[go: up one dir, main page]

JP2009149130A - Aerodynamic structure for vehicles - Google Patents

Aerodynamic structure for vehicles Download PDF

Info

Publication number
JP2009149130A
JP2009149130A JP2007326489A JP2007326489A JP2009149130A JP 2009149130 A JP2009149130 A JP 2009149130A JP 2007326489 A JP2007326489 A JP 2007326489A JP 2007326489 A JP2007326489 A JP 2007326489A JP 2009149130 A JP2009149130 A JP 2009149130A
Authority
JP
Japan
Prior art keywords
vehicle
wheel
wheel house
stepped portion
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007326489A
Other languages
Japanese (ja)
Inventor
Masanori Takano
正憲 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007326489A priority Critical patent/JP2009149130A/en
Publication of JP2009149130A publication Critical patent/JP2009149130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

【課題】車両の走行状況に応じてホイールハウス内の空気流を整流する。
【解決手段】車両用ホイールハウス構造10では、車両の速度が大きい際に、所定数の段差部40が車両前側位置に配置される。このため、車輪20の車両後側からホイールハウス18への空気流が衝突面32、40Bに衝突して、ホイールハウス18への空気の流入が抑制されることで、ホイールハウス18内の空気流を整流できて、車両の空気抵抗を低減できる。一方、車両の速度が小さい際、車両の走行面が悪路である際、及び、車両の走行面の摩擦係数が小さい際には、所定数の段差部40が車両後側位置に配置される。このため、車輪20の接地状態を良くできて、車両の操縦安定性を確保できる。
【選択図】図1
An air flow in a wheel house is rectified according to a traveling state of a vehicle.
In a vehicle wheel house structure, when a vehicle speed is high, a predetermined number of stepped portions are disposed at a vehicle front side position. For this reason, the air flow from the vehicle rear side of the wheel 20 to the wheel house 18 collides with the collision surfaces 32 and 40B, and the inflow of air to the wheel house 18 is suppressed. The air resistance of the vehicle can be reduced. On the other hand, when the speed of the vehicle is low, when the running surface of the vehicle is a bad road, and when the friction coefficient of the running surface of the vehicle is small, a predetermined number of stepped portions 40 are arranged at the vehicle rear side position. . For this reason, the grounding state of the wheel 20 can be improved, and the steering stability of the vehicle can be ensured.
[Selection] Figure 1

Description

本発明は、車両のホイールハウス内の空気流を整流する車両用空力構造に関する。   The present invention relates to an aerodynamic structure for a vehicle that rectifies an air flow in a wheel house of the vehicle.

車両用空力構造としては、車両の高速走行時に、ホイールハウスと車輪との間の隙間がシャッタによって塞がれて、車両に作用する空気抵抗が低減されるものがある(例えば、特許文献1参照)。   As an aerodynamic structure for a vehicle, there is one in which a clearance between a wheel house and a wheel is closed by a shutter when the vehicle travels at a high speed, and air resistance acting on the vehicle is reduced (see, for example, Patent Document 1). ).

このように、車両用空力構造では、車両の走行状況に応じて、ホイールハウス内の空気流を整流できるのが好ましい。
特開2006−327548公報
Thus, in the vehicle aerodynamic structure, it is preferable that the air flow in the wheel house can be rectified according to the traveling state of the vehicle.
JP 2006-327548 A

本発明は、上記事実を考慮し、車両の走行状況に応じてホイールハウス内の空気流を整流できる車両用空力構造を得ることが目的である。   An object of the present invention is to obtain an aerodynamic structure for a vehicle that can rectify an air flow in a wheel house in accordance with a traveling state of the vehicle in consideration of the above facts.

請求項1に記載の車両用空力構造は、車両のホイールハウスに設けられると共に、前記ホイールハウス内における車輪の回転軸心よりも車両後側に配置され、前記車輪側へ突出されることで衝突面が前記車輪側へ突出されて前記衝突面に前記車輪の回転に伴い前記ホイールハウス内へ向かう空気流が衝突する段差部と、車両の走行状況を検出する検出手段と、前記検出手段の検出結果に基づいて前記段差部の前記車輪側への突出量を調整する調整手段と、を備えている。   The aerodynamic structure for a vehicle according to claim 1 is provided in a wheel house of the vehicle, is disposed on the vehicle rear side with respect to a rotation axis of a wheel in the wheel house, and collides by protruding toward the wheel side. A step portion in which a surface protrudes toward the wheel side and an air flow toward the wheel house collides with the collision surface as the wheel rotates, detection means for detecting a traveling state of the vehicle, and detection by the detection means Adjusting means for adjusting the amount of protrusion of the stepped portion toward the wheel based on the result.

請求項2に記載の車両用空力構造は、請求項1に記載の車両用空力構造において、前記段差部を折り畳み可能にして前記段差部の前記車輪側への突出量を調整可能にした、ことを特徴としている。   The aerodynamic structure for a vehicle according to claim 2 is the aerodynamic structure for a vehicle according to claim 1, wherein the stepped portion can be folded to adjust a protruding amount of the stepped portion to the wheel side. It is characterized by.

請求項3に記載の車両用空力構造は、請求項1又は請求項2に記載の車両用空力構造において、前記検出手段は、車両の走行速度を検出し、かつ、前記検出手段が検出した車両の走行速度が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくする、ことを特徴としている。   The aerodynamic structure for a vehicle according to claim 3 is the aerodynamic structure for a vehicle according to claim 1 or 2, wherein the detection means detects a traveling speed of the vehicle and the vehicle detected by the detection means. When the traveling speed of the vehicle is reduced, the adjusting means reduces the protruding amount of the stepped portion toward the wheel.

請求項4に記載の車両用空力構造は、請求項1〜請求項3の何れか1項に記載の車両用空力構造において、前記検出手段は、車両の走行面を検出し、かつ、前記検出手段が検出した車両の走行面による車両の振動周波数が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくすると共に、前記検出手段が検出した車両の走行面の抵抗が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくする、ことを特徴としている。   The aerodynamic structure for a vehicle according to claim 4 is the aerodynamic structure for a vehicle according to any one of claims 1 to 3, wherein the detection means detects a traveling surface of the vehicle, and the detection is performed. When the vibration frequency of the vehicle due to the vehicle running surface detected by the means decreases, the adjusting means reduces the protrusion amount of the stepped portion to the wheel side, and the resistance of the vehicle running surface detected by the detecting means decreases. In this case, the adjusting means reduces the protruding amount of the stepped portion toward the wheel.

請求項1に記載の車両用空力構造では、車両のホイールハウスに設けられた段差部が、ホイールハウス内における車輪の回転軸心よりも車両後側に配置されており、段差部が車輪側へ突出されることで、衝突面が車輪側へ突出されて、衝突面に車輪の回転に伴いホイールハウス内へ向かう空気流が衝突する。このため、車輪の回転に伴うホイールハウス内への空気流の流入が抑制されて、ホイールハウス内の空気流を整流できる。   In the vehicle aerodynamic structure according to claim 1, the step portion provided in the wheel house of the vehicle is disposed on the vehicle rear side with respect to the rotational axis of the wheel in the wheel house, and the step portion moves toward the wheel side. By projecting, the collision surface is projected to the wheel side, and the air flow toward the wheel house collides with the collision surface as the wheel rotates. For this reason, inflow of the air flow into the wheel house accompanying the rotation of the wheel is suppressed, and the air flow in the wheel house can be rectified.

ここで、検出手段が車両の走行状況を検出し、検出手段の検出結果に基づいて調整手段が段差部の車輪側への突出量を調整する。このため、車両の走行状況に応じて、ホイールハウス内の空気流を整流できる。   Here, the detection means detects the traveling state of the vehicle, and the adjustment means adjusts the amount of protrusion of the step portion toward the wheel based on the detection result of the detection means. For this reason, the air flow in the wheel house can be rectified according to the traveling state of the vehicle.

請求項2に記載の車両用空力構造では、段差部が折り畳み可能にされて、段差部の車輪側への突出量が調整可能にされている。このため、簡単な構成で、段差部の車輪側への突出量を調整可能にすることができる。   In the aerodynamic structure for a vehicle according to the second aspect, the stepped portion is made foldable so that the amount of protrusion of the stepped portion toward the wheel can be adjusted. For this reason, it is possible to adjust the protruding amount of the stepped portion toward the wheel with a simple configuration.

請求項3に記載の車両用空力構造では、検出手段が車両の走行速度を検出する。   In the vehicle aerodynamic structure according to claim 3, the detecting means detects the traveling speed of the vehicle.

ここで、検出手段が検出した車両の走行速度が小さくなると、調整手段が段差部の車輪側への突出量を小さくする。このため、車両の操縦安定性を確保することができる。   Here, when the traveling speed of the vehicle detected by the detection unit decreases, the adjustment unit decreases the protrusion amount of the stepped portion toward the wheel. For this reason, the steering stability of the vehicle can be ensured.

請求項4に記載の車両用空力構造では、検出手段が車両の走行面を検出する。   In the vehicle aerodynamic structure according to the fourth aspect, the detecting means detects the traveling surface of the vehicle.

ここで、検出手段が検出した車両の走行面による車両の振動周波数が小さくなると、調整手段が前記段差部の前記車輪側への突出量を小さくすると共に、検出手段が検出した車両の走行面の抵抗が小さくなると、調整手段が段差部の車輪側への突出量を小さくする。このため、車両の操縦安定性を確保することができる。   Here, when the vibration frequency of the vehicle due to the vehicle running surface detected by the detecting unit decreases, the adjusting unit reduces the protruding amount of the stepped portion toward the wheel, and the vehicle running surface detected by the detecting unit is also reduced. When the resistance is reduced, the adjusting means reduces the protruding amount of the stepped portion toward the wheel. For this reason, the steering stability of the vehicle can be ensured.

[第1の実施の形態]
図1には、本発明の第1の実施の形態に係る車両用空力構造としての車両用ホイールハウス構造10が車両左方から見た断面図にて示されており、図5には、車両用ホイールハウス構造10が適用されて構成された車両12(自動車)の前部が車両左方から見た側面図にて示されている。なお、図面では、車両前方を矢印FRで示し、車幅方向内方(車両右方)を矢印INで示し、上方を矢印UPで示す。
[First Embodiment]
FIG. 1 is a sectional view of a vehicle wheel house structure 10 as a vehicle aerodynamic structure according to the first embodiment of the present invention viewed from the left side of the vehicle, and FIG. A front portion of a vehicle 12 (automobile) configured by applying the wheel house structure 10 is shown in a side view as seen from the left side of the vehicle. In the drawings, the front side of the vehicle is indicated by an arrow FR, the inner side in the vehicle width direction (right side of the vehicle) is indicated by an arrow IN, and the upper side is indicated by an arrow UP.

本実施の形態における車両12の前部及び後部には、車幅方向両端において、板状のフェンダパネル14が設けられている。フェンダパネル14には、略半円弧状のホイールアーチ16が形成されており、ホイールアーチ16内は、下向きに開口している。   Plate-shaped fender panels 14 are provided at both ends in the vehicle width direction at the front and rear portions of the vehicle 12 in the present embodiment. A wheel arch 16 having a substantially semicircular arc shape is formed on the fender panel 14, and the inside of the wheel arch 16 opens downward.

車両12の前部及び後部には、ホイールアーチ16の車幅方向内側において、略半円柱状のホイールハウス18が形成されており、ホイールハウス18の内周面は、ホイールアーチ16の外周側に配置されている。ホイールハウス18内には、車輪20(前輪、後輪)が車輪軸20Aを中心として回転可能に設けられており、特に車輪20が前輪である場合には、車輪20が、ホイールアーチ16の外周内側に配置されて、ホイールアーチ16の車幅方向外側へ転舵(車幅方向へ傾動)可能にされている。   A substantially semi-cylindrical wheel house 18 is formed at the front and rear portions of the vehicle 12 on the inner side in the vehicle width direction of the wheel arch 16, and the inner peripheral surface of the wheel house 18 is on the outer peripheral side of the wheel arch 16. Has been placed. In the wheel house 18, wheels 20 (front wheels and rear wheels) are rotatably provided around the wheel shaft 20 </ b> A. In particular, when the wheels 20 are front wheels, the wheels 20 are arranged on the outer periphery of the wheel arch 16. Arranged inside, the wheel arch 16 can be steered outward (tilted in the vehicle width direction).

車輪軸20Aは、サスペンション22の下端に支持されており、サスペンション22は、上端が車体側に固定されて、車輪軸20Aを介して車輪20に下側への付勢力を付与している。   The wheel shaft 20A is supported by the lower end of the suspension 22, and the suspension 22 has an upper end fixed to the vehicle body side and applies a downward biasing force to the wheel 20 via the wheel shaft 20A.

車輪20の車幅方向内側には、ブレーキ装置(図示省略)が設けられており、ブレーキ装置は、車輪20の回転を制動して、車両12を制動可能にされている。   A brake device (not shown) is provided inside the wheel 20 in the vehicle width direction, and the brake device brakes the rotation of the wheel 20 so that the vehicle 12 can be braked.

ホイールハウス18内には、ホイールアーチ16の外周側において、樹脂製で板状のフェンダライナ24が設けられており、フェンダライナ24は、車両側面視略円弧状にされてホイールアーチ16に沿って湾曲されると共に、車輪20の外周面の上側部分を被覆している。フェンダライナ24の車幅方向内側端は、ホイールハウス18の車幅方向内側壁に固定されており、フェンダライナ24の車幅方向外側端は、フェンダパネル14に固定されている。   In the wheel house 18, a resin-made plate-like fender liner 24 is provided on the outer peripheral side of the wheel arch 16, and the fender liner 24 is formed in a substantially arc shape in a vehicle side view along the wheel arch 16. It is curved and covers the upper part of the outer peripheral surface of the wheel 20. The inner end in the vehicle width direction of the fender liner 24 is fixed to the inner wall in the vehicle width direction of the wheel house 18, and the outer end in the vehicle width direction of the fender liner 24 is fixed to the fender panel 14.

フェンダライナ24の車両後側部分かつ下側部分には、湾曲直方体状の凹部26が形成されており、凹部26は、車輪20の回転中心軸線O(回転軸心)の車両後側における車輪20と高さが同一の範囲内に配置されている。凹部26の車幅方向外側面及び下面は、開口されており、凹部26の車幅方向外側面は、フェンダパネル14によって閉じられている。凹部26の底壁(外周壁及び車両後側壁)には、矩形状の開口28が貫通形成されており、開口28の上端は、凹部26の上壁に接している。   A curved rectangular parallelepiped concave portion 26 is formed in the rear side portion and the lower side portion of the fender liner 24, and the concave portion 26 corresponds to the wheel 20 on the vehicle rear side of the rotation center axis O (rotation axis) of the wheel 20. Are arranged in the same range. The outer surface and the lower surface in the vehicle width direction of the recess 26 are opened, and the outer surface in the vehicle width direction of the recess 26 is closed by the fender panel 14. A rectangular opening 28 is formed through the bottom wall (outer peripheral wall and vehicle rear side wall) of the recess 26, and the upper end of the opening 28 is in contact with the upper wall of the recess 26.

凹部26には、図4に詳細に示す空力スタビライザ30が設けられており、凹部26の上面は、下側へ向けられた平面状の衝突面32にされている。車輪20の回転中心軸線Oを中心とした衝突面32の車両前側端の水平面Hに対する上側へのなす角θは、50°以下にされるのが好ましく、40°以下にされるのが一層好ましく、30°程度にされている。凹部26の開口28には、略三角柱形容器状の段差部材34が設けられており、段差部材34の車両後側面は、開放されている。段差部材34の上端は、凹部26の開口28上端部分に回動軸36において回転可能に支持されており、段差部材34は回動軸36を中心として車両前後方向へ回動可能にされている。   An aerodynamic stabilizer 30 shown in detail in FIG. 4 is provided in the concave portion 26, and the upper surface of the concave portion 26 is a flat collision surface 32 directed downward. The angle θ formed by the upper side of the vehicle front side of the collision surface 32 around the rotation center axis O of the wheel 20 with respect to the horizontal plane H is preferably 50 ° or less, and more preferably 40 ° or less. , About 30 °. A step member 34 having a substantially triangular prism shape is provided in the opening 28 of the recess 26, and the vehicle rear side surface of the step member 34 is opened. The upper end of the step member 34 is rotatably supported by the rotation shaft 36 at the upper end portion of the opening 28 of the recess 26, and the step member 34 is rotatable about the rotation shaft 36 in the vehicle longitudinal direction. .

段差部材34の両側壁(車幅方向両側壁)及び下壁は、車両後側部分において、伸縮手段(折畳手段)としての折畳部38にされており、折畳部38は、蛇腹状(断面波形状)にされて、折り畳み及び展開可能(伸縮可能)にされている。段差部材34の両側壁における折畳部38は、それぞれ、断面略J字状(断面略U字状でもよい)にされて、車幅方向外側部分の車両前側端が、凹部26の開口28の車幅方向両端に固定されると共に、段差部材34の下壁における折畳部38は、断面略J字状(断面略U字状でもよい)にされて、下側部分の車両前側端が凹部26の開口28の下端に固定されている。これにより、段差部材34の両側壁及び下壁における各折畳部38が折り畳み及び展開されることで、段差部材34が車両前後方向へ回動可能にされている。   Both side walls (both side walls in the vehicle width direction) and the lower wall of the step member 34 are formed into folding parts 38 as expansion / contraction means (folding means) in the rear part of the vehicle, and the folding part 38 has a bellows shape. It is made into (cross-sectional wave shape), and can be folded and expanded (expandable). The folding portions 38 on both side walls of the step member 34 are each formed in a substantially J-shaped cross section (may be a substantially U-shaped cross section), and the vehicle front side end of the vehicle width direction outer portion is the opening 28 of the recess 26. While being fixed to both ends in the vehicle width direction, the folding portion 38 on the lower wall of the step member 34 has a substantially J-shaped cross section (may be a substantially U-shaped cross section), and the vehicle front side end of the lower portion is recessed. 26 is fixed to the lower end of the opening 28. As a result, the step members 34 can be rotated in the vehicle front-rear direction by folding and unfolding the folding portions 38 on both side walls and the lower wall of the step member 34.

段差部材34の車両前側部分には、三角柱形容器状の段差部40が所定数(本実施の形態では3つ)形成されており、所定数の段差部40は、それぞれ車両後側面が開放されると共に、上下方向において連続して配置されている。段差部40の上面は、車両前側へ向けられた平面状の案内面40Aにされると共に、段差部40の下面は、下側へ向けられた平面状の衝突面40Bにされており、案内面40Aの車両側面視の長さは、衝突面40Bの車両側面視の長さに比し、長くされている。段差部40の案内面40Aと衝突面40Bとの間の頂部40Cは、段差部40のうちで最も車輪20側へ突出されており、段差部40の頂部40Cは、フェンダライナ24の内周面と面一の位置に配置されている。また、最下の段差部40の衝突面40Bは、車輪20の回転中心軸線Oを通る水平面Hに比し、下側に配置されており、最下の段差部40の衝突面40Bは、下側に配置される程好ましい。   A predetermined number (three in this embodiment) of stepped portions 40 having a triangular prism shape are formed on the vehicle front side portion of the stepped member 34, and the predetermined number of stepped portions 40 each have a vehicle rear side surface opened. And arranged continuously in the vertical direction. The upper surface of the stepped portion 40 is a planar guide surface 40A directed to the front side of the vehicle, and the lower surface of the stepped portion 40 is a planar collision surface 40B directed downward. The length of the vehicle side view of 40A is made longer than the length of the vehicle side view of the collision surface 40B. The top portion 40C between the guide surface 40A and the collision surface 40B of the step portion 40 protrudes to the wheel 20 side most of the step portion 40, and the top portion 40C of the step portion 40 is the inner peripheral surface of the fender liner 24. It is arranged at the same position. Further, the collision surface 40B of the lowermost step portion 40 is arranged on the lower side as compared to the horizontal plane H passing through the rotation center axis O of the wheel 20, and the collision surface 40B of the lowermost step portion 40 is lower It is so preferable that it is arranged on the side.

凹部26上面の衝突面32と最上の段差部40の案内面40Aとの間及び上側の段差部40の衝突面40Bと下側の段差部40の案内面40Aとの間には、三角柱状のストッパ溝42が形成されており、ストッパ溝42は、車輪20側に開口され、かつ、車幅方向内側が凹部26の車幅方向内側面に対向されると共に、車幅方向外側がフェンダパネル14に対向されている。車両12の前進走行時には、車輪20の回転(図1の矢印Aの方向への回転)に伴う車輪20の車両後側における上側(特に車両後斜め上方)への空気流が、ストッパ溝42に流入して、案内面40Aに案内されると共に、衝突面40Bに衝突する。   Between the collision surface 32 on the upper surface of the recess 26 and the guide surface 40A of the uppermost step portion 40 and between the collision surface 40B of the upper step portion 40 and the guide surface 40A of the lower step portion 40, a triangular prism shape is formed. A stopper groove 42 is formed. The stopper groove 42 is opened to the wheel 20 side, the inner side in the vehicle width direction is opposed to the inner side surface in the vehicle width direction of the recess 26, and the outer side in the vehicle width direction is the fender panel 14. It is opposed to. When the vehicle 12 travels forward, the air flow to the upper side (especially obliquely upward in the rear of the vehicle) of the wheel 20 accompanying the rotation of the wheel 20 (rotation in the direction of arrow A in FIG. It flows in, is guided by the guide surface 40A, and collides with the collision surface 40B.

段差部材34の車両後側における車体側には、調整手段を構成する駆動手段としてのアクチュエータ44が設けられており、アクチュエータ44には、本体部46及び延出軸48が設けられている。本体部46は車体側に固定されており、延出軸48は本体部46から車両前側へ延出されている。延出軸48の車両前側端は、段差部材34の下部(最下の段差部40)の車両前側壁に回動可能に連結されており、アクチュエータ44が駆動されて、延出軸48の本体部46に対する延出量が調整されることで、段差部材34が車両前後方向へ回動されて、段差部材34の凹部26底壁からの車輪20側への突出量が調整可能にされている。   An actuator 44 serving as a driving unit that constitutes an adjusting unit is provided on the vehicle body side of the step member 34 on the vehicle rear side. The actuator 44 is provided with a main body 46 and an extending shaft 48. The main body 46 is fixed to the vehicle body side, and the extension shaft 48 extends from the main body 46 to the vehicle front side. The vehicle front side end of the extension shaft 48 is rotatably connected to the vehicle front side wall of the lower portion (lowermost step portion 40) of the step member 34, and the actuator 44 is driven to drive the main body of the extension shaft 48. By adjusting the amount of extension with respect to the portion 46, the step member 34 is rotated in the vehicle front-rear direction, and the amount of protrusion of the step member 34 from the bottom wall of the recess 26 toward the wheel 20 can be adjusted. .

上記車輪軸20Aには、検出手段としての車速センサ50が設けられており、車速センサ50は、車両12の速度を検出可能にされている。車両12には、検出手段としてのナビゲーションシステム52が設けられており、ナビゲーションシステム52は、車両12の速度及び車両12の走行面54(路面)の摩擦係数を検出可能にされている。   The wheel shaft 20 </ b> A is provided with a vehicle speed sensor 50 as detection means, and the vehicle speed sensor 50 can detect the speed of the vehicle 12. The vehicle 12 is provided with a navigation system 52 as detection means. The navigation system 52 can detect the speed of the vehicle 12 and the friction coefficient of the running surface 54 (road surface) of the vehicle 12.

上記サスペンション22の上端が固定される車体側には、検出手段としての上荷重センサ56が設けられており、上荷重センサ56は、車輪20からサスペンション22の付勢力を介して車体側へ入力される荷重を検出可能にされている。サスペンション22の下部には、検出手段としての下荷重センサ58が設けられており、下荷重センサ58は、車輪20からサスペンション22の付勢力を介さないで車体側へ入力される荷重を検出可能にされている。これにより、上荷重センサ56及び下荷重センサ58は、車両12に走行面54から入力される振動の周波数及び車両12の振幅を検出可能にされており、車両12に入力される振動の周波数が小さい際には、車両12の走行面54が凹凸の大きい悪路であると判断され、一方、車両12に入力される振動の周波数が大きい際には、車両12の走行面54が平坦な(凹凸の小さい)良路であると判断される。   An upper load sensor 56 as a detecting means is provided on the vehicle body side to which the upper end of the suspension 22 is fixed. The upper load sensor 56 is input from the wheel 20 to the vehicle body side via the urging force of the suspension 22. The load to be detected can be detected. A lower load sensor 58 as a detecting means is provided at the lower part of the suspension 22, and the lower load sensor 58 can detect a load input from the wheel 20 to the vehicle body without passing through the urging force of the suspension 22. Has been. As a result, the upper load sensor 56 and the lower load sensor 58 can detect the frequency of vibration input to the vehicle 12 from the traveling surface 54 and the amplitude of the vehicle 12, and the frequency of vibration input to the vehicle 12 can be detected. When it is small, it is determined that the running surface 54 of the vehicle 12 is a rough road with large unevenness. On the other hand, when the frequency of vibration input to the vehicle 12 is large, the running surface 54 of the vehicle 12 is flat ( It is judged as a good road with small irregularities.

車両12の特に前端部には、検出手段としてのCCD(Charge Coupled Device)センサ60が設けられており、CCDセンサ60は、車両12の走行面54の画像を検出して、車両12の走行面54の摩擦係数を検出可能にされている。車両12には、検出手段としての外気温センサ62が設けられており、外気温センサ62は、車両12外の気温を検出可能にされている。これにより、外気温センサ62は、車両12の走行面54が積雪、凍結等して、走行面54の摩擦係数が小さいことを検出可能にされている。   A CCD (Charge Coupled Device) sensor 60 as a detecting means is provided at the front end portion of the vehicle 12, and the CCD sensor 60 detects an image of the traveling surface 54 of the vehicle 12 to detect the traveling surface of the vehicle 12. A coefficient of friction of 54 can be detected. The vehicle 12 is provided with an outside air temperature sensor 62 as detection means, and the outside air temperature sensor 62 can detect the air temperature outside the vehicle 12. Thus, the outside air temperature sensor 62 can detect that the running surface 54 of the vehicle 12 is snowed, frozen, etc. and the friction coefficient of the running surface 54 is small.

上記サスペンション22の上端が固定される車体側には、検出手段としてのVSC(Vehicle Stability Control)センサ64が設けられており、VSCセンサ64は、車両12の滑り(特に横滑り)を検出して、車両12の走行面54の摩擦係数が小さいことを検出可能にされている。   On the vehicle body side where the upper end of the suspension 22 is fixed, a VSC (Vehicle Stability Control) sensor 64 as a detecting means is provided. The VSC sensor 64 detects a slip (particularly a side slip) of the vehicle 12, It is possible to detect that the friction coefficient of the running surface 54 of the vehicle 12 is small.

上記アクチュエータ44、車速センサ50、ナビゲーションシステム52、上荷重センサ56、下荷重センサ58、CCDセンサ60、外気温センサ62及びVSCセンサ64は、車両12の調整手段を構成する制御手段としてのECU66に接続されている。   The actuator 44, the vehicle speed sensor 50, the navigation system 52, the upper load sensor 56, the lower load sensor 58, the CCD sensor 60, the outside air temperature sensor 62, and the VSC sensor 64 are added to the ECU 66 as the control means that constitutes the adjustment means of the vehicle 12. It is connected.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の車両12では、段差部材34(所定数の段差部40)が車両前側限度位置に配置されて、段差部40の頂部40Cがフェンダライナ24の内周面と面一の位置に配置されている。   In the vehicle 12 having the above configuration, the step member 34 (a predetermined number of step portions 40) is disposed at the vehicle front side limit position, and the top portion 40C of the step portion 40 is disposed at a position flush with the inner peripheral surface of the fender liner 24. Has been.

車両12の前進走行に伴って車輪20が回転すると、車輪20の回転に引きずられるようにして、車輪20の車両後側からホイールハウス18に流入する上側への空気流が生じる。この空気流は、最下の衝突面40Bに衝突する。さらに、この空気流は、ストッパ溝42に流入し、案内面40Aに案内されて、衝突面32、40Bに衝突する。このため、空気流が塞き止められてストッパ溝42内の圧力が上昇し、この圧力上昇範囲がストッパ溝42と車輪20との間の空間まで及ぶことで、車輪20の車両後側からホイールハウス18内への空気の流入抵抗が増大する。これにより、ホイールハウス18への空気の流入が抑制されて、車両12の下面下側からホイールハウス18に流入しようとする空気流が弱く、ホイールハウス18の周辺(ホイールハウス18内を含む)の空気流の乱れが抑制(整流)されることで、車両12の下面下側を車両後側へ向けて流れる空気流が乱されることが抑制されて、車両12の下面下側において空気流が車両後側へ向けてスムースに流れることができる。   When the wheel 20 rotates as the vehicle 12 moves forward, an upward air flow that flows into the wheel house 18 from the rear side of the wheel 20 is generated by being dragged by the rotation of the wheel 20. This air flow collides with the lowermost collision surface 40B. Further, this air flow flows into the stopper groove 42, is guided by the guide surface 40A, and collides with the collision surfaces 32 and 40B. For this reason, the air flow is blocked and the pressure in the stopper groove 42 increases, and this pressure increase range extends to the space between the stopper groove 42 and the wheel 20, so that the wheel 20 from the vehicle rear side of the wheel 20 The inflow resistance of air into the house 18 increases. As a result, the inflow of air into the wheel house 18 is suppressed, and the air flow that is about to enter the wheel house 18 from the lower side of the lower surface of the vehicle 12 is weak, and the periphery of the wheel house 18 (including the inside of the wheel house 18). By suppressing (rectifying) the turbulence of the air flow, the air flow flowing from the lower surface of the vehicle 12 toward the rear side of the vehicle is suppressed from being disturbed. It can flow smoothly toward the rear side of the vehicle.

さらに、上述の如くホイールハウス18への流入空気量が減少することで、ホイールハウス18の車幅方向外側へ排出される空気量も減少する。特に、ホイールハウス18に空気流が流入する最上流部であるホイールハウス18の車両後側部かつ下側部に衝突面40Bが配設されているため、ホイールハウス18の車幅方向外側へ排出される空気量を効果的に減少させることができる。このため、車両12の側面に沿って車両後側へ向けて流れる空気流が乱されることが抑制されて、車両12の側面において空気流が車両後側へ向けてスムースに流れることができる。   Furthermore, as the amount of air flowing into the wheel house 18 decreases as described above, the amount of air discharged to the outside in the vehicle width direction of the wheel house 18 also decreases. In particular, since the collision surface 40B is disposed on the vehicle rear side and the lower side of the wheel house 18, which is the most upstream part where the airflow flows into the wheel house 18, it is discharged to the outside in the vehicle width direction of the wheel house 18. The amount of air that is generated can be effectively reduced. For this reason, it is suppressed that the airflow which flows toward the vehicle rear side along the side surface of the vehicle 12 is suppressed, and the airflow can smoothly flow toward the vehicle rear side on the side surface of the vehicle 12.

以上により、車両12では、衝突面32、40Bの作用によって、空気抵抗(CD値)の低減による燃費向上、車輪20の接地荷重確保による操縦安定性の向上、風切り音の低減、スプラッシュ(車輪20による走行面54からの水の撒き上げ)の低減、車輪20の車幅方向内側のブレーキ装置へ向かう空気流の確保等を図ることができる。   As described above, in the vehicle 12, due to the action of the collision surfaces 32 and 40B, the fuel efficiency is improved by reducing the air resistance (CD value), the steering stability is improved by securing the ground load of the wheel 20, the wind noise is reduced, and the splash (wheel 20 The water flow from the running surface 54 due to the above can be reduced, and the air flow toward the brake device on the inner side in the vehicle width direction of the wheel 20 can be secured.

さらに、段差部材34の段差部40がフェンダライナ24の内周面に対し突出しないため、段差部40と車輪20との干渉が問題となることがない。したがって、段差部40と車輪20との干渉防止のために制約を受けることがなく、空力上の要求性能に基づいて段差部40を設計することができる。   Further, since the stepped portion 40 of the stepped member 34 does not protrude from the inner peripheral surface of the fender liner 24, the interference between the stepped portion 40 and the wheel 20 does not become a problem. Therefore, there is no restriction for preventing the interference between the stepped portion 40 and the wheel 20, and the stepped portion 40 can be designed based on the aerodynamic required performance.

ここで、図1〜図3に示す如く、アクチュエータ44が駆動されることで、段差部材34(所定数の段差部40)が、車両前側限度位置(段差部40の頂部40Cがフェンダライナ24の内周面と面一になる位置)と車両後側限度位置(例えば段差部40の頂部40Cが凹部26の底面と面一になる位置)との間で、車両前後方向へ回動されて、段差部40(案内面40A及び衝突面40B)の車輪20側への突出量が調整可能にされている。   Here, as shown in FIGS. 1 to 3, when the actuator 44 is driven, the step member 34 (a predetermined number of step portions 40) is moved to the vehicle front limit position (the top portion 40 </ b> C of the step portion 40 is the position of the fender liner 24. Between the inner peripheral surface) and the vehicle rear limit position (for example, the position where the top portion 40C of the stepped portion 40 is flush with the bottom surface of the recess 26) The amount of protrusion of the stepped portion 40 (the guide surface 40A and the collision surface 40B) toward the wheel 20 is adjustable.

さらに、車速センサ50及びナビゲーションシステム52の少なくとも1つが、車両12の速度を検出する。また、上荷重センサ56及び下荷重センサ58の少なくとも1つが、車両12に走行面54から入力される振動の周波数及び車両12の振幅を検出して、車両12に走行面54から入力される振動の周波数が小さい際には、車両12の走行面54が悪路であると判断され、一方、車両12に走行面54から入力される振動の周波数が大きい際には、車両12の走行面54が良路であると判断される。さらに、ナビゲーションシステム52、CCDセンサ60、外気温センサ62及びVSCセンサ64の少なくとも1つが、車両12の走行面54の摩擦係数を検出する。   Further, at least one of the vehicle speed sensor 50 and the navigation system 52 detects the speed of the vehicle 12. In addition, at least one of the upper load sensor 56 and the lower load sensor 58 detects the frequency of vibration input to the vehicle 12 from the traveling surface 54 and the amplitude of the vehicle 12, and vibration input to the vehicle 12 from the traveling surface 54. When the frequency of the vehicle 12 is small, it is determined that the traveling surface 54 of the vehicle 12 is a rough road. On the other hand, when the frequency of vibration input to the vehicle 12 from the traveling surface 54 is large, the traveling surface 54 of the vehicle 12 is Is judged to be a good road. Further, at least one of the navigation system 52, the CCD sensor 60, the outside air temperature sensor 62, and the VSC sensor 64 detects the friction coefficient of the traveling surface 54 of the vehicle 12.

また、車両12の速度が小さい際や車両12の走行面54が悪路である際には、車両12に入力される振動の周波数が小さくなる。一方、車両12の走行面54が良路であって車両12の速度が大きい際(車両12の良路高速前進走行時)には、車両12に入力される振動の周波数が大きくなる。   Further, when the speed of the vehicle 12 is low or when the traveling surface 54 of the vehicle 12 is a rough road, the frequency of vibration input to the vehicle 12 is reduced. On the other hand, when the traveling surface 54 of the vehicle 12 is a good road and the speed of the vehicle 12 is high (when the vehicle 12 travels on a good road at high speed), the frequency of vibration input to the vehicle 12 increases.

図6には、下荷重センサ58の検出による、車両12に走行面54から入力される振動の周波数と、車両12の振幅と、の関係が示されている。車両12に走行面54から入力される振動の周波数が大きい際には、段差部材34が車両前側限度位置に配置される場合(図6の実線A)の方が、段差部材34が車両後側限度位置に配置される場合(図6の破線B)に比し、車両12の振幅が小さくなって、車輪20の接地状態が良くなる。一方、車両12に走行面54から入力される振動の周波数が小さい際には、段差部材34が車両前側限度位置に配置される場合(図6の実線A)の方が、段差部材34が車両後側限度位置に配置される場合(図6の破線B)に比し、車両12の振幅が大きくなって、車輪20の接地状態が悪くなる(見かけ上サスペンション22の付勢力が弱くなったように感じられる)。   FIG. 6 shows the relationship between the frequency of vibration input to the vehicle 12 from the traveling surface 54 and the amplitude of the vehicle 12, as detected by the lower load sensor 58. When the frequency of vibration input to the vehicle 12 from the running surface 54 is large, the step member 34 is located on the vehicle rear side when the step member 34 is disposed at the vehicle front limit position (solid line A in FIG. 6). Compared to the case where the vehicle is disposed at the limit position (broken line B in FIG. 6), the amplitude of the vehicle 12 is reduced, and the ground contact state of the wheel 20 is improved. On the other hand, when the frequency of the vibration input to the vehicle 12 from the running surface 54 is small, the step member 34 is disposed in the vehicle when the step member 34 is disposed at the vehicle front limit position (solid line A in FIG. 6). Compared with the case where the vehicle is disposed at the rear limit position (broken line B in FIG. 6), the amplitude of the vehicle 12 is increased, and the ground contact state of the wheels 20 is deteriorated (apparently the urging force of the suspension 22 is weakened). To feel).

また、車両12の走行面54が積雪や凍結等せずに、走行面54の摩擦係数が大きい際には、段差部材34が車両前側限度位置に配置される場合の方が、段差部材34が車両後側限度位置に配置される場合に比し、車両12の振幅が小さくなって、車輪20の接地状態が良くなる。一方、車両12の走行面54が積雪や凍結等して、走行面54の摩擦係数が小さい際には、段差部材34が車両前側限度位置に配置される場合の方が、段差部材34が車両後側限度位置に配置される場合に比し、車両12の振幅が大きくなって、車輪20の接地状態が悪くなる(見かけ上サスペンション22の付勢力が弱くなったように感じられる)。   Further, when the running surface 54 of the vehicle 12 is not covered with snow or frozen and the friction coefficient of the running surface 54 is large, the stepped member 34 is more easily disposed when the stepped member 34 is disposed at the vehicle front limit position. Compared with the case where the vehicle is placed at the rear limit position, the amplitude of the vehicle 12 is reduced, and the ground contact state of the wheels 20 is improved. On the other hand, when the running surface 54 of the vehicle 12 is covered with snow, freezes, etc., and the friction coefficient of the running surface 54 is small, the stepped member 34 is placed in the vehicle front limit position when the stepped member 34 is disposed at the vehicle front limit position. Compared with the case where the vehicle 12 is disposed at the rear limit position, the amplitude of the vehicle 12 is increased, and the ground contact state of the wheel 20 is deteriorated (apparently, the urging force of the suspension 22 seems to be weakened).

以上により、検出された車両12に走行面54から入力される振動の周波数及び車両12の走行面54の摩擦係数に基づき、ECUの制御によって、アクチュエータ44が駆動されることで、段差部材34(所定数の段差部40)が車両前後方向へ回動されて、段差部40(案内面40A及び衝突面40B)の車輪20側への突出量が調整される。   Based on the above, based on the detected frequency of vibration input to the vehicle 12 from the running surface 54 and the friction coefficient of the running surface 54 of the vehicle 12, the actuator 44 is driven under the control of the ECU, whereby the step member 34 ( A predetermined number of stepped portions 40) are rotated in the vehicle front-rear direction, and the amount of protrusion of the stepped portion 40 (the guide surface 40A and the collision surface 40B) toward the wheel 20 is adjusted.

具体的には、走行面54の摩擦係数が大きい際(車両12の走行面54が積雪や凍結等していない際)において、車両12に走行面54から入力される振動の周波数が大きい際(車両12の良路高速前進走行時)には、段差部材34が車両前側位置(特に車両前側限度位置)に配置される。これにより、車輪20の接地状態を良くすることができて、上記段差部材34の衝突面32、40Bの作用による効果を奏することができる。   Specifically, when the friction coefficient of the traveling surface 54 is large (when the traveling surface 54 of the vehicle 12 is not covered with snow or frozen), the frequency of vibration input to the vehicle 12 from the traveling surface 54 is large ( When the vehicle 12 is traveling on a good road at a high speed, the step member 34 is disposed at the vehicle front side position (particularly the vehicle front side limit position). Thereby, the ground contact state of the wheel 20 can be improved, and the effect of the collision surfaces 32 and 40B of the step member 34 can be obtained.

一方、走行面54の摩擦係数が大きい際(車両12の走行面54が積雪や凍結等していない際)において車両12に走行面54から入力される振動の周波数が小さい際(車両12の速度が小さい際や車両12の走行面54が悪路である際)、及び、走行面54の摩擦係数が小さい際(車両12の走行面54が積雪や凍結等した際)には、段差部材34が車両後側位置(特に車両後側限度位置)に配置される。これにより、車輪20の接地状態を良くすることができて、車両12の操縦安定性を確保することができる。   On the other hand, when the friction coefficient of the running surface 54 is large (when the running surface 54 of the vehicle 12 is not covered with snow, freezing, etc.), when the frequency of vibration input to the vehicle 12 from the running surface 54 is small (the speed of the vehicle 12 Is low, or when the running surface 54 of the vehicle 12 is a rough road) and when the friction coefficient of the running surface 54 is small (when the running surface 54 of the vehicle 12 is snowed, frozen, etc.), the step member 34 Is arranged at the vehicle rear side position (in particular, the vehicle rear side limit position). Thereby, the grounding state of the wheel 20 can be improved, and the steering stability of the vehicle 12 can be ensured.

また、検出された車両12の走行面54に基づき、段差部材34(所定数の段差部40)に着雪や着氷したとECUが判断した場合には、ECUの制御によって、定期的又は不定期(特に車両12の停止中)に、アクチュエータ44が駆動されることで、段差部材34(所定数の段差部40)が車両前後方向へ往復回動される。これにより、段差部材34から雪や氷を脱落させることができ、段差部材34に強固に付着した雪や氷が成長して車輪20に干渉することで車両12の走行に支障をきたしたり異音を発生したりすることを抑制することができる。しかも、車両12の停止中に段差部材34が車両前後方向へ往復回動されることで、車両12の走行性能に影響がでることを抑制できる。   In addition, when the ECU determines that the stepped member 34 (a predetermined number of stepped portions 40) has snowed or iced on the basis of the detected traveling surface 54 of the vehicle 12, it is periodically or not controlled under the control of the ECU. When the actuator 44 is driven at regular intervals (particularly when the vehicle 12 is stopped), the step member 34 (a predetermined number of step portions 40) is reciprocally rotated in the vehicle front-rear direction. As a result, snow and ice can be dropped from the step member 34, and the snow and ice firmly attached to the step member 34 grow and interfere with the wheels 20, thereby impeding the running of the vehicle 12 and abnormal noise. Can be suppressed. In addition, it is possible to suppress the traveling performance of the vehicle 12 from being affected by the step member 34 reciprocatingly rotated in the vehicle front-rear direction while the vehicle 12 is stopped.

さらに、段差部材34の両側壁及び下壁の車両後側部分が折畳部38にされて、各折畳部38が折り畳み及び展開されることで、段差部材34(所定数の段差部40)が車両前後方向へ回動可能にされている。このため、簡単な構成で、段差部材34を車両前後方向へ回動可能にすることができる。   Further, the vehicle rear side portions of both side walls and the lower wall of the step member 34 are formed into the folding portions 38, and the respective folding portions 38 are folded and unfolded, whereby the step members 34 (a predetermined number of the step portions 40). Is rotatable in the longitudinal direction of the vehicle. For this reason, the step member 34 can be rotated in the vehicle front-rear direction with a simple configuration.

また、本実施の形態では、1つのアクチュエータ44によって複数の段差部40を車両前後方向へ回動させる。このため、構成を簡単にすることができる。   In the present embodiment, the plurality of step portions 40 are rotated in the vehicle front-rear direction by one actuator 44. For this reason, a structure can be simplified.

[第2の実施の形態]
図7には、本発明の第2の実施の形態に係る車両用空力構造としての車両用ホイールハウス構造80の主要部が車両前斜め左方から見た斜視図にて示されている。
[Second Embodiment]
FIG. 7 is a perspective view of a main part of a vehicle wheel house structure 80 as an aerodynamic structure for a vehicle according to a second embodiment of the present invention as seen obliquely from the left front of the vehicle.

本実施の形態に係る車両用ホイールハウス構造80は、上記第1の実施の形態とほぼ同様の構成であるが、以下の点で異なる。   The vehicle wheel house structure 80 according to the present embodiment has substantially the same configuration as that of the first embodiment, but differs in the following points.

本実施の形態に係る車両用ホイールハウス構造80では、段差部材34の複数(本実施の形態では3つ)の段差部40が、それぞれ上端の回動軸36において車両前後方向へ回動可能に支持されており、段差部40の両側壁(車幅方向両側壁)及び下壁は、全体において折畳部38にされて、それぞれ車両後側端において凹部26の開口28の車幅方向両端及び下端に固定されている。   In the vehicle wheel house structure 80 according to the present embodiment, a plurality of (three in the present embodiment) stepped portions 40 of the stepped member 34 can be pivoted in the vehicle longitudinal direction on the pivot shaft 36 at the upper end. The side wall (both side walls in the vehicle width direction) and the lower wall of the stepped portion 40 are supported by the folded portion 38 as a whole, and both ends in the vehicle width direction of the openings 28 of the recesses 26 at the vehicle rear side ends, respectively. It is fixed at the lower end.

各段差部40の車両後側における車体側には、アクチュエータ44が設けられており、各アクチュエータ44の延出軸48の車両前側端は、各段差部40の車両前側壁に回動可能に連結されている。これにより、各アクチュエータ44が駆動されることで、各段差部40が独立して車両前後方向へ回動されて、各段差部40の凹部26底壁からの車輪20側への突出量が独立して調整可能にされている。   An actuator 44 is provided on the vehicle body side of each stepped portion 40 on the vehicle rear side, and the vehicle front side end of the extension shaft 48 of each actuator 44 is rotatably connected to the vehicle front side wall of each stepped portion 40. Has been. Thereby, by driving each actuator 44, each step 40 is independently rotated in the vehicle front-rear direction, and the amount of protrusion of each step 40 from the bottom wall of the recess 26 toward the wheel 20 is independent. And has been made adjustable.

ここで、本実施の形態でも、上記第1の実施の形態と同様の作用及び効果を奏することができる。   Here, also in this embodiment, the same operations and effects as those in the first embodiment can be obtained.

さらに、複数のアクチュエータ44が駆動されることで、複数の段差部40が独立して車両前後方向へ回動される。このため、車両12の走行状況に基づいて、各段差部40(案内面40A及び衝突面40B)の車輪20側への突出量を細かく調整することができて、車両12の走行性能を一層細かく制御することができる。   Furthermore, by driving the plurality of actuators 44, the plurality of step portions 40 are independently rotated in the vehicle front-rear direction. For this reason, the amount of protrusion of each stepped portion 40 (the guide surface 40A and the collision surface 40B) toward the wheel 20 can be finely adjusted based on the traveling state of the vehicle 12, and the traveling performance of the vehicle 12 can be further refined. Can be controlled.

また、検出された車両12の走行面54に基づき、段差部材34(所定数の段差部40)に着雪や着氷したとECUが判断した場合には、ECUの制御によって、複数のアクチュエータ44が駆動されることで、上下方向において隣り合う段差部40を車両前後方向の逆方向へ往復回動させることができる。これにより、段差部材34から雪や氷を効果的に脱落させることができる。   Further, when the ECU determines that the stepped member 34 (a predetermined number of stepped portions 40) has snowed or iced on the basis of the detected traveling surface 54 of the vehicle 12, a plurality of actuators 44 are controlled by the ECU. Is driven, the stepped portions 40 adjacent in the up-down direction can be reciprocated in the reverse direction of the vehicle front-rear direction. Thereby, snow and ice can be effectively dropped from the step member 34.

なお、上記第1の実施の形態及び第2の実施の形態では、凹部26の上面に衝突面32を設けた構成としたが、凹部26上面の衝突面32は、段差部40の衝突面40Bに比し、上側に配置されて、ホイールハウス18への空気流入抑制効果が低い。このため、上記第1の実施の形態又は第2の実施の形態において、例えば、図8(A)に示す第1変形例の如く凹部26上面の衝突面32の車両側面視長さを短くした構成や、図8(B)に示す第2変形例の如く凹部26に上面(衝突面32)を設けない構成としてもよい。   In the first embodiment and the second embodiment, the collision surface 32 is provided on the upper surface of the concave portion 26. However, the collision surface 32 on the upper surface of the concave portion 26 is the collision surface 40B of the stepped portion 40. Compared to the above, it is arranged on the upper side, and the effect of suppressing air inflow to the wheel house 18 is low. Therefore, in the first embodiment or the second embodiment, for example, the vehicle side view length of the collision surface 32 on the upper surface of the recess 26 is shortened as in the first modification shown in FIG. A configuration or a configuration in which the upper surface (collision surface 32) is not provided in the recess 26 as in the second modification shown in FIG.

また、上記第1の実施の形態及び第2の実施の形態では、アクチュエータ44が段差部材34(段差部40)を車両前後方向へ回動させる構成としたが、段差部材34(段差部40)を回動可能に支持する回動軸36に駆動手段としてのモータの出力軸を連結して、モータが回動軸36を回転させることで、段差部材34(段差部40)を車両前後方向へ回動させる構成としてもよい。   In the first embodiment and the second embodiment, the actuator 44 rotates the step member 34 (step 40) in the vehicle front-rear direction. However, the step member 34 (step 40) An output shaft of a motor as drive means is connected to a rotation shaft 36 that supports the rotation of the rotation shaft 36, and the motor rotates the rotation shaft 36, thereby moving the step member 34 (step portion 40) in the vehicle front-rear direction. It is good also as a structure to rotate.

本発明の第1の実施の形態に係る車両用ホイールハウス構造において段差部材が車両前側限度位置に配置された状態を示す車両左方から見た断面図である。It is sectional drawing seen from the vehicle left side which shows the state by which the level | step difference member has been arrange | positioned in the vehicle front side limit position in the vehicle wheel house structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車両用ホイールハウス構造において段差部材が車両前側限度位置と車両後側限度位置との中間位置に配置された状態を示す車両左方から見た断面図である。FIG. 3 is a cross-sectional view seen from the left side of the vehicle showing a state in which the step member is arranged at an intermediate position between the vehicle front limit position and the vehicle rear limit position in the vehicle wheel house structure according to the first embodiment of the present invention. is there. 本発明の第1の実施の形態に係る車両用ホイールハウス構造において段差部材が車両後側限度位置に配置された状態を示す車両左方から見た断面図である。It is sectional drawing seen from the vehicle left side which shows the state by which the level | step difference member is arrange | positioned in the vehicle rear side limit position in the vehicle wheel house structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車両用ホイールハウス構造の主要部を示す車両前斜め左方から見た斜視図である。It is the perspective view seen from the vehicle front diagonal left which shows the principal part of the wheel house structure for vehicles which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車両用ホイールハウス構造が適用されて構成された車両の前部を示す車両左方から見た側面図である。It is the side view seen from the vehicle left side which shows the front part of the vehicle comprised by applying the wheel house structure for vehicles concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る車両用ホイールハウス構造において下荷重センサの検出による車両に走行面から入力される振動の周波数(横軸)と車両の振幅(縦軸)との関係を示すグラフである。In the vehicle wheel house structure according to the first embodiment of the present invention, the relationship between the vibration frequency (horizontal axis) input from the running surface to the vehicle and the vehicle amplitude (vertical axis) detected by the lower load sensor is shown. It is a graph to show. 本発明の第2の実施の形態に係る車両用ホイールハウス構造の主要部を示す車両前斜め左方から見た斜視図である。It is the perspective view seen from the vehicle front diagonal left which shows the principal part of the wheel house structure for vehicles which concerns on the 2nd Embodiment of this invention. (A)及び(B)は、それぞれ本発明の第1の実施の形態に係る車両用ホイールハウス構造の第1変形例及び第2変形例において段差部材が車両前側限度位置に配置された状態を示す車両左方から見た断面図である。(A) And (B) is the state by which the level | step difference member is arrange | positioned in the vehicle front side limit position in the 1st modification of the vehicle wheel house structure which concerns on the 1st Embodiment of this invention, and a 2nd modification, respectively. It is sectional drawing seen from the vehicle left side shown.

符号の説明Explanation of symbols

10 車両用ホイールハウス構造(車両用空力構造)
12 車両
18 ホイールハウス
20 車輪
40 段差部
40B 衝突面
44 アクチュエータ(調整手段)
50 車速センサ(検出手段)
52 ナビゲーションシステム(検出手段)
54 走行面
56 上荷重センサ(検出手段)
58 下荷重センサ(検出手段)
60 CCDセンサ(検出手段)
62 外気温センサ(検出手段)
64 VSCセンサ(検出手段)
66 ECU(調整手段)
80 車両用ホイールハウス構造(車両用空力構造)
10 Vehicle wheelhouse structure (vehicle aerodynamic structure)
12 Vehicle 18 Wheelhouse 20 Wheel 40 Stepped portion 40B Colliding surface 44 Actuator (Adjustment means)
50 Vehicle speed sensor (detection means)
52 Navigation system (detection means)
54 Running surface 56 Upper load sensor (detection means)
58 Under load sensor (detection means)
60 CCD sensor (detection means)
62 Outside air temperature sensor (detection means)
64 VSC sensor (detection means)
66 ECU (adjustment means)
80 Vehicle wheelhouse structure (vehicle aerodynamic structure)

Claims (4)

車両のホイールハウスに設けられると共に、前記ホイールハウス内における車輪の回転軸心よりも車両後側に配置され、前記車輪側へ突出されることで衝突面が前記車輪側へ突出されて前記衝突面に前記車輪の回転に伴い前記ホイールハウス内へ向かう空気流が衝突する段差部と、
車両の走行状況を検出する検出手段と、
前記検出手段の検出結果に基づいて前記段差部の前記車輪側への突出量を調整する調整手段と、
を備えた車両用空力構造。
The collision surface is provided on the wheel house of the vehicle and is disposed on the vehicle rear side with respect to the rotation axis of the wheel in the wheel house, and the collision surface protrudes toward the wheel side by projecting toward the wheel side. A step portion where an air flow toward the wheel house collides with the rotation of the wheel,
Detecting means for detecting a running state of the vehicle;
Adjusting means for adjusting the amount of protrusion of the stepped portion toward the wheel based on the detection result of the detecting means;
Aerodynamic structure for vehicles.
前記段差部を折り畳み可能にして前記段差部の前記車輪側への突出量を調整可能にした、ことを特徴とする請求項1記載の車両用空力構造。   The aerodynamic structure for a vehicle according to claim 1, wherein the stepped portion can be folded to adjust a protruding amount of the stepped portion toward the wheel. 前記検出手段は、車両の走行速度を検出し、かつ、前記検出手段が検出した車両の走行速度が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくする、ことを特徴とする請求項1又は請求項2記載の車両用空力構造。   The detecting means detects a traveling speed of the vehicle, and the adjusting means reduces a protruding amount of the stepped portion to the wheel side when the traveling speed of the vehicle detected by the detecting means decreases. The aerodynamic structure for a vehicle according to claim 1 or 2. 前記検出手段は、車両の走行面を検出し、かつ、前記検出手段が検出した車両の走行面による車両の振動周波数が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくすると共に、前記検出手段が検出した車両の走行面の抵抗が小さくなると前記調整手段が前記段差部の前記車輪側への突出量を小さくする、ことを特徴とする請求項1〜請求項3の何れか1項記載の車両用空力構造。   The detecting means detects a running surface of the vehicle, and when the vibration frequency of the vehicle due to the running surface of the vehicle detected by the detecting means is reduced, the adjusting means reduces the protruding amount of the stepped portion to the wheel side. In addition, when the resistance of the running surface of the vehicle detected by the detecting means is reduced, the adjusting means reduces the protruding amount of the stepped portion toward the wheel side. The aerodynamic structure for a vehicle according to any one of the preceding claims.
JP2007326489A 2007-12-18 2007-12-18 Aerodynamic structure for vehicles Pending JP2009149130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326489A JP2009149130A (en) 2007-12-18 2007-12-18 Aerodynamic structure for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326489A JP2009149130A (en) 2007-12-18 2007-12-18 Aerodynamic structure for vehicles

Publications (1)

Publication Number Publication Date
JP2009149130A true JP2009149130A (en) 2009-07-09

Family

ID=40918838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326489A Pending JP2009149130A (en) 2007-12-18 2007-12-18 Aerodynamic structure for vehicles

Country Status (1)

Country Link
JP (1) JP2009149130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895715A (en) * 2012-12-25 2014-07-02 富士重工业株式会社 Rectifier of vehicle wheel house
US9573637B2 (en) 2014-11-14 2017-02-21 Hyundai Motor Company Apparatus for improving aerodynamic characteristics of vehicle
CN112389546A (en) * 2020-11-18 2021-02-23 贾傲轲 Additional structure of automobile fender

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895715A (en) * 2012-12-25 2014-07-02 富士重工业株式会社 Rectifier of vehicle wheel house
US9573637B2 (en) 2014-11-14 2017-02-21 Hyundai Motor Company Apparatus for improving aerodynamic characteristics of vehicle
CN112389546A (en) * 2020-11-18 2021-02-23 贾傲轲 Additional structure of automobile fender

Similar Documents

Publication Publication Date Title
JP5516724B2 (en) Vehicle front underfloor structure
JP5392401B2 (en) Vehicle front underfloor structure
US20100156142A1 (en) Aerodynamic structure for vehicle
JP6549696B2 (en) Change the aerodynamic performance of the vehicle
JP5522254B2 (en) Vehicle front underfloor structure
JP2016150741A (en) Movable body aerodynamic control device
JP2009248746A (en) Aerodynamic control apparatus for vehicle
JP2008201156A (en) Vehicle rectifier
JP4903352B2 (en) Car with lower body
JP5686106B2 (en) Lower body structure of the vehicle
JP2006069396A (en) Vehicle rectifier
CN115179952A (en) vehicle
JP2009149130A (en) Aerodynamic structure for vehicles
JP6302247B2 (en) Amphibious vehicle
US10293649B2 (en) Amphibious vehicle
JP2013060084A (en) Vehicle
JP2007253929A (en) Aerodynamic equipment for vehicles
JP6349086B2 (en) Amphibious vehicle
WO2014174620A1 (en) Flow control device for vehicle
JP2009234331A (en) Wheel cover device covering outer surface of wheel
JP6919184B2 (en) Air resistance reduction device
WO2016068121A1 (en) Amphibious vehicle
JP4037462B2 (en) Device for improving the maneuverability of a vehicle for road driving and vehicle equipped with the device
KR101655539B1 (en) Apparatus for Variable Bumper Lip for Vehicle
JP5464268B2 (en) Lower body structure