[go: up one dir, main page]

JP2009150271A - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP2009150271A
JP2009150271A JP2007327587A JP2007327587A JP2009150271A JP 2009150271 A JP2009150271 A JP 2009150271A JP 2007327587 A JP2007327587 A JP 2007327587A JP 2007327587 A JP2007327587 A JP 2007327587A JP 2009150271 A JP2009150271 A JP 2009150271A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
nox reduction
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007327587A
Other languages
Japanese (ja)
Inventor
Hirohiko Ota
裕彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007327587A priority Critical patent/JP2009150271A/en
Publication of JP2009150271A publication Critical patent/JP2009150271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a catalyst floor temperature of an NOx reduction catalyst when an accelerator is set at off, a cylinder fuel injection amount is reduced to zero, and the operation such as an idle operation is transferred to a light load area. <P>SOLUTION: This exhaust emission control device of an internal combustion engine having the NOx reduction catalyst comprises: a variable nozzle turbocharger; an after-turbo oxidation catalyst; and a fuel adding valve. The after-turbo oxidation catalyst is disposed immediately after the variable nozzle turbocharger and on the upstream side of the NOx reduction catalyst. The fuel adding valve configures the exhaust emission control device of the internal combustion engine disposed in an exhaust manifold, and controls the nozzle opening of the variable nozzle turbocharger to the excessive restriction side. The addition of the fuel from the fuel adding valve, a post-fuel injection by the fuel injection valve, or the recirculation of exhaust gas is also performed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

排気ガス中に含まれるNOxを浄化処理するためにNOx還元触媒を備え、燃料を還元剤として添加し、NOxの還元浄化を実施する内燃機関においては、触媒床温をある一定の温度以上に昇温することが必要である。例えば、特許文献1の排気浄化装置では、内燃機関の運転領域において、排気再循環(EGR)量の制御、又は燃料噴射弁によるパイロット噴射又はポスト噴射等の制御を行って排気温度を制御し、NOx還元触媒上流で還元剤としての燃料添加を行う技術が開示されている。しかし、特許文献1の排気浄化装置では、触媒床温を判定する手段を更に備え、この温度が所定値を下回った場合には、燃料添加を停止する。   In an internal combustion engine that includes a NOx reduction catalyst for purifying NOx contained in exhaust gas, adds fuel as a reducing agent, and performs NOx reduction purification, the catalyst bed temperature is raised to a certain temperature or higher. It is necessary to warm. For example, in the exhaust purification device of Patent Document 1, in the operation region of the internal combustion engine, the exhaust gas recirculation (EGR) amount is controlled, or the pilot injection or the post injection by the fuel injection valve is controlled to control the exhaust temperature. A technique for adding fuel as a reducing agent upstream of a NOx reduction catalyst is disclosed. However, the exhaust purification device of Patent Document 1 further includes means for determining the catalyst bed temperature, and when this temperature falls below a predetermined value, the fuel addition is stopped.

特開2003−120392号公報JP 2003-120392 A

すなわち、特許文献1の排気浄化装置では、アクセルをオフとし、筒内燃料噴射量がゼロになると、排気温度が低下するため、アクセルオフ状態からアイドル運転等の軽負荷領域に移行する場合には、NOx還元触媒の触媒床温が既に低下しており、燃料添加を停止せざるを得ない。また、軽負荷領域では、排気再循環制御に基づく低温燃焼を通じて、排気温度の上昇を狙っているが、触媒活性温度が既に低下していること、及び触媒活性化に必要なHC、CO排出量が少ないため、HC、COのNOx還元触媒での燃焼が持続せず、白煙を発生するという問題を生じる。   That is, in the exhaust gas purification apparatus of Patent Document 1, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the exhaust gas temperature decreases, so when shifting from the accelerator off state to a light load region such as idle operation. In addition, the catalyst bed temperature of the NOx reduction catalyst has already decreased, and the fuel addition must be stopped. In the light load region, the exhaust temperature is aimed to increase through low-temperature combustion based on exhaust gas recirculation control. However, the catalyst activation temperature has already decreased, and HC and CO emissions required for catalyst activation. Therefore, the combustion of the HC and CO with the NOx reduction catalyst does not continue, and there is a problem that white smoke is generated.

従って、排気ガス中のNOx低減を進めるためには、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合の、NOx還元触媒の触媒床温の低下を防止し、アイドル運転等の軽負荷領域に移行する場合のNOx還元触媒の触媒床温を確保することが課題となる。   Therefore, in order to reduce NOx in the exhaust gas, the accelerator is turned off to prevent a decrease in the catalyst bed temperature of the NOx reduction catalyst when the in-cylinder fuel injection amount becomes zero. Ensuring the catalyst bed temperature of the NOx reduction catalyst when shifting to the load region becomes an issue.

請求項1に記載の発明によれば、NOx還元触媒を備える内燃機関の排気浄化装置であって、可変ノズルターボチャージャと、アフターターボ酸化触媒と、燃料添加弁と、を備え、アフターターボ酸化触媒が、可変ノズルターボチャージャの直後であってNOx還元触媒の上流に配置され、燃料添加弁が、排気マニホールドに配置された、内燃機関の排気浄化装置が提供される。   According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine including a NOx reduction catalyst, comprising a variable nozzle turbocharger, an after turbo oxidation catalyst, and a fuel addition valve, and the after turbo oxidation catalyst. Is provided immediately after the variable nozzle turbocharger and upstream of the NOx reduction catalyst, and the fuel addition valve is disposed in the exhaust manifold.

すなわち、請求項1の発明では、NOx還元触媒の上流にアフターターボ酸化触媒(ATC)を配置し、アフターターボ酸化触媒の上流で、燃料添加弁による燃料添加を行うことによって、アフターターボ酸化触媒にHC、COを供給することができる。従って、アフターターボ酸化触媒でHC、COを燃焼させることにより、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合に、アフターターボ酸化触媒出口の排気ガス温度を高く維持することができるため、NOx還元触媒に流入するガス温度が上がり、アイドル運転等の軽負荷領域に移行する場合のNOx還元触媒の触媒床温を確保することができる。アフターターボ酸化触媒の上流への燃料添加は、排気再循環、燃料噴射弁によるポスト噴射等によって行ってもよい。   That is, in the first aspect of the invention, the after-turbo oxidation catalyst (ATC) is disposed upstream of the NOx reduction catalyst, and the fuel is added by the fuel addition valve upstream of the after-turbo oxidation catalyst. HC and CO can be supplied. Therefore, by burning HC and CO with the after-turbo oxidation catalyst, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the exhaust gas temperature at the after-turbo oxidation catalyst outlet can be kept high. Therefore, the temperature of the gas flowing into the NOx reduction catalyst rises, and the catalyst bed temperature of the NOx reduction catalyst when shifting to a light load region such as idle operation can be ensured. The fuel addition upstream of the after-turbo oxidation catalyst may be performed by exhaust gas recirculation, post-injection by a fuel injection valve, or the like.

請求項2に記載の発明によれば、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、可変ノズルターボチャージャのノズル開度を過絞り側に制御する、請求項1に記載の内燃機関の排気浄化装置が提供される。   According to the invention described in claim 2, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the nozzle opening of the variable nozzle turbocharger is controlled to the over-throttle side. An internal combustion engine exhaust gas purification apparatus is provided.

すなわち、請求項2の発明では、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合に、冷えた吸入空気がアフターターボ酸化触媒に流入することを抑制し、アフターターボ酸化触媒の温度を触媒活性温度付近に維持するとともに、アフターターボ酸化触媒で排気ガス中のHC、COを燃焼させる。従って、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合に、アフターターボ酸化触媒出口の排気ガス温度を高く維持できるため、NOx還元触媒に流入するガス温度が上がり、アイドル運転等の軽負荷領域に移行する場合に、NOx還元触媒の触媒床温を確保することができる。可変ノズルターボチャージャのノズル開度を過絞り側に制御する代わりに、NOx還元触媒の下流の排気絞り弁を、絞り側に制御してもよい。   That is, according to the second aspect of the present invention, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the intake air that has cooled is prevented from flowing into the after-turbo oxidation catalyst, and the temperature of the after-turbo oxidation catalyst is reduced. Is maintained in the vicinity of the catalyst activation temperature, and HC and CO in the exhaust gas are burned by the after-turbo oxidation catalyst. Therefore, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the exhaust gas temperature at the outlet of the after-turbo oxidation catalyst can be maintained high, so that the temperature of the gas flowing into the NOx reduction catalyst rises and When shifting to the light load region, the catalyst bed temperature of the NOx reduction catalyst can be ensured. Instead of controlling the nozzle opening of the variable nozzle turbocharger to the excessive throttle side, the exhaust throttle valve downstream of the NOx reduction catalyst may be controlled to the throttle side.

請求項3に記載の発明によれば、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、更に、燃料添加弁からの燃料添加又は燃料噴射弁によるポスト燃料噴射又は排気再循環による燃料供給を行い、アフターターボ酸化触媒で燃料を燃焼させる、請求項2に記載の内燃機関の排気浄化装置が提供される。   According to the third aspect of the present invention, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the fuel addition from the fuel addition valve or the post fuel injection by the fuel injection valve or the exhaust re-injection is further performed. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein fuel is supplied by circulation and fuel is burned by an after-turbo oxidation catalyst.

すなわち、請求項3の発明では、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合に、従来、燃料噴射弁によるポスト燃料噴射又は燃料添加弁からの燃料添加のみでは、NOx還元触媒が活性化せず、白煙増加といった問題が生じていたが、アフターターボ酸化触媒上流で燃料添加を行い、アフターターボ酸化触媒でHC、COを燃焼させることにより、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合に、アイドル運転へ移行するまでのアフターターボ酸化触媒出口の排気ガス温度を高く維持できるため、NOx還元触媒に流入するガス温度が上がり、アイドル運転等の軽負荷領域におけるNOx還元触媒の触媒床温を確保することができる。アフターターボ酸化触媒へのHC、COの供給は、燃料噴射弁によるポスト燃料噴射又は排気再循環によって行ってもよい。   That is, according to the third aspect of the present invention, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the NOx reduction catalyst is conventionally only obtained by the post fuel injection by the fuel injection valve or the fuel addition from the fuel addition valve. Was not activated, and there was a problem of increased white smoke. However, fuel was added upstream of the after-turbo oxidation catalyst and HC and CO were burned in the after-turbo oxidation catalyst. When the injection amount becomes zero, the exhaust gas temperature at the outlet of the after-turbo oxidation catalyst until the transition to the idling operation can be maintained high, so that the gas temperature flowing into the NOx reduction catalyst rises, and the light load region such as idling operation The catalyst bed temperature of the NOx reduction catalyst in can be ensured. The supply of HC and CO to the after-turbo oxidation catalyst may be performed by post fuel injection by a fuel injection valve or exhaust gas recirculation.

請求項4に記載の発明によれば、アフターターボ酸化触媒の温度が触媒活性温度に到達した場合に、可変ノズルターボチャージャのノズル開度を開放側に制御する、請求項3に記載の内燃機関の排気浄化装置が提供される。   According to the invention described in claim 4, when the temperature of the after-turbo oxidation catalyst reaches the catalyst activation temperature, the internal opening engine of the variable nozzle turbocharger is controlled to the open side. An exhaust gas purification apparatus is provided.

すなわち、請求項4の発明では、アフターターボ酸化触媒の温度が一旦、活性温度に到達し、更にアフターターボ酸化触媒で燃焼する燃料の供給が継続すれば、アフターターボ酸化触媒が失活することがなくなるため、可変ノズルターボチャージャのノズル開度を開放側に制御して、過絞りによる燃費の悪化を回避することができる。   That is, in the invention of claim 4, once the temperature of the after-turbo oxidation catalyst reaches the activation temperature and further the supply of fuel combusted in the after-turbo oxidation catalyst is continued, the after-turbo oxidation catalyst may be deactivated. Therefore, the nozzle opening degree of the variable nozzle turbocharger can be controlled to the open side, and deterioration of fuel consumption due to over-throttle can be avoided.

請求項5に記載の発明によれば、NOx還元触媒を備える内燃機関の排気浄化装置であって、可変ノズルターボチャージャと、アフターターボ酸化触媒と、燃料添加弁と、を備え、アフターターボ酸化触媒が、可変ノズルターボチャージャの直後であってNOx還元触媒の上流に配置され、燃料添加弁が、アフターターボ酸化触媒の下流であってNOx還元触媒の上流に配置され、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、可変ノズルターボチャージャのノズル開度を過絞り側に制御し、更に、燃料噴射弁によるポスト燃料噴射又は排気再循環によってアフターターボ酸化触媒への燃料供給を行い、燃料添加弁からの燃料添加によってNOx還元触媒への還元剤燃料添加を行う、内燃機関の排気浄化装置が提供される。   According to the fifth aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine including a NOx reduction catalyst, comprising a variable nozzle turbocharger, an after turbo oxidation catalyst, and a fuel addition valve, and the after turbo oxidation catalyst. Is located immediately after the variable nozzle turbocharger and upstream of the NOx reduction catalyst, the fuel addition valve is located downstream of the after-turbo oxidation catalyst and upstream of the NOx reduction catalyst, the accelerator is turned off, and the in-cylinder When the fuel injection amount becomes zero, the nozzle opening of the variable nozzle turbocharger is controlled to the over-throttle side, and further fuel is supplied to the after-turbo oxidation catalyst by post fuel injection by the fuel injection valve or exhaust gas recirculation. An exhaust gas purification device for an internal combustion engine is provided, in which the reducing agent fuel is added to the NOx reduction catalyst by adding fuel from a fuel addition valve.

すなわち、請求項3の制御を実施した場合に、請求項1の構成では、添加した燃料が、NOx還元触媒の上流に配置されたアフターターボ酸化触媒で燃焼してしまい、NOx還元触媒への燃料の供給が不足し、NOx還元効率が低下する恐れがあることから、請求項5の発明では、燃料添加弁をアフターターボ酸化触媒の下流であってNOx還元触媒の上流に配置し、アフターターボ酸化触媒の活性確保は、燃料噴射弁からの燃料のポスト噴射による燃焼又は排気再循環による燃料供給で確保し、NOx還元剤燃料添加は、燃料添加弁で制御する。これにより、アフターターボ酸化触媒の活性確保とNOx還元効率アップの効果を両立させることができる。また、アフターターボ酸化触媒の過熱回避のために燃料添加量を制限する必要もなくなる。   That is, when the control of claim 3 is performed, in the configuration of claim 1, the added fuel burns in the after-turbo oxidation catalyst disposed upstream of the NOx reduction catalyst, and the fuel to the NOx reduction catalyst Therefore, in the invention of claim 5, the fuel addition valve is arranged downstream of the after-turbo oxidation catalyst and upstream of the NOx reduction catalyst, and the after-turbo oxidation is performed. Ensuring the activity of the catalyst is ensured by combustion by post-injection of fuel from the fuel injection valve or fuel supply by exhaust gas recirculation, and NOx reducing agent fuel addition is controlled by the fuel addition valve. As a result, it is possible to achieve both the effect of ensuring the activity of the after-turbo oxidation catalyst and increasing the NOx reduction efficiency. Further, it is not necessary to limit the amount of fuel added in order to avoid overheating of the after-turbo oxidation catalyst.

各請求項に記載の発明によれば、アクセルをオフとし、筒内燃料噴射量がゼロとなった場合の、NOx還元触媒の触媒床温の低下を防止し、アイドル運転等の軽負荷領域に移行する場合のNOx還元触媒の触媒床温を確保することができ、排気ガス中のNOx低減を進めることができるという共通の効果を奏する。   According to the invention described in each claim, when the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, it is possible to prevent the catalyst bed temperature of the NOx reduction catalyst from being lowered, and in a light load region such as idle operation. The catalyst bed temperature of the NOx reduction catalyst in the case of transition can be ensured, and there is a common effect that NOx reduction in the exhaust gas can be promoted.

以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材又は装置には、同一の符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that, in the plurality of attached drawings, the same or corresponding members or devices are denoted by the same reference numerals.

図1は、本発明による内燃機関の排気浄化装置の、一実施形態を説明する図である。内燃機関10は、その下流にNOx還元触媒13を備え、内燃機関10からの排気を還元浄化する。内燃機関10は、排気マニホールド12の下流であってNOx還元触媒13の上流に配置され排気によってタービンを駆動し吸気を圧送する可変ノズルターボチャージャ2と、可変ノズルターボチャージャ2の直後でNOx還元触媒13の上流に配置されたアフターターボ酸化触媒14と、排気マニホールド12に配置され、排気に燃料を添加する燃料添加弁16とを備える。また、内燃機関10は、排気再循環(EGR)を行うためのEGRクーラ3及びEGRバルブ7と、コモンレール式燃料噴射弁11とを備える。   FIG. 1 is a diagram illustrating an embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention. The internal combustion engine 10 includes a NOx reduction catalyst 13 downstream thereof to reduce and purify exhaust from the internal combustion engine 10. The internal combustion engine 10 is disposed downstream of the exhaust manifold 12 and upstream of the NOx reduction catalyst 13. The variable nozzle turbocharger 2 drives the turbine by exhaust and pumps intake air, and the NOx reduction catalyst immediately after the variable nozzle turbocharger 2. 13 is provided with an after-turbo oxidation catalyst 14 disposed upstream of 13 and a fuel addition valve 16 disposed in the exhaust manifold 12 for adding fuel to the exhaust. The internal combustion engine 10 includes an EGR cooler 3 and an EGR valve 7 for performing exhaust gas recirculation (EGR), and a common rail fuel injection valve 11.

図2は、図1に示す排気浄化装置の制御の一実施形態を説明するフローチャートである。工程100において、エンジンECUより、エンジン回転数NE(rpm)、アクセル開度ACCP(%)、燃料噴射量Qfin(mm3/秒)、可変ノズルターボチャージャのノズル開度pvnfin(%)、アフターターボ酸化触媒温度Tatc(℃)を読み込む。工程200において、アクセルオフ状態で燃料噴射量がゼロであるかどうかを判定し、アクセルオフ状態で燃料噴射量がゼロである場合には、工程300に進んで、可変ノズルターボチャージャのノズル開度を過絞り側に制御し、冷えた吸入空気がアフターターボ酸化触媒に流入することを抑制する。この場合、可変ノズルターボチャージャのノズル開度を過絞り側に制御する代わりに、NOx還元触媒の下流の排気絞り弁(図示せず)を、絞り側に制御してもよい。更に工程400に進み、燃料添加信号exqfinをオンとし、燃料添加を開始する。すなわち、アフターターボ酸化触媒で、HC、COを燃焼させる。従って、アフターターボ酸化触媒出口の排気ガス温度を高く維持できるため、NOx還元触媒に流入するガス温度が上がる。アフターターボ酸化触媒へのHC、COの供給は、燃料噴射弁によるポスト燃料噴射又は排気再循環によって行ってもよい。工程500に進み、アフターターボ酸化触媒温度が活性温度α以上である場合には、工程600に進み、燃料添加信号exqfinをオフにして、燃料添加を停止する。更に工程700に進み、可変ノズルターボチャージャのノズル開度を開放側に制御し、通常制御の目標値pvntrgに設定する。一方工程500で、アフターターボ酸化触媒温度が活性温度α未満である場合には、工程200に戻り、アクセルオフ状態で燃料噴射量がゼロであるかどうかの判定を再度行い、アクセルオフ状態で燃料噴射量がゼロである場合には、可変ノズルターボチャージャのノズル開度を更に過絞り側に制御する。 FIG. 2 is a flowchart for explaining an embodiment of the control of the exhaust emission control device shown in FIG. In step 100, from the engine ECU, the engine speed NE (rpm), the accelerator opening ACCP (%), the fuel injection amount Qfin (mm 3 / sec), the nozzle opening pvnfin (%) of the variable nozzle turbocharger, the after turbo The oxidation catalyst temperature Tatc (° C.) is read. In step 200, it is determined whether or not the fuel injection amount is zero in the accelerator off state. If the fuel injection amount is zero in the accelerator off state, the process proceeds to step 300 and the nozzle opening of the variable nozzle turbocharger is determined. Is controlled to the over-throttle side to prevent the cooled intake air from flowing into the after-turbo oxidation catalyst. In this case, instead of controlling the nozzle opening degree of the variable nozzle turbocharger to the excessive throttle side, an exhaust throttle valve (not shown) downstream of the NOx reduction catalyst may be controlled to the throttle side. Further, the process proceeds to step 400, where the fuel addition signal exqfin is turned on and fuel addition is started. That is, HC and CO are burned with an after-turbo oxidation catalyst. Therefore, since the exhaust gas temperature at the outlet of the after-turbo oxidation catalyst can be maintained high, the temperature of the gas flowing into the NOx reduction catalyst increases. The supply of HC and CO to the after-turbo oxidation catalyst may be performed by post fuel injection by a fuel injection valve or exhaust gas recirculation. Proceeding to step 500, if the after-turbo oxidation catalyst temperature is equal to or higher than the activation temperature α, proceeding to step 600, the fuel addition signal exqfin is turned off and fuel addition is stopped. Further, the process proceeds to step 700, where the nozzle opening of the variable nozzle turbocharger is controlled to the open side, and set to the target value pvntrg for normal control. On the other hand, when the after-turbo oxidation catalyst temperature is lower than the activation temperature α in step 500, the process returns to step 200, and it is determined again whether the fuel injection amount is zero in the accelerator-off state. When the injection amount is zero, the nozzle opening of the variable nozzle turbocharger is further controlled to the over-throttle side.

このようにして、アクセルオフ状態で燃料噴射量がゼロである場合に、NOx還元触媒の触媒床温を確保することができるので、その後のアイドル運転等の軽負荷領域においてNOx還元触媒の触媒床温を確保することができる。   In this way, when the fuel injection amount is zero in the accelerator off state, the catalyst bed temperature of the NOx reduction catalyst can be ensured, and therefore the catalyst bed of the NOx reduction catalyst in the light load region such as the idling operation thereafter. The temperature can be secured.

図3は、本発明による内燃機関の排気浄化装置の、他の実施形態を説明する図である。図4は、図2に対して、燃料添加弁16が、アフターターボ酸化触媒14の下流であって、NOx還元触媒13の上流に配置されている点が異なる。   FIG. 3 is a diagram for explaining another embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention. 4 differs from FIG. 2 in that the fuel addition valve 16 is disposed downstream of the after-turbo oxidation catalyst 14 and upstream of the NOx reduction catalyst 13.

図4は、図3に示す排気浄化装置の制御の一実施形態を説明するフローチャートである。本制御では、工程100から工程400までは図2と同様であるが、工程400で、燃料添加信号exqfinをオンとし、燃料添加を開始した後、工程410で、燃料噴射弁11のポスト噴射許可信号expostをオンにする。すなわち、燃料添加弁16からの燃料は、NOx還元触媒13で還元剤として使用し、アフターターボ酸化触媒14では、ポスト噴射による燃料噴射弁からの燃料又は排気再循環による排気中の燃料を燃焼させ、アフターターボ酸化触媒の昇温を行う。工程500に進み、アフターターボ酸化触媒温度が活性温度α以上である場合には、工程600に進み、燃料添加信号exqfinをオフにして、燃料添加を停止し、更に工程610で、ポスト噴射許可信号expostをオフにして、ポスト噴射を停止する。その他の流れは、図1と同様である。   FIG. 4 is a flowchart illustrating an embodiment of control of the exhaust purification device shown in FIG. In this control, Step 100 to Step 400 are the same as those in FIG. 2, but the fuel addition signal exqfin is turned on in Step 400 and fuel addition is started. The signal expost is turned on. That is, the fuel from the fuel addition valve 16 is used as a reducing agent in the NOx reduction catalyst 13, and the after-turbo oxidation catalyst 14 burns fuel from the fuel injection valve by post injection or fuel in the exhaust by exhaust gas recirculation. The temperature of the after-turbo oxidation catalyst is increased. Proceeding to step 500, if the after-turbo oxidation catalyst temperature is equal to or higher than the activation temperature α, proceeding to step 600, turning off the fuel addition signal exqfin, stopping the fuel addition, and further, in step 610, the post injection permission signal Turn off the post and stop post-injection. Other flows are the same as those in FIG.

従って、図1、図2の実施形態では、添加した燃料が、NOx還元触媒の上流に配置されたアフターターボ酸化触媒で燃焼してしまい、NOx還元触媒への燃料の供給が不足し、NOx還元効率が低下する恐れがあるのに対し、図3、図4の実施形態では、NOx還元触媒への燃料の供給が確保され、アフターターボ酸化触媒の活性確保とNOx還元効率アップの効果を両立させることができ、有利である。また、アフターターボ酸化触媒の過熱回避のために燃料添加量を制限する必要もなくなるという利益もある。   Therefore, in the embodiment shown in FIGS. 1 and 2, the added fuel is burned by the after-turbo oxidation catalyst disposed upstream of the NOx reduction catalyst, the supply of fuel to the NOx reduction catalyst is insufficient, and the NOx reduction is performed. While the efficiency may be reduced, in the embodiment of FIGS. 3 and 4, the supply of fuel to the NOx reduction catalyst is ensured, and both the effect of ensuring the activity of the after-turbo oxidation catalyst and increasing the NOx reduction efficiency are achieved. Can be advantageous. There is also an advantage that it is not necessary to limit the amount of fuel added to avoid overheating of the after-turbo oxidation catalyst.

本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of embodiment at the time of applying the present invention to the exhaust gas purification device of an internal-combustion engine. 本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明するフローチャートである。It is a flowchart explaining the schematic structure of embodiment at the time of applying this invention to the exhaust gas purification apparatus of an internal combustion engine. 本発明を内燃機関の排気浄化装置に適用した場合の、他の実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of other embodiment at the time of applying this invention to the exhaust gas purification apparatus of an internal combustion engine. 本発明を内燃機関の排気浄化装置に適用した場合の、他の実施形態の概略構成を説明するフローチャートである。It is a flowchart explaining schematic structure of other embodiment at the time of applying this invention to the exhaust gas purification apparatus of an internal combustion engine.

符号の説明Explanation of symbols

1 エアクリーナ
2 可変ノズルターボチャージャ
3 EGRクーラ
4 吸気バイパス弁
5 インタークーラ
6 吸気絞り弁
7 EGRバルブ
8 吸気マニホールド
9 コモンレール
10 内燃機関本体
11 燃料噴射弁
12 排気マニホールド
13 NOx還元触媒
14 ATC
15 排気温度センサー
16 燃料添加弁
DESCRIPTION OF SYMBOLS 1 Air cleaner 2 Variable nozzle turbocharger 3 EGR cooler 4 Intake bypass valve 5 Intercooler 6 Intake throttle valve 7 EGR valve 8 Intake manifold 9 Common rail 10 Internal combustion engine body 11 Fuel injection valve 12 Exhaust manifold 13 NOx reduction catalyst 14 ATC
15 Exhaust temperature sensor 16 Fuel addition valve

Claims (5)

NOx還元触媒を備える内燃機関の排気浄化装置であって、
可変ノズルターボチャージャと、
アフターターボ酸化触媒と、
燃料添加弁と、を備え、
前記アフターターボ酸化触媒が、前記可変ノズルターボチャージャの直後であって前記NOx還元触媒の上流に配置され、
前記燃料添加弁が、排気マニホールドに配置された、
内燃機関の排気浄化装置。
An exhaust purification device for an internal combustion engine including a NOx reduction catalyst,
Variable nozzle turbocharger,
An after-turbo oxidation catalyst,
A fuel addition valve,
The after-turbo oxidation catalyst is disposed immediately after the variable nozzle turbocharger and upstream of the NOx reduction catalyst;
The fuel addition valve is disposed in the exhaust manifold;
An exhaust purification device for an internal combustion engine.
アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、前記可変ノズルターボチャージャのノズル開度を過絞り側に制御する、
請求項1に記載の内燃機関の排気浄化装置。
When the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, the nozzle opening of the variable nozzle turbocharger is controlled to the over-throttle side,
The exhaust emission control device for an internal combustion engine according to claim 1.
アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、更に、前記燃料添加弁からの燃料添加又は燃料噴射弁によるポスト燃料噴射又は排気再循環による燃料供給を行い、
前記アフターターボ酸化触媒で前記燃料を燃焼させる、
請求項2に記載の内燃機関の排気浄化装置。
When the accelerator is turned off and the in-cylinder fuel injection amount becomes zero, fuel addition from the fuel addition valve or fuel supply by post fuel injection by the fuel injection valve or exhaust recirculation is performed,
Burning the fuel with the after-turbo oxidation catalyst;
The exhaust emission control device for an internal combustion engine according to claim 2.
前記アフターターボ酸化触媒の温度が触媒活性温度に到達した場合に、前記可変ノズルターボチャージャのノズル開度を開放側に制御する、請求項3に記載の内燃機関の排気浄化装置。   The exhaust purification device of an internal combustion engine according to claim 3, wherein when the temperature of the after-turbo oxidation catalyst reaches a catalyst activation temperature, the nozzle opening degree of the variable nozzle turbocharger is controlled to the open side. NOx還元触媒を備える内燃機関の排気浄化装置であって、
可変ノズルターボチャージャと、
アフターターボ酸化触媒と、
燃料添加弁と、を備え、
前記アフターターボ酸化触媒が、前記可変ノズルターボチャージャの直後であって前記NOx還元触媒の上流に配置され、
前記燃料添加弁が、前記アフターターボ酸化触媒の下流であって前記NOx還元触媒の上流に配置され、
アクセルをオフとし、筒内燃料噴射量がゼロとなった場合には、
前記可変ノズルターボチャージャのノズル開度を過絞り側に制御し、
更に、燃料噴射弁によるポスト燃料噴射又は排気再循環によって前記アフターターボ酸化触媒への燃料供給を行い、前記燃料添加弁からの燃料添加によって前記NOx還元触媒への還元剤燃料添加を行う、
内燃機関の排気浄化装置。
An exhaust purification device for an internal combustion engine including a NOx reduction catalyst,
Variable nozzle turbocharger,
An after-turbo oxidation catalyst,
A fuel addition valve,
The after-turbo oxidation catalyst is disposed immediately after the variable nozzle turbocharger and upstream of the NOx reduction catalyst;
The fuel addition valve is disposed downstream of the after-turbo oxidation catalyst and upstream of the NOx reduction catalyst;
When the accelerator is turned off and the in-cylinder fuel injection amount becomes zero,
Control the nozzle opening of the variable nozzle turbocharger to the over-throttle side,
Furthermore, fuel is supplied to the after-turbo oxidation catalyst by post fuel injection or exhaust gas recirculation by a fuel injection valve, and reductant fuel is added to the NOx reduction catalyst by adding fuel from the fuel addition valve.
An exhaust purification device for an internal combustion engine.
JP2007327587A 2007-12-19 2007-12-19 Exhaust gas purification device for internal combustion engine Pending JP2009150271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327587A JP2009150271A (en) 2007-12-19 2007-12-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327587A JP2009150271A (en) 2007-12-19 2007-12-19 Exhaust gas purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009150271A true JP2009150271A (en) 2009-07-09

Family

ID=40919667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327587A Pending JP2009150271A (en) 2007-12-19 2007-12-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009150271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921677A2 (en) 2014-01-31 2015-09-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US10662842B2 (en) 2017-09-22 2020-05-26 Mazda Motor Corporation Exhaust purification device of engine, vehicle engine including exhaust purification device, and method of controlling engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120368A (en) * 2001-10-05 2003-04-23 Toyota Motor Corp Exhaust purification system for compression ignition type internal combustion engine
JP2004137963A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Control device in decelerating vehicle
JP2005133609A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2006183558A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Engine control device
JP2006316757A (en) * 2005-05-16 2006-11-24 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2007056742A (en) * 2005-08-24 2007-03-08 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2007255371A (en) * 2006-03-24 2007-10-04 Daihatsu Motor Co Ltd Injection control method of reducing agent for exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120368A (en) * 2001-10-05 2003-04-23 Toyota Motor Corp Exhaust purification system for compression ignition type internal combustion engine
JP2004137963A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Control device in decelerating vehicle
JP2005133609A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2006183558A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Engine control device
JP2006316757A (en) * 2005-05-16 2006-11-24 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2007056742A (en) * 2005-08-24 2007-03-08 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2007255371A (en) * 2006-03-24 2007-10-04 Daihatsu Motor Co Ltd Injection control method of reducing agent for exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921677A2 (en) 2014-01-31 2015-09-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US10662842B2 (en) 2017-09-22 2020-05-26 Mazda Motor Corporation Exhaust purification device of engine, vehicle engine including exhaust purification device, and method of controlling engine
DE102018006318B4 (en) 2017-09-22 2022-01-27 Mazda Motor Corporation Emission control device of an engine, vehicle engine containing an emission control device, and method for controlling an engine

Similar Documents

Publication Publication Date Title
US8371108B2 (en) Twin turbo diesel aftertreatment system
US7195006B2 (en) Exhaust gas recirculation system with control of EGR gas temperature
US9062577B2 (en) Diesel engine operation for fast transient response and low emissions
JP5609828B2 (en) Exhaust gas purification device for internal combustion engine
JP3555559B2 (en) Internal combustion engine
WO2007066835A1 (en) Exhaust gas purification system for internal combustion engine
US10087803B2 (en) Method and system for an exhaust catalyst
US8875505B2 (en) Internal combustion engine and method for controlling internal combustion engine speed
JP5155718B2 (en) Exhaust purification device
JP6229488B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP4485400B2 (en) Exhaust gas purification device for internal combustion engine
KR100674248B1 (en) Exhaust Purification System and Exhaust Purification Method of Internal Combustion Engine
JP4182770B2 (en) diesel engine
JP2006233898A (en) Egr device
JP2004100489A (en) Exhaust gas white smoke prevention device
JP2008038696A (en) Internal combustion engine
JP2009150271A (en) Exhaust gas purification device for internal combustion engine
JP5287797B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP2007332799A (en) Exhaust gas purification device for internal combustion engine
JP5823842B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engine with turbocharger
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP2004124744A (en) Turbocharged engine
JP2012041892A (en) Diesel engine
JP2008038825A (en) Control device for internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206