JP2009158105A - Method for producing composite carbon material for negative electrode material of lithium ion secondary battery - Google Patents
Method for producing composite carbon material for negative electrode material of lithium ion secondary battery Download PDFInfo
- Publication number
- JP2009158105A JP2009158105A JP2007331386A JP2007331386A JP2009158105A JP 2009158105 A JP2009158105 A JP 2009158105A JP 2007331386 A JP2007331386 A JP 2007331386A JP 2007331386 A JP2007331386 A JP 2007331386A JP 2009158105 A JP2009158105 A JP 2009158105A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- copper
- graphite
- particle powder
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
【解決課題】高いエネルギー密度(高い充填密度、高い可逆容量)、高い初期効率、及び優れた充放電サイクル特性を維持しつつ、低抵抗なリチウムイオン二次電池の負極材用複合炭素材料を提供すること。
【解決手段】体積基準メディアン径が5〜30μm、平均格子面間隔d(002)が0.3360nm以下の黒鉛粒子粉末と、軟化点が70〜250℃のピッチと、を加熱混練して、該黒鉛粒子の表面に該ピッチからなる被覆層を被覆し、次いで、得られた被覆層を有する黒鉛粒子粉末に、粒子径が0.01〜1.5μmの銅粒子を、該被覆層を有する黒鉛粒子100重量部に対して、銅原子換算で1〜240重量部固定し、次いで、得られた銅粒子が固定された被覆層を有する黒鉛粒子粉末を、非酸化性雰囲気下、800〜2150℃で焼成炭化することを特徴とするリチウムイオン二次電池の負極材用複合炭素材料の製造方法。
【選択図】なしTo provide a composite carbon material for a negative electrode material of a low-resistance lithium ion secondary battery while maintaining high energy density (high filling density, high reversible capacity), high initial efficiency, and excellent charge / discharge cycle characteristics. To do.
A graphite particle powder having a volume-based median diameter of 5 to 30 μm and an average lattice spacing d (002) of 0.3360 nm or less and a pitch having a softening point of 70 to 250 ° C. are heat-kneaded, The surface of the graphite particles is coated with a coating layer composed of the pitch, and then the obtained graphite particle powder having the coating layer is coated with copper particles having a particle diameter of 0.01 to 1.5 μm. 1 to 240 parts by weight in terms of copper atoms is fixed to 100 parts by weight of the particles, and then the graphite particle powder having a coating layer to which the obtained copper particles are fixed is 800 to 2150 ° C. in a non-oxidizing atmosphere. A method for producing a composite carbon material for a negative electrode material of a lithium ion secondary battery, characterized by firing and carbonizing.
[Selection figure] None
Description
本発明は、ノート型パソコン等の高容量を必要とする部位に使用されるリチウムイオン二次電池の負極材として用いられるリチウムイオン二次電池の負極材用複合炭素材料及びその製造方法に関する。 The present invention relates to a composite carbon material for a negative electrode material of a lithium ion secondary battery used as a negative electrode material of a lithium ion secondary battery used in a site requiring high capacity, such as a notebook computer, and a method for producing the same.
非水電解質二次電池としてリチウム塩の有機電解液を用いたリチウム二次電池は軽量でエネルギー密度が高く、小型電子機器の電源あるいは電力貯蔵用の電池等として期待されており、リチウムイオン二次電池が主として使用されている携帯電話やノート型パソコンなどの性能向上に伴い急速充放電に対する要求はより高度化し、ハイブリッドカーや電気自動車用のリチウムイオン二次電池では出力特性向上が重要な課題となっている。 Lithium secondary batteries using organic electrolytes of lithium salts as non-aqueous electrolyte secondary batteries are lightweight and have high energy density, and are expected as power sources for small electronic devices or power storage batteries. The demand for rapid charging / discharging has become more advanced as the performance of mobile phones and notebook computers, etc., where batteries are mainly used, has improved, and the improvement of output characteristics is an important issue for lithium-ion secondary batteries for hybrid cars and electric vehicles. It has become.
当初、リチウム二次電池の負極材としては金属リチウムが用いられていたが、金属リチウムは放電時にリチウムイオンとして電解液中に溶出し、充電時にはリチウムイオンは金属リチウムとして負極表面に析出する際に、平滑で元の状態に析出させることが難しく、デンドライト状に析出し易い。このデンドライトは活性が極めて強いため電解液を分解するので電池性能が低下し、充放電のサイクル寿命が短くなる欠点がある。更に、デンドライトが成長して正極に達して、両極が短絡する危険もある。 Initially, metallic lithium was used as the negative electrode material for lithium secondary batteries, but metallic lithium eluted into the electrolyte as lithium ions during discharge, and when lithium ions were deposited on the negative electrode surface as metallic lithium during charging. It is difficult to deposit in a smooth and original state, and it tends to deposit in a dendritic form. Since this dendrite has extremely strong activity, the electrolyte solution is decomposed, so that the battery performance is lowered and the charge / discharge cycle life is shortened. Furthermore, there is a risk that dendrites grow and reach the positive electrode, causing both electrodes to short-circuit.
この欠点を改善するために、金属リチウムに代えて炭素材を用いることが提案されてきた。炭素材はリチウムイオンの吸蔵、放出に際しデンドライト状に析出する問題がないため負極材として好適である。すなわち、炭素材はリチウムイオンの吸蔵・放出性が高く、速やかに吸蔵・放出反応が行われるために充放電の効率が高く、理論容量も372mAh/gであり、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られる等の利点がある。 In order to remedy this drawback, it has been proposed to use a carbon material instead of metallic lithium. A carbon material is suitable as a negative electrode material because there is no problem of precipitation in the form of dendrites upon occlusion and release of lithium ions. That is, the carbon material has high lithium ion storage / release properties, and since the storage / release reaction is performed quickly, the charge / discharge efficiency is high, the theoretical capacity is 372 mAh / g, and the potential during charge / discharge is also high. There is an advantage that a high voltage battery is obtained which is almost equal to metallic lithium.
しかしながら、黒鉛化度が高く、六角網面構造が高度に発達している黒鉛材の場合、容量が大きく、初期効率が90%以上と高い特性が得られる反面、放電時の電位曲線が平坦になり、放電終点が把握し難く、また、短時間で多くの電流を放電することができずレート特性が悪くなる等の難点がある。 However, in the case of a graphite material having a high degree of graphitization and a highly developed hexagonal network structure, the capacity is large and the initial efficiency is as high as 90% or more, but the potential curve during discharge is flat. Therefore, it is difficult to determine the end point of discharge, and it is difficult to discharge a large amount of current in a short time, resulting in poor rate characteristics.
そこで、黒鉛材を中心とする炭素材の性状を改良して、例えば、黒鉛化度の高い黒鉛材の表面を黒鉛化度の低い炭素質物で被覆した複層構造の炭素材や、黒鉛化度の高い黒鉛材と黒鉛化度の低い炭素質物を組み合わせることにより、これらの難点を解消する試みが行われており、多くの提案がなされている。 Therefore, by improving the properties of the carbon material centering on the graphite material, for example, a carbon material having a multilayer structure in which the surface of the graphite material having a high degree of graphitization is coated with a carbonaceous material having a low degree of graphitization, or the degree of graphitization Attempts have been made to eliminate these difficulties by combining a high-graphite graphite material and a carbonaceous material having a low graphitization degree, and many proposals have been made.
例えば、特開平10−334915号公報(特許文献1)には、(請求項1) 処理前後の見かけ密度比を1.1以上、処理前後のメジアン径比が1以下となるように力学的エネルギー処理を行った炭素質あるいは黒鉛質粒子を含むことを特徴とする非水系二次電池用電極、 (請求項2)処理前の炭素質あるいは黒鉛質粒子の層間距離(d002)が0.34nm以下、結晶子サイズ(Lc)が30nm以上、真密度が2.25g/cc以上であることを特徴とする請求項1記載の非水系二次電池用電極、(請求項3) 処理後の炭素質あるいは黒鉛質粒子のメジアン径が、5〜50μmであり、BET法比表面積が、25m2/g以下、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるR値が0.5以下でかつ1580cm-1ピークの半値幅が26cm-1以下、見かけ密度が0.5g/cc以上であることを特徴とする請求項1又は2記載の非水系二次電池用電極、(請求項4) 請求項1〜3記載の処理後の炭素質あるいは黒鉛質粒子を有機化合物と混合した後に、該有機化合物を炭素化した複層構造炭素材料を含むことを特徴とする非水系二次電池用電極が開示されている。
For example, in Japanese Patent Laid-Open No. 10-334915 (Patent Document 1), (Claim 1) mechanical energy is set so that the apparent density ratio before and after the treatment is 1.1 or more and the median diameter ratio before and after the treatment is 1 or less. Non-aqueous secondary battery electrode characterized by containing treated carbonaceous or graphite particles, (Claim 2) Interlayer distance (d002) of carbonaceous or graphite particles before treatment is 0.34 nm or less The electrode for a non-aqueous secondary battery according to claim 1, wherein the crystallite size (Lc) is 30 nm or more and the true density is 2.25 g / cc or more, (Claim 3) Carbonaceous material after treatment or the median diameter of the graphite particles is a 5 to 50 [mu] m, BET method specific surface area, 25 m 2 / g or less, 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum Half-value width of the R value is 0.5 or less and 1580 cm -1 peak is the peak intensity ratio is 26cm -1 or less, an apparent density of
また、特開平11−054123号公報(特許文献2)には、リチウムイオン二次電池などの非水電解質二次電池の負極材料として、以下の特性:
(1)広角X線回折法による(002)面の面間隔(d002)が3.37Å未満でかつC軸方向の結晶子の大きさ(Lc)が少なくとも1000Å以上
(2)アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるR値が0.3以下でかつ1580cm-1ピークの半値幅が24cm-1以下
(3)平均粒径が10〜30μmでかつ一番薄い部分の厚さの平均値が少なくとも3μm以上平均粒径以下
(4)BET法による比表面積が3.5m2 /g以上10.0m2 /g以下
(5)タッピング密度が0.5g/cc以上1.0g/cc以下
(6)広角X線回折法による(110)/(004)のX線回折ピーク強度比が0.015以上
を示す塊状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成し、炭素質物の表層を形成させた複層構造の炭素質粉末を用いた非水電解質二次電池が開示されている。
JP-A-11-054123 (Patent Document 2) discloses the following characteristics as a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery:
(1) The surface spacing (d002) of (002) planes by wide-angle X-ray diffraction method is less than 3.37 mm, and the crystallite size (Lc) in the C-axis direction is at least 1000 mm (2) Argon ion laser Raman spectrum and the half value width of a and 1580 cm -1 peak R value is 0.3 or less 24cm -1 or less (3) average particle size is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 is in 10~30μm of The average value of the thickness of the thinnest part is at least 3 μm or more and the average particle size or less (4) The specific surface area by the BET method is 3.5 m 2 / g or more and 10.0 m 2 / g or less (5) The tapping density is 0.5 g / Cc to 1.0 g / cc or less (6) Lumped graphite powder having an X-ray diffraction peak intensity ratio of (110) / (004) by a wide-angle X-ray diffraction method of 0.015 or more is used as a nucleus, and the nucleus Non-aqueous electrolyte secondary using a carbonaceous powder having a multi-layer structure in which a carbon precursor is coated on the surface of the substrate and then fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere to form a surface layer of the carbonaceous material. A battery is disclosed.
しかしながら、これらには、タッピング密度が低いので、レート特性の向上を可能とする一方で、極板密度としては小さく、体積当たりの電池容量を高くできないという問題があった。 However, since the tapping density is low, the rate characteristic can be improved, but the electrode plate density is small, and the battery capacity per volume cannot be increased.
また、特開2004−031038号公報(特許文献3)及び特開2004−179015号公報(特許文献4)には、いずれも、予めバインダーを用いて略球状に造粒成形したものにバインダーピッチを含浸及び被覆した後、焼成してなる負極材が開示されている。 In addition, JP 2004-031038 A (Patent Document 3) and JP 2004-179015 A (Patent Document 4) both have a binder pitch formed on an approximately spherical granulated product using a binder in advance. A negative electrode material obtained by firing after impregnation and coating is disclosed.
しかしながら、これらには、造粒成形体にピッチを被覆する関係で、タップ密度を高くできないため(最大0.95g/cm3程度)、充電容量を高くすることができないという問題があった。 However, these have a problem that the charge capacity cannot be increased because the tap density cannot be increased (up to about 0.95 g / cm 3 ) because the granulated molded body is covered with pitch.
また、特開2005−302725号公報(特許文献5)には、(請求項34)炭素物質を機械的力学的粉砕過程によって球形化又は類似球形化すると同時に1次的に安定な構造に組み立てる工程と、表面間の摩擦及び剪断力を付与する粉碎機を利用して、前記球形化又は類似球形化過程で生成された微細な炭素粉末粒子を炭素物質の表面で2次的に安定な構造に組み立てる工程と、前記組立体を熱処理する工程と、を備えることを特徴とするリチウム二次電池用負極活物質の製造方法が開示されている。 Japanese Patent Laying-Open No. 2005-302725 (Patent Document 5) discloses (Claim 34) a step of assembling a carbon material into a sphere or a similar sphere by a mechanical mechanical pulverization process and simultaneously assembling into a primary stable structure. And using a dusting machine that imparts friction and shear forces between the surfaces, the fine carbon powder particles produced in the spheronization or similar spheronization process have a secondary stable structure on the surface of the carbon material. Disclosed is a method for producing a negative electrode active material for a lithium secondary battery, comprising the steps of assembling and heat treating the assembly.
しかしながら、この方法で得られた材料は、内部に残存する空隙が多く、負極活物質として充填する際に極板密度の高密度化が難しいという問題があった。 However, the material obtained by this method has a problem that there are many voids remaining inside, and it is difficult to increase the density of the electrode plate when filling as a negative electrode active material.
また、特開平8−69797号公報(特許文献6)には、炭素材料表面に銅めっき微粒子が付着していることを特徴とするリチウム二次電池用炭素材料、及び該リチウム二次電池用炭素材料を、炭素材料への銅めっき、特に、置換めっき又は還元めっきにより得るリチウム二次電池炭素材料の製造方法が開示されている。 JP-A-8-69797 (Patent Document 6) discloses a carbon material for a lithium secondary battery in which copper plating fine particles are attached to the surface of the carbon material, and the carbon for the lithium secondary battery. A method for producing a carbon material for a lithium secondary battery obtained by copper plating on a carbon material, in particular, displacement plating or reduction plating is disclosed.
しかし、この銅めっき法では、銅粒子が電池反応活性なエッジ面に析出し易いので、該銅粒子がリチウムイオンの黒鉛粒子への出入りを阻害するため、電池反応を低下させるという問題があった。また、銅めっき法には、生産性が乏しいという問題もあった。 However, in this copper plating method, since the copper particles are likely to be deposited on the battery reaction-active edge surface, the copper particles inhibit the entry and exit of lithium ions into the graphite particles, so that there is a problem that the battery reaction is lowered. . In addition, the copper plating method has a problem of poor productivity.
つまり、エネルギー密度が高く、初期不可逆容量が小さく、サイクル特性に優れ、且つ、大電流での充放電特性に優れる材料を得るために、リチウムイオンの黒鉛粒子への出入りを阻害しない銅の黒鉛粒子への付着方法が望まれており、更には、生産性に優れる銅の黒鉛粒子への付着方法が望まれている。 That is, in order to obtain a material having a high energy density, a small initial irreversible capacity, excellent cycle characteristics, and excellent charge / discharge characteristics at a large current, copper graphite particles that do not hinder the entry and exit of lithium ions into the graphite particles There is a demand for an adhesion method to copper, and further, a method for adhesion of copper having excellent productivity to graphite particles is desired.
従って、本発明の課題は、高いエネルギー密度(高い充填密度、高い可逆容量)、高い初期効率、及び優れた充放電サイクル特性を維持しつつ、低抵抗なリチウムイオン二次電池の負極材用複合炭素材料を提供することにある。 Accordingly, an object of the present invention is to provide a composite for a negative electrode material of a low-resistance lithium ion secondary battery while maintaining high energy density (high filling density, high reversible capacity), high initial efficiency, and excellent charge / discharge cycle characteristics. It is to provide a carbon material.
本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、黒鉛粒子の表面にピッチからなる被覆層を形成させ、次いで、該被覆層に銅粒子を固定することにより、高いエネルギー密度、高い初期効率、及び優れた充放電サイクル特性を維持しつつ、低抵抗なリチウムイオン二次電池の負極材用複合炭素材料が得られることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the inventors of the present invention formed a coating layer made of pitch on the surface of the graphite particles, and then fixed the copper particles on the coating layer, thereby achieving a high energy density. The present inventors have found that a composite carbon material for a negative electrode material of a low-resistance lithium ion secondary battery can be obtained while maintaining high initial efficiency and excellent charge / discharge cycle characteristics.
すなわち、本発明は、体積基準メディアン径が5〜30μm、平均格子面間隔d(002)が0.3360nm以下の黒鉛粒子粉末と、軟化点が70〜250℃のピッチと、を加熱混練して、該黒鉛粒子の表面に該ピッチからなる被覆層を被覆し、該被覆層を有する黒鉛粒子粉末を得る第一工程と、
該被覆層を有する黒鉛粒子粉末に、粒子径が0.01〜1.5μmの銅粒子を固定し、銅粒子が固定された被覆層を有する黒鉛粒子粉末を得る工程であり、該銅粒子の固定量が、該被覆層を有する黒鉛粒子粉末100重量部に対して、銅原子換算で1〜240重量部である第二工程と、
該銅粒子が固定された被覆層を有する黒鉛粒子粉末を、非酸化性雰囲気下、800〜2150℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有することを特徴とするリチウムイオン二次電池の負極材用複合炭素材料の製造方法を提供するものである。
That is, in the present invention, a graphite particle powder having a volume-based median diameter of 5 to 30 μm and an average lattice spacing d (002) of 0.3360 nm or less and a pitch having a softening point of 70 to 250 ° C. are heat-kneaded. A first step of coating the surface of the graphite particles with a coating layer comprising the pitch to obtain a graphite particle powder having the coating layer;
A step of fixing copper particles having a particle diameter of 0.01 to 1.5 μm to the graphite particle powder having the coating layer to obtain a graphite particle powder having a coating layer to which the copper particles are fixed. A second step in which the fixed amount is 1 to 240 parts by weight in terms of copper atoms with respect to 100 parts by weight of the graphite particle powder having the coating layer;
A third step of obtaining a composite carbon material for a negative electrode material of a lithium ion secondary battery by firing and carbonizing a graphite particle powder having a coating layer to which the copper particles are fixed at 800 to 2150 ° C. in a non-oxidizing atmosphere; ,
The manufacturing method of the composite carbon material for negative electrode materials of a lithium ion secondary battery characterized by having.
本発明によれば、高いエネルギー密度(高い充填密度、高い可逆容量)、高い初期効率、及び優れた充放電サイクル特性を維持しつつ、低抵抗なリチウムイオン二次電池の負極材用複合炭素材料を提供することができる。そのため、浸液性を阻害するような圧力をかけることなく、導電性を確保することができるので、高いエネルギー密度(高い充填密度、高い可逆容量)、高い初期効率、及び優れた充放電サイクル特性を維持しつつ、リチウムイオン二次電池の負極材用複合炭素材料のレート特性を向上させることができる。 According to the present invention, a composite carbon material for a negative electrode material of a low-resistance lithium ion secondary battery while maintaining high energy density (high packing density, high reversible capacity), high initial efficiency, and excellent charge / discharge cycle characteristics. Can be provided. Therefore, conductivity can be ensured without applying pressure that impedes immersion, so high energy density (high filling density, high reversible capacity), high initial efficiency, and excellent charge / discharge cycle characteristics. It is possible to improve the rate characteristics of the composite carbon material for the negative electrode material of the lithium ion secondary battery while maintaining the above.
本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法(以下、本発明の製造方法とも記載する。)は、体積基準メディアン径が5〜30μm、平均格子面間隔d(002)が0.3360nm以下の黒鉛粒子粉末と、軟化点が70〜250℃のピッチと、を加熱混練して、該黒鉛粒子の表面に該ピッチからなる被覆層を被覆し、該被覆層を有する黒鉛粒子粉末を得る第一工程と、
該被覆層を有する黒鉛粒子粉末に、粒子径が0.01〜1.5μmの銅粒子を固定し、銅粒子が固定された被覆層を有する黒鉛粒子粉末を得る工程であり、該銅粒子の固定量が、該被覆層を有する黒鉛粒子粉末100重量部に対して、銅原子換算で1〜240重量部である第二工程と、
該銅粒子が固定された被覆層を有する黒鉛粒子粉末を、非酸化性雰囲気下、800〜2150℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有するリチウムイオン二次電池の負極材用複合炭素材料の製造方法である。
The method for producing a composite carbon material for a negative electrode material of a lithium ion secondary battery of the present invention (hereinafter also referred to as the production method of the present invention) has a volume-based median diameter of 5 to 30 μm and an average lattice spacing d (002). A graphite particle powder having a coating layer composed of a pitch of 0.3360 nm or less and a pitch having a softening point of 70 to 250 ° C. A first step of obtaining particle powder;
A step of fixing copper particles having a particle diameter of 0.01 to 1.5 μm to the graphite particle powder having the coating layer to obtain a graphite particle powder having a coating layer to which the copper particles are fixed. A second step in which the fixed amount is 1 to 240 parts by weight in terms of copper atoms with respect to 100 parts by weight of the graphite particle powder having the coating layer;
A third step of obtaining a composite carbon material for a negative electrode material of a lithium ion secondary battery by firing and carbonizing a graphite particle powder having a coating layer to which the copper particles are fixed at 800 to 2150 ° C. in a non-oxidizing atmosphere; ,
It is a manufacturing method of the composite carbon material for negative electrode materials of the lithium ion secondary battery which has this.
本発明の製造方法に係る該第一工程は、該黒鉛粒子粉末と、該ピッチと、を加熱混練することにより、該黒鉛粒子の表面に、該ピッチからなる該被覆層を被覆し、該被覆層を有する黒鉛粒子粉末を得る工程である。 In the first step according to the production method of the present invention, the graphite particle powder and the pitch are heated and kneaded to coat the surface of the graphite particles with the coating layer made of the pitch. This is a step of obtaining a graphite particle powder having a layer.
該第一工程に係る該黒鉛粒子粉末は、体積基準メディアン径が5〜30μm、且つ、平均格子面間隔d(002)が0.3360nm以下の黒鉛粒子粉末である。 The graphite particle powder according to the first step is a graphite particle powder having a volume-based median diameter of 5 to 30 μm and an average lattice spacing d (002) of 0.3360 nm or less.
該黒鉛粒子粉末としては、特に制限されないが、例えば、天然黒鉛又は人造黒鉛や、人造黒鉛電極の破砕品や、コークスや、これらの混合物が挙げられ、該黒鉛粒子粉末の形状としては、球状又は鱗片状のものが挙げられ、予め粉砕処理したものや分級処理をしたもの、予め球状化処理したものであってもよい。 The graphite particle powder is not particularly limited, and examples thereof include natural graphite or artificial graphite, a crushed product of an artificial graphite electrode, coke, and a mixture thereof. The shape of the graphite particle powder is spherical or A scale-like thing is mentioned, What was pulverized beforehand, what was classified, and what was spheroidized beforehand may be used.
該黒鉛粒子粉末は、例えば、天然黒鉛、人造黒鉛、人造黒鉛電極の破砕品、コークス等を、ローラーミルや衝撃粉砕機等の粉砕機を用いて粉砕し、分級して得られる。 The graphite particle powder is obtained, for example, by pulverizing and classifying natural graphite, artificial graphite, a pulverized product of artificial graphite electrode, coke or the like using a pulverizer such as a roller mill or an impact pulverizer.
該黒鉛粒子粉末は、予め球状化処理されたものを用いてもよいが、この球状化する方法としては、例えば、鱗片状黒鉛等の非球状の黒鉛粒子を、ハイブリダイゼーションシステムを用いて高速気流中衝撃法により、粒子同士の衝突、磨耗及び圧縮作用により球状化処理する方法が挙げられる。このような予め球状化処理された該黒鉛粒子粉末としては、例えば、中越黒鉛工業株式会社製の球状化黒鉛が挙げられる。 The graphite particle powder may be spheroidized in advance, and as a method of spheroidizing, for example, non-spherical graphite particles such as flaky graphite may be converted into a high-speed air current using a hybridization system. Examples of the medium impact method include a method of spheroidizing by collision of particles, wear and compression. Examples of the graphite particle powder that has been spheroidized in advance include spheroidized graphite manufactured by Chuetsu Graphite Industries Co., Ltd.
該黒鉛粒子粉末の体積基準メディアン径は、5〜30μm、好ましくは5〜25μm、特に好ましくは5〜20μmである。該黒鉛粒子粉末の体積基準メディアン径が、上記範囲より大きくなると、リチウムイオン二次電池として大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性が低くなり易くなり、また、リチウムイオン二次電池の負極を作成する際、活物質塗工時における膜厚を薄く均一な層にすることが困難になり易く、体積当たりの出力特性が低くなり易い。また、該黒鉛粒子粉末の体積基準メディアン径が、上記範囲より小さいと、比表面積が大きくなり過ぎて、初期の不可逆容量が大きくなり易い。なお、本発明において、該体積基準メディアン径は、レーザー回折式の粒度分布測定装置(島津製作所製SALD2000)により測定された値であり、体積を基準としたメディアン径である。 The volume-based median diameter of the graphite particle powder is 5 to 30 μm, preferably 5 to 25 μm, particularly preferably 5 to 20 μm. When the volume-based median diameter of the graphite particle powder is larger than the above range, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long, and the output characteristics tend to be low. When preparing a negative electrode of a lithium ion secondary battery, it is difficult to make the film thickness thin and uniform during coating of the active material, and output characteristics per volume are likely to be low. Further, if the volume-based median diameter of the graphite particle powder is smaller than the above range, the specific surface area becomes too large and the initial irreversible capacity tends to increase. In the present invention, the volume-based median diameter is a value measured by a laser diffraction type particle size distribution measuring apparatus (SALD 2000 manufactured by Shimadzu Corporation), and is a median diameter based on volume.
該黒鉛粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)は、0.3360nm以下、好ましくは0.3358nm以下、特に好ましくは0.3354〜0.3356nmである。該黒鉛核粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)が、上記範囲を超えると、放電可逆容量が330mAh/g未満となる。なお、本発明においては、グラファイトモノクロメーターで単色化したCuKα線を用い、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて、該面間隔d(002)を測定した。 The (002) plane spacing d (002) measured by X-ray wide angle diffraction method of the graphite particle powder is 0.3360 nm or less, preferably 0.3358 nm or less, particularly preferably 0.3354 to 0.3356 nm. . When the interplanar spacing d (002) of the (002) plane measured by the X-ray wide angle diffraction method of the graphite core particle powder exceeds the above range, the discharge reversible capacity becomes less than 330 mAh / g. In the present invention, a CuKα ray monochromatized with a graphite monochromator is used to measure a wide-angle X-ray diffraction curve by a reflective diffractometer method, and the interplanar spacing d (002) is determined using a Gakushin method. Was measured.
該黒鉛粒子粉末のアスペクト比は、好ましくは1.0〜2.0である。該黒鉛粒子粉末のアスペクト比が2.0以下であることにより、リチウムイオン二次電池の負極内での充填性が高くなるので充放電容量が優れる点で好ましい。 The aspect ratio of the graphite particle powder is preferably 1.0 to 2.0. When the aspect ratio of the graphite particle powder is 2.0 or less, the filling property in the negative electrode of the lithium ion secondary battery becomes high, which is preferable in terms of excellent charge / discharge capacity.
該第一工程に係る該ピッチは、軟化点が70〜250℃のピッチである。該ピッチとしては、特に制限されず、コールタールピッチ、石油ピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられ、これらのうち、コールタールピッチが好ましい。 The pitch according to the first step is a pitch having a softening point of 70 to 250 ° C. The pitch is not particularly limited, and coal tar pitch, petroleum pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and polycondensation of heteroatom-containing condensed polycyclic aromatic hydrocarbon compounds. Examples include organic synthetic pitches obtained, and among these, coal tar pitch is preferable.
該ピッチの軟化点は、環球法で測定された軟化点が70〜250℃、好ましくは70〜150℃、特に好ましくは70〜90℃である。該ピッチの軟化点が、上記範囲未満だと、該第二工程において、ピッチ溶融分が装置内壁に付着してしまい、連続運転ができなくなるという不具合が生じ、また、上記範囲を超えると、ピッチの軟化状態が悪くなるため分散性が悪くなり、該第二工程において、球状化が困難となる。また、軟化点の異なるピッチ同士を二種以上混合することや、タールを添加することにより、軟化点を上記範囲に調整したピッチを用いてもよい。 The softening point of the pitch is 70 to 250 ° C., preferably 70 to 150 ° C., particularly preferably 70 to 90 ° C. as measured by the ring and ball method. If the softening point of the pitch is less than the above range, in the second step, the pitch melt adheres to the inner wall of the apparatus, causing a problem that continuous operation cannot be performed. Since the softened state of the resin deteriorates, the dispersibility deteriorates, and spheroidization becomes difficult in the second step. Moreover, you may use the pitch which adjusted the softening point to the said range by mixing 2 or more types of pitches from which a softening point differs, or adding tar.
該ピッチとしては、負極材としての初回充放電ロスが低くなる点で、濾過などの方法によりフリーカーボンを除去したピッチ又はキノリン不溶分の含有率が1%未満であるピッチが好ましい。 The pitch is preferably a pitch obtained by removing free carbon by a method such as filtration or a quinoline insoluble content of less than 1% in that the initial charge / discharge loss as the negative electrode material is reduced.
該第一工程において加熱混練する際の該ピッチの配合量は、適宜選択されるが、該黒鉛粒子粉末100重量部に対して5〜40重量部とするのが好ましく、10〜30重量部とするのが特に好ましく、15〜25重量部とするのが更に好ましい。
該ピッチの配合量が、上記範囲未満だと、該黒鉛粒子の表面に該ピッチを均一に被覆することが困難となり易く、また、粒度分布の微細部が多くなりブロードとなり易い。
また、該ピッチの配合量が、上記範囲を超えると、粒子同士が過剰に凝集するため、個々の造粒粒子を1個づつ解砕することが困難となり、複合炭素材料の粒子径が大きくなり、また、被覆層の厚みが不均一となり、また、該ピッチ単独の粉末が存在するようになる。そのうえ、粗大な塊が形成されるため複合炭素材料の粉砕が必要なり、電池特性として初回充放電ロスが大きくなる。また、該第二工程において、余分な該ピッチが装置内部に付着するため、連続的な運転が困難となる不具合が生じ易くなる。
The blending amount of the pitch at the time of heat-kneading in the first step is appropriately selected, but is preferably 5 to 40 parts by weight, and 10 to 30 parts by weight with respect to 100 parts by weight of the graphite particle powder. It is particularly preferable to use 15 to 25 parts by weight.
When the blending amount of the pitch is less than the above range, it is difficult to uniformly coat the pitch on the surface of the graphite particles, and a fine portion of the particle size distribution is increased, which tends to be broad.
Further, if the blending amount of the pitch exceeds the above range, the particles are excessively aggregated, so that it becomes difficult to crush individual granulated particles one by one, and the particle diameter of the composite carbon material becomes large. Further, the thickness of the coating layer becomes non-uniform, and the powder of the pitch alone exists. In addition, since a coarse lump is formed, the composite carbon material needs to be pulverized, and the initial charge / discharge loss increases as battery characteristics. Further, in the second step, the excess pitch adheres to the inside of the apparatus, so that a problem that makes continuous operation difficult is likely to occur.
該第一工程の加熱混練の操作の形態例を示すと、該黒鉛粒子粉末と、該ピッチとを混練装置内に投入し、混練しながら装置容器内の温度を該ピッチの軟化点を超える所定温度にまで昇温させ、加熱しながら十分に混練する。そして、加熱混練後、室温まで冷却して該被覆層を有する黒鉛粒子粉末を得る。 An example of the operation of the heat-kneading operation in the first step is as follows. The graphite particle powder and the pitch are put into a kneading apparatus, and the temperature in the apparatus container exceeds a predetermined softening point of the pitch while kneading. The temperature is raised to a temperature and kneaded sufficiently while heating. And after heat-kneading, it cools to room temperature and obtains the graphite particle powder which has this coating layer.
該第一工程で加熱混練を行う際の加熱温度は、該ピッチの軟化点を超える温度であり、好ましくは該ピッチの軟化点より20℃以上高い温度である。また、該第一工程で加熱混練を行う時間は、混練装置の容量、混練羽形状、該黒鉛粒子粉末及び該ピッチの投入量などにより、適宜選択されるが、該ピッチの融点を超える温度で通常10分間〜2時間である。 The heating temperature at the time of heat kneading in the first step is a temperature exceeding the softening point of the pitch, and preferably 20 ° C. or more higher than the softening point of the pitch. In addition, the time for performing the heat kneading in the first step is appropriately selected depending on the capacity of the kneading apparatus, the shape of the kneading blade, the amount of the graphite particle powder and the pitch, etc., but at a temperature exceeding the melting point of the pitch. Usually 10 minutes to 2 hours.
該第一工程で、加熱混練を行うための混練装置としては、特に制限されず、通常、粉体を加熱しながら攪拌又は混練できるものであればよく、ミキサー、ニーダー、加圧蓋を設けた加圧式ニーダー等が挙げられる。 The kneading apparatus for performing heat kneading in the first step is not particularly limited as long as it can normally stir or knead while heating the powder, and is provided with a mixer, a kneader, and a pressure lid. A pressure kneader may be used.
該第一工程では、該黒鉛粒子粉末及び該ピッチに、更に溶融性有機物を加えて、該黒鉛粒子粉末と、該ピッチと、該溶融性有機物と、を加熱混練することが、好ましい。該第一工程において、該黒鉛粒子粉末と該ピッチとを加熱混合する際に、該ピッチが低粘度の溶融状態になる必要があるので、該溶融性有機物は、該ピッチの粘度を低下させるために用いられる。 In the first step, it is preferable that a meltable organic substance is further added to the graphite particle powder and the pitch, and the graphite particle powder, the pitch, and the meltable organic substance are heated and kneaded. In the first step, when the graphite particle powder and the pitch are heated and mixed, the pitch needs to be in a low-viscosity molten state. Therefore, the fusible organic substance reduces the viscosity of the pitch. Used for.
該溶融性有機物は、該第一工程で加熱混練する際の加熱温度での粘度が20Pa・s以下の有機物を指し、該溶融性有機物としては、合成油、天然油、ステアリン酸、合成ワックス、天然ワックス等が挙げられる。そして、該溶融性有機物は、好ましくは空気中400℃に加熱した時の揮発分が50%以上であって、且つ、不活性雰囲気中800℃に加熱した時の残炭率が3%以下である。該溶融性有機物は、該第一工程において、該ピッチの粘度を低下させるために用いられるものなので、該溶融性有機物は、分子量が小さい方が好ましく、加熱混練中に過度の黒鉛粒子の粉砕が生じるのを防ぐものが好ましい。また、該溶融性有機物は、該第二工程において、潤滑剤としても作用し、造粒粉末が微粉化するのを防ぐ効果がある。また、該溶融性有機物は、生産面を考慮すると、装置の金属磨耗を抑える効果、装置内部へのピッチの付着を抑える効果も有する。また、該第三工程において、該銅粒子が固定された被覆層を有する黒鉛粒子粉末を焼成炭化する際に、該銅粒子が固定された被覆層を有する黒鉛粒子中に含まれる該溶融性有機物が揮散する際のガス圧によって、該銅粒子が固定された被覆層を有する黒鉛粒子粉末の周辺の酸素を追い出す効果、あるいは、該溶融性有機物と酸素が反応して酸素濃度を低下させるという効果もある。そのため、該溶融性有機物は、空気中400℃に加熱した時に50%以上が揮発する有機物であることが、可逆容量が高くなる点で好ましい。また、該溶融性有機物中の残炭分は、可逆容量を低下させることになるので、できるだけ残炭率が低いことが望ましいため、該溶融性有機物は、不活性雰囲気中で800℃まで加熱した時の残炭率が3%以下であることが好ましい。なお、該不活性雰囲気とは、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気を指す。 The fusible organic substance refers to an organic substance having a viscosity at a heating temperature of 20 Pa · s or less at the time of heating and kneading in the first step, and as the fusible organic substance, synthetic oil, natural oil, stearic acid, synthetic wax, Examples include natural wax. The meltable organic matter preferably has a volatile content of 50% or more when heated to 400 ° C. in air, and a residual carbon ratio of 3% or less when heated to 800 ° C. in an inert atmosphere. is there. Since the fusible organic substance is used in the first step to reduce the viscosity of the pitch, the fusible organic substance preferably has a low molecular weight, and excessive graphite particles are pulverized during heating and kneading. Those that prevent it are preferred. In addition, the fusible organic substance also acts as a lubricant in the second step, and has an effect of preventing the granulated powder from being pulverized. In addition, when considering the production aspect, the fusible organic substance also has an effect of suppressing metal wear of the apparatus and an effect of suppressing adhesion of pitch to the inside of the apparatus. Further, in the third step, when the graphite particle powder having the coating layer to which the copper particles are fixed is calcined and carbonized, the fusible organic substance contained in the graphite particles having the coating layer to which the copper particles are fixed The effect of expelling oxygen around the graphite particle powder having a coating layer on which the copper particles are fixed, or the reaction between the fusible organic substance and oxygen to lower the oxygen concentration by the gas pressure at the time of vaporization There is also. Therefore, the fusible organic substance is preferably an organic substance that volatilizes 50% or more when heated to 400 ° C. in air, from the viewpoint of increasing the reversible capacity. In addition, since the remaining carbon content in the meltable organic matter lowers the reversible capacity, it is desirable that the remaining coal rate is as low as possible. Therefore, the meltable organic matter was heated to 800 ° C. in an inert atmosphere. It is preferable that the remaining charcoal rate at the time is 3% or less. In addition, this inert atmosphere refers to the atmosphere of inert gas, such as nitrogen gas, helium gas, and argon gas.
該溶融性有機物の配合量は、該黒鉛粒子粉末100重量部に対して1〜30重量部とするのが好ましく、3〜20重量部とするのが特に好ましい。該溶融性有機物の配合量が、上記範囲未満だと、該第二工程においてメカノケミカル処理をする場合、衝撃による微粉が発生し易くなり、初期不可逆容量の増大を招き易くなり、また、上記範囲を超えると、該第二工程で液相法で銅粒子を付着させる場合、銅イオンの吸着効果が妨げられ易くなり、メカノケミカル処理をする場合及び液相法で銅粒子を付着させる場合のいずれも、焼成炭化後の炭素材料から銅粒子が剥離し易くなる。 The blending amount of the meltable organic material is preferably 1 to 30 parts by weight, particularly preferably 3 to 20 parts by weight with respect to 100 parts by weight of the graphite particle powder. If the blending amount of the fusible organic material is less than the above range, when mechanochemical treatment is performed in the second step, fine powder due to impact is likely to be generated, and the initial irreversible capacity is likely to increase. When the copper particles are adhered by the liquid phase method in the second step, the adsorption effect of copper ions is likely to be hindered, and either the mechanochemical treatment or the copper particles are adhered by the liquid phase method. In addition, the copper particles are easily peeled off from the carbon material after calcination carbonization.
該第一工程で、該黒鉛粒子粉末と、該ピッチと、該溶融性有機物と、を加熱混練する方法としては、
(i)先に、該黒鉛粒子粉末及び該溶融性有機物を加熱混練した後、該ピッチを添加して加熱混練する方法
(ii)先に、該黒鉛粒子粉末及び該ピッチを加熱混練した後、該溶融性有機物を添加して加熱混練する方法
(iii)該黒鉛粒子粉末、該ピッチ及び該溶融性有機物を加熱混練する方法、
等が挙げられる。これらのうち、該黒鉛粒子粉末の過度の微粉砕化を防ぐことができる点で、該(i)及び該(iii)の方法が好ましい。
In the first step, as a method of heat-kneading the graphite particle powder, the pitch, and the meltable organic material,
(I) A method in which the graphite particle powder and the meltable organic substance are first heat-kneaded and then the pitch is added and heat-kneaded (ii) The graphite particle powder and the pitch are first heat-kneaded, A method of adding and kneading the meltable organic substance (iii) A method of heating and kneading the graphite particle powder, the pitch and the meltable organic substance,
Etc. Among these, the methods (i) and (iii) are preferable in that excessive pulverization of the graphite particle powder can be prevented.
このようにして、該第一工程では、該黒鉛粒子粉末と、該ピッチと、を加熱混練することにより、該黒鉛粒子の粒子表面に、該ピッチからなる被覆層を被覆させて、該被覆層を有する黒鉛粒子粉末を得る。好ましくは、該第一工程では、該黒鉛粒子粉末と、該ピッチと、該溶融性有機物と、を加熱混練することにより、該黒鉛粒子の粒子表面に、該ピッチ及び該溶融性有機物からなる被覆層を被覆させて、該被覆層を有する黒鉛粒子粉末を得る。 Thus, in the first step, the graphite particle powder and the pitch are heated and kneaded to coat the particle surface of the graphite particles with the coating layer made of the pitch, and the coating layer A graphite particle powder having Preferably, in the first step, the graphite particle powder, the pitch, and the fusible organic substance are heated and kneaded to coat the surface of the graphite particles with the pitch and the fusible organic substance. The layer is coated to obtain a graphite particle powder having the coating layer.
該第一工程により得られる該被覆層を有する黒鉛粒子粉末の体積基準メディアンは、特に限定されないが、好ましくはレーザー回折法により測定した体積基準メディアン径で、概ね10〜40μmである。 The volume-based median of the graphite particle powder having the coating layer obtained by the first step is not particularly limited, but preferably the volume-based median diameter measured by a laser diffraction method is approximately 10 to 40 μm.
次いで、本発明の製造方法に係る該第二工程を行う。該第二工程は、該被覆層を有する黒鉛粒子粉末の該被覆層に、粒子径が0.01〜1.5μmの該銅粒子を固定し、該銅粒子が固定された被覆層を有する黒鉛粒子粉末を得る工程である。 Next, the second step according to the production method of the present invention is performed. In the second step, the copper particles having a particle diameter of 0.01 to 1.5 μm are fixed to the coating layer of the graphite particle powder having the coating layer, and the graphite having the coating layer to which the copper particles are fixed. This is a step of obtaining particle powder.
該第二工程で、該被覆層を有する黒鉛粒子粉末に固定する該銅粒子の粒子径は、0.01〜1.5μmである。つまり、該第二工程を行い得られる該銅粒子が固定された被覆層を有する黒鉛粒子粉末の該被覆層に固定されている該銅粒子の粒子径は、0.01〜1.5μmである。該銅粒子が固定された被覆層を有する黒鉛粒子粉末の該被覆層に固定されている該銅粒子の粒子径が、上記範囲にあることにより、可逆容量が高くなる。 In the second step, the particle diameter of the copper particles fixed to the graphite particle powder having the coating layer is 0.01 to 1.5 μm. That is, the particle diameter of the copper particles fixed to the coating layer of the graphite particle powder having the coating layer fixed with the copper particles obtained by performing the second step is 0.01 to 1.5 μm. . When the particle diameter of the copper particles fixed to the coating layer of the graphite particle powder having the coating layer to which the copper particles are fixed is in the above range, the reversible capacity is increased.
該第二工程において、該被覆層を有する黒鉛粒子粉末に固定される該銅粒子の固定量は、該被覆層を有する黒鉛粒子粉末100重量部に対して銅原子換算で、1〜240重量部、好ましくは10〜150重量部、特に好ましくは20〜100重量部、更に好ましくは30〜50重量部である。該被覆層を有する黒鉛粒子粉末に固定される該銅粒子の固定量が、上記範囲未満だと、十分な導電性を付与することが困難となり、また、上記範囲を超えると、銅粒子が該被覆層を有する黒鉛粒子粉末を覆ってしまうため、電池反応が阻害される。 In the second step, the fixed amount of the copper particles fixed to the graphite particle powder having the coating layer is 1 to 240 parts by weight in terms of copper atoms with respect to 100 parts by weight of the graphite particle powder having the coating layer. The amount is preferably 10 to 150 parts by weight, particularly preferably 20 to 100 parts by weight, and still more preferably 30 to 50 parts by weight. When the fixed amount of the copper particles fixed to the graphite particle powder having the coating layer is less than the above range, it becomes difficult to impart sufficient conductivity. Since the graphite particle powder having the coating layer is covered, the battery reaction is hindered.
該第二工程の第一の形態例は、液相法により、該被覆層を有する黒鉛粒子粉末の該被覆層の表面に、該銅粒子を付着させる方法である。 The first embodiment of the second step is a method of attaching the copper particles to the surface of the coating layer of graphite particle powder having the coating layer by a liquid phase method.
該第二工程の第一の形態例に係る該液相法は、銅塩の水溶液に、該被覆層を有する黒鉛粒子粉末を加え、撹拌機等を用いて、該被覆層を有する黒鉛粒子粉末が加えられた該銅塩の水溶液を撹拌し、次いで、得られたスラリー又はウエットケーキ状のものを乾燥し、引き続き、該銅塩の分解温度以上の温度で熱処理し、該被覆層を有する黒鉛粒子粉末に付着した該銅塩を分解することにより行われる。 In the liquid phase method according to the first embodiment of the second step, the graphite particle powder having the coating layer is added to an aqueous solution of a copper salt, and the graphite particle powder having the coating layer is added using a stirrer or the like. The aqueous solution of the copper salt to which is added is stirred, and then the obtained slurry or wet cake is dried, followed by heat treatment at a temperature equal to or higher than the decomposition temperature of the copper salt, and the graphite having the coating layer This is done by decomposing the copper salt adhering to the particle powder.
該液相法では、先ず、銅塩の水溶液に、該被覆層を有する黒鉛粒子粉末を加え、撹拌機等を用いて、該被覆層を有する黒鉛粒子粉末が加えられた該銅塩の水溶液を撹拌する。このことにより、該水溶液中の銅イオンが、該被覆層を構成している該ピッチに存在する水素イオン等の異種原子のイオンと、イオン交換し、該ピッチに銅イオンが付着する。 In the liquid phase method, first, graphite particle powder having the coating layer is added to an aqueous solution of copper salt, and the aqueous solution of copper salt to which the graphite particle powder having the coating layer is added using a stirrer or the like. Stir. As a result, the copper ions in the aqueous solution are ion-exchanged with ions of different atoms such as hydrogen ions existing in the pitch constituting the coating layer, and the copper ions adhere to the pitch.
該液相法に係る該銅塩としては、銅イオンを含む塩であれば、特に制限されず、例えば、硫酸銅、硝酸銅(II)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)等が挙げられる。該銅塩は、350℃以下の分解温度を持つものが、該液相法での該熱処理の際に該ピッチ内部でのベンゼン環の配列が進まないので、該第三工程で800℃以上の温度で焼成炭化される際に、該ピッチが非結晶質となり易い点で好ましく、具体的には、例えば、硫酸銅、硝酸銅(II)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)が好ましい。 The copper salt according to the liquid phase method is not particularly limited as long as it contains a copper ion. For example, copper sulfate, copper nitrate (II), copper chloride (II), copper acetate (I), acetic acid Copper (II) etc. are mentioned. Although the copper salt has a decomposition temperature of 350 ° C. or lower, the arrangement of benzene rings inside the pitch does not proceed during the heat treatment in the liquid phase method. When firing and carbonizing at a temperature, the pitch is preferred in that it is likely to be amorphous. Specifically, for example, copper sulfate, copper nitrate (II), copper chloride (II), copper acetate (I), acetic acid Copper (II) is preferred.
該液相法において、該銅塩の水溶液中の銅の量は、該銅塩の水溶液に加える該被覆層を有する黒鉛粒子粉末100重量部に対して銅原子換算で、1〜240重量部、好ましくは10〜150重量部、特に好ましくは20〜100重量部、更に好ましくは30〜50重量部である。該銅塩の水溶液中の銅の量が、上記範囲未満だと、十分な導電性を付与することが困難となり、また、上記範囲を超えると、銅粒子が該被覆層を有する黒鉛粒子粉末を覆ってしまうため、電池反応が阻害される。 In the liquid phase method, the amount of copper in the aqueous solution of copper salt is 1 to 240 parts by weight in terms of copper atom with respect to 100 parts by weight of graphite particle powder having the coating layer added to the aqueous solution of copper salt, Preferably it is 10-150 weight part, Most preferably, it is 20-100 weight part, More preferably, it is 30-50 weight part. If the amount of copper in the aqueous solution of the copper salt is less than the above range, it becomes difficult to impart sufficient electrical conductivity, and if the amount exceeds the above range, the graphite particles have a graphite particle powder having the coating layer. Since it covers, battery reaction is inhibited.
該液相法において、該被覆層を有する黒鉛粒子粉末が加えられた該銅塩の水溶液を撹拌する際、該銅塩の水溶液の温度は、特に制限されないが、好ましくは50℃以下、特に好ましくは20〜30℃であり、また、撹拌時間は、特に制限されないが、通常3分間〜30分間である。 In the liquid phase method, when stirring the aqueous solution of the copper salt to which the graphite particle powder having the coating layer is added, the temperature of the aqueous solution of the copper salt is not particularly limited, but is preferably 50 ° C. or less, particularly preferably. Is 20 to 30 ° C., and the stirring time is not particularly limited, but is usually 3 minutes to 30 minutes.
該液相法では、次いで、得られたスラリー又はウエットケーキ状のものを乾燥し、引き続き、該銅塩の分解温度以上の温度で熱処理し、該被覆層を有する黒鉛粒子粉末に付着した該銅塩を分解する。このことにより、該銅塩、例えば、CuX又はCuX2(式中、Xはアニオンを示す。)のXが熱分解してガス化すると共に、銅イオンが銅粒子となり該被覆層を有する黒鉛粒子粉末の該被覆層の表面に固定される。 In the liquid phase method, the obtained slurry or wet cake is then dried and subsequently heat-treated at a temperature equal to or higher than the decomposition temperature of the copper salt, and the copper adhered to the graphite particle powder having the coating layer. Decomposes salt. As a result, X of the copper salt, for example, CuX or CuX 2 (wherein X represents an anion) is thermally decomposed and gasified, and the copper particles are converted into copper particles to form graphite particles having the coating layer. It is fixed to the surface of the coating layer of powder.
該液相法において、該熱処理する際、該熱処理の温度は、該銅塩の分解温度以上であれば、特に制限されず、また、該熱処理の時間は、特に制限されず、該銅塩のXが熱分解し且つ銅イオンが銅粒子になるに必要な温度及び時間が適宜選択される。 In the liquid phase method, when the heat treatment is performed, the temperature of the heat treatment is not particularly limited as long as it is equal to or higher than the decomposition temperature of the copper salt, and the time of the heat treatment is not particularly limited. The temperature and time required for X to thermally decompose and copper ions to become copper particles are appropriately selected.
そして、該液相法では、該熱処理を行うことにより、該銅粒子が固定された被覆層を有する黒鉛粒子粉末が得られる。 In the liquid phase method, a graphite particle powder having a coating layer on which the copper particles are fixed is obtained by performing the heat treatment.
該銅粒子が固定された被覆層を有する黒鉛粒子粉末において、該被覆層に固定されている該銅粒子の粒子径は、0.01〜1.5μmであるが、該液相法を行うことにより、該被覆層の表面に固定される該銅粒子の粒子径は、通常0.01〜1.5μmになる。該被覆層に固定されている該銅粒子の粒子径が、上記範囲にあることにより、可逆容量が高くなる。なお、該液相法により該被覆層に該銅粒子を固定した場合、該被覆層の表面に固定されている該銅粒子の粒子径は、走査型電子顕微鏡(SEM)観察により求められる。 In the graphite particle powder having the coating layer to which the copper particles are fixed, the particle size of the copper particles fixed to the coating layer is 0.01 to 1.5 μm, but the liquid phase method is performed. Thus, the particle diameter of the copper particles fixed to the surface of the coating layer is usually 0.01 to 1.5 μm. When the particle diameter of the copper particles fixed to the coating layer is in the above range, the reversible capacity is increased. When the copper particles are fixed to the coating layer by the liquid phase method, the particle diameter of the copper particles fixed to the surface of the coating layer is obtained by observation with a scanning electron microscope (SEM).
該第二工程の第二の形態例は、メカノケミカル処理により、該被覆層を有する黒鉛粒子粉末の該被覆層に、該銅粒子を埋め込む方法である。 The second embodiment of the second step is a method of embedding the copper particles in the coating layer of the graphite particle powder having the coating layer by mechanochemical treatment.
該第二工程の第二の形態例に係る該メカノケミカル処理は、該被覆層を有する黒鉛粒子粉末と、メカノケミカル処理用銅粒子粉末と、を混合し、得られた混合粉末を摩擦及び圧縮して、該混合粉末に機械的エネルギーを加えることにより行われる。該混合粉末に機械的エネルギーが加えられ、該被覆層を有する黒鉛粒子粉末と、該メカノケミカル処理用銅粒子とが、接触、衝突及び摩擦を繰り返すことで、該被覆層が軟化し、該被覆層を有する黒鉛粒子の該被覆層に、該メカノケミカル処理用銅粒子が埋め込まれ、該被覆層に該銅粒子が固定される。なお、該メカノケミカル処理では、該黒鉛粒子が摩擦及び圧縮されることにより、黒鉛の微粒子破片が生じる場合もあるが、このような場合、該黒鉛の微粒子破片も、該被覆層に埋め込まれる。 In the mechanochemical treatment according to the second embodiment of the second step, the graphite particle powder having the coating layer and the copper particle powder for mechanochemical treatment are mixed, and the obtained mixed powder is subjected to friction and compression. Then, it is performed by applying mechanical energy to the mixed powder. Mechanical powder is applied to the mixed powder, and the graphite particle powder having the coating layer and the copper particles for mechanochemical treatment are repeatedly contacted, collided and rubbed, so that the coating layer is softened, and the coating The copper particles for mechanochemical treatment are embedded in the coating layer of graphite particles having a layer, and the copper particles are fixed to the coating layer. In the mechanochemical treatment, graphite fine particles may be produced by friction and compression of the graphite particles. In such a case, the graphite fine particles are also embedded in the coating layer.
該メカノケミカル処理用銅粒子粉末としては、粒子径が0.01〜1.5μmの銅が用いられ、不純物としてリチウムと合金化する金属を含まないものが好ましい。該メカノケミカル処理用銅粒子粉末の粒子径が、上記範囲にあることにより、可逆容量が高くなる。該メカノケミカル処理用銅粒子粉末は、3N以上の純度の銅が好ましいが、これに限定されるものではない。粒状の銅粒子は、適当な粉砕機を用いて調製されるが、微粉化の際に酸化しないように、不活性ガス雰囲気中で粉砕されたものが好ましい。 As the copper particle powder for mechanochemical treatment, copper having a particle diameter of 0.01 to 1.5 μm is used, and preferably does not contain a metal alloying with lithium as an impurity. When the particle diameter of the copper particle powder for mechanochemical treatment is in the above range, the reversible capacity is increased. The copper particle powder for mechanochemical treatment is preferably copper having a purity of 3N or more, but is not limited thereto. The granular copper particles are prepared using a suitable pulverizer, but those pulverized in an inert gas atmosphere are preferred so as not to be oxidized during the pulverization.
該メカノケミカル処理において、該メカノケミカル処理用銅粒子粉末の混合量は、該被覆層を有する黒鉛粒子粉末100重量部に対して、好ましくは1〜240重量部、特に好ましくは10〜150重量部、更に好ましくは20〜100重量部、より好ましくは30〜50重量部である。該メカノケミカル処理用銅粒子粉末の混合量が、上記範囲未満だと、十分な導電性を付与することが困難となり、また、上記範囲を超えると、銅粒子が該被覆層を有する黒鉛粒子粉末を覆ってしまうため、電池反応が阻害される。 In the mechanochemical treatment, the mixing amount of the copper particle powder for mechanochemical treatment is preferably 1 to 240 parts by weight, particularly preferably 10 to 150 parts by weight with respect to 100 parts by weight of the graphite particle powder having the coating layer. More preferably, it is 20-100 weight part, More preferably, it is 30-50 weight part. When the mixing amount of the copper particle powder for mechanochemical treatment is less than the above range, it becomes difficult to impart sufficient conductivity, and when the mixing amount exceeds the above range, the graphite particle powder in which the copper particle has the coating layer. Battery reaction is hindered.
該メカノケミカル処理で、該混合粉末に機械的エネルギーを加える方法としては、例えば、メカノフージョンシステム(ホソカワミクロン株式会社製)、ハイブリダイザー(株式会社奈良機械製作所社製)等を用いて、該混合粉末を、繰り返し摩擦させ圧縮して、該混合粉末に外部から機械的エネルギーを加え続ける方法が挙げられる。このことにより、該被覆層を有する黒鉛粒子粉末の該被覆層に、該メカノケミカル処理用銅粒子が埋め込まれる。 As a method for applying mechanical energy to the mixed powder in the mechanochemical treatment, for example, a mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.), a hybridizer (manufactured by Nara Machinery Co., Ltd.) or the like is used. Can be repeatedly rubbed and compressed, and mechanical energy can be continuously applied to the mixed powder from the outside. Thereby, the copper particles for mechanochemical treatment are embedded in the coating layer of the graphite particle powder having the coating layer.
なお、該混合粉末を摩擦及び圧縮する装置、すなわち、外部から機械的エネルギーを加える具体的な装置としては、上記装置に限定されるものではなく、該混合粉末を摩擦させ圧縮することができるものであればよい。 A device for friction and compression of the mixed powder, that is, a specific device for applying mechanical energy from the outside is not limited to the above device, and can mix and compress the mixed powder. If it is.
更に具体的には、該混合粉末に対して機械的エネルギーを付与する方法としては、例えば、図1に示すハイブリダイザー(株式会社奈良機械製作所製)を用いる方法が挙げられる。図1に示すハイブリダイザー内に、該被覆層を有する黒鉛粒子粉末と、該メカノケミカル処理用銅粒子粉末とを、原料投入口1より投入し、回転部8を、回転周速20〜100m/sで1分〜3分回転させる。このとき、原料循環路2を通してドラム6と該回転部8の隙間に投入された該被覆層を有する黒鉛粒子粉末及び該メカノケミカル処理用銅粒子粉末の混合粉末に対し、該ドラム6と該回転部8との回転速度の差異により生じる摩擦力、圧縮力及び衝突力により、該混合粉末に機械的エネルギーが加えられる。なお、3はステーター、4はジャケット、5は原料排出部、7はブレードである。
More specifically, examples of a method for imparting mechanical energy to the mixed powder include a method using a hybridizer (manufactured by Nara Machinery Co., Ltd.) shown in FIG. In the hybridizer shown in FIG. 1, the graphite particle powder having the coating layer and the copper particle powder for mechanochemical treatment are introduced from the raw material inlet 1, and the
図1に示す該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の該ハイブリダイザー内部の温度は、機械的エネルギーの付与により上昇するが、該第一工程に係る該ピッチの軟化点+20℃の温度以下に調整することが好ましい。該ハイブリダイザー内の温度が、該ピッチの軟化点+20℃を超えると、該ピッチが造粒粒子の間隙より溶融して溶出し、溶出した該ピッチが該ハイブリダイザー内部に付着し易くなるため、定常的な連続運転が困難となり易い。 The temperature inside the hybridizer when mechanical energy is applied to the mixed powder by the hybridizer shown in FIG. 1 increases due to the application of mechanical energy, but the softening point of the pitch according to the first step It is preferable to adjust the temperature below + 20 ° C. When the temperature in the hybridizer exceeds the softening point of the pitch + 20 ° C., the pitch is melted and eluted from the gaps between the granulated particles, and the eluted pitch tends to adhere to the inside of the hybridizer. Regular continuous operation tends to be difficult.
図1に示す該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の該回転部8の回転周速は、20〜100m/sが好ましい。該回転部8の回転周速が、20m/s未満だと、該混合粉末が受ける機械的エネルギーが小さく、該メカノケミカル処理用銅粒子粉末、該黒鉛の微粒子破片が埋め込まれ難くなり、また、100m/sを超えても、100m/sの場合と、リチウムイオン二次電池の負極材用複合炭素材料の性能に大差がなく、コスト的な面、装置の安全性等を考慮すると上限は100m/sとするのが好ましい。また、該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の処理時間は、30秒〜5分が好ましく、1分〜3分が特に好ましい。該処理時間が、30秒未満では埋め込みが起り難く、また、5分を超えても、リチウムイオン二次電池負極材用炭素粒子粉末の物性がほとんど変化しないため、生産性を考慮すると、該処理時間は、2分以下が特に好ましい。
The rotational peripheral speed of the
また、該メカノケミカル処理では、該混合粉末への摩擦力及び圧縮力が強すぎて、該被覆層を有する黒鉛粒子の破壊が生じてしまう場合には、摩耗を減らすために、該第一工程に係る該溶融性有機物を添加することができる。その際、該溶融性有機物の投入量は、コスト及び処理時間を考慮して、適宜決定される。 Further, in the mechanochemical treatment, when the frictional force and compressive force to the mixed powder are too strong and the graphite particles having the coating layer are destroyed, the first step is performed to reduce wear. It is possible to add the meltable organic matter according to the above. At that time, the amount of the meltable organic substance to be charged is appropriately determined in consideration of cost and processing time.
該メカノケミカル処理を行う場合は、該メカノケミカル処理用銅粒子粉末の粒子径を、0.01〜1.5μmとすることにより、該被覆層に固定されている該銅粒子の粒子径を、0.01〜1.5μmとすることができる。 When performing the mechanochemical treatment, by setting the particle diameter of the copper particle powder for mechanochemical treatment to 0.01 to 1.5 μm, the particle diameter of the copper particles fixed to the coating layer is It can be set to 0.01 to 1.5 μm.
このように、該第二工程を行うことにより、該銅粒子が固定された被覆層を有する黒鉛粒子粉末が得られる。 Thus, by performing this 2nd process, the graphite particle powder which has a coating layer to which this copper particle was fixed is obtained.
次いで、本発明の製造方法に係る該第三工程を行う。該第三工程は、該銅粒子が固定された被覆層を有する黒鉛粒子粉末を、非酸化性雰囲気下、800〜2150℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る工程である。 Next, the third step according to the production method of the present invention is performed. In the third step, the graphite particle powder having the coating layer to which the copper particles are fixed is calcined and carbonized at 800 to 2150 ° C. in a non-oxidizing atmosphere, and the composite carbon material for a negative electrode material of a lithium ion secondary battery It is the process of obtaining.
該第三工程で、該銅粒子が固定された被覆層を有する黒鉛粒子粉末を焼成炭化する際の焼成炭化温度は、800〜2150℃、好ましくは900〜2000℃、特に好ましくは1000〜1200℃である。該第三工程において、該焼成炭化温度が、上記範囲未満だと、該ピッチ中の低分子有機未燃分が残存し、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化が起こり、また、該溶融性有機物を用いる場合は、該溶融性有機物の揮散が十分でなくなり、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化が起こる。また、該第三工程において、該焼成炭化温度が、上記範囲を超えると、炭化物層の黒鉛化が進み、レート特性の低下を招き、加えて、銅の溶解が起こり、炭素材料に存在する電池反応の活性孔を埋めてしまう。 In the third step, the calcining carbonization temperature when calcining the graphite particle powder having the coating layer on which the copper particles are fixed is 800 to 2150 ° C, preferably 900 to 2000 ° C, particularly preferably 1000 to 1200 ° C. It is. In the third step, if the calcination carbonization temperature is less than the above range, the low molecular organic unburned portion remains in the pitch, and the charge / discharge efficiency of the lithium ion secondary battery is deteriorated and the cycle characteristics are deteriorated. In addition, when the meltable organic material is used, the volatilization of the meltable organic material becomes insufficient, and the charge / discharge efficiency of the lithium ion secondary battery is lowered and the cycle characteristics are deteriorated. Further, in the third step, when the firing carbonization temperature exceeds the above range, graphitization of the carbide layer proceeds, leading to a decrease in rate characteristics, and in addition, dissolution of copper occurs and the battery exists in the carbon material. Fills the active pores of the reaction.
このように、該第三工程で、該銅粒子が固定された被覆層を有する黒鉛粒子粉末を焼成炭化することにより、該被覆層を構成している該ピッチが炭化して炭化物層となり、本発明のリチウムイオン二次電池の負極材用複合炭素材料が得られる。また、該溶融性有機物を用いる場合は、該第三工程では、該ピッチが炭化すると共に、該銅粒子が固定された被覆層を有する黒鉛粒子から、該溶融性有機物が揮散する。 Thus, in the third step, the graphite particle powder having the coating layer to which the copper particles are fixed is calcined and carbonized, so that the pitch constituting the coating layer is carbonized to become a carbide layer. The composite carbon material for the negative electrode material of the lithium ion secondary battery of the invention is obtained. When the fusible organic material is used, in the third step, the pitch is carbonized and the fusible organic material is volatilized from the graphite particles having the coating layer to which the copper particles are fixed.
該第三工程を行った後、得られた該リチウムイオン二次電池の負極材用複合炭素材料末を、必要に応じて、解砕又は分級することができる。該解砕を行うための解砕装置としては、特に制限されず、ターボミル(株式会社マツボー製)、クイックミル(株式会社セイシン企業製)、スーパーローター(日清エンジニアリング株式会社製)等の装置が例示される。また、該分級では、最小粒子径1μm以上、最大粒子径55μm以下、体積基準メディアン径5〜30μmに、リチウムイオン二次電池の負極材用複合炭素材料を調整することができる。 After performing the third step, the obtained composite carbon material powder for negative electrode material of the lithium ion secondary battery can be crushed or classified as necessary. The crushing device for performing the crushing is not particularly limited, and devices such as a turbo mill (manufactured by Matsubo Co., Ltd.), a quick mill (manufactured by Seishin Enterprise Co., Ltd.), a super rotor (manufactured by Nisshin Engineering Co., Ltd.), etc. Illustrated. In the classification, the composite carbon material for the negative electrode material of the lithium ion secondary battery can be adjusted to a minimum particle diameter of 1 μm or more, a maximum particle diameter of 55 μm or less, and a volume-based median diameter of 5 to 30 μm.
このようにして、本発明の製造方法を行い得られるリチウムイオン二次電池の負極材用複合炭素材料は、
該黒鉛粒子と、該黒鉛粒子の表面に形成されている該炭化物層と、からなり、
該炭化物層には、粒子径が0.01〜1.5μmの該銅粒子が、埋め込まれている、
リチウムイオン二次電池の負極材用複合炭素材料である。
Thus, the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by performing the production method of the present invention is:
The graphite particles, and the carbide layer formed on the surface of the graphite particles,
In the carbide layer, the copper particles having a particle diameter of 0.01 to 1.5 μm are embedded,
It is a composite carbon material for a negative electrode material of a lithium ion secondary battery.
本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料の粒子径アスペクト比は、好ましくは1.0〜2.0、特に好ましくは1.0〜1.6、更に好ましく1.0〜1.3である。該複合炭素材料の粒子径アスペクト比が上記範囲内であることにより、負極での充填性と電解液を含有するバランスがとれて充放電容量が高くなる。該複合炭素材料の粒子径アスペクト比が2.0より大きくなると、活物質層塗工時において黒鉛層方向が基盤と平行に配向しやすく、活物質層が基盤から剥離し易くなり、サイクル特性が劣化する不具合が生じる。
該複合炭素材料の粒子径アスペクト比の調節は、該第一工程での加熱混練条件、該メカノケミカル処理での摩擦又は圧縮の条件、例えば、ハイブリダイザーではその回転速度、該第一工程での該黒鉛粒子粉末、該ピッチを選択することにより可能となる。なお、本発明では、SEM(走査型電子顕微鏡)観察にて、該負極材用複合炭素材料から粒子100個を任意に選び出し、粒子の最長径を最小径で除した値の平均値を、該粒子径アスペクト比とする。
The particle diameter aspect ratio of the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by the production method of the present invention is preferably 1.0 to 2.0, particularly preferably 1.0 to 1.6, and further preferably. 1.0 to 1.3. When the particle diameter aspect ratio of the composite carbon material is within the above range, the chargeability at the negative electrode and the balance containing the electrolytic solution are balanced and the charge / discharge capacity is increased. When the particle diameter aspect ratio of the composite carbon material is larger than 2.0, the graphite layer direction is likely to be oriented parallel to the substrate when the active material layer is applied, and the active material layer is easily peeled off from the substrate. Deteriorating defects occur.
The adjustment of the particle diameter aspect ratio of the composite carbon material is carried out under the conditions of heating and kneading in the first step, friction or compression conditions in the mechanochemical treatment, for example, the rotational speed in the hybridizer, It becomes possible by selecting the graphite particle powder and the pitch. In the present invention, in SEM (scanning electron microscope) observation, 100 particles are arbitrarily selected from the composite carbon material for a negative electrode material, and an average value of values obtained by dividing the longest diameter of the particles by the minimum diameter, The particle diameter is the aspect ratio.
本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料のタッピング密度は、1.0〜1.3g/cm3であることが好ましい。 The tapping density of the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by the production method of the present invention is preferably 1.0 to 1.3 g / cm 3 .
本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料のBET比表面積は、1.5〜5m2/gであることが好ましい。該複合炭素材料のBET比表面積が、上記範囲未満だと、リチウムイオンの脱挿入に要する反応面積が小さいため、出力特性を維持することが困難となり易く、また、上記範囲を超えると、反応面積が大きくなり過ぎて、初回充電時に大きなロスを生じ易くなる。該複合炭素材料の比表面積の調節は、該第一工程で被覆する該被覆層の厚み、該メカノケミカル処理での摩擦又は圧縮の条件、例えば、ハイブリダイザーではその回転速度、該第三工程を行った後に粉砕機を用いて粉砕し、その粉砕条件を調整すること、該第三工程を行った後に分級を行い、その分級条件を調整すること等で可能となる。なお、BET比表面積は、N2ガスを用いたBET 10点法により算出した値とする。本発明で、窒素吸着比表面積は、表面積計(島津製作所社製、全自動表面積測定装置)を用い、測定対象に対して窒素流通下、350℃で30分間、予備乾燥を行った後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET 10点法によって測定した値である。 The BET specific surface area of the composite carbon material for a negative electrode material of a lithium ion secondary battery obtained by the production method of the present invention is preferably 1.5 to 5 m 2 / g. If the BET specific surface area of the composite carbon material is less than the above range, the reaction area required for lithium ion desorption / insertion is small, so it is difficult to maintain output characteristics. Becomes too large, and a large loss is likely to occur during the initial charge. The specific surface area of the composite carbon material is adjusted by adjusting the thickness of the coating layer to be coated in the first step, the friction or compression conditions in the mechanochemical treatment, for example, the rotational speed of the hybridizer, and the third step. It can be performed by performing pulverization using a pulverizer after adjustment, adjusting the pulverization conditions, performing classification after performing the third step, adjusting the classification conditions, and the like. The BET specific surface area is a value calculated by the BET 10-point method using N 2 gas. In the present invention, the nitrogen adsorption specific surface area is large after performing preliminary drying at 350 ° C. for 30 minutes under a nitrogen flow with respect to the measurement object using a surface area meter (manufactured by Shimadzu Corporation, fully automatic surface area measuring device). This is a value measured by a nitrogen adsorption BET 10-point method using a gas flow method using a nitrogen-helium mixed gas accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure is 0.3.
本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料の体積基準メディアン径D50は、好ましくは5〜30μm、特に好ましくは10〜25μm、更に好ましくは10〜20μmである。複合炭素材料の体積基準メディアン径が、5μm未満だと、スラリー調製時における液中への分散が悪くなり易く、また、比表面積が小さくなる。一方、複合炭素材料の体積基準メディアン径が、30μmを超えると、リチウムイオン二次電池として大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性が低くなり易い。また、活物質塗工時における膜厚が制限され、出力特性に優れる電極構造を設計する際、薄く均一な活物質層を塗工することが困難となり易い。なお、本発明で、体積基準メディアン径は、レーザー回折法により測定されるメディアン径であり、島津製作所社製SALDにて測定されるメディアン径である。該体積基準メディアン径の調節は、該第一工程において、該黒鉛粒子粉末の粒子径、該ピッチの配合量を調整すること、該第三工程を行った後に粉砕機を用いて粉砕し、その粉砕条件を調整すること、該第三工程を行った後に分級を行い、その分級条件を調整すること等で可能となる。 The volume-based median diameter D50 of the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by the production method of the present invention is preferably 5 to 30 μm, particularly preferably 10 to 25 μm, and further preferably 10 to 20 μm. When the volume-based median diameter of the composite carbon material is less than 5 μm, dispersion in the liquid during slurry preparation tends to be poor, and the specific surface area becomes small. On the other hand, when the volume-based median diameter of the composite carbon material exceeds 30 μm, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long and the output characteristics tend to be low. In addition, the thickness of the active material applied is limited, and when designing an electrode structure with excellent output characteristics, it is difficult to apply a thin and uniform active material layer. In the present invention, the volume-based median diameter is a median diameter measured by a laser diffraction method, and is a median diameter measured by SALD manufactured by Shimadzu Corporation. The volume-based median diameter is adjusted by adjusting the particle diameter of the graphite particle powder and the blending amount of the pitch in the first step, and pulverizing using a pulverizer after performing the third step. It is possible to adjust the pulverization conditions, perform classification after performing the third step, and adjust the classification conditions.
本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料では、粒子内部の結晶性について、X線回折法により得られる黒鉛結晶子の(002)面の面間隔d(002)面で議論するのが妥当である。本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料の黒鉛結晶子のd(002)面の層間距離は、好ましくは0.3500nm以下、特に好ましくは0.3358nm以下、更に好ましくは0.3354〜0.3358nmである。該黒鉛結晶子のd(002)面の層間距離が、上記範囲を超えると、放電可逆容量が小さくなり易い。天然黒鉛は、理想黒鉛の0.3354nmに近い値を示し、易黒鉛化コークスは2800℃以上の熱処理を施すことで、0.3400nm以下にすることができる。なお、本発明において、該黒鉛結晶子のd(002)面の層間距離は、CuKα線をX線源、標準物質に高純度シリコンを使用し、(002)面の回折パターンのピーク位置、半値幅から学振法に基づき算出した値である。 In the composite carbon material for a negative electrode material of a lithium ion secondary battery obtained by the production method of the present invention, the interplanar spacing d (002) of the (002) plane of the graphite crystallite obtained by the X-ray diffraction method for the crystallinity inside the particles. It is reasonable to discuss in terms of The interlayer distance of the d (002) plane of the graphite crystallite of the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by the production method of the present invention is preferably 0.3500 nm or less, particularly preferably 0.3358 nm or less, More preferably, it is 0.3354-0.3358 nm. When the interlayer distance on the d (002) plane of the graphite crystallites exceeds the above range, the discharge reversible capacity tends to be small. Natural graphite shows a value close to 0.3354 nm of ideal graphite, and graphitizable coke can be made 0.3400 nm or less by performing heat treatment at 2800 ° C. or higher. In the present invention, the interlayer distance of the d (002) plane of the graphite crystallite is such that CuKα rays are used as an X-ray source, high-purity silicon is used as a standard material, and the peak position of the diffraction pattern on the (002) plane is half It is a value calculated from the price range based on the Gakushin method.
本発明では、リチウムイオン二次電池の負極材用複合炭素材料の粒子表層の結晶構造の乱れ具合は、ラマンスペクトルで議論するのが妥当である。そして、本発明の製造方法により得られるリチウムイオン二次電池の負極材用複合炭素材料では、ラマンスペクトルの強度比R=I1360/I1580が、0.60以下であることが好ましい。なお、本発明では、リチウムイオン二次電池の負極材用複合炭素材料を、波長514.5nmのArレーザーを用いたラマン分光分析器(日本分光株式会社製、NR1100)で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除し、ラマンスペクトル強度比R=I1360/I1580を求めた。ラマンスペクトルの強度比R=I1360/I1580の調節は、該第一工程での該黒鉛粒子粉末、該ピッチ、該メカノケミカル処理での摩擦又は圧縮の条件、例えば、ハイブリダイザーではその回転速度を選択することにより可能となる。 In the present invention, it is appropriate to discuss the disorder of the crystal structure of the particle surface layer of the composite carbon material for the negative electrode material of the lithium ion secondary battery using a Raman spectrum. In the composite carbon material for a negative electrode material of a lithium ion secondary battery obtained by the production method of the present invention, the intensity ratio R = I 1360 / I 1580 of the Raman spectrum is preferably 0.60 or less. In the present invention, the composite carbon material for the negative electrode material of the lithium ion secondary battery is measured with a Raman spectroscopic analyzer (NR1100, manufactured by JASCO Corporation) using an Ar laser with a wavelength of 514.5 nm. the spectrum I 1360 of 1360 cm -1 vicinity attributable to disturbance of the crystal structure due to mismatching of crystal defects and stacking structure, the 1580 cm -1 vicinity attributable to E 2 g vibration corresponding to the lattice vibration of the carbon hexagonal net plane By dividing by the spectrum I 1580 , the Raman spectrum intensity ratio R = I 1360 / I 1580 was determined. The intensity ratio R = I 1360 / I 1580 of the Raman spectrum is adjusted by adjusting the graphite particle powder in the first step, the pitch, the friction or compression conditions in the mechanochemical treatment, such as the rotational speed of the hybridizer. This is possible by selecting.
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
実施例1
<リチウムイオン二次電池の負極材用複合炭素材料の製造>
(第一工程)
平均粒子径が13μm、黒鉛結晶子の平均格子面間隔d(002)が0.3355nmの球状天然黒鉛100重量部に対し、溶融性有機物として、空気中で400℃に加熱した場合に70%が揮発し、且つ、不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油5重量部を混合し、混練機にて、150℃、30分間加熱混練後、コールタールピッチ(軟化点:89℃)を球状天然黒鉛100重量部に対して30重量部添加し、更に150℃、30分間加熱混練した後、25℃まで冷却し、粉体Aを得た。
Example 1
<Manufacture of composite carbon material for negative electrode material of lithium ion secondary battery>
(First step)
For 100 parts by weight of spherical natural graphite having an average particle diameter of 13 μm and an average lattice spacing d (002) of graphite crystallites of 0.3355 nm, 70% is obtained as a fusible organic substance when heated to 400 ° C. in the air. Volatilized and mixed with 5 parts by weight of molten mechanical oil having a residual carbon ratio of 0.6% when heated to 800 ° C in an inert atmosphere, and after kneading by heating at 150 ° C for 30 minutes, 30 parts by weight of coal tar pitch (softening point: 89 ° C.) was added to 100 parts by weight of spherical natural graphite, and further kneaded at 150 ° C. for 30 minutes, and then cooled to 25 ° C. to obtain Powder A.
(第二工程)
次に、得られた粉体A 100重量部と、ボールミル(フリッチュ株式会社製、P−7)にて調製した粒子径0.1〜0.5μmの銅粉末40重量部を、ハイブリダイザー装置内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数8000rpm(回転周速:100m/s)で3分間処理し、粉体を装置より取り出し、25℃に冷却して、粉体B1を得た。
なお、投入前の銅粉末の粒子径は、レーザー回折式の粒度分布測定装置(島津製作所製SALD 2000)にて測定した粒子径の範囲である。
(Second step)
Next, 100 parts by weight of the obtained powder A and 40 parts by weight of a copper powder having a particle diameter of 0.1 to 0.5 μm prepared by a ball mill (manufactured by Fritsch Co., Ltd., P-7) are mixed in the hybridizer apparatus. , While maintaining the maximum temperature in the apparatus at 75 ° C. ± 5 ° C., it was processed at a rotational speed of 8000 rpm (rotational peripheral speed: 100 m / s) for 3 minutes, and the powder was taken out of the apparatus and cooled to 25 ° C. A powder B1 was obtained.
In addition, the particle diameter of the copper powder before throwing is the range of the particle diameter measured by the laser diffraction type particle size distribution measuring apparatus (SALD 2000 manufactured by Shimadzu Corporation).
(第三工程、解砕、分級)
得られた粉体B1を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池の負極材用複合炭素材料C1を得た。
(3rd process, crushing, classification)
The obtained powder B1 was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Next, it is crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor), classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier), and composite carbon for negative electrode material of a lithium ion secondary battery. Material C1 was obtained.
<リチウムイオン二次電池の作成、性能評価>
(スラリーの調製)
上記のようにして得られた該リチウムイオン二次電池の負極材用複合炭素材料C1を100重量部に対し、増粘剤として1wt%のカルボキシメチルセルロース(CMC)水溶液を適量投入して30分間攪拌混合した後、結合剤として40wt%のスチレン−ブタジエンゴム(SBR)水溶液を適量投入して5分間攪拌混合し、負極合材ペーストを調製した。
<Production and performance evaluation of lithium ion secondary batteries>
(Preparation of slurry)
An appropriate amount of 1 wt% carboxymethylcellulose (CMC) aqueous solution is added as a thickener to 100 parts by weight of the composite carbon material C1 for negative electrode material of the lithium ion secondary battery obtained as described above, and stirred for 30 minutes. After mixing, an appropriate amount of 40 wt% styrene-butadiene rubber (SBR) aqueous solution was added as a binder and stirred for 5 minutes to prepare a negative electrode mixture paste.
(作用極の作製)
得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して溶媒を完全に揮発させた。得られたシートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて作用極を得た。作用極に対し、三菱油化社製の表面抵抗計Lorestaを用いて、シート抵抗を測定した。その結果を表1に示す。
(Production of working electrode)
The obtained negative electrode mixture paste was applied onto a copper foil (current collector) having a thickness of 18 μm and heated to 130 ° C. in a vacuum to completely evaporate the solvent. The obtained sheet was rolled with a roller press so that the electrode plate density was 1.5 g / cc, and punched with a punch to obtain a working electrode. The sheet resistance was measured with respect to the working electrode using a surface resistance meter Loresta manufactured by Mitsubishi Oil Chemical Co., Ltd. The results are shown in Table 1.
(対極の作製)
不活性雰囲気下、リチウム金属箔をポンチで打ち抜いたニッケルメッシュ(集電体)にめり込ませ、対極を得た。
(Preparation of counter electrode)
Under an inert atmosphere, a lithium metal foil was punched into a nickel mesh (current collector) punched out with a punch to obtain a counter electrode.
(可逆放電容量評価用ボタン型電池の作製)
前記の作用極、対極を使用し、評価用電池として図2に示すボタン型電池を不活性雰囲気下で組み立てた。電解液は1mol/dm3のリチウム塩LiPF6を溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC) 1:1混合溶液を使用した。充電は電流密度0.2mA/cm2、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cm2となるまで定電位保持する。放電は電流密度0.2mA/cm2にて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を可逆容量とした。また、その際の初回充電容量と初回放電容量との差をロスとし、初回放電容量を初回充電容量で除した割合を初期効率とした。レート特性は、10mA/cm2で充放電した際の5サイクル終了後の放電容量を放電負荷として調べた。その結果を表1に示す。図2において、9は負極側ステンレスキャップ、10は負極、11は銅箔、12は絶縁ガスケット、13は電解液含浸セパレータ、14はニッケルメッシュ、15は正極側ステンレスキャップ、16は正極である。
(Preparation of reversible discharge capacity button type battery)
Using the above working electrode and counter electrode, a button type battery shown in FIG. 2 as an evaluation battery was assembled in an inert atmosphere. As the electrolytic solution, a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 of the lithium salt LiPF 6 was dissolved was used. Charging current density 0.2 mA / cm 2, after finishing the constant current charging at a final voltage 5 mV, holding a constant potential to the lower limit current 0.02 mA / cm 2. The discharge was a constant current discharge to a final voltage of 1.5 V at a current density of 0.2 mA / cm 2 , and the discharge capacity after the end of 5 cycles was defined as a reversible capacity. Further, the difference between the initial charge capacity and the initial discharge capacity at that time was defined as loss, and the ratio obtained by dividing the initial discharge capacity by the initial charge capacity was defined as the initial efficiency. For the rate characteristics, the discharge capacity after the end of 5 cycles when charging / discharging at 10 mA / cm 2 was examined as the discharge load. The results are shown in Table 1. In FIG. 2, 9 is a negative electrode side stainless steel cap, 10 is a negative electrode, 11 is a copper foil, 12 is an insulating gasket, 13 is an electrolyte-impregnated separator, 14 is a nickel mesh, 15 is a positive electrode side stainless steel cap, and 16 is a positive electrode.
(サイクル耐久性評価用ボタン型電池の作製)
対極をリチウムコバルト酸化物に変え、上記と同様、ボタン型電池を組み立てて、20℃の下、0.2Cの電流密度にて4.1V〜3.0V間を100回、繰り返し充放電を行った後のサイクル容量維持率を調べた。測定結果を表1に示す。
(Production of button-type battery for cycle durability evaluation)
Change the counter electrode to lithium cobalt oxide and assemble a button-type battery in the same manner as above, and repeatedly charge and discharge between 4.1 V and 3.0 V at 20 ° C. and a current density of 0.2 C 100 times. Thereafter, the cycle capacity retention rate was examined. The measurement results are shown in Table 1.
(実施例2)
(第一工程)
実施例1と同様の方法で行い、粉体Aを得た。
(Example 2)
(First step)
A powder A was obtained in the same manner as in Example 1.
(第二工程)
第一工程で、冷却後の該粉末Aが入っている混練機内に、該粉末A 100重量部に対して銅原子換算で40重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入し、室温(25℃)にて、1時間撹拌した。撹拌後、該粉末Aが混合された該硝酸銅水溶液を、装置外に取り出し、170℃に保った乾燥機内で、1時間加熱処理を行い、粉末B2を得た。
(Second step)
In the first step, copper (II) nitrate trihydrate adjusted to 40 parts by weight in terms of copper atoms with respect to 100 parts by weight of the powder A in a kneader containing the powder A after cooling. Was added and stirred at room temperature (25 ° C.) for 1 hour. After stirring, the aqueous copper nitrate solution mixed with the powder A was taken out of the apparatus and subjected to heat treatment for 1 hour in a drier kept at 170 ° C. to obtain a powder B2.
(第三工程、解砕、分級)
粉末B1に代えて、粉末B2とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池の負極材用複合炭素材料C2を得た。SEMにて200000倍の観察をしたところ、該リチウムイオン二次電池の負極材用複合炭素材料C2に付着した銅粒子の粒子径は、0.01〜0.05μmであった。
なお、該リチウムイオン二次電池の負極材用複合炭素材料C2に付着した銅粒子の粒子径は、SEM(走査型電子顕微鏡)観察にて、銅粒子100個を任意に選び出し、各銅粒子の最長径Xを及び最小径Yを測定し、最長径Xと最小径Yの平均値((X+Y)/2)を、各銅粒子の粒子径とした。
(3rd process, crushing, classification)
A composite carbon material C2 for a negative electrode material of a lithium ion secondary battery was obtained in the same manner as in Example 1 except that powder B2 was used instead of powder B1. When observed 200,000 times by SEM, the particle diameter of the copper particles adhering to the composite carbon material C2 for a negative electrode material of the lithium ion secondary battery was 0.01 to 0.05 μm.
In addition, as for the particle diameter of the copper particle adhering to the composite carbon material C2 for negative electrode materials of the lithium ion secondary battery, 100 copper particles were arbitrarily selected by SEM (scanning electron microscope) observation. The longest diameter X and the minimum diameter Y were measured, and the average value ((X + Y) / 2) of the longest diameter X and the minimum diameter Y was defined as the particle diameter of each copper particle.
<リチウムイオン二次電池の作成、性能評価>
リチウムイオン二次電池の負極材用複合炭素材料C1に代えて、リチウムイオン二次電池の負極材用複合炭素材料C2とする以外は、実施例1と同様の方法で行った。その結果を表1に示す。
<Production and performance evaluation of lithium ion secondary batteries>
It replaced with the composite carbon material C1 for negative electrode materials of a lithium ion secondary battery, and it carried out by the method similar to Example 1 except setting it as the composite carbon material C2 for negative electrode materials of a lithium ion secondary battery. The results are shown in Table 1.
(実施例3)
粉末A 100重量部に対して銅原子換算で40重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入することに代えて、粉末A 100重量部に対して銅原子換算で1重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入すること以外は、実施例2と同様の方法で行った。その結果を表1に示す。
(Example 3)
Instead of introducing an aqueous solution of copper nitrate (II) trihydrate adjusted to be 40 parts by weight in terms of copper atoms with respect to 100 parts by weight of powder A, copper atoms were added to 100 parts by weight of powder A. The same procedure as in Example 2 was performed, except that an aqueous solution of copper nitrate (II) trihydrate adjusted to 1 part by weight was added. The results are shown in Table 1.
(実施例4)
粉末A 100重量部に対して銅原子換算で40重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入することに代えて、粉末A 100重量部に対して銅原子換算で240重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入すること以外は、実施例2と同様の方法で行った。その結果を表1に示す。
Example 4
Instead of introducing an aqueous solution of copper nitrate (II) trihydrate adjusted to be 40 parts by weight in terms of copper atoms with respect to 100 parts by weight of powder A, copper atoms were added to 100 parts by weight of powder A. The same procedure as in Example 2 was performed, except that an aqueous solution of copper nitrate (II) trihydrate adjusted to 240 parts by weight was added. The results are shown in Table 1.
(実施例5)
粒子径0.1〜0.5μmの銅粉末40重量部を、ハイブリダイザー装置内に投入することに代えて、粒子径0.1〜1μmの銅粉末40重量部を、ハイブリダイザー装置内に投入すること以外は、実施例1と同様の方法で行った。その結果を表1に示す。
(Example 5)
Instead of putting 40 parts by weight of copper powder with a particle size of 0.1 to 0.5 μm into the hybridizer device, 40 parts by weight of copper powder with a particle size of 0.1 to 1 μm is put into the hybridizer device. Except that, it was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
<リチウムイオン二次電池の負極材用複合炭素材料の製造>
(第一工程)
実施例1と同様の方法で行い粉体Aを得た。
(Comparative Example 1)
<Manufacture of composite carbon material for negative electrode material of lithium ion secondary battery>
(First step)
A powder A was obtained in the same manner as in Example 1.
(焼成、解砕、分級)
得られた粉体Aを、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池の負極材用複合炭素材料D1を得た。
(Baking, crushing, classification)
The obtained powder A was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Next, it is crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor), classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier), and composite carbon for negative electrode material of a lithium ion secondary battery. Material D1 was obtained.
<リチウムイオン二次電池の作成、性能評価>
リチウムイオン二次電池の負極材用複合炭素材料C1に代えて、リチウムイオン二次電池の負極材用複合炭素材料D1とする以外は、実施例1と同様の方法で行った。その結果を表1に示す。
<Production and performance evaluation of lithium ion secondary batteries>
It replaced with the composite carbon material C1 for negative electrode materials of a lithium ion secondary battery, and it carried out by the method similar to Example 1 except setting it as the composite carbon material D1 for negative electrode materials of a lithium ion secondary battery. The results are shown in Table 1.
(比較例2)
粉末A 100重量部に対して銅原子換算で40重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入することに代えて、粉末A 100重量部に対して銅原子換算で0.5重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入すること以外は、実施例2と同様の方法で行った。その結果を表1に示す。
(Comparative Example 2)
Instead of introducing an aqueous solution of copper nitrate (II) trihydrate adjusted to be 40 parts by weight in terms of copper atoms with respect to 100 parts by weight of powder A, copper atoms were added to 100 parts by weight of powder A. The same procedure as in Example 2 was performed, except that an aqueous solution of copper nitrate (II) trihydrate adjusted to 0.5 parts by weight was added. The results are shown in Table 1.
(比較例3)
粉末A 100重量部に対して銅原子換算で40重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入することに代えて、粉末A 100重量部に対して銅原子換算で500重量部となるように調整した硝酸銅(II)3水和物の水溶液を投入すること以外は、実施例2と同様の方法で行った。その結果を表1に示す。
(Comparative Example 3)
Instead of introducing an aqueous solution of copper nitrate (II) trihydrate adjusted to be 40 parts by weight in terms of copper atoms with respect to 100 parts by weight of powder A, copper atoms were added to 100 parts by weight of powder A. The same procedure as in Example 2 was performed, except that an aqueous solution of copper nitrate (II) trihydrate adjusted to 500 parts by weight was added. The results are shown in Table 1.
(比較例4)
粒子径0.1〜0.5μmの銅粉末40重量部を、ハイブリダイザー装置内に投入することに代えて、粒子径1.7〜3.0μmの銅粉末40重量部を、ハイブリダイザー装置内に投入すること以外は、実施例1と同様の方法で行った。その結果を表1に示す。
(Comparative Example 4)
Instead of putting 40 parts by weight of copper powder having a particle diameter of 0.1 to 0.5 μm into the hybridizer apparatus, 40 parts by weight of copper powder having a particle diameter of 1.7 to 3.0 μm is put into the hybridizer apparatus. The same method as in Example 1 was carried out except that it was added to. The results are shown in Table 1.
表1及び表2より、銅の添加のない比較例1では、大電流での充放電の際の電位降下が大きくすぐに放電終止電池に到達してしまうため、放電負荷の値が著しく低くなる。比較例2にように、銅粒子の添加が少ない場合も同様である。逆に、比較例3のように、銅粒子の固定量が過剰であると、電池反応を著しく阻害するため、可逆容量が著しく低くなる。また、比較例4のように、銅粒子の粒子径が大き過ぎると、複合時に黒鉛粒子の破壊を促し、黒鉛粒子の結晶性を著しく低下させるために、可逆容量が著しく低くなる。 From Table 1 and Table 2, in Comparative Example 1 without addition of copper, the potential drop during charging / discharging with a large current is large and reaches the end-of-discharge battery immediately, so the value of the discharge load is significantly reduced. . The same applies when the amount of copper particles added is small as in Comparative Example 2. On the contrary, as in Comparative Example 3, when the amount of the fixed copper particles is excessive, the battery reaction is remarkably inhibited, so that the reversible capacity is remarkably lowered. Further, as in Comparative Example 4, when the particle diameter of the copper particles is too large, the reversible capacity is remarkably reduced because the destruction of the graphite particles is promoted at the time of compounding and the crystallinity of the graphite particles is remarkably lowered.
1 原料投入口
2 原料循環路
3 ステーター
4 ジャケット
5 原料排出口
6 ドラム
7 ブレード
8 回転部
9 負極側ステンレスキャップ
10 負極
11 銅箔
12 絶縁ガスケット
13 電解液含浸セパレータ
14 ニッケルメッシュ
15 正極側ステンレスキャップ
16 正極
DESCRIPTION OF SYMBOLS 1
Claims (2)
該被覆層を有する黒鉛粒子粉末に、粒子径が0.01〜1.5μmの銅粒子を固定し、銅粒子が固定された被覆層を有する黒鉛粒子粉末を得る工程であり、該銅粒子の固定量が、該被覆層を有する黒鉛粒子粉末100重量部に対して、銅原子換算で1〜240重量部である第二工程と、
該銅粒子が固定された被覆層を有する黒鉛粒子粉末を、非酸化性雰囲気下、800〜2150℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有することを特徴とするリチウムイオン二次電池の負極材用複合炭素材料の製造方法。 A graphite particle powder having a volume-based median diameter of 5 to 30 μm and an average lattice spacing d (002) of 0.3360 nm or less and a pitch having a softening point of 70 to 250 ° C. are heat-kneaded, and the surface of the graphite particles Coating a coating layer comprising the pitch to obtain a graphite particle powder having the coating layer;
A step of fixing copper particles having a particle diameter of 0.01 to 1.5 μm to the graphite particle powder having the coating layer to obtain a graphite particle powder having a coating layer to which the copper particles are fixed. A second step in which the fixed amount is 1 to 240 parts by weight in terms of copper atoms with respect to 100 parts by weight of the graphite particle powder having the coating layer;
A third step of obtaining a composite carbon material for a negative electrode material of a lithium ion secondary battery by firing and carbonizing a graphite particle powder having a coating layer to which the copper particles are fixed at 800 to 2150 ° C. in a non-oxidizing atmosphere; ,
The manufacturing method of the composite carbon material for negative electrode materials of a lithium ion secondary battery characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007331386A JP2009158105A (en) | 2007-12-25 | 2007-12-25 | Method for producing composite carbon material for negative electrode material of lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007331386A JP2009158105A (en) | 2007-12-25 | 2007-12-25 | Method for producing composite carbon material for negative electrode material of lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009158105A true JP2009158105A (en) | 2009-07-16 |
Family
ID=40961920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007331386A Pending JP2009158105A (en) | 2007-12-25 | 2007-12-25 | Method for producing composite carbon material for negative electrode material of lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009158105A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101332666B1 (en) * | 2013-03-22 | 2013-11-25 | 한국산업은행 | Ground module and methode of fabricating the same |
JP2015095455A (en) * | 2013-11-08 | 2015-05-18 | 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 | Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof |
US9059436B2 (en) | 2010-10-27 | 2015-06-16 | Toyota Jidosha Kabushiki Kaisha | Method for producing lithium ion secondary battery with tap density and electrode density |
KR20180078044A (en) * | 2016-12-29 | 2018-07-09 | 오씨아이 주식회사 | Artificial graphite for lithium ion secondary battery and method for producing the same |
CN111584865A (en) * | 2020-04-23 | 2020-08-25 | 湖南中科星城石墨有限公司 | Granulation process for high-compaction microcrystalline graphite negative electrode material |
CN112670471A (en) * | 2020-12-21 | 2021-04-16 | 宁波杉杉新材料科技有限公司 | Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material |
CN113394402A (en) * | 2021-07-01 | 2021-09-14 | 安徽科达新材料有限公司 | Morphology-controllable spherical graphite negative electrode material and preparation method thereof |
US12351462B1 (en) | 2024-10-25 | 2025-07-08 | Urbix, Inc. | Graphite shaping and coating devices, systems, and methods |
-
2007
- 2007-12-25 JP JP2007331386A patent/JP2009158105A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9059436B2 (en) | 2010-10-27 | 2015-06-16 | Toyota Jidosha Kabushiki Kaisha | Method for producing lithium ion secondary battery with tap density and electrode density |
KR101332666B1 (en) * | 2013-03-22 | 2013-11-25 | 한국산업은행 | Ground module and methode of fabricating the same |
JP2015095455A (en) * | 2013-11-08 | 2015-05-18 | 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 | Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof |
KR20180078044A (en) * | 2016-12-29 | 2018-07-09 | 오씨아이 주식회사 | Artificial graphite for lithium ion secondary battery and method for producing the same |
KR102632403B1 (en) | 2016-12-29 | 2024-02-05 | 오씨아이 주식회사 | Artificial graphite for lithium ion secondary battery and method for producing the same |
CN111584865A (en) * | 2020-04-23 | 2020-08-25 | 湖南中科星城石墨有限公司 | Granulation process for high-compaction microcrystalline graphite negative electrode material |
CN112670471A (en) * | 2020-12-21 | 2021-04-16 | 宁波杉杉新材料科技有限公司 | Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material |
CN112670471B (en) * | 2020-12-21 | 2022-02-15 | 宁波杉杉新材料科技有限公司 | Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material |
CN113394402A (en) * | 2021-07-01 | 2021-09-14 | 安徽科达新材料有限公司 | Morphology-controllable spherical graphite negative electrode material and preparation method thereof |
US12351462B1 (en) | 2024-10-25 | 2025-07-08 | Urbix, Inc. | Graphite shaping and coating devices, systems, and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5413645B2 (en) | Method for producing negative electrode material for lithium secondary battery | |
EP1906472B1 (en) | Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery | |
JP5257740B2 (en) | Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same | |
JP6432519B2 (en) | Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery | |
CN103518279B (en) | Carbon material for nonaqueous secondary battery, negative electrode using same, and nonaqueous secondary battery | |
US8974968B2 (en) | Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery | |
JP2008305661A (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
JP2008305722A (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
JP5064728B2 (en) | Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery | |
TW201547090A (en) | Negative electrode active material for lithium ion secondary battery and manufacturing thereof | |
JP7127275B2 (en) | Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
JP2008282547A (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
JP2009158105A (en) | Method for producing composite carbon material for negative electrode material of lithium ion secondary battery | |
WO2015041063A1 (en) | Composite particles of silicon phase-containing substance and graphite, and method for producing same | |
JP2014060124A (en) | Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
US20160181601A1 (en) | Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell | |
JP2014067639A (en) | Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2012216520A (en) | Method for producing composite graphite particle for nonaqueous secondary battery and composite graphite particle produced by the method, negative electrode and nonaqueous secondary battery | |
JP5229664B2 (en) | Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same | |
JP5196365B2 (en) | Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery | |
JP6379565B2 (en) | Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery | |
JP2003176115A (en) | Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery | |
JP4604599B2 (en) | Carbon powder and manufacturing method thereof |