JP2009151088A - Projection image display device - Google Patents
Projection image display device Download PDFInfo
- Publication number
- JP2009151088A JP2009151088A JP2007328730A JP2007328730A JP2009151088A JP 2009151088 A JP2009151088 A JP 2009151088A JP 2007328730 A JP2007328730 A JP 2007328730A JP 2007328730 A JP2007328730 A JP 2007328730A JP 2009151088 A JP2009151088 A JP 2009151088A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength region
- beam splitter
- liquid crystal
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Projection Apparatus (AREA)
Abstract
Description
本発明は、反射型の液晶表示素子を用いた投射型画像表示装置(プロジェクター)に関する。 The present invention relates to a projection type image display apparatus (projector) using a reflective liquid crystal display element.
反射型液晶パネルは透過型液晶パネルに比べ高開口率・高精細などの特徴をもっており、これを用いたプロジェクターが注目されている。このようなプロジェクターでは、反射型液晶パネルの変調によってスクリーン上での画像の表示(光を投射する状態、明表示)、非表示(光を投射しない状態、暗表示)とを切り替える必要がある。さらに、光源からの光を複数の色光に分解したり、複数の反射型液晶パネルからの色光を合成したりする必要がある。 Reflective liquid crystal panels have characteristics such as a high aperture ratio and high definition compared to transmissive liquid crystal panels, and projectors using these have attracted attention. In such a projector, it is necessary to switch between display of an image on the screen (a state in which light is projected, bright display) and non-display (a state in which light is not projected, dark display) by modulation of the reflective liquid crystal panel. Furthermore, it is necessary to decompose the light from the light source into a plurality of color lights or to combine the color lights from a plurality of reflective liquid crystal panels.
そこで、特許文献1に開示されたプロジェクター(図10)は、3原色各々に対応する3つの反射型液晶パネル13R、13G、13Bに対して光源からの光束を色分解した上で入射させ、それらからの反射光を色合成して投射レンズ24に入射させている。この特許文献1に開示されたプロジェクターは、色分解及び色合成を行う際、一つのダイクロイックミラー5と3つの偏光ビームスプリッタ11、20、27に加えて、波長選択性偏光回転素子(波長選択性位相差板)9、16を用いている。
しかしながら、特許文献1で用いられている波長選択性偏光回転素子、特に液晶パネルで反射された後の画像光が通過する(透過する)側に配置された波長選択性偏光回転素子、は、所望の偏光特性が得られないとコントラスト低下の要因となってしまう。
However, the wavelength-selective polarization rotator used in
そこで、本願発明は、比較的簡易な構成で、コントラストの高い画像を投射可能な投射型画像表示装置の提供を目的とする。 Accordingly, an object of the present invention is to provide a projection type image display apparatus capable of projecting an image with a high contrast with a relatively simple configuration.
上記課題解決のために、本発明の投射型画像表示装置は、第1波長領域に対応する第1反射型液晶表示素子と、前記第1波長領域よりも波長が長い第2波長領域に対応する第2反射型液晶表示素子と、前記第1、2反射型液晶表示素子からの画像光を被投射面に投射する投射光学系とを有する投射型画像表示装置であって、前記第1波長領域の波長よりも短い周期の周期構造体を持ち、前記第1波長領域及び前記第2波長領域において、第1直線偏光を反射し、前記第1直線偏光と偏光方向が垂直する第2直線偏光を透過する特性を持つ第1偏光ビームスプリッタを備え、前記第1偏光ビームスプリッタが、前記第1波長領域の第1直線偏光を反射して前記第1反射型液晶表示素子に導き、前記第1反射型液晶表示素子から出射する前記第2直線偏光を透過して前記投射光学系に導いており、且つ、前記第2波長領域の第2直線偏光を透過して前記第2反射型液晶表示素子に導き、前記第2反射型液晶表示素子から出射する前記第1直線偏光を反射して前記投射光学系に導いていることを特徴としている。 In order to solve the above problems, a projection-type image display device according to the present invention corresponds to a first reflective liquid crystal display element corresponding to a first wavelength region and a second wavelength region having a wavelength longer than the first wavelength region. A projection-type image display device comprising: a second reflective liquid crystal display element; and a projection optical system that projects image light from the first and second reflective liquid crystal display elements onto a projection surface, wherein the first wavelength region Having a periodic structure having a period shorter than the first wavelength, reflecting the first linearly polarized light in the first wavelength region and the second wavelength region, and second linearly polarized light having a polarization direction perpendicular to the first linearly polarized light. A first polarizing beam splitter having a transmitting characteristic, wherein the first polarizing beam splitter reflects the first linearly polarized light in the first wavelength region and guides it to the first reflective liquid crystal display element; The second light emitted from the liquid crystal display device Transmitting linearly polarized light to the projection optical system, transmitting second linearly polarized light in the second wavelength region to the second reflective liquid crystal display element, and second reflective liquid crystal display element The first linearly polarized light emitted from the light beam is reflected and guided to the projection optical system.
本発明の投射型画像表示装置によれば、簡易な構成でコントラストの高い画像を投影することが可能となる。 According to the projection type image display device of the present invention, it is possible to project an image with high contrast with a simple configuration.
以下の本実施例は、偏光ビームスプリッター及びそれを用いた投射型画像表示装置(プロジェクタ)に関するものである。この投射型画像表示装置は、光源から射出された光束(白色光)を複数の色光(以下の実施例においては青色光、緑色光、赤色光の3つの色光)に色分解し、各色光を対応する反射型の液晶表示素子(液晶パネル)に導いている。そして、その反射型液晶パネルによって変調された色光のうち画像光(スクリーン等の被投射面に投射すべき光)を色合成し、その合成した画像光を投射光学系を用いて拡大投射している。 The following embodiment relates to a polarizing beam splitter and a projection type image display apparatus (projector) using the polarizing beam splitter. This projection type image display device separates a light beam (white light) emitted from a light source into a plurality of color lights (in the following embodiments, three color lights of blue light, green light, and red light), and each color light is separated. It leads to a corresponding reflective liquid crystal display element (liquid crystal panel). Then, among the color lights modulated by the reflective liquid crystal panel, image light (light to be projected onto a projection surface such as a screen) is color-synthesized, and the synthesized image light is enlarged and projected using a projection optical system. Yes.
本実施例の投射型画像表示装置の概略を説明する。本実施例の投射型画像表示装置は、第1波長領域(青色光)に対応する第1反射型液晶表示素子と、第1波長領域よりも波長が長い第2波長領域(赤色光)に対応する第2反射型液晶表示素子とを備えている。更に、これら第1、2反射型液晶表示素子からの画像光をスクリーン等の被投射面に投射する投射光学系とを有している。その上で、第1、2波長領域の波長(の半分)よりも短い周期の周期構造体(SWS構造体)を持ち、第1、2波長領域において、第1直線偏光(S偏光)を反射し第2直線偏光(P偏光)を透過する特性を持つ第1偏光ビームスプリッタを備えている。この第1偏光ビームスプリッタが第1波長領域の第1直線偏光を反射して第1反射型液晶表示素子に導き、第1反射型液晶表示素子から出射する第2直線偏光を透過して投射光学系に導くような位置に配置されている。更に、この第1偏光ビームスプリッタは、第2波長領域の第2直線偏光を透過して第2反射型液晶表示素子に導き、第2反射型液晶表示素子から出射する第1直線偏光を反射して投射光学系に導くような位置に配置されている。このように、第1偏光ビームスプリッタの特性と、その配置場所を特定している点が本実施例の投射型画像表示装置の特徴である。 An outline of the projection type image display apparatus of the present embodiment will be described. The projection type image display apparatus according to the present embodiment corresponds to the first reflective liquid crystal display element corresponding to the first wavelength region (blue light) and the second wavelength region (red light) having a longer wavelength than the first wavelength region. A second reflective liquid crystal display element. Furthermore, it has a projection optical system that projects image light from the first and second reflective liquid crystal display elements onto a projection surface such as a screen. In addition, it has a periodic structure (SWS structure) with a period shorter than (half of) the wavelength in the first and second wavelength regions, and reflects the first linearly polarized light (S-polarized light) in the first and second wavelength regions. And a first polarization beam splitter having a characteristic of transmitting the second linearly polarized light (P-polarized light). The first polarizing beam splitter reflects the first linearly polarized light in the first wavelength region and guides it to the first reflective liquid crystal display element, transmits the second linearly polarized light emitted from the first reflective liquid crystal display element, and projects projection optics. It is arranged at a position that leads to the system. Further, the first polarizing beam splitter transmits the second linearly polarized light in the second wavelength region, guides it to the second reflective liquid crystal display element, and reflects the first linearly polarized light emitted from the second reflective liquid crystal display element. So that it is guided to the projection optical system. As described above, the characteristics of the first polarizing beam splitter and the point where the first polarizing beam splitter is specified are the features of the projection type image display apparatus of the present embodiment.
上記の特徴によって、本実施例の投射型画像表示装置は、簡素な構造でコントラストの高い画像を投射することが可能となる。 Due to the above characteristics, the projection type image display apparatus according to the present embodiment can project an image with a simple structure and high contrast.
以下は、本実施例の投射型画像表示装置が更に大きな効果を奏するために必要な事項である。 The following items are necessary for the projection type image display apparatus of the present embodiment to have a greater effect.
例えば、周期構造体はSWS構造体であり、その周期構造体の周期(方向)は、第1偏光ビームスプリッタに対するS偏光の偏光方向と平行な方向における周期であると好ましい。 For example, the periodic structure is an SWS structure, and the period (direction) of the periodic structure is preferably a period in a direction parallel to the polarization direction of S-polarized light with respect to the first polarization beam splitter.
また、この周期構造体は、第1偏光ビームスプリッタに対するS偏光の偏光方向と平行な方向に周期を持つ第1の周期構造体と、S偏光の偏光方向に対して垂直な方向に周期を持つ第2の周期構造体とを含んでいると尚好ましい。 In addition, this periodic structure has a first periodic structure having a period in a direction parallel to the polarization direction of S-polarized light with respect to the first polarization beam splitter, and a period in a direction perpendicular to the polarization direction of S-polarization. More preferably, the second periodic structure is included.
また、本実施例の投射型画像表示装置は、第3反射型液晶表示素子と、ダイクロイックミラーと、第2偏光ビームスプリッタと、ダイクロイックプリズムとを備えていることが尚望ましい。ここで、第3反射型液晶表示素子は、第1波長領域(青色光)の波長より長く第2波長領域(赤色光)の波長より短い第3波長領域(緑色光)に対応する反射型液晶表示素子である。ダイクロイックミラーは、光源から発する白色光から、第3波長領域(緑色光)の光を分離すると共に、第1、2波長領域の光を第1偏光ビームスプリッタに導いている。そして、第2偏光ビームスプリッタは、ダイクロイックミラーにより分離された第3波長領域の光を第3反射型液晶表示素子に導くと共に、第3反射型液晶表示素子から出射する画像光を後述する色合成素子に導いている。そして、色合成素子(後述するダイクロイックプリズム18)は、第1偏光ビームスプリッタにより合成された第1波長領域の光と第2波長領域の光に対して、第2偏光ビームスプリッタから出射した第3波長領域の画像光を合成して、投射光学系に導いている。尚、第2偏光ビームスプリッタから出射する第3波長領域の画像光は、第1直線偏光(S偏光)でも第2直線偏光(P偏光)でもどちらでも構わない。
The projection type image display apparatus according to the present embodiment preferably further includes a third reflective liquid crystal display element, a dichroic mirror, a second polarization beam splitter, and a dichroic prism. Here, the third reflective liquid crystal display element corresponds to the third wavelength region (green light) that is longer than the wavelength of the first wavelength region (blue light) and shorter than the wavelength of the second wavelength region (red light). It is a display element. The dichroic mirror separates the light in the third wavelength region (green light) from the white light emitted from the light source, and guides the light in the first and second wavelength regions to the first polarization beam splitter. The second polarization beam splitter guides the light in the third wavelength region separated by the dichroic mirror to the third reflective liquid crystal display element, and combines the image light emitted from the third reflective liquid crystal display element, which will be described later. It leads to the element. Then, the color combining element (a
以下、図面を用いて各実施例について詳細に説明する。 Hereinafter, each embodiment will be described in detail with reference to the drawings.
図1は本発明の第1の実施例である画像表示装置の構成を示したものである。 FIG. 1 shows the configuration of an image display apparatus according to the first embodiment of the present invention.
図中、1は連続スペクトルで白色を発光する光源である。光源1から射出した光は、リフレクタ(ここでは放物面ミラーであるが、勿論楕円ミラーや球形状のミラーであっても構わない。)で反射され、略平行光2となる。この図1においては、この白色光を赤・緑・青の色の3原色の光に分解して図示しており、それぞれを赤色光2r、緑色光2g、青色光2bとして図示している。勿論、この赤、緑、青色光それぞれは、図1上では便宜上空間的に分離して記載しているが、この3つの光はこの段階では空間的に分離されている訳ではない。
In the figure,
これらの光は照明光学系の中にある偏光変換素子3によってP偏光(紙面内で電場が振動する偏光状態)に偏光が揃えられ、P偏光の赤色光4r、P偏光の緑色光4g、P偏光の青色光4bとなる。
These lights are polarized to P-polarized light (polarized state in which the electric field vibrates in the paper surface) by the
偏光変換素子を経た3色の光は、緑色光成分のみを反射する特性を持つダイクロイックミラー5に入射する。このダイクロイックミラー5が、赤色光(第2波長領域の光)と青色光(第1波長領域の光)を透過し、緑色光(第3波長領域)を反射することにより、緑色光は他の色光に対して分離される。ダイクロイックミラー5を透過した4r、4bは偏光板6を透過することにより偏光度を向上させる(コントラスト低下の原因となりうるS偏光の割合を減らす)。然る後、波長選択性位相差板7(波長選択性偏光回転素子)によって、青色光の偏光方向のみを90度回転され(S偏光とされ)、赤色光はP偏光のまま第1偏光ビームスプリッタ9に入射する。ここで、波長選択性位相差板7とは、所定の波長領域の光(ここでは青色光)に対してのみ位相差板として機能する位相差板のことであり、所定の波長領域以外の光に対しては、ただの平行平板であり、位相差板としては機能しない光学素子のことである。以上より、波長選択性偏光回転素子7を透過した4r、4bは、S偏光の青色光8b、P偏光の赤色光8rとなって第1のSWS偏光ビームスプリッター(SWS構造体を持つ偏光ビームスプリッタ)9に入射する。
The three colors of light that have passed through the polarization conversion element are incident on the
第1のSWS偏光ビームスプリッター(第1偏光ビームスプリッター)9に入射した青色光8bは偏光分離面10で反射され、反射型液晶パネル11bに入射する。ここで、この第1のSWS偏光ビームスプリッターは、少なくとも青色光及び赤色光に対して、P偏光(第2直線偏光)を透過しS偏光(第1直線偏光)を反射する特性を持つ。反射型液晶パネル(11b、11g、11r)内の各画素は、オン(明表示)状態の画素は入射光の偏光方向を90度回転させ、オフ(暗表示)状態の画素は入射光の偏光方向を回転させない。したがってオン状態のときP偏光として液晶パネル11bに入射した青色光8bは、P偏光の青色光12bとなって再び第1のSWS偏光ビームスプリッター9に入射する。この際、青色光12bはP偏光であるため、偏光分離面10を透過して第1のSWS偏光ビームスプリッター9から投射光学系20(ダイクロイックプリズム18)に向かって射出する。青色光8bが入射した画素がオフ状態のときは、S偏光のまま再び第1のSWS偏光ビームスプリッタに入射するため、偏光分離面10で反射されて光源方向に戻される(投射光学系に対して遮光される)が、図1においては省略する。また、所定の角度(ここでは45度)と異なる角度で偏光分離面に入射する斜入射光線によるコントラスト低下を低減する目的で、第1のSWS偏光ビームスプリッタと反射型液晶パネル11b、11rとの間に1/4波長板(不図示)を配置する。
The
一方8rはP偏光であるため、偏光分離面10を透過し、反射型液晶パネル11rに入射する。11rがオン状態のとき、赤色光8rはS偏光の赤色光12rとなって再びSWS偏光ビームスプリッター9に入射する。この際、赤色光12rはS偏光であるため、偏光分離面10で反射されて偏光ビームスプリッター9から投射光学系20(ダイクロイックプリズム18)に向かって射出される。
On the other hand, since 8r is P-polarized light, it passes through the
また、ダイクロイックミラー5で反射された4gは、偏光板(不図示、無くても構わない)を透過して偏光度を向上させた後、第2のSWS偏光ビームスプリッター(第2偏光ビームスプリッタ−)14に入射する。緑色光4gはP偏光であるため、偏光分離面15(少なくとも緑色光に対して、P偏光を透過しS偏光を反射する特性を持つ)を透過し、反射型液晶パネル11gに入射する。11gがオン状態のとき緑色光4gは偏光方向を回転され、S偏光の緑色光12gとなって再び第2のSWS偏光ビームスプリッター14に再び入射する。この際、緑色光12gはS偏光であるため偏光分離面15で反射されてSWS偏光ビームスプリッター14を投射光学系20(ダイクロイックプリズム18)に向かって射出する。
Further, 4 g reflected by the
ここで、偏光ビームスプリッタを射出してダイクロイックプリズム18に向かう各色光には、理想的なオン状態の各色光12r、12g、12b以外にもある。オフ状態の画素からの光のうち第1、2SWS偏光ビームスプリッター9、14を介してダイクロイックプリズム(色合成素子)18に入射した光(漏れ光)なども含まれている。このような漏れ光には、画像のコントラストを低下させる成分も含まれており、何らかの光学素子、例えば偏光素子(偏光板)によって不要な偏光成分の光の除去を行っても構わない。しかしながら、SWS偏光ビームスプリッターは極めて高い検光作用(画像光となる偏光成分のみを投射光学系に導く作用)を有するために、これらの偏光素子は必須ではない。
Here, each color light emitted from the polarization beam splitter and directed to the
上述のようにして、第2のSWS偏光ビームスプリッター14を射出した緑色光12g、及び第1のSWS偏光ビームスプリッター9を射出した赤色光12r、青色光12bは、ダイクロイックプリズム18に入射する。
As described above, the
ここで、この実施例1においてダイクロイックプリズム18のダイクロイック面19が満足する特性を図2に示す。この図2においては、縦軸が透過率であり、上方ほど透過率が高く、下方ほど透過率が低く反射率が高いことを示しており、横軸は波長(左側が短波長、右側が長波長)を示している。また、Bは青色光の波長領域、Gは緑色光の波長領域、Rは赤色光の波長領域を示している。この図2を見れば、ダイクロイックプリズム18は短波長から順にP偏光の青色光を透過し、S偏光の緑色光を反射し、S偏光の赤色光を透過する特性を有している事が分かる。その他の領域、すなわちS偏光の青色光、P偏光の緑色光、P偏光の赤色光に対する特性は問わない。例えば、S偏光の青色光、P偏光の緑色光、P偏光の赤色光それぞれに対するダイクロイックプリズム(色合成素子)18の特性を、透過、反射、透過、或いは反射、透過、透過、或いは反射、反射、透過、或いは透過、透過、透過、としても構わない。
Here, FIG. 2 shows the characteristics satisfied by the
ダイクロイックプリズム(色合成素子)18に入射した12r、12g、12bはダイクロイック膜面19によってそれぞれ透過、反射、透過されて、光路合成(色合成)される。このようにして、赤色光12r、緑色光12g、青色光12b共に投射光学系20に入射し、この投射光学系20によりスクリーン(不図示)等の被投射面上に投射される。
12r, 12g, and 12b incident on the dichroic prism (color combining element) 18 are transmitted, reflected, and transmitted by the
本実施例で用いている第1のSWS(Sub Wavelength Structure)偏光ビームスプリッター9に関して詳細に説明する。このSWS偏光ビームスプリッタは、波長以下の周期(好ましくは使用波長の1/2以下の周期)を持つ微細構造(周期構造体)の持つ構造複屈折を利用した偏光ビームスプリッターである。その概略図を図5に示し、SWS構造体の断面図を図6に、斜視図を図7、図8に示す。
The first SWS (Sub Wavelength Structure)
ここで、SWS構造体は、図6の一番上と一番下に配置された平行平板(プリズム状の三角柱等のガラス部材でも構わない)の間に、TiO2と空気の1次元格子で出来た層が積層(図6、7では上下方向に3層)された構造体である。このように第1のSWS構造体(第1の周期構造体)と、その上に積層された周期方向が垂直な第2のSWS構造体(第2の周期構造体)と、さらにその上に積層され、第1のSWS構造体と周期方向が平行な第2のSWS構造体(第3の周期構造体)を含む。このようなSWS構造体(図7の模式図のように、井桁状に格子を積層した構造体)を、図8の模式図の様に、2つのプリズム状の硝材に挟み込むことによって、SWS偏光ビームスプリッタを構成している。 Here, the SWS structure is made of a one-dimensional lattice of TiO2 and air between parallel plates (which may be glass members such as prismatic triangular prisms) arranged at the top and bottom of FIG. This is a structure in which the layers are stacked (three layers in the vertical direction in FIGS. 6 and 7). In this manner, the first SWS structure (first periodic structure), the second SWS structure (second periodic structure) stacked on the first SWS structure and having a perpendicular periodic direction, and further thereon A second SWS structure (third periodic structure) that is stacked and has a periodic direction parallel to the first SWS structure is included. Such a SWS structure (a structure in which lattices are stacked like a schematic diagram in FIG. 7) is sandwiched between two prism-like glass materials as shown in the schematic diagram in FIG. It constitutes a beam splitter.
図9に、このSWS偏光ビームスプリッターにおける周期構造体(微細格子部)での吸収率の分光特性のRCWAによる計算値のグラフを示す。このグラフによると、短波長側で若干吸収が起こっている。特にP偏光に関しては、450nm以下で数%から数十%の吸収がある。一方、S偏光に関して400nm以下で数%吸収される程度であり、P偏光とS偏光との間で吸収率に大きな差がある。 FIG. 9 shows a graph of RCWA calculated values of the spectral characteristics of the absorptance in the periodic structure (fine grating portion) in this SWS polarizing beam splitter. According to this graph, some absorption occurs on the short wavelength side. In particular, for P-polarized light, there is an absorption of several to several tens of percent at 450 nm or less. On the other hand, several percent of S-polarized light is absorbed at 400 nm or less, and there is a large difference in absorption between P-polarized light and S-polarized light.
これは、図5に示す様に、P偏光に関して、SWS偏光ビームスプリッターは透過膜として作用するためSWS層を透過する際に、SWSを構成する媒質TiO2自体の持つ性質の影響を受け短波長側で吸収が起こると考えられる。一方、S偏光に関しては、偏光ビームスプリッターは反射膜として作用する。その際、構造複屈折により、低い屈折率を形成しているためプリズム硝材とSWS膜の界面においては、ほぼ全反射が起こっている。そのためSWSを構成する媒質のTiO2に入射せずに、反射するためTiO2での吸収が起こらないと考えられる。 This is because, as shown in FIG. 5, with respect to P-polarized light, the SWS polarization beam splitter acts as a transmission film, and therefore, when passing through the SWS layer, it is affected by the properties of the medium TiO2 itself that constitutes the SWS, so that the short wavelength side It is thought that absorption occurs in On the other hand, for S-polarized light, the polarizing beam splitter acts as a reflective film. At that time, since a low refractive index is formed by structural birefringence, almost total reflection occurs at the interface between the prism glass material and the SWS film. Therefore, it is considered that absorption by TiO2 does not occur because the light is reflected without entering the TiO2 of the medium constituting the SWS.
本実施例では、SWS偏光ビームスプリッターの反射光での吸収がほとんど起こらないと言う性質を最大限に活用するための構成となっている。つまり、第1のSWS偏光ビームスプリッター9に対して入射する青色光8bの偏光方向を、第1のSWS偏光ビームスプリッタに対してS偏光とすることによって、青色光8bが第1のSWS偏光ビームスプリッタで反射されるように構成している。このように構成することによって、光源からの青色光の全てがS偏光として第1のSWS偏光ビームスプリッタに導かれ、反射されて反射型液晶パネル11bに入射するため、光吸収を少なくすることができる。光源からの光束は、画素(画面)のオン・オフの表示によらず全光束が導かれるため、光源からの青色光をS偏光とすることは、光弾性の影響を低減するために大きく寄与する。
In the present embodiment, the SWS polarizing beam splitter is configured to make maximum use of the property that absorption by reflected light hardly occurs. That is, by making the polarization direction of the
一方、反射型液晶パネル11bで画像変調され偏光が回転した一部の光束のみ、SWS偏光ビームスプリッター9を透過させることで、吸収量を最小限に抑えている。具体的に説明すると以下の通りである。画面全体(の画素)がオン表示の時には、青色光の全光束が反射型液晶パネル11bで反射された後、第1のSWS偏光ビームスプリッタを透過するため、図9で示した特性に基づいた短波長側の吸収が発生する。しかしながら、画面全体がオフ表示の時には、青色光は全て第1のSWS偏光ビームスプリッタで反射されるため吸収がほとんど発生しない。画像情報に依存するのは勿論であるが、青色光を第1のSWS偏光ビームスプリッタに対してS偏光として入射させ、その第1のSWS偏光ビームスプリッタで反射させて反射型画像表示素子に導く構成にすると、逆の構成より光吸収を低減できる。
On the other hand, only a part of the light flux whose image is modulated by the reflection type
このように、青色光に対して、反射・透過の順番の構成が可能なのは、SWS偏光ビームスプリッターを用いているからである。単体で高い検光作用を可能としており、他の偏光板等を必要とせず、構成の自由度が高く、且つ短波長側(可視光領域内の短波長側)の波長におけるS偏光の吸収率が誘電体多層膜を用いる場合と比較して低いからである。 The reason why the blue light can be reflected and transmitted in this order is that the SWS polarization beam splitter is used. A single substance enables a high analytical function, does not require other polarizing plates, has a high degree of freedom in configuration, and has an absorptivity of S-polarized light at wavelengths on the short wavelength side (short wavelength side in the visible light region). This is because it is low as compared with the case where a dielectric multilayer film is used.
尚、本実施例1において、偏光変換素子3は、青色光、緑色光、赤色光それぞれをSWS偏光ビームスプリッタ9、14に対してP偏光となるように偏光方向を揃えたが、その限りでは無く、S偏光となるように偏光方向を揃えても構わない。また、ここで、青色光とは、少なくとも430nm以上470nm以下の波長を含む光、より好ましくは 400nm以上500nm以下の波長の光を指す。緑色光とは520nm以上560nm以下の波長を含む光、より好ましくは500nm以上600nm以下の波長の光を指す。そして、赤色光とは、少なくとも610nm以上650nm以下の波長を含む光、よし好ましくは600nm以上700nm以下の波長の光を指す。
In the first embodiment, the
また、本実施例1においては、白色光を3つの色光に分解したがこの限りでは無い。具体的には、可視光領域内(白色光)の波長を4つに分割したそれぞれの波長領域の光を上記のダイクロイックミラーにより2つずつの色光に分離し、その分離された2つずつの色光を後段の第1、2偏光ビームスプリッターで更に色分解しても構わない。 In the first embodiment, white light is decomposed into three color lights, but this is not restrictive. Specifically, the light in each wavelength region obtained by dividing the wavelength in the visible light region (white light) into four is separated into two colored lights by the dichroic mirror, and the two separated light components are separated. The color light may be further color-separated by the first and second polarizing beam splitters at the subsequent stage.
また、偏光板6は必ずしも必須ではなく、偏光変換素子3の性能が良く、偏光変換素子3から出射する光束の偏光度が高ければ不要である。
Further, the
また、本実施例1においては、ダイクロイックプリズム18を、単に「ダイクロイックプリズム」と記載したが、このダイクロイックプリズム18は、可視光領域内のある波長帯域(いずれかの色光の波長帯域)において偏光分離特性を有していても構わない。前述したように、図2に図示した以外の特性については任意であるため、例えば緑色光に対してS偏光を反射しP偏光を透過する特性を有していても構わない。
In the first embodiment, the
また、本実施例1においては、第1反射型液晶表示素子を青色光に対応するパネル11b、第2反射型液晶表示素子を赤色光に対応するパネル11r、第3反射型液晶表示素子を緑色光に対応するパネル11gとしたがその限りではない。第1反射型液晶表示素子に対応する色光が、第2反射型液晶表示素子に対応する色光の波長よりも波長が短い色光であればそれで足りる。しかしながら、第1反射型液晶表示素子に対応する色光は青色光(可視光領域内を複数の色光に分割した際の最も短波長側の色光)であることが望ましい。
In the first embodiment, the first reflective liquid crystal display element is a
また、本実施例1においてSWS構造体は、図6、7に示したように、第1、2、3のSWS構造体(周期構造体)を持つ構成としたがこの限りでは無く、SWS構造体を2層、或いは4層以上積層した構成としても良い。 In the first embodiment, the SWS structure has the first, second, and third SWS structures (periodic structures) as shown in FIGS. 6 and 7, but the SWS structure is not limited to this. It is good also as a structure which laminated | stacked the body 2 layers or 4 layers or more.
図3は、本発明の第2の実施例である画像表示装置の構成を示したものである。この第2の実施例が前述の実施例1と異なる点は、以下の(ア)〜(オ)に示す通りである。
(ア)偏光変換素子3Aが、光源1からの白色光(青色光、緑色光、赤色光)を各々S偏光(後述するSWS偏光ビームスプリッタに対してS偏光)に揃えている。
(イ)偏光素子(偏光板)6Aが、P偏光を反射(吸収)し、S偏光を透過する特性を有している。
(ウ)波長選択性位相差板7Aが、赤色光に対して位相差板として機能し(赤色光の偏光方向をS偏光方向からP偏光に変換している)、青色光に対しては偏光方向を変えずに透過している。
(エ)反射型液晶パネル11gの配置を変え、反射型液晶パネル11gに対してS偏光の緑色光が入射し、緑色光の画像光がP偏光としている。
(オ)ダイクロイックプリズム(色合成素子)18が、図4に図示するように、緑色光のP偏光を反射する特性を有している。(第1実施例においても、緑色光のP偏光を反射していても構わない。)
以下に、実施例2について簡単に説明するが、特に記載していない点については実施例1と同じである。
FIG. 3 shows the configuration of an image display apparatus according to the second embodiment of the present invention. The difference between the second embodiment and the first embodiment is as shown in the following (a) to (e).
(A) The polarization conversion element 3A aligns white light (blue light, green light, red light) from the
(A) The polarizing element (polarizing plate) 6A has a characteristic of reflecting (absorbing) P-polarized light and transmitting S-polarized light.
(C) The wavelength-selective
(D) The arrangement of the reflective
(E) The dichroic prism (color combining element) 18 has a characteristic of reflecting the P-polarized light of green light as shown in FIG. (Also in the first embodiment, the P-polarized light of green light may be reflected.)
Example 2 will be briefly described below, but the points not particularly described are the same as those in Example 1.
図3中、1は連続スペクトルで白色を発光する光源である。光源1から射出した光は、リフレクタ(ここでは放物面ミラーであるが、勿論楕円ミラーや球形状のミラーであっても構わない。)で反射され、略平行光2となる。この図2においては、この白色光を赤・緑・青の色の3原色の光に分解して図示しており、それぞれを赤色光2r、緑色光2g、青色光2bとして図示している。勿論、この赤、緑、青色光それぞれは、図1上では便宜上空間的に分離して記載しているが、この3つの光はこの段階では空間的に分離されている訳ではない。
In FIG. 3,
これらの光は照明光学系の中にある偏光変換素子3AによってS偏光(紙面に垂直に電場が振動する偏光状態)に偏光が揃えられ、S偏光の赤色光4r、S偏光の緑色光4g、S偏光の青色光4bとなる。
These lights are aligned to S-polarized light (polarized state in which the electric field vibrates perpendicularly to the paper surface) by the polarization conversion element 3A in the illumination optical system, and S-polarized red light 4r, S-polarized
偏光変換素子を経た3色の光は、緑色光成分のみを反射する特性を持つダイクロイックミラー5において、赤色光と青色光が透過され、緑色光が反射されることにより、緑色光は他の色光に対して分離される。ダイクロイックミラー5を透過した4r、4bは偏光板6Aを透過することにより偏光度が向上され、波長選択性位相差板(波長選択性偏光回転素子)7Aに入射する。この波長選択性位相差板7Aは、波長選択性位相差板7と同じく所定の波長領域の光のみの偏光方向を回転させる。ここでは赤色光の偏光方向を回転させ(S偏光からP偏光に変換し)、青色光に対しては位相差板としては機能しない。
The three colors of light that have passed through the polarization conversion element are transmitted through the
波長選択偏光回転素子7Aは、赤色光(成分)の偏光方向を90度回転させると共に透過させ、青色光(成分)の偏光方向は回転させずに透過させる特性を持っている。波長選択性偏光回転素子7Aを透過した4r、4bは、S偏光の青色光8b、P偏光の赤色光8rとなってSWS偏光ビームスプリッター9に入射する。
The wavelength selective
SWS偏光ビームスプリッター9に入射した青色光8bは偏光分離面10で反射され、反射型液晶パネル11bに入射する。反射型液晶パネル(11r、11g、11b)内の各画素は、オン(明表示)状態の画素は入射光の偏光方向を90度回転させ、オフ(暗表示)状態の画素は入射光の偏光方向を回転させない。したがってオン状態のとき8bはP偏光の青色光12bとなって再び偏光ビームスプリッター9に入射、P偏光のため今度は偏光分離面10を透過してSWS偏光ビームスプリッター9から射出する。オフ状態のときは偏光分離面で反射されるが、図3においては省略する。また、斜入射光線の偏光方向を補正する目的で偏光ビームスプリッターと反射型液晶パネルの間に位相差板(1/4波長板)を配置すると好ましいが、ここでは図示しないこととする。
The
一方、8rはP偏光であるため、偏光分離面10を透過し、反射型液晶パネル11rに入射する。11rがオン状態のとき8rはS偏光の赤色光12rとなって再びSWS偏光ビームスプリッター9に入射、S偏光のため今度は偏光分離面10で反射されて偏光ビームスプリッター9を射出する。
On the other hand, since 8r is P-polarized light, it passes through the
また、ダイクロイックミラー5で反射された4gは、偏光板(不図示)を透過して偏光度を良くした後、でSWS偏光ビームスプリッター14に入射し、偏光分離面15に到達する。ここで、偏光板(不図示)は、必須ではなく、無くても構わない。S偏光の4gは偏光分離面15を反射し、反射型液晶パネル11gに入射する。11gがオン状態のとき4gはP偏光の緑色光12gとなって再びSWS偏光ビームスプリッター14に入射、P偏光のため今度は偏光分離面15で透過されてSWS偏光ビームスプリッター14を射出する。
4 g reflected by the
ここで偏光ビームスプリッターを射出してダイクロイックプリズム18に向かう各色光には、理想的なオン状態の各色光12r、12g、12b以外にもある。オフ状態の画素からの光のうちSWS偏光ビームスプリッター9、14を介して色合成素子に入射した光(もれ光)なども含まれている。このような漏れ光には、画像のコントラストを低下させる成分も実際には含まれており、何らかの光学素子、例えば偏光素子(偏光板)によって不要な偏光成分を除去を行っても構わない。しかしながら、SWS偏光ビームスプリッターは極めて高い検光作用を有するために、これらの偏光素子は必ずしも必要とはされない。
Here, each color light emitted from the polarization beam splitter and directed to the
SWS偏光ビームスプリッター14を射出した12gは、ダイクロイックプリズム18に入射する。
12 g exiting the SWS
SWS偏光ビームスプリッター9を射出した12r、12bは、ダイクロイックプリズム18に入射する。この実施例3においてダイクロイックプリズム18のダイクロイック面19に必要とされる特性を図4に示す。この図3においては、縦軸が透過率であり、上方ほど透過率が高く、下方ほど透過率が低く反射率が高いことを示しており、横軸は波長(左側が短波長、右側が長波長)を示している。この図4を見れば、ダイクロイックプリズム18は短波長から順にP偏光の青色光を透過し、P偏光の緑色光を反射し、S偏光の赤色光を透過する特性を有している事が分かる。その他の領域、すなわちS偏光の青色光と緑色光、P偏光の赤色光に対する特性に関しては任意であっても構わない。このようなダイクロイックプリズム18は誘電体多層膜によって容易に実現することが可能であることは既知である。
12r and 12b exiting the SWS
ダイクロイックプリズム18に入射した12r、12g、12bはダイクロイック膜面19によってそれぞれ透過、反射、透過されて、光路合成される。このようにして、赤色光12r、緑色光12g、青色光12b共に、投影光学系20によりスクリーン(図示せず)等の被投射面上に投射される。
12r, 12g, and 12b incident on the
本実施例のSWS偏光ビームスプリッターは、可視光領域内の光の吸収率が非常に低い(特に短波長側での吸収率が従来の偏光ビームスプリッターに比べて低い)。このようなSWS偏光ビームスプリッターを使い、更にこのSWS偏光ビームスプリッターを用いた最適な配置をとることで、偏光ビームスプリッターの光吸収を少なくすることができる。また、その光吸収量の低減による発熱を抑えることができるため、偏光ビームスプリッター内部の応力発生量を低減することができ、その応力発生に伴う光弾性の影響を小さく抑えることができる。従って、本実施例のSWS偏光ビームスプリッターを用い、更に本実施例のような最適な配置を採用することにより、コントラストの高い画像を投射することが可能な投射型画像表示装置を提供する事ができる。 The SWS polarizing beam splitter of this embodiment has a very low light absorptance in the visible light region (particularly, the absorptance on the short wavelength side is lower than that of a conventional polarizing beam splitter). By using such an SWS polarizing beam splitter and further taking an optimum arrangement using the SWS polarizing beam splitter, light absorption of the polarizing beam splitter can be reduced. Further, since heat generation due to the reduction of the light absorption amount can be suppressed, the amount of stress generation inside the polarizing beam splitter can be reduced, and the influence of photoelasticity accompanying the generation of stress can be suppressed to a small level. Accordingly, it is possible to provide a projection type image display apparatus capable of projecting a high contrast image by using the SWS polarization beam splitter of the present embodiment and further adopting the optimum arrangement as in the present embodiment. it can.
また、偏光ビームスプリッターの光吸収量を低減することができ、偏光ビームスプリッターに対する冷却をさほど行わなくても良いため、冷却ファン(不図示)などの構造が簡素化する、或いは冷却ファンの回転数を下げることができ静音化に大きく寄与する。 In addition, since the amount of light absorbed by the polarizing beam splitter can be reduced and the polarizing beam splitter need not be cooled much, the structure of a cooling fan (not shown) is simplified, or the number of rotations of the cooling fan is reduced. Can greatly reduce noise.
1 光源
2 光源からの入射光
2b、2r、2g 青色光、赤色光、緑色光
3、3A 偏光変換素子
4b、4r、4g 偏光変換された青色光、赤色光、緑色光
5 ダイクロイックミラー
6、6A 偏光板
7、7A 波長選択性位相差板
8b、8r、8g 青色光、赤色光、緑色光
9 第1のSWS偏光ビームスプリッター
11b、11r、11g 青色光、赤色光、緑色光用反射型液晶パネル
12b、12r、12g 青色光、赤色光、緑色光
14 第2のSWS偏光ビームスプリッター
18 ダイクロイックプリズム(色合成素子)
19 ダイクロイック膜
20 投射光学系(投射レンズ)
DESCRIPTION OF
19
Claims (7)
前記第1波長領域よりも波長が長い第2波長領域に対応する第2反射型液晶表示素子と、
前記第1、2反射型液晶表示素子からの画像光を被投射面に投射する投射光学系とを有する投射型画像表示装置であって、
前記第1波長領域の波長よりも短い周期の周期構造体を持ち、前記第1波長領域及び前記第2波長領域において、第1直線偏光を反射し、前記第1直線偏光と偏光方向が垂直する第2直線偏光を透過する特性を持つ第1偏光ビームスプリッタを備え、
前記第1偏光ビームスプリッタが、
前記第1波長領域の第1直線偏光を反射して前記第1反射型液晶表示素子に導き、前記第1反射型液晶表示素子から出射する前記第2直線偏光を透過して前記投射光学系に導いており、
且つ、前記第2波長領域の第2直線偏光を透過して前記第2反射型液晶表示素子に導き、前記第2反射型液晶表示素子から出射する前記第1直線偏光を反射して前記投射光学系に導いていることを特徴とする投射型画像表示装置。 A first reflective liquid crystal display element corresponding to the first wavelength region;
A second reflective liquid crystal display element corresponding to a second wavelength region having a wavelength longer than that of the first wavelength region;
A projection type image display device having a projection optical system for projecting image light from the first and second reflective liquid crystal display elements onto a projection surface;
It has a periodic structure with a period shorter than the wavelength of the first wavelength region, reflects the first linearly polarized light in the first wavelength region and the second wavelength region, and the polarization direction is perpendicular to the first linearly polarized light. A first polarizing beam splitter having a characteristic of transmitting the second linearly polarized light;
The first polarizing beam splitter is
The first linearly polarized light in the first wavelength region is reflected and guided to the first reflective liquid crystal display element, and the second linearly polarized light emitted from the first reflective liquid crystal display element is transmitted to the projection optical system. Leading,
In addition, the second linearly polarized light in the second wavelength region is transmitted to the second reflective liquid crystal display element, and the first linearly polarized light emitted from the second reflective liquid crystal display element is reflected to reflect the projection optics. A projection type image display device characterized by being led to a system.
前記第1偏光ビームスプリッタに対するS偏光の偏光方向と平行な方向に周期を持つ第1の周期構造体と、前記S偏光の偏光方向に対して垂直な方向に周期を持つ第2の周期構造体とを含んでいることを特徴とする請求項1乃至5いずれかに記載の投射型画像表示装置。 The periodic structure is
A first periodic structure having a period in a direction parallel to a polarization direction of S-polarized light with respect to the first polarization beam splitter; and a second periodic structure having a period in a direction perpendicular to the polarization direction of the S-polarization. The projection type image display apparatus according to claim 1, wherein the projection type image display apparatus includes:
色合成素子と、
光源から発する白色光から、前記第3波長領域の光を分離すると共に、前記第1、2波長領域の光を前記第1偏光ビームスプリッタに導くダイクロイックミラーと、
前記ダイクロイックミラーにより分離された前記第3波長領域の光を前記第3反射型液晶表示素子に導くと共に、前記第3反射型液晶表示素子から出射する画像光を前記色合成素子に導く第2偏光ビームスプリッタとを備えており、
前記色合成素子が、前記第1偏光ビームスプリッタにより合成された前記第1波長領域の第2直線偏光と前記第2波長領域の第1直線偏光と、前記第2偏光ビームスプリッタから出射した前記第3波長領域の画像光とを合成して、前記投射光学系に導くことを特徴とする請求項1乃至6いずれかに記載の投射型画像表示装置。 A third reflective liquid crystal display element corresponding to a third wavelength region that is longer than the wavelength of the first wavelength region and shorter than the wavelength of the second wavelength region;
A color composition element;
A dichroic mirror that separates light in the third wavelength region from white light emitted from a light source and guides the light in the first and second wavelength regions to the first polarizing beam splitter;
Second polarized light that guides the light in the third wavelength region separated by the dichroic mirror to the third reflective liquid crystal display element and guides the image light emitted from the third reflective liquid crystal display element to the color composition element. With a beam splitter,
The color synthesizing element is configured to output the second linearly polarized light in the first wavelength region, the first linearly polarized light in the second wavelength region synthesized by the first polarizing beam splitter, and the first linearly polarized light in the second wavelength region. The projection type image display device according to claim 1, wherein the projection type image display device combines the image light in a three-wavelength region and guides it to the projection optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328730A JP2009151088A (en) | 2007-12-20 | 2007-12-20 | Projection image display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328730A JP2009151088A (en) | 2007-12-20 | 2007-12-20 | Projection image display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009151088A true JP2009151088A (en) | 2009-07-09 |
Family
ID=40920290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007328730A Pending JP2009151088A (en) | 2007-12-20 | 2007-12-20 | Projection image display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009151088A (en) |
-
2007
- 2007-12-20 JP JP2007328730A patent/JP2009151088A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5164421B2 (en) | Color separation / synthesis optical system and image projection apparatus using the same | |
KR20140081885A (en) | Tilted dichroic polarizing beamsplitter | |
JP5930600B2 (en) | Polarization separation element and image projection apparatus | |
JP4913996B2 (en) | Projection type image display device | |
JP2012509512A (en) | Color synthesizer for polarization conversion | |
JP2010204333A (en) | Projector | |
US11327392B2 (en) | Light source device and projector in which wave plates are downsized | |
JP2013250561A (en) | Projection type video display device | |
JP2006071761A (en) | Polarizing beam splitter and image display device using the same | |
JP2015145976A (en) | Light source device and projection type display device using the same | |
KR100856598B1 (en) | Wavelength-selective polarization conversion element, illumination optical system, projection display optical system, and image projection apparatus | |
JP4072452B2 (en) | Image display device | |
US20090237616A1 (en) | Projection type image display device | |
JP5127143B2 (en) | Color separation optical system and image projection apparatus | |
JP4732089B2 (en) | Wavelength selective polarization conversion element, projection display optical system, and image projection apparatus | |
JP2015145977A (en) | Light source device and projection type display device using the same | |
JP5043520B2 (en) | Optical element, image projection optical system, and image projection apparatus | |
JP7522959B2 (en) | Light source device and projection display device | |
KR100871190B1 (en) | Wavelength-selective polarization conversion elements, projection display optics and image projection devices | |
JP2007102101A (en) | Illumination optical system and image projection device having the same | |
WO2020179232A1 (en) | Optical element and projection-type display device | |
JP5311790B2 (en) | Image display device | |
JP2009151088A (en) | Projection image display device | |
JP5818555B2 (en) | Image projection apparatus and image projection apparatus having projection optical system | |
JP6465594B2 (en) | Color separation / synthesis system and projection display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100630 |