水電解質二次電池用負極極板は、負極芯体の表面に炭素質材料からなる負極活物質を含む負極合剤層が形成された非水電解質二次電池用負極極板において、
前記負極合剤層は少なくとも2層からなり、
前記負極芯体側の第1層目の負極合剤層は他の層の負極合剤層よりも高濃度のリチウム塩を含有しており、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下であることを特徴とする。
In order to achieve the above object, the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery in which a negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material is formed on the surface of a negative electrode core. In the negative electrode plate for secondary batteries,
The negative electrode mixture layer comprises at least two layers,
The first negative electrode mixture layer on the negative electrode core side contains a higher concentration of lithium salt than the other negative electrode mixture layers, and the volume occupied by the first negative electrode mixture layer is It is 30% or more and 65% or less of the volume of the whole negative electrode mixture layer.

本発明の非水電解質二次電池用負極極板は、負極芯体の表面に形成される炭素質材料からなる負極活物質を含む負極合剤層を少なくとも2層構造とし、負極芯体側の第1層目の負極合剤層中に他の層よりも高濃度のリチウム塩を含有させている。炭素質材料は、非水電解質二次電池の負極活物質材料として慣用的に使用されているものであるが、密度が正極活物質よりも小さい。そのため、炭素質材料からなる負極活物質を含む負極合剤層は、充填密度を上げるために高い割合で圧延されるので、電解液の保持特性が小さくなってしまう。   The negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention has a negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material formed on the surface of a negative electrode core, having at least a two-layer structure. The first negative electrode mixture layer contains a lithium salt having a higher concentration than the other layers. The carbonaceous material is conventionally used as a negative electrode active material of a nonaqueous electrolyte secondary battery, but has a density lower than that of the positive electrode active material. For this reason, the negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material is rolled at a high rate in order to increase the packing density, so that the retention property of the electrolytic solution is reduced.

しかしながら、本発明の非水電解質二次電池用負極極板によれば、負極芯体側の負極合剤層中には予め高濃度のリチウム塩が含有されているため、非水電解質二次電池の充放電を繰り返しても、負極芯体近傍にリチウムイオンが高濃度で存在しているので、サイクル特性が良好となる。なお、充放電を繰り返すと非水電解質二次電池の非水電解液中のリチウム化合物と負極合剤層中のリチウム化合物とが互いに混合するが、500サイクル程度の充放電後でも負極芯体側の第1層目の負極合剤層中のリチウムイオン濃度が高い状態を維持できる。   However, according to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, a high-concentration lithium salt is contained in advance in the negative electrode mixture layer on the negative electrode core side. Even if charging / discharging is repeated, the lithium ion is present at a high concentration in the vicinity of the negative electrode core, so that the cycle characteristics are good. In addition, when charging / discharging is repeated, the lithium compound in the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery and the lithium compound in the negative electrode mixture layer are mixed with each other. However, even after charging / discharging for about 500 cycles, A state in which the lithium ion concentration in the first negative electrode mixture layer is high can be maintained.

また、本発明の非水電解質二次電池用負極極板においては、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下となるようにしている。前記第1層目の負極合剤層が占める体積割合は、30%未満ではその占める割合の低下に比例してサイクル特性が低下し、30%以上ではサイクル特性の向上効果が飽和し、更に、65%を超えるとサイクル特性が低下する。なお、本発明の非水電解質二次電池用負極極板においては、第1層目の負極合剤層の表面に形成する負極合剤層は1層であっても2層以上であってもよい。更に、これらの負極合剤層は、負極芯体の片面にのみ形成しても、或いは両面に形成してもよい。   In the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the volume occupied by the first negative electrode mixture layer is 30% or more and 65% or less of the volume of the total negative electrode mixture layer. ing. If the volume ratio of the first negative electrode mixture layer is less than 30%, the cycle characteristics decrease in proportion to the decrease in the ratio, and if it exceeds 30%, the effect of improving the cycle characteristics is saturated, If it exceeds 65%, the cycle characteristics deteriorate. In the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the negative electrode mixture layer formed on the surface of the first negative electrode mixture layer may be one layer or two or more layers. Good. Furthermore, these negative electrode mixture layers may be formed only on one side of the negative electrode core or on both sides.

また、本発明の非水電解質二次電池用負極極板においては、前記リチウム塩として、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12から選択された少なくとも1種を含んでいることが好ましい。 In the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, as the lithium salt, LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 It is preferable to include at least one selected from Cl 10 and Li 2 B 12 Cl 12 .

これらのリチウム塩は非水電解質二次電池の非水電解液中の溶質として慣用的に使用されているものであるが、本発明においてはこれらの何れのリチウム塩を使用しても所定の効果を奏することができる。   These lithium salts are conventionally used as solutes in the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery. In the present invention, any of these lithium salts can be used to achieve a predetermined effect. Can be played.

また、本発明の非水電解質二次電池用負極極板においては、前記リチウム塩はゲル化された有機溶媒(非水溶媒)中に溶解した状態で前記第1層目の負極合剤層中に含有されていることが好ましい。   In the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the lithium salt is dissolved in a gelled organic solvent (nonaqueous solvent) in the first negative electrode mixture layer. It is preferable that it is contained.

リチウム塩がゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されていると、充放電を繰り返しても前記第1層目の負極合剤層中のリチウム塩がその他の層の負極合剤層や非水電解液中に拡散し難くなる。そのため、本発明の非水電解質二次電池用負極極板によれば、よりサイクル特性が良好となる。   When lithium salt is contained in the gelled organic solvent and contained in the first negative electrode mixture layer, even if charge and discharge are repeated, the first negative electrode mixture layer The lithium salt is difficult to diffuse into the other layers of the negative electrode mixture layer and the non-aqueous electrolyte. Therefore, according to the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the cycle characteristics are further improved.

更に、本発明の非水電解質二次電池用負極極板の製造方法は、負極芯体の表面に炭素質材料からなる負極活物質を含む負極合剤層が形成された非水電解質二次電池用負極極板の製造方法において、
前記負極芯体の表面に第1層目の負極合剤層を形成する工程、
前記第1層目の負極合剤層の表面にリチウム塩を含有する有機溶媒溶液を塗布して含浸させる工程、
前記リチウム塩を含有する有機溶媒溶液が含浸された第1層目の負極合剤層の表面に少なくとも1層の負極合剤層を、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下となるように形成する工程、
次いで、予め定めた所定の厚さとなるように圧延する工程、
を備えることを特徴とする。
Furthermore, the method for producing a negative electrode plate for a nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte secondary battery in which a negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material is formed on the surface of a negative electrode core. In the manufacturing method of the negative electrode plate for
Forming a first negative electrode mixture layer on the surface of the negative electrode core;
Applying and impregnating an organic solvent solution containing a lithium salt on the surface of the first negative electrode mixture layer;
At least one negative electrode mixture layer is formed on the surface of the first negative electrode mixture layer impregnated with the organic solvent solution containing the lithium salt, and the volume occupied by the first negative electrode mixture layer is the entire volume. Forming the negative electrode mixture layer so as to be 30% to 65% of the volume of the negative electrode mixture layer;
Next, a step of rolling so as to have a predetermined thickness,
It is characterized by providing.

負極合剤層の表面にリチウム塩を含有する有機溶媒溶液を塗布すると、この非水電解液は徐々に負極合剤層内へ浸透していく。そのため、本発明の非水電解質二次電池用負極極板の製造方法によれば、容易に負極芯体側の第1層目の負極合剤層が他の層の負極合剤層よりも高濃度のリチウム塩を含有しているようにでき、容易に上記効果を奏する非水電解質二次電池用負極極板を製造することができる。   When an organic solvent solution containing a lithium salt is applied to the surface of the negative electrode mixture layer, this non-aqueous electrolyte gradually permeates into the negative electrode mixture layer. Therefore, according to the method for manufacturing a negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the first negative electrode mixture layer on the negative electrode core side easily has a higher concentration than the other negative electrode mixture layers. Thus, it is possible to produce a negative electrode plate for a non-aqueous electrolyte secondary battery that can easily produce the above effects.

また、本発明の非水電解質二次電池用負極極板の製造方法においては、前記リチウム塩を含有する非水電解液にはゲル化剤が含有されていることが好ましい。   Moreover, in the manufacturing method of the negative electrode plate for nonaqueous electrolyte secondary batteries of this invention, it is preferable that the nonaqueous electrolyte containing the said lithium salt contains the gelatinizer.

ゲル化反応は時間がかかるため、前記第1層目の負極合剤層の表面に塗布された非水電解液は前記第1層目の負極合剤層内に浸透した後にゲル化が完了する。そのため、本発明の非水電解質二次電池用負極極板の製造方法によれば、容易にリチウム塩がゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されている非水電解質二次電池用負極極板を製造することができる。   Since the gelation reaction takes time, the gelation is completed after the nonaqueous electrolyte applied to the surface of the first negative electrode mixture layer penetrates into the first negative electrode mixture layer. . Therefore, according to the method for manufacturing a negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the lithium salt is easily dissolved in the gelled organic solvent in the first negative electrode mixture layer. The negative electrode plate for a non-aqueous electrolyte secondary battery contained in can be produced.

また、本発明の非水電解質二次電池用負極極板の製造方法においては、前記リチウム塩を含有する有機溶媒溶液中のリチウム塩の濃度は、非水電解質二次電池で使用される非水電解液中のリチウム塩濃度よりも高いことが好ましい。   In the method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the concentration of the lithium salt in the organic solvent solution containing the lithium salt is the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery. It is preferable that it is higher than the lithium salt concentration in the electrolytic solution.

前記第1層目の負極合剤層中のリチウム塩の濃度が高ければより長い間負極合剤層内で均一に電池反応が生じるようにできる。そのため、本発明の非水電解質二次電池用負極極板の製造方法によれば、より良好なサイクル特性を達成することができる非水電解質二次電池用負極極板を作製できるようになる。   If the concentration of the lithium salt in the first negative electrode mixture layer is high, the battery reaction can occur uniformly in the negative electrode mixture layer for a longer time. Therefore, according to the method for producing a negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, a negative electrode plate for a nonaqueous electrolyte secondary battery that can achieve better cycle characteristics can be produced.

更に、本発明の非水電解質二次電池は、炭素質材料からなる負極活物質を含む負極合剤層が負極芯体の表面に形成された負極極板と正極活物質を含む正極合剤層が正極芯体の表面に形成された正極極板とがセパレータを挟んで巻回又は積層された電極体と、非水電解液とを備えた非水電解質二次電池において、
前記負極極板は少なくとも2層の負極合剤層を備え、
前記負極芯体側の第1層目の負極合剤層は他の層よりも高濃度のリチウム塩を含有しており、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下であることを特徴とする。
Furthermore, the non-aqueous electrolyte secondary battery of the present invention includes a negative electrode plate in which a negative electrode mixture layer including a negative electrode active material made of a carbonaceous material is formed on the surface of a negative electrode core and a positive electrode mixture layer including a positive electrode active material. In a non-aqueous electrolyte secondary battery comprising a positive electrode plate formed on the surface of a positive electrode core and an electrode body wound or laminated with a separator interposed therebetween, and a non-aqueous electrolyte solution,
The negative electrode plate includes at least two negative electrode mixture layers,
The first negative electrode mixture layer on the negative electrode core side contains a higher concentration of lithium salt than the other layers, and the volume occupied by the first negative electrode mixture layer is the total negative electrode mixture layer. It is characterized by being 30% or more and 65% or less of the volume.

本発明の非水電解質二次電池は、既に述べたように、負極芯体側の第1層目の負極合剤層中には予め高濃度のリチウム塩が含有されているため、充放電を繰り返しても負極芯体近傍にリチウムイオンが高濃度で存在しているので、サイクル特性が良好な非水電解質二次電池となる。なお、本発明の非水電解質二次電池は、負極極板と正極極板とがセパレータを挟んで巻回された巻回電極体又は積層された積層電極体の何れに対しても適用可能である。このうち巻回電極体としては、円筒状のものだけでなく、偏平状のものであってもよい。   As described above, the nonaqueous electrolyte secondary battery of the present invention is repeatedly charged and discharged because the first negative electrode mixture layer on the negative electrode core side contains a high concentration of lithium salt in advance. However, since lithium ions are present at a high concentration in the vicinity of the negative electrode core, a non-aqueous electrolyte secondary battery with good cycle characteristics is obtained. The nonaqueous electrolyte secondary battery of the present invention can be applied to either a wound electrode body in which a negative electrode plate and a positive electrode plate are wound with a separator interposed therebetween or a laminated electrode body laminated. is there. Of these, the wound electrode body may be not only cylindrical but also flat.

なお、本発明の非水電解質二次電池における正極活物質としてしては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)又はLiFePOなどが一種単独もしくは複数種を混合して用いることができる。 As the positive electrode active material in the nonaqueous electrolyte secondary battery of the present invention, Li x MO 2 capable of reversibly occluding and releasing lithium ions (where M is at least Co, Ni, Mn) lithium transition metal composite oxide represented by one kind of), i.e., LiCoO 2, LiNiO 2, LiNi y Co 1-y O 2 (y = 0.01~0.99), LiMnO 2, LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like can be used singly or in combination.

また、本発明の非水電解質二次電池においては、非水電解液を構成する有機溶媒としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   In the nonaqueous electrolyte secondary battery of the present invention, carbonates, lactones, ethers, esters and the like can be used as the organic solvent constituting the nonaqueous electrolyte solution. A mixture of the above can also be used. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned.

なお、本発明における非水電解液の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of the nonaqueous electrolyte solution in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、本発明の非水電解質二次電池においては、前記リチウム塩は前記非水電解液中の溶質と同じ化合物からなることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the lithium salt is made of the same compound as the solute in the nonaqueous electrolyte solution.

本発明の非水電解質二次電池によれば、特に異なる複数のリチウム塩を用意する必要がなくなるので、経済的に製造し得る非水電解質二次電池が得られる、   According to the nonaqueous electrolyte secondary battery of the present invention, it is not necessary to prepare a plurality of particularly different lithium salts, and thus a nonaqueous electrolyte secondary battery that can be produced economically is obtained.

また、本発明の非水電解質二次電池においては、前記リチウム塩はゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されていることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, it is preferable that the lithium salt is contained in the first negative electrode mixture layer in a state dissolved in a gelled organic solvent.

リチウム塩がゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されていると、充放電を繰り返しても前記第1層目の負極合剤層中のリチウム塩がその他の層の負極合剤層や非水電解液中に拡散し難くなる。そのため、本発明の非水電解質二次電池によれば、よりサイクル特性が良好な非水電解質二次電池となる。   When lithium salt is contained in the gelled organic solvent and contained in the first negative electrode mixture layer, even if charge and discharge are repeated, the first negative electrode mixture layer The lithium salt is difficult to diffuse into the other layers of the negative electrode mixture layer and the non-aqueous electrolyte. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, a nonaqueous electrolyte secondary battery with better cycle characteristics is obtained.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池用負極極板、その製造方法及び非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate a negative electrode plate for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery for embodying the technical idea of the present invention. The invention is not intended to be specified in this embodiment, and the present invention can be equally applied to various modifications without departing from the technical idea shown in the claims. .

[実施例1]
実施例1の非水電解質二次電池は次のようにして作製した。
[Example 1]
The nonaqueous electrolyte secondary battery of Example 1 was produced as follows.

[正極の作製]
正極活物質としてのコバルト酸リチウム(LiCoO)90質量部と、導電剤としての黒鉛5質量部と結着剤としてのポリビニリデンフルオライド(PVdF)5質量部とをN−メチル−2−ピロリドンに分散させ、正極活物質スラリーを調製した。次に、厚さ15μmのアルミニウム箔からなる正極芯体の両面に、この正極活物質スラリーをドクターブレード法によって均一な厚さとなるように塗布した。この極板を乾燥機内に通して上記有機溶剤を除去した後、ロールプレス機を用いて、厚さが125μmとなるように圧延して、正極極板を作製した。
[Production of positive electrode]
90 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5 parts by mass of graphite as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder are N-methyl-2-pyrrolidone To prepare a positive electrode active material slurry. Next, the positive electrode active material slurry was applied to both surfaces of a positive electrode core made of an aluminum foil having a thickness of 15 μm so as to have a uniform thickness by a doctor blade method. The electrode plate was passed through a dryer to remove the organic solvent, and then rolled to a thickness of 125 μm using a roll press to produce a positive electrode plate.

[負極の作製]
負極活物質としての黒鉛粉末95質量部とPVdF5質量部を水に分散させて、均一に混合してスラリーを調製した。このスラリーを厚さ10μmの銅箔からなる負極芯体の両面に均一な厚さで塗布した後、乾燥機内に通して水分を除去して第1層目の負極合剤層を形成した。そして、EC10体積%、PC10体積%及びMEC80体積%となるように非水混合溶媒を調製し、その混合溶媒の2000gに、ゲル化剤としてのポリアルキレンオキシド1gと、リチウム塩としてLiPFを濃度が1.3mol/Lとなるように溶解させてリチウム塩を含有する有機溶媒溶液を得た。次いでこのリチウム塩を含有する有機溶媒溶液を、ゲル化触媒としての有機過酸化物を所定量混合した後、前記第1層目の負極合剤層の表面にドクターブレード法によって塗布し、十分に吸収させた後、45℃に維持された恒温槽中に2時間放置して乾燥させると共にリチウム塩を含有する有機溶媒溶液をゲル化させた。
[Production of negative electrode]
A slurry was prepared by dispersing 95 parts by mass of graphite powder as a negative electrode active material and 5 parts by mass of PVdF in water and mixing them uniformly. The slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 10 μm with a uniform thickness, and then passed through a dryer to remove moisture to form a first negative electrode mixture layer. Then, a non-aqueous mixed solvent was prepared so as to be EC 10% by volume, PC 10% by volume, and MEC 80% by volume. The concentration of 2000 g of the mixed solvent was 1 g of polyalkylene oxide as a gelling agent and LiPF 6 as a lithium salt. Was dissolved to 1.3 mol / L to obtain an organic solvent solution containing a lithium salt. Next, the organic solvent solution containing the lithium salt was mixed with a predetermined amount of an organic peroxide as a gelation catalyst, and then applied to the surface of the first negative electrode mixture layer by a doctor blade method. After the absorption, the organic solvent solution containing lithium salt was gelled by allowing it to stand for 2 hours in a constant temperature bath maintained at 45 ° C. and drying.

更に、第1層目の負極合剤層の表面に、負極活物質としての黒鉛粉末95質量部とPVdF5質量部を水に分散させて均一に混合したスラリーを、この第2層目の負極合剤層の体積が全負極合剤層の体積の70%(すなわち、第1層目の負極合剤層の体積が全体の体積の30%)となるように、ドクターブレード法によって塗布した。ただし、この第2層目の負極合剤層の表面にはリチウム塩を含有する有機溶媒溶液を塗布しない。そのため、負極芯体側の第1層目の負極合剤層は第2層目の負極合剤層よりも高濃度のリチウム塩を含有している状態となる。その後、この極板を乾燥機内に通して上記有機溶剤を除去した後、ロールプレス機を用いて、厚さが120μmとなるように圧延して、負極極板を作製した。なお、負極合剤の塗布量は、設計基準となる充電電圧(4.2V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。   Further, a slurry in which 95 parts by mass of graphite powder as a negative electrode active material and 5 parts by mass of PVdF are dispersed in water and uniformly mixed on the surface of the first negative electrode mixture layer is mixed with the negative electrode mixture of the second layer. It was applied by a doctor blade method so that the volume of the agent layer was 70% of the volume of the entire negative electrode mixture layer (that is, the volume of the first negative electrode mixture layer was 30% of the entire volume). However, an organic solvent solution containing a lithium salt is not applied to the surface of the second negative electrode mixture layer. Therefore, the first negative electrode mixture layer on the negative electrode core side contains a higher concentration of lithium salt than the second negative electrode mixture layer. Thereafter, the electrode plate was passed through a dryer to remove the organic solvent, and then rolled to a thickness of 120 μm using a roll press to produce a negative electrode plate. As for the amount of the negative electrode mixture applied, the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charge voltage (4.2 V) as the design standard. Adjusted as follows.

[非水電解質の調製]
EC10体積%、PC10体積%及びMEC80体積%となるように非水混合溶媒を調製し、これにLiPFを1.0mol/Lの割合となるように溶解したものを非水電解液とした。
[Preparation of non-aqueous electrolyte]
A non-aqueous mixed solvent was prepared so as to be EC 10% by volume, PC 10% by volume, and MEC 80% by volume, and LiPF 6 dissolved therein at a ratio of 1.0 mol / L was used as a non-aqueous electrolyte.

[偏平状巻回電極体の作製]
上記のようにして作製された正極と負極とオレフィン系樹脂からなる微多孔膜のセパレータとを、巻き取り機により巻回し、巻終り部に絶縁性の巻き止めテープを取り付け、プレスすることにより偏平状巻回電極体を完成させた。
[Preparation of flat wound electrode body]
The positive electrode, negative electrode, and microporous membrane separator made of olefin resin prepared as described above are wound by a winder, and an insulating anti-winding tape is attached to the end of the winding and pressed to make it flat. A spirally wound electrode body was completed.

[実施例1電池の作製]
上記のようにして作製された偏平状巻回電極体と非水電解液とを、上述した従来例のものと同構成の角形外装缶内に挿入し、外装缶の開口部に封口板を合わせ、レーザ溶接することにより高さ45mm、幅54mm、厚さ5.0mmの、実施例1に係る非水電解質二次電池を作製した。
[Example 1 Production of Battery]
The flat wound electrode body and non-aqueous electrolyte prepared as described above are inserted into a rectangular outer can having the same configuration as that of the conventional example described above, and the sealing plate is aligned with the opening of the outer can. The nonaqueous electrolyte secondary battery according to Example 1 having a height of 45 mm, a width of 54 mm, and a thickness of 5.0 mm was manufactured by laser welding.

[実施例2]
実施例2の非水電解質二次電池は、[負極の作製]において第1層目の負極合剤層の体積が全負極合剤層の体積の65%(第2層目の負極合剤層の体積が全体の体積の35%)となるようにした以外は実施例1の場合と同様にして作製した。
[Example 2]
In the nonaqueous electrolyte secondary battery of Example 2, the volume of the first negative electrode mixture layer in [Preparation of negative electrode] was 65% of the volume of the total negative electrode mixture layer (second negative electrode mixture layer) The volume was made in the same manner as in Example 1 except that the volume of the volume was 35% of the total volume).

[比較例1]
比較例1の非水電解質二次電池は、[負極の作製]において第1層目の負極合剤層にリチウム塩を含有する有機溶媒を含有させずに第2層目の負極合剤層を形成した(すなわち、第2層目の負極合剤層の体積が全体の体積の100%となる)以外は実施例1の場合と同様にして作製した。
[Comparative Example 1]
In the non-aqueous electrolyte secondary battery of Comparative Example 1, the negative electrode mixture layer of the second layer was not added to the first negative electrode mixture layer without containing an organic solvent containing lithium salt in [Preparation of negative electrode]. It was produced in the same manner as in Example 1 except that it was formed (that is, the volume of the second negative electrode mixture layer was 100% of the total volume).

[比較例2]
比較例2の非水電解質二次電池は、[負極の作製]において第1層目の負極合剤層の体積が全負極合剤層の体積の15%(第2層目の負極合剤層の体積が全体の体積の75%)となるようにした以外は実施例1の場合と同様にして作製した。
[Comparative Example 2]
In the nonaqueous electrolyte secondary battery of Comparative Example 2, the volume of the first negative electrode mixture layer in [Preparation of negative electrode] was 15% of the volume of the total negative electrode mixture layer (second negative electrode mixture layer) The volume was made in the same manner as in Example 1 except that the volume of the sample was 75% of the total volume).

[比較例3]
比較例3の非水電解質二次電池は、[負極の作製]において第1層目の負極合剤層の体積が全負極合剤層の体積の70%(第2層目の負極合剤層の体積が全体の体積の30%)となるようにした以外は実施例1の場合と同様にして作製した。
[Comparative Example 3]
In the nonaqueous electrolyte secondary battery of Comparative Example 3, the volume of the first negative electrode mixture layer in [Preparation of negative electrode] was 70% of the total volume of the negative electrode mixture layer (second negative electrode mixture layer) The volume was made in the same manner as in Example 1 except that the volume of was 30% of the total volume).

[サイクル特性の測定]
実施例1、2及び比較例1〜3の各電池について、25℃において、900mAの定電流で電池電圧が4.20Vとなるまで充電し、その後4.20Vの定電圧で電流が45mAとなるまで充電し、次いで、25℃で900mAの定電流で電池電圧が2.75Vとなるまで放電した。このときの放電容量を1サイクル目の放電容量として求めた。次いで、上述のような充放電サイクルを500回繰り返し、500回目の放電容量を500サイクル目の放電容量として求めた。そして、以下の計算式によりサイクル特性を求めた。結果を纏めて表1に示した。
サイクル特性(%)
=(500サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of cycle characteristics]
About each battery of Example 1, 2 and Comparative Examples 1-3, it charges until a battery voltage will be 4.20V with a constant current of 900 mA at 25 degreeC, and an electric current will be 45 mA with a constant voltage of 4.20V after that. The battery was then discharged at 25 ° C. with a constant current of 900 mA until the battery voltage reached 2.75V. The discharge capacity at this time was determined as the discharge capacity of the first cycle. Subsequently, the above charge / discharge cycle was repeated 500 times, and the 500th discharge capacity was determined as the 500th cycle discharge capacity. And the cycle characteristic was calculated | required with the following formulas. The results are summarized in Table 1.
Cycle characteristics (%)
= (Discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100

Figure 2009158335
Figure 2009158335

表1に示した結果から以下のことが分かる。すなわち、比較例1、2及び実施例1の結果によれば、第1層目の負極合剤層の占める体積が負極合剤層の全体積の30%未満(比較例1及び比較例2)ではその占める割合の低下に比例してサイクル特性が低下している。また、実施例1及び実施例2の結果によれば、第1層目の負極合剤層の占める体積が負極合剤層の全体積の30%以上及び65%以下の範囲ではサイクル特性の向上効果が飽和している。更に、実施例2及び比較例3の結果によれば、第1層目の負極合剤層の占める体積が65%を超える(比較例3)とサイクル特性が低下しだす。従って、第1層目の負極合剤層の占める体積は30%以上65%以下が好ましいことがわかる。   From the results shown in Table 1, the following can be understood. That is, according to the results of Comparative Examples 1 and 2 and Example 1, the volume occupied by the first negative electrode mixture layer is less than 30% of the total volume of the negative electrode mixture layer (Comparative Examples 1 and 2). Then, the cycle characteristics are reduced in proportion to the decrease in the ratio. Further, according to the results of Example 1 and Example 2, the cycle characteristics are improved when the volume occupied by the first negative electrode mixture layer is 30% or more and 65% or less of the total volume of the negative electrode mixture layer. The effect is saturated. Furthermore, according to the results of Example 2 and Comparative Example 3, when the volume occupied by the first negative electrode mixture layer exceeds 65% (Comparative Example 3), the cycle characteristics begin to deteriorate. Therefore, it can be seen that the volume occupied by the first negative electrode mixture layer is preferably 30% to 65%.

このような現象が生じる理由は、次のとおりと推定される。すなわち、前記第1層目の負極合剤層が占める割合が30%以上であると、電池反応によって負極芯体近傍のリチウムイオンが消費されても周囲からリチウムイオンがスムーズに拡散してくるため、負極合剤層内での電池反応が均一化されるため、良好なサイクル特性が得られる。また、前記第1層目の負極合剤層が占める割合が30%未満では、電池反応によって負極極板近傍のリチウムイオンが消費されても周囲からリチウムイオンがスムーズに拡散しないため、負極合剤層内での電池反応が不均一化してサイクル特性の低下として現れる。更に、前記第1層目の負極合剤層が占める割合が65%を超えると、負極合剤層と電解液との間の界面抵抗は下がっていくが、逆に負極合剤層内を移動するリチウムイオンの伝導度が低下するので、負極極板全体としては抵抗が大きくなるため、サイクル特性の低下として現れる。   The reason why such a phenomenon occurs is estimated as follows. That is, if the proportion of the first negative electrode mixture layer is 30% or more, even if lithium ions near the negative electrode core are consumed by the battery reaction, lithium ions diffuse smoothly from the surroundings. Since the battery reaction in the negative electrode mixture layer is made uniform, good cycle characteristics can be obtained. In addition, when the proportion of the first negative electrode mixture layer is less than 30%, lithium ions do not smoothly diffuse from the surroundings even when lithium ions near the negative electrode plate are consumed by the battery reaction. The battery reaction in the layer becomes non-uniform and appears as a decrease in cycle characteristics. Further, when the ratio of the first negative electrode mixture layer exceeds 65%, the interface resistance between the negative electrode mixture layer and the electrolyte solution decreases, but conversely moves in the negative electrode mixture layer. Since the conductivity of the lithium ions is reduced, the resistance of the negative electrode plate as a whole is increased, resulting in a reduction in cycle characteristics.

なお、上記実施例1及び2の非水電解質二次電池用負極極板においては、第1層目の負極合剤層の表面に形成する負極合剤層としては、1層とした例を示したが、2層以上であっても良い。すなわち、本発明の効果は負極芯体側の第1層目の負極合剤層中のリチウム塩濃度が他の層中のリチウム塩濃度よりも高ければ生じるものであり、第1層目の負極合剤層の表面に形成される他の負極合剤層の層構造には影響を受けないためである。   In the negative electrode plates for non-aqueous electrolyte secondary batteries of Examples 1 and 2, the negative electrode mixture layer formed on the surface of the first negative electrode mixture layer is an example of one layer. However, it may be two or more layers. That is, the effect of the present invention occurs when the lithium salt concentration in the first negative electrode mixture layer on the negative electrode core side is higher than the lithium salt concentration in the other layers. This is because the layer structure of another negative electrode mixture layer formed on the surface of the agent layer is not affected.

従来の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects and shows the conventional square nonaqueous electrolyte secondary battery to the vertical direction.

符号の説明Explanation of symbols

10:非水電解質二次電池 11:正極極板 12:負極極板 13:セパレータ 14:偏平状の巻回電極体 15:角形の電池外装缶 16:封口板 17:絶縁体 18:負極端子 19:集電体 20:絶縁スペーサ 21:電解液注液孔 10: Non-aqueous electrolyte secondary battery 11: Positive electrode plate 12: Negative electrode plate 13: Separator 14: Flat wound electrode body 15: Rectangular battery outer can 16: Sealing plate 17: Insulator 18: Negative electrode terminal 19 : Current collector 20: Insulating spacer 21: Electrolyte injection hole

Claims (9)

負極芯体の表面に炭素質材料からなる負極活物質を含む負極合剤層が形成された非水電解質二次電池用負極極板において、
前記負極合剤層は少なくとも2層からなり、
前記負極芯体側の第1層目の負極合剤層は他の層の負極合剤層よりも高濃度のリチウム塩を含有しており、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下であることを特徴とする非水電解質二次電池用負極極板。
In the negative electrode plate for a non-aqueous electrolyte secondary battery in which a negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material is formed on the surface of the negative electrode core,
The negative electrode mixture layer comprises at least two layers,
The first negative electrode mixture layer on the negative electrode core side contains a higher concentration of lithium salt than the other negative electrode mixture layers, and the volume occupied by the first negative electrode mixture layer is A negative electrode plate for a non-aqueous electrolyte secondary battery, wherein the negative electrode plate has a volume of 30% to 65% of the total volume of the negative electrode mixture layer.
前記リチウム塩は、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12から選択された少なくとも1種からなることを特徴とする請求項1に記載の非水電解質二次電池用負極極板。 The lithium salt includes LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 The negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1. 前記リチウム塩はゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されていることを特徴とする請求項1又は2に記載の非水電解質二次電池用負極極板。   The non-aqueous electrolyte secondary according to claim 1, wherein the lithium salt is contained in the first negative electrode mixture layer in a state dissolved in a gelled organic solvent. Negative electrode plate for batteries. 負極芯体の表面に炭素質材料からなる負極活物質を含む負極合剤層が形成された非水電解質二次電池用負極極板の製造方法において、
前記負極芯体の表面に第1層目の負極合剤層を形成する工程、
前記第1層目の負極合剤層の表面にリチウム塩を含有する有機溶媒溶液を塗布して含浸させる工程、
前記リチウム塩を含有する有機溶媒溶液が含浸された第1層目の負極合剤層の表面に少なくとも1層の負極合剤層を、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下となるように形成する工程、
次いで、予め定めた所定の厚さとなるように圧延する工程、
を備えることを特徴とする非水電解質二次電池用負極極板の製造方法。
In the method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery in which a negative electrode mixture layer containing a negative electrode active material made of a carbonaceous material is formed on the surface of the negative electrode core,
Forming a first negative electrode mixture layer on the surface of the negative electrode core;
Applying and impregnating an organic solvent solution containing a lithium salt on the surface of the first negative electrode mixture layer;
At least one negative electrode mixture layer is formed on the surface of the first negative electrode mixture layer impregnated with the organic solvent solution containing the lithium salt, and the volume occupied by the first negative electrode mixture layer is the entire volume. Forming the negative electrode mixture layer so as to be 30% to 65% of the volume of the negative electrode mixture layer;
Next, a step of rolling so as to have a predetermined thickness,
A method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery.
前記リチウム塩を含有する有機溶媒溶液にはゲル化剤が含有されていることを特徴とする請求項4に記載の非水電解質二次電池用負極極板の製造方法。   The method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 4, wherein the organic solvent solution containing the lithium salt contains a gelling agent. 前記リチウム塩を含有する有機溶媒溶液中のリチウム塩の濃度は、非水電解質二次電池で使用される非水電解液中のリチウム塩濃度よりも高いことを特徴とする請求項4又は5に記載の非水電解質二次電池用負極極板の製造方法。   6. The lithium salt concentration in the organic solvent solution containing the lithium salt is higher than the lithium salt concentration in the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery. The manufacturing method of the negative electrode plate for nonaqueous electrolyte secondary batteries as described. 炭素質材料からなる負極活物質を含む負極合剤層が負極芯体の表面に形成された負極極板と正極活物質を含む正極合剤層が正極芯体の表面に形成された正極極板とがセパレータを挟んで巻回又は積層された電極体と、非水電解液とを備えた非水電解質二次電池において、
前記負極極板は少なくとも2層の負極合剤層を備え、
前記負極芯体側の第1層目の負極合剤層は他の層よりも高濃度のリチウム塩を含有しており、前記第1層目の負極合剤層が占める体積が全負極合剤層の体積の30%以上65%以下であることを特徴とする非水電解質二次電池。
A negative electrode plate in which a negative electrode mixture layer including a negative electrode active material made of a carbonaceous material is formed on the surface of the negative electrode core, and a positive electrode plate in which a positive electrode mixture layer including a positive electrode active material is formed on the surface of the positive electrode core In a non-aqueous electrolyte secondary battery comprising an electrode body wound or laminated with a separator interposed therebetween, and a non-aqueous electrolyte solution,
The negative electrode plate includes at least two negative electrode mixture layers,
The first negative electrode mixture layer on the negative electrode core side contains a higher concentration of lithium salt than the other layers, and the volume occupied by the first negative electrode mixture layer is the total negative electrode mixture layer. A nonaqueous electrolyte secondary battery characterized by being 30% or more and 65% or less of the volume of the battery.
前記リチウム塩は前記非水電解液中の溶質と同じ化合物からなることを特徴とする請求項7に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 7, wherein the lithium salt is made of the same compound as a solute in the non-aqueous electrolyte. 前記リチウム塩はゲル化された有機溶媒中に溶解した状態で前記第1層目の負極合剤層中に含有されていることを特徴とする請求項7又は8に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary according to claim 7 or 8, wherein the lithium salt is contained in the first negative electrode mixture layer in a state dissolved in a gelled organic solvent. battery.
JP2007336153A 2007-12-27 2007-12-27 Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell Pending JP2009158335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336153A JP2009158335A (en) 2007-12-27 2007-12-27 Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336153A JP2009158335A (en) 2007-12-27 2007-12-27 Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2009158335A true JP2009158335A (en) 2009-07-16

Family

ID=40962120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336153A Pending JP2009158335A (en) 2007-12-27 2007-12-27 Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2009158335A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257982A (en) * 2009-04-27 2010-11-11 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
EP2737566A4 (en) * 2011-07-28 2015-04-01 Arkema Inc FLUOROPOLYMER COMPOSITION IN WATER
US9202638B2 (en) 2009-05-29 2015-12-01 Arkema Inc. Aqueous polyvinylidene fluoride composition
JP2016506603A (en) * 2013-04-11 2016-03-03 エルジー・ケム・リミテッド Electrode laminate including electrodes having different areas and secondary battery including the same
WO2017168983A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2022100539A (en) * 2020-12-24 2022-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2022163618A1 (en) * 2021-01-29 2022-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257982A (en) * 2009-04-27 2010-11-11 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
US9202638B2 (en) 2009-05-29 2015-12-01 Arkema Inc. Aqueous polyvinylidene fluoride composition
US9239051B1 (en) 2009-05-29 2016-01-19 Arkema Inc. Waterborne fluoropolymer composition
US9548167B2 (en) 2009-05-29 2017-01-17 Arkema Inc. Aqueous polyvinylidene fluoride composition
US9799917B2 (en) 2009-05-29 2017-10-24 Arkema Inc. Waterborne fluoropolymer composition
EP2737566A4 (en) * 2011-07-28 2015-04-01 Arkema Inc FLUOROPOLYMER COMPOSITION IN WATER
JP2016506603A (en) * 2013-04-11 2016-03-03 エルジー・ケム・リミテッド Electrode laminate including electrodes having different areas and secondary battery including the same
US9666909B2 (en) 2013-04-11 2017-05-30 Lg Chem, Ltd. Electrode laminate comprising electrodes with different surface areas and secondary battery employed with the same
WO2017168983A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2022100539A (en) * 2020-12-24 2022-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7249990B2 (en) 2020-12-24 2023-03-31 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode, method for manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022163618A1 (en) * 2021-01-29 2022-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5260838B2 (en) Non-aqueous secondary battery
JP2010225291A (en) Lithium ion secondary battery and manufacturing method thereof
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP6138436B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JP2011198530A (en) Nonaqueous electrolyte secondary battery
JP5465755B2 (en) Non-aqueous secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP4097443B2 (en) Lithium secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2009238387A (en) Nonaqueous electrolyte secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
US20240290973A1 (en) Electrode plate, lithium-ion battery, battery module, battery pack and electric device
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2006202529A (en) Non-aqueous electrolyte secondary battery and charging method thereof