JP2009155176A - Boron nitride nanofiber and method for producing the same - Google Patents
Boron nitride nanofiber and method for producing the same Download PDFInfo
- Publication number
- JP2009155176A JP2009155176A JP2007336861A JP2007336861A JP2009155176A JP 2009155176 A JP2009155176 A JP 2009155176A JP 2007336861 A JP2007336861 A JP 2007336861A JP 2007336861 A JP2007336861 A JP 2007336861A JP 2009155176 A JP2009155176 A JP 2009155176A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- boron nitride
- gaseous
- compound
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 44
- 239000002121 nanofiber Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052796 boron Inorganic materials 0.000 claims abstract description 30
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 20
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 229910052810 boron oxide Inorganic materials 0.000 claims abstract description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 4
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 4
- 239000002923 metal particle Substances 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 abstract description 12
- 239000007789 gas Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000000843 powder Substances 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000003956 methylamines Chemical class 0.000 description 1
- -1 monomethylamine Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Abstract
【課題】廉価かつ大量に利用可能な原料から既存のプロセスを直接利用することで質的、量的に産業上利用可能な高機能、新機能材料を製造し、その応用の展開を目的とした新規窒化ホウ素ナノ繊維の製造方法を提供する。
【解決手段】ホウ素源としての酸化ホウ素とホウ素の混合物を無触媒下、または金属粒子若しくは金属酸化物から選ばれる1種類以上の触媒の存在下で、1000℃以上の温度で加熱反応させ生じるガス状ホウ素化合物を、更にガス状窒素化合物と1000℃以上で反応させることによる窒化ホウ素ナノ繊維の製造方法。
【選択図】図1PROBLEM TO BE SOLVED: To produce a high-function, new functional material that can be used industrially qualitatively and quantitatively by directly using an existing process from inexpensive and abundantly available raw materials, and to develop its application A method for producing novel boron nitride nanofibers is provided.
A gas produced by heating and reacting a mixture of boron oxide and boron as a boron source at a temperature of 1000 ° C. or higher in the absence of a catalyst or in the presence of one or more kinds of catalysts selected from metal particles or metal oxides. A method for producing boron nitride nanofibers by further reacting a gaseous boron compound with a gaseous nitrogen compound at 1000 ° C. or higher.
[Selection] Figure 1
Description
本発明は、窒化ホウ素ナノ繊維の製造方法に関するものである。本発明の製造方法によって得られる窒化ホウ素ナノ繊維は、絶縁性及び/又は高熱伝導性フィラー、ガス吸着剤、触媒担体、マイクロエレクトロニクス部品およびフォトルミネッセンス、エレクトロルミネッセンス等の光学デバイス等として有用である。 The present invention relates to a method for producing boron nitride nanofibers. The boron nitride nanofibers obtained by the production method of the present invention are useful as insulating and / or highly thermally conductive fillers, gas adsorbents, catalyst carriers, microelectronic components, and optical devices such as photoluminescence and electroluminescence.
窒化ホウ素は、高熱伝導率、絶縁性、化学的不活性等の特性を有する物質であり、その結晶構造には、主として六方晶系と立方晶系の二つの形態がある。また、窒化ホウ素のナノ構造物に関しては、B4N3O2H化合物を用いた化学的気相成長法により、中空構造を有する窒化ホウ素ナノチューブが製造できることが知られている(非特許文献1)。 Boron nitride is a substance having characteristics such as high thermal conductivity, insulation, and chemical inertness, and its crystal structure mainly has two forms of hexagonal system and cubic system. Further, regarding boron nitride nanostructures, it is known that boron nitride nanotubes having a hollow structure can be produced by chemical vapor deposition using a B 4 N 3 O 2 H compound (Non-patent Document 1). ).
このような窒化ホウ素は様々な機能材料としての応用が期待されており、六方晶系や立方晶系そして新規なナノチューブ構造体の開発は種々の長周期の層状構造体を具現化し、その特有の物理的特性により高機能、新機能性素材の実現に大きく貢献するものと予想される。更にこのような窒化ホウ素の新しい構造体として、ナノチューブに限らずこれまで知られていない繊維状の会合体を任意に創造することができれば、目的とする高機能性、新機能性の材料とその応用の展開を可能ならしめると考えられ、これまでに知られていない長周期構造を有する新規な窒化ホウ素ナノ構造体を如何に設計、調製できるかが具体的な課題となっている。 Boron nitride is expected to be used as various functional materials, and the development of hexagonal, cubic, and novel nanotube structures embodies various long-period layered structures. It is expected to contribute greatly to the realization of highly functional and new functional materials due to physical characteristics. Furthermore, as such a new structure of boron nitride, if it is possible to arbitrarily create not only nanotubes but also fibrous aggregates that have not been known so far, the desired highly functional and new functional materials and their It is thought that it will enable the development of applications, and how to design and prepare a novel boron nitride nanostructure having a long-period structure that has not been known so far has become a concrete issue.
従来、窒化ホウ素繊維構造体を形成する方法として、例えば特許文献1ではコバルト微粒子を分散したチタン製基板を用いてCVD法により形成したカーボンナノチューブを酸化ホウ素と窒素気流中で加熱置換させることによる窒化ホウ素ナノ繊維を製造する技術が開示されている。また特許文献2では水蒸気を含んだ窒素ガス中でB4N3O2H化合物をグラファイト粉末と共に加熱することによる窒化ホウ素ナノワイヤーの製造方法が開示されている。これらの方法は種々の形態、サイズの窒化ホウ素繊維会合体を作る方法として利用可能であるが、何れの方法も前駆体を出発物質に用いる以上、製造上副生する炭素や酸素などの異種元素から形成される不純物を完全に除去することは困難であり高純度化の観点からは問題がある。また前駆体構造として高価なカーボンナノチューブや特殊なB4N3O2H化合物などを調製したり、窒化ホウ素をナノ繊維化したりする必要があり、高コストおよび大量生産が困難という課題があった。そこで、廉価かつ工業的に調達が容易な出発原料から直接窒化ホウ素ナノ繊維を大量に製造する方法の確立が求められていた。 Conventionally, as a method for forming a boron nitride fiber structure, for example, in Patent Document 1, carbon nanotubes formed by CVD using a titanium substrate in which cobalt fine particles are dispersed are nitrided by heating and replacing them in a nitrogen stream with boron oxide. Techniques for producing boron nanofibers are disclosed. Patent Document 2 discloses a method for producing boron nitride nanowires by heating a B 4 N 3 O 2 H compound together with graphite powder in nitrogen gas containing water vapor. These methods can be used as methods for producing boron nitride fiber aggregates of various forms and sizes. However, as long as the precursors are used as starting materials in any method, different elements such as carbon and oxygen that are by-produced in production are used. It is difficult to completely remove impurities formed from this, and there is a problem from the viewpoint of high purity. In addition, it is necessary to prepare expensive carbon nanotubes, special B 4 N 3 O 2 H compounds, etc. as precursor structures, or to form nanofibers of boron nitride, and there is a problem that high cost and mass production are difficult. . Therefore, establishment of a method for manufacturing a large amount of boron nitride nanofibers directly from a starting material which is inexpensive and easily procured industrially has been demanded.
本発明は、上記の事情に鑑みてなされたものであり、従来技術の問題点を解消し、廉価かつ大量に利用可能な原料から既存のプロセスを直接利用することで質的、量的に産業上利用可能な高機能、新機能材料を製造し、その応用の展開を目的とした新規窒化ホウ素ナノ繊維の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and solves the problems of the prior art, and qualitatively and quantitatively industrializes by directly using existing processes from raw materials that can be used in a low cost and in large quantities. It is an object of the present invention to produce a highly functional and new functional material that can be used above and to provide a method for producing a novel boron nitride nanofiber for the purpose of developing its application.
本発明者らは、ホウ素源として酸化ホウ素とホウ素の混合物を用い、正確に加熱温度を設定できるCVD反応装置等を利用することにより、効率よくナノサイズの直構造を有する新規窒化ホウ素ナノ繊維を製造できることを見出し本発明に到達した。すなわち、本発明は、次の構成を要旨とするものである。 By using a mixture of boron oxide and boron as a boron source and utilizing a CVD reactor or the like that can set the heating temperature accurately, the present inventors have obtained a novel boron nitride nanofiber having a nano-sized direct structure efficiently. The present invention has been found out that it can be produced. That is, the gist of the present invention is as follows.
1.ホウ素源としての酸化ホウ素とホウ素の混合物を無触媒下、または金属粒子若しくは金属酸化物から選ばれる1種類以上の触媒の存在下で、1000℃以上の温度で加熱反応させ生じるガス状ホウ素化合物を、更にガス状窒素化合物と1000℃以上で反応させることによる窒化ホウ素ナノ繊維の製造方法。
2.ホウ素源を1000℃以上の温度で加熱反応させ、生じたガス状のホウ素化合物を供給する部分(供給部)と、該ホウ素化合物とガス状窒素化合物とを加熱反応させる部分(反応部)と、該ガス状窒素化合物が該供給部には流入しない構造とを具備した反応装置にて、1000℃以上の温度の該ガス状ホウ素化合物を、1000℃以上の温度に加熱されている反応部に供給して該ガス状窒素化合物と反応させることを特徴とする上記1項に記載の窒化ホウ素ナノ繊維の製造方法。
3.上記1項または2項の製造方法によって製造された、直径が50〜500nmで、長さが1〜10μmである窒化ホウ素ナノ繊維。
4.平均直径10〜50nmの連続空洞からなる中空構造を内包することを特徴とする上記3項に記載の窒化ホウ素ナノ繊維。
1. A gaseous boron compound produced by heating and reacting a mixture of boron oxide and boron as a boron source in the absence of a catalyst or in the presence of one or more kinds of catalysts selected from metal particles or metal oxides at a temperature of 1000 ° C. or higher. Furthermore, the manufacturing method of the boron nitride nanofiber by making it react with gaseous nitrogen compound at 1000 degreeC or more.
2. A part for supplying a gaseous boron compound by heating and reacting the boron source at a temperature of 1000 ° C. or more (a supply part); a part for reacting the boron compound with a gaseous nitrogen compound by heating (reaction part); Supplying the gaseous boron compound at a temperature of 1000 ° C. or higher to the reaction portion heated to a temperature of 1000 ° C. or higher in a reactor equipped with a structure in which the gaseous nitrogen compound does not flow into the supply unit The method for producing boron nitride nanofiber according to the above item 1, wherein the reaction is performed with the gaseous nitrogen compound.
3. Boron nitride nanofibers having a diameter of 50 to 500 nm and a length of 1 to 10 μm produced by the production method of the above item 1 or 2.
4). 4. The boron nitride nanofiber as described in 3 above, which contains a hollow structure comprising continuous cavities having an average diameter of 10 to 50 nm.
本発明により、廉価かつ大量に入手調製可能な出発原料を用いた、絶縁性及び/又は高熱伝導性フィラー、ガス吸着剤、触媒担体、マイクロエレクトロニクス部品およびフォトルミネッセンス、エレクトロルミネッセンス等の光学デバイス等として有用な新規な窒化ホウ素ナノ繊維の製造方法が提供される。 According to the present invention, as an insulating and / or high thermal conductive filler, gas adsorbent, catalyst carrier, microelectronic component, and optical device such as photoluminescence and electroluminescence, etc., using cheap and available starting materials available in large quantities A method for producing useful novel boron nitride nanofibers is provided.
以下本発明を詳細に説明する。
本発明の製造方法は、ホウ素源としてホウ素単体および酸化ホウ素を併せて用い、無触媒または触媒存在下に、これらを1000℃以上の温度で加熱反応させ生じるガス状ホウ素化合物を、更に窒素源であるガス状窒素化合物と1000℃以上で反応させるものである。本発明者らは、ホウ素源としてホウ素と酸化ホウ素を併用することにより、活性な(BO)2中間体(以下、ホウ素中間体のように称することがある)が効率よく形成されながらガス状窒素化合物の窒素と反応、繊維状に成長することで窒化ホウ素ナノ繊維が得られることを見出した。
The present invention will be described in detail below.
In the production method of the present invention, boron alone and boron oxide are used as a boron source, and a gaseous boron compound produced by heating and reacting at a temperature of 1000 ° C. or higher in the absence of a catalyst or in the presence of a catalyst is further added with a nitrogen source. It reacts with a certain gaseous nitrogen compound at 1000 ° C. or higher. The present inventors have used gaseous nitrogen as an active (BO) 2 intermediate (hereinafter sometimes referred to as a boron intermediate) by efficiently using boron and boron oxide as a boron source. It has been found that boron nitride nanofibers can be obtained by reacting with the compound nitrogen and growing in a fibrous form.
本発明の製造方法に用いることができる反応装置としては、カーボンナノチューブの製造に用いられる化学的気相成長法(以下CVD法と略することがある)によるもの、アーク放電法によるもの、レーザー蒸発によるものなどが挙げられるが、特にCVD法による装置が好ましい。 The reaction apparatus that can be used in the production method of the present invention includes a chemical vapor deposition method (hereinafter sometimes abbreviated as a CVD method) used for the production of carbon nanotubes, an arc discharge method, and laser evaporation. The apparatus by CVD method is especially preferable.
なお、公知のとおりホウ酸は300℃程度の高温で酸化ホウ素に転化するので、本発明の製造方法においては、ホウ素源としてホウ酸とホウ素の混合物を用いて、反応部で加熱昇温中に酸化ホウ素とホウ素の混合物に転化した後にガス状ホウ素中間体を生成させて、更にガス状窒素化合物と反応させることにより窒化ホウ素ナノ繊維を得ることもできる。 As is well known, boric acid is converted to boron oxide at a high temperature of about 300 ° C. Therefore, in the production method of the present invention, a mixture of boric acid and boron is used as a boron source, and heating is performed in the reaction section. Boron nitride nanofibers can also be obtained by generating a gaseous boron intermediate after conversion to a mixture of boron oxide and boron and further reacting with a gaseous nitrogen compound.
本発明においては無触媒下に目的物を得ることが可能であるが、更に反応を効率化するために適当な触媒を用いることができる。用いられる触媒としては、金属粒子あるいは金属酸化物、例えばコバルト、酸化カルシウム、酸化マグネシウムあるいは酸化鉄等が挙げられる。これらの中でも、経済性、触媒の後処理工程における除去の容易性および触媒活性の面から特に酸化マグネシウム、酸化カルシウム等が好ましい。 In the present invention, the desired product can be obtained without a catalyst, but a suitable catalyst can be used to further improve the efficiency of the reaction. Examples of the catalyst used include metal particles or metal oxides such as cobalt, calcium oxide, magnesium oxide, or iron oxide. Among these, magnesium oxide, calcium oxide and the like are particularly preferable from the viewpoints of economy, ease of removal in the post-treatment step of the catalyst, and catalytic activity.
本発明の製造方法で窒素源として用いられるガス状窒素化合物としては、安価で、爆発性等の危険性が極力低く、窒素以外の元素の含有量が少なく、かつ反応部への供給が容易なよう室温で気体のものが好ましい。そのような化合物としてはアンモニア、またはモノメチルアミンのようなメチルアミン類が挙げられ、特にアンモニアが好適である。 The gaseous nitrogen compound used as a nitrogen source in the production method of the present invention is inexpensive, has a low risk of explosiveness, etc., has a low content of elements other than nitrogen, and can be easily supplied to the reaction section. A gas at room temperature is preferred. Such compounds include ammonia or methylamines such as monomethylamine, with ammonia being particularly preferred.
また、本発明においては、ホウ素源を加熱反応させガス状ホウ素中間体を生成させてこれを供給する部分(供給部)と、更に該ホウ素中間体とガス状窒素化合物とを加熱反応させる部分(反応部)と、該ガス状窒素化合物が該供給部には流入しない構造とを具備した反応装置にて、所望の反応温度まで、該供給部にて加熱された該ガス状ホウ素中間体を、該反応温度まで加熱されている反応部に供給することにより、反応温度の変動を抑制しながら該ガス状窒素化合物と反応させることが好ましい。こうすることで、反応部の温度が上昇する過程で生じる不純物、あるいは反応導入時初期の反応部温度の不安定化による副反応を避け、効率よく均質な窒化ホウ素ナノ繊維の生成を実現することができる。 In the present invention, the boron source is heated to react to generate a gaseous boron intermediate and supplied thereto (supply portion), and the boron intermediate and the gaseous nitrogen compound are further heated to react ( Reaction unit) and a structure in which the gaseous nitrogen compound does not flow into the supply unit, the gaseous boron intermediate heated in the supply unit up to a desired reaction temperature, It is preferable to react with the gaseous nitrogen compound while suppressing fluctuations in the reaction temperature by supplying the reaction part heated to the reaction temperature. By doing this, it is possible to avoid the side reactions caused by the destabilization of the reaction part temperature at the time of introduction of the reaction, or impurities generated in the process of raising the reaction part temperature, and to efficiently generate homogeneous boron nitride nanofibers. Can do.
本発明における、供給部と、反応部と、ガス状窒素化合物が該供給部には流入しない構造とを具備した反応装置とは、供給部と反応部とが完全に区切られて反応時のみ弁を開くなどして反応物であるガス状ホウ素化合物とガス状窒素化合物とを接触させるものでもよいが、例えば入れ子式の構造を有する装置の内側に設けた供給部からガス状ホウ素中間体を供給し、外側からガス状窒素化合物を導入するようにしても同様の効果が得られる。これは、該ホウ素中間体は反応活性が高く、該ガス状窒素化合物と接触すると直ちに反応して化学気相堆積が起こるからである。 In the present invention, a reaction apparatus comprising a supply unit, a reaction unit, and a structure in which a gaseous nitrogen compound does not flow into the supply unit is a valve that is only separated during the reaction when the supply unit and the reaction unit are completely separated. For example, the gaseous boron compound and the gaseous nitrogen compound may be brought into contact with each other by opening the gas. For example, the gaseous boron intermediate is supplied from a supply unit provided inside the apparatus having a nested structure. However, the same effect can be obtained by introducing a gaseous nitrogen compound from the outside. This is because the boron intermediate is highly reactive and reacts immediately upon contact with the gaseous nitrogen compound to cause chemical vapor deposition.
本発明における反応装置の反応部の温度は1000℃以上である。反応部の温度が1000℃よりも低い場合には、非晶質の窒化ホウ素が生成してしまい、また反応部の温度が1000℃よりもはるかに高い場合には、窒化ホウ素ナノ繊維ではなく棒状あるいは粒子状窒化ホウ素が生成してしまうため好ましくない。反応部の温度としては好ましくは1000℃〜1500℃、より好ましくは1000℃〜1200℃である。 The temperature of the reaction part of the reactor in the present invention is 1000 ° C. or higher. When the temperature of the reaction part is lower than 1000 ° C., amorphous boron nitride is generated, and when the temperature of the reaction part is much higher than 1000 ° C., it is not a boron nitride nanofiber but a rod shape. Alternatively, it is not preferable because particulate boron nitride is generated. The temperature of the reaction part is preferably 1000 ° C to 1500 ° C, more preferably 1000 ° C to 1200 ° C.
本発明における反応装置の供給部の温度は、上記の反応部と同様に1000℃以上であり、1000℃〜1500℃であるのが好ましく、1000℃〜1200℃であるとより好ましい。供給部の温度は反応部の温度と同一であると特に好ましいが、前記のより好ましい、または好ましい温度の範囲であれば目的とする窒化ホウ素ナノ繊維を得ることができる。 The temperature of the supply unit of the reaction apparatus in the present invention is 1000 ° C. or higher, preferably 1000 ° C. to 1500 ° C., more preferably 1000 ° C. to 1200 ° C., as in the above reaction unit. The temperature of the supply section is particularly preferably the same as the temperature of the reaction section, but the desired boron nitride nanofibers can be obtained within the above preferable or preferable temperature range.
反応部中での加熱時間は、反応物であるガス状ホウ素化合物とガス状窒素化合物の消費時間とすることができ、これは様々な製造条件に応じて調節することができる。特に反応効率と生産性の面からは0.5〜2時間程度の加熱時間にて製造することが好ましく示される。加熱反応後に反応部を室温に冷却することにより、白色粉末の堆積物として窒化ホウ素ナノ繊維を得ることができる。 The heating time in the reaction section can be the consumption time of the gaseous boron compound and gaseous nitrogen compound as reactants, and this can be adjusted according to various production conditions. In particular, from the viewpoint of reaction efficiency and productivity, production with a heating time of about 0.5 to 2 hours is preferably indicated. By cooling the reaction part to room temperature after the heating reaction, boron nitride nanofibers can be obtained as a white powder deposit.
以上述べた本発明の方法により、窒化ホウ素ナノ繊維を安価な原料から簡便に製造することができる。
上記製造方法によって得られる本発明の窒化ホウ素ナノ繊維は、長さが1〜10μm程度のもので、直径が50〜500nm程度、より好ましくは150〜500nm程度のものである。一本の繊維においてその直径は繊維全体にわたり均質で一定の場合もあるが、繊維の片末端からもう一方の末端にかけて連続して直径が変化する形態や、不連続に直径が変化する形態をとることもある。
By the method of the present invention described above, boron nitride nanofibers can be easily produced from inexpensive raw materials.
The boron nitride nanofibers of the present invention obtained by the above production method have a length of about 1 to 10 μm and a diameter of about 50 to 500 nm, more preferably about 150 to 500 nm. The diameter of a single fiber may be uniform and constant throughout the fiber, but the diameter continuously changes from one end of the fiber to the other, or the diameter changes discontinuously. Sometimes.
更に本発明の窒化ホウ素ナノ繊維においては、各々の窒化ホウ素ナノ繊維は単独のファイバーとして存在するのみならず数本ずつが束となったヤーンや、複数のファイバー同士が末端で結合し、放射状あるいは分岐した形態をとることもある。 Further, in the boron nitride nanofibers of the present invention, each boron nitride nanofiber is not only present as a single fiber, but several yarns are bundled together, or a plurality of fibers are bonded together at the end, and the radial or It may take a branched form.
また、本発明の窒化ホウ素ナノ繊維は平均直径10〜50nm程度の連続空洞からなる中空構造を内包することを特徴とする。この連続構造からなる中空構造は通常該繊維一本中に単一で存在するが、複数の独立孔及び/または連続孔として存在することもある。 Moreover, the boron nitride nanofiber of the present invention is characterized by including a hollow structure composed of continuous cavities having an average diameter of about 10 to 50 nm. The hollow structure composed of this continuous structure usually exists in a single fiber, but may exist as a plurality of independent holes and / or continuous holes.
以下、実施例により本発明方法をさらに詳しく具体的に説明する。ただしこれらの実施例は本発明の範囲を何ら限定するものではない。 Hereinafter, the method of the present invention will be described in more detail with reference to examples. However, these examples do not limit the scope of the present invention.
[実施例1]
酸化ホウ素粉末100mg及びホウ素粉末100mgを混合し、直径2cmの磁製槽の上にのせ供給槽とした。この供給槽を、片末端を閉鎖した直径2.5cm、長さ5cmのセラミックチューブからなる加熱槽内に静置した。全体をCVD装置の1リットルの石英管内に設置し、石英管は給排気用の配管を施したシリコン製コックにより密栓をした。ポンプにより内部を排気し、流量25ml/分でのアルゴン気流下、供給槽を室温から1300℃まで120分間で昇温した。供給槽内が1300℃に到達したことを確認した後、石英管内にアンモニアガスを流量500ml/分で導入し始めた。アンモニアガスはセラミック製の加熱槽内に流入し、ここでホウ素化合物との気相反応が開始した。この状態で60分保持して反応を完了し、アンモニアガスの供給を終了後に加熱を止め、120分かけて冷却した。CVD装置内が室温に戻ったことを確認した後,石英管を開けた。セラミックチューブ管の内壁に堆積した白色粉末5mgを収集した(なお、供給槽には白色粉末は堆積していなかった)。得られた粉末を透過型電子顕微鏡(TEM)で観察し、直径200nm程度のナノ繊維であることを確認した(TEM写真を図1に示す)。またEDX(エネルギー分散型X線分光法)スペクトル測定より得られた特性ピーク解析の結果、この粉末組成が窒素とホウ素から構成されることが確認された。これらの解析結果より、白色粉末が目的とする窒化ホウ素ナノ繊維であることが明らかとなった。
[Example 1]
Boron oxide powder (100 mg) and boron powder (100 mg) were mixed and placed on a 2 cm diameter porcelain tank to form a supply tank. This supply tank was left still in a heating tank composed of a ceramic tube having a diameter of 2.5 cm and a length of 5 cm with one end closed. The whole was placed in a 1-liter quartz tube of a CVD apparatus, and the quartz tube was sealed with a silicon cock provided with piping for supply and exhaust. The inside was evacuated by a pump, and the temperature of the supply tank was raised from room temperature to 1300 ° C. in 120 minutes under an argon stream at a flow rate of 25 ml / min. After confirming that the inside of the supply tank reached 1300 ° C., ammonia gas was introduced into the quartz tube at a flow rate of 500 ml / min. The ammonia gas flowed into the ceramic heating tank, where the gas phase reaction with the boron compound started. This state was maintained for 60 minutes to complete the reaction. After the supply of ammonia gas was completed, the heating was stopped and the system was cooled over 120 minutes. After confirming that the inside of the CVD apparatus had returned to room temperature, the quartz tube was opened. 5 mg of white powder deposited on the inner wall of the ceramic tube was collected (no white powder was deposited in the supply tank). The obtained powder was observed with a transmission electron microscope (TEM) and confirmed to be nanofibers having a diameter of about 200 nm (TEM photograph is shown in FIG. 1). Further, as a result of characteristic peak analysis obtained from EDX (energy dispersive X-ray spectroscopy) spectrum measurement, it was confirmed that this powder composition was composed of nitrogen and boron. From these analysis results, it became clear that the white powder is the target boron nitride nanofiber.
[実施例2]
酸化ホウ素粉末100mg及びホウ素粉末100mgを混合し、これに酸化カルシウム10mgを加えて後に直径2cmの磁製皿の上に載せ、これを、片末端を閉鎖した直径2.5cm、長さ5cmのセラミックチューブ内に静置した。セラミックチューブをCVD装置の1リットルの石英管内に設置し、石英管は給排気用の配管を施したシリコン製コックにより密栓をした。ポンプにより内部を排気し、流量25ml/分でのアルゴン気流下、CVD装置内を室温から1300℃まで120分間で昇温した。CVD装置内が1300℃に到達したことを確認した後、チューブ内にアンモニアガスを流量500ml/分で導入し始めた。この状態で60分保持して反応を完了し、アンモニアガスの供給を終了後に加熱を止め、120分かけて冷却した。CVD装置内が室温に戻ったことを確認した後,石英管を開けた。セラミックチューブ管の内壁に堆積した白色粉末25mgを収集した。透過型電子顕微鏡(TEM)観察およびEDXスペクトル測定より得られた特性ピーク解析の結果、この白色粉末が窒素とホウ素から構成される、実施例1と同様の窒化ホウ素ナノ繊維であることが確認された。
[Example 2]
A mixture of 100 mg boron oxide powder and 100 mg boron powder, 10 mg calcium oxide added thereto, and then placed on a porcelain dish with a diameter of 2 cm. It was left in the tube. The ceramic tube was placed in a 1-liter quartz tube of a CVD apparatus, and the quartz tube was sealed with a silicon cock provided with piping for supply and exhaust. The inside of the CVD apparatus was heated from room temperature to 1300 ° C. for 120 minutes under an argon stream at a flow rate of 25 ml / min. After confirming that the inside of the CVD apparatus reached 1300 ° C., ammonia gas was introduced into the tube at a flow rate of 500 ml / min. This state was maintained for 60 minutes to complete the reaction. After the supply of ammonia gas was completed, the heating was stopped and the system was cooled over 120 minutes. After confirming that the inside of the CVD apparatus had returned to room temperature, the quartz tube was opened. 25 mg of white powder deposited on the inner wall of the ceramic tube was collected. As a result of the characteristic peak analysis obtained from transmission electron microscope (TEM) observation and EDX spectrum measurement, it was confirmed that this white powder was the same boron nitride nanofiber as that of Example 1 and composed of nitrogen and boron. It was.
[比較例1]
酸化ホウ素粉末200mgのみを用いた以外は実施例1と同様の操作を行うことで、セラミックチューブ管の内壁に堆積した白色粉末20mgを収集した。得られた粉末を透過型電子顕微鏡(TEM)で観察したところ、無定形の粒子であり、またEDXスペクトル測定より得られた特性ピーク解析の結果、この粉末組成が酸素とホウ素から構成されることが確認された。これらの解析結果より、白色粉末が酸化ホウ素そのものであり、目的とする窒化ホウ素ナノ繊維はないことが明らかとなった。
[Comparative Example 1]
20 mg of white powder deposited on the inner wall of the ceramic tube was collected by performing the same operation as in Example 1 except that only 200 mg of boron oxide powder was used. When the obtained powder was observed with a transmission electron microscope (TEM), it was found to be amorphous particles, and as a result of characteristic peak analysis obtained by EDX spectrum measurement, this powder composition was composed of oxygen and boron. Was confirmed. From these analysis results, it was clarified that the white powder was boron oxide itself and there was no target boron nitride nanofiber.
[比較例2]
酸化ホウ素粉末200mgおよび酸化カルシウム10mgのみを用いた以外は実施例2と同様の操作を行うことで、セラミックチューブ管の内壁に堆積した白色粉末30mgを収集した。得られた粉末を透過型電子顕微鏡(TEM)で観察したところ、無定形の粒子であり、またEDXスペクトル測定より得られた特性ピーク解析の結果、この粉末組成が窒素とホウ素から構成されることが確認された。これらの解析結果より、白色粉末は窒化ホウ素ではあるが、目的とするナノ繊維はないことが明らかとなった。
[Comparative Example 2]
By performing the same operation as in Example 2 except that only 200 mg of boron oxide powder and 10 mg of calcium oxide were used, 30 mg of white powder deposited on the inner wall of the ceramic tube was collected. When the obtained powder was observed with a transmission electron microscope (TEM), it was found to be amorphous particles, and as a result of characteristic peak analysis obtained from EDX spectrum measurement, this powder composition was composed of nitrogen and boron. Was confirmed. From these analysis results, it became clear that the white powder is boron nitride, but there is no target nanofiber.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007336861A JP5059589B2 (en) | 2007-12-27 | 2007-12-27 | Boron nitride nanofiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007336861A JP5059589B2 (en) | 2007-12-27 | 2007-12-27 | Boron nitride nanofiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009155176A true JP2009155176A (en) | 2009-07-16 |
JP5059589B2 JP5059589B2 (en) | 2012-10-24 |
Family
ID=40959578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007336861A Expired - Fee Related JP5059589B2 (en) | 2007-12-27 | 2007-12-27 | Boron nitride nanofiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5059589B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011121797A (en) * | 2009-12-09 | 2011-06-23 | Teijin Ltd | Method for manufacturing boron nitride nanotube |
WO2015167950A1 (en) * | 2014-04-30 | 2015-11-05 | Rogers Corporation | Thermally conductive composites and methods of manufacture thereof, and articles containing the composites |
WO2022039239A1 (en) * | 2020-08-20 | 2022-02-24 | デンカ株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
WO2022039237A1 (en) * | 2020-08-20 | 2022-02-24 | デンカ株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
CN114751387A (en) * | 2022-04-11 | 2022-07-15 | 山东大学 | Method for efficiently preparing boron nitride nanosheet |
JP7598277B2 (en) | 2021-03-29 | 2024-12-11 | デンカ株式会社 | Boron nitride fiber and its manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101777945B1 (en) | 2016-02-04 | 2017-09-12 | 고려대학교 산학협력단 | Carbon fiber reinforced polymer composite comprising carbon fibers reformed by plasma treatment and the manufacturing method of the same |
KR101842062B1 (en) | 2016-08-03 | 2018-03-26 | 한국과학기술연구원 | Methods of preparing boron nitride nanotubes |
US11629054B2 (en) | 2016-11-29 | 2023-04-18 | Bnnt, Llc | Boron nitride nanotube purification |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937098A (en) * | 1972-08-12 | 1974-04-06 | ||
JP2004148214A (en) * | 2002-10-30 | 2004-05-27 | National Institute For Materials Science | Materials for hydrogen storage |
JP2004161546A (en) * | 2002-11-13 | 2004-06-10 | National Institute For Materials Science | Method of forming boron nitride precursor and method of manufacturing boron nitride nanotube using boron nitride precursor |
JP2004189527A (en) * | 2002-12-10 | 2004-07-08 | National Institute For Materials Science | Method for producing boron nitride nanotubes filled with nickel or nickel silicide |
JP2006240942A (en) * | 2005-03-04 | 2006-09-14 | National Institute For Materials Science | Method for producing high purity boron nitride nanotubes |
-
2007
- 2007-12-27 JP JP2007336861A patent/JP5059589B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937098A (en) * | 1972-08-12 | 1974-04-06 | ||
JP2004148214A (en) * | 2002-10-30 | 2004-05-27 | National Institute For Materials Science | Materials for hydrogen storage |
JP2004161546A (en) * | 2002-11-13 | 2004-06-10 | National Institute For Materials Science | Method of forming boron nitride precursor and method of manufacturing boron nitride nanotube using boron nitride precursor |
JP2004189527A (en) * | 2002-12-10 | 2004-07-08 | National Institute For Materials Science | Method for producing boron nitride nanotubes filled with nickel or nickel silicide |
JP2006240942A (en) * | 2005-03-04 | 2006-09-14 | National Institute For Materials Science | Method for producing high purity boron nitride nanotubes |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011121797A (en) * | 2009-12-09 | 2011-06-23 | Teijin Ltd | Method for manufacturing boron nitride nanotube |
WO2015167950A1 (en) * | 2014-04-30 | 2015-11-05 | Rogers Corporation | Thermally conductive composites and methods of manufacture thereof, and articles containing the composites |
CN106255721A (en) * | 2014-04-30 | 2016-12-21 | 罗杰斯公司 | Heat-conductive composite material and manufacture method thereof and comprise the goods of described composite |
WO2022039239A1 (en) * | 2020-08-20 | 2022-02-24 | デンカ株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
WO2022039237A1 (en) * | 2020-08-20 | 2022-02-24 | デンカ株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
JP7106033B1 (en) * | 2020-08-20 | 2022-07-25 | デンカ株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
CN115697898A (en) * | 2020-08-20 | 2023-02-03 | 电化株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
CN115697898B (en) * | 2020-08-20 | 2025-02-25 | 电化株式会社 | Boron nitride particles, resin composition, and method for producing resin composition |
JP7598277B2 (en) | 2021-03-29 | 2024-12-11 | デンカ株式会社 | Boron nitride fiber and its manufacturing method |
CN114751387A (en) * | 2022-04-11 | 2022-07-15 | 山东大学 | Method for efficiently preparing boron nitride nanosheet |
WO2023197682A1 (en) * | 2022-04-11 | 2023-10-19 | 山东大学 | Method for efficiently preparing boron nitride nanosheet |
CN114751387B (en) * | 2022-04-11 | 2023-11-28 | 山东大学 | Method for efficiently preparing boron nitride nanosheets |
Also Published As
Publication number | Publication date |
---|---|
JP5059589B2 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5059589B2 (en) | Boron nitride nanofiber and method for producing the same | |
JP5645090B2 (en) | A method for producing a carbon fiber aggregate containing single-walled carbon nanotubes, and a carbon fiber aggregate containing single-walled carbon nanotubes produced by the method. | |
Tay et al. | Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition | |
US20040265212A1 (en) | Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition | |
CN100526217C (en) | Preparation method of quasi one-dimensional boron nitride nanostructure | |
Su et al. | Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts | |
CN106784667B (en) | A kind of charcoal material surface SiC Nanometer Whiskers and preparation method thereof | |
CN1883807A (en) | Method of preparing catalyst for manufacturing carbon nanotubes | |
Chen et al. | Synthesis and photoluminescence of needle-shaped 3C–SiC nanowires on the substrate of PAN carbon fiber | |
Zhong et al. | Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties | |
CN101891184B (en) | Method for continuously synthesizing single-wall carbon nano tube by high temperature chemical vapor deposition method | |
Saner Okan et al. | Effect of reaction temperature and catalyst type on the formation of boron nitride nanotubes by chemical vapor deposition and measurement of their hydrogen storage capacity | |
JP6492598B2 (en) | Method for producing carbon nanotube | |
JP2014181179A (en) | Method of growing carbon nanotubes lined up in the vertical direction on diamond substrate | |
CN100369806C (en) | Method for synthesizing single-morphology boron nitride nanotubes | |
JP2004161546A (en) | Method of forming boron nitride precursor and method of manufacturing boron nitride nanotube using boron nitride precursor | |
JP2004339041A (en) | Method for selectively producing carbon nanostructure | |
Han | Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications | |
Mansoor et al. | Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor | |
CN100391834C (en) | Preparation method of high-purity multi-walled carbon nanotubes | |
KR101679693B1 (en) | Method for preparing carbon nanotube and hybrid carbon nanotube composite | |
JP2005279624A (en) | Catalyst for producing carbon nanotube, production method and production apparatus | |
JP2004182571A (en) | Method for producing boron nitride nanotubes using gallium oxide as catalyst | |
JP2000281323A (en) | Method for producing boron-containing carbon nanotubes | |
JP2006298684A (en) | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100908 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100908 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110713 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |