[go: up one dir, main page]

JP2009145516A - Simplified zoom lens mechanism - Google Patents

Simplified zoom lens mechanism Download PDF

Info

Publication number
JP2009145516A
JP2009145516A JP2007321564A JP2007321564A JP2009145516A JP 2009145516 A JP2009145516 A JP 2009145516A JP 2007321564 A JP2007321564 A JP 2007321564A JP 2007321564 A JP2007321564 A JP 2007321564A JP 2009145516 A JP2009145516 A JP 2009145516A
Authority
JP
Japan
Prior art keywords
moving
lens group
passive
main
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007321564A
Other languages
Japanese (ja)
Inventor
Masaru Yamamoto
勝 山本
Tetsuo Ishizuka
哲郎 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON ASUTEKKU KK
Original Assignee
NIHON ASUTEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON ASUTEKKU KK filed Critical NIHON ASUTEKKU KK
Priority to JP2007321564A priority Critical patent/JP2009145516A/en
Publication of JP2009145516A publication Critical patent/JP2009145516A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain the simplification of a photographic lens barrel and a zoom lens mechanism, the miniaturization of equipment, the increase of assembling efficiency and the reduction of cost, in response to the requirement of demand for maintaining performance and moreover making the equipment smaller in size and easier to use than an advanced specification, depending on use conditions in optical equipment on which a zoom lens is mounted. <P>SOLUTION: The simplified zoom lens mechanism adopts such a method that a main driving shaft 5 and a receiving shaft 6 are disposed in parallel to an optical axis L, respectively, a main driving body 8 integrated to the lens frame 4 of a moving lens group for focusing is slidably inserted into the main driving shaft 5, a receiving body 9 integrated to the lens frame of a moving lens group for zooming 3 is slidably inserted into the receiving shaft 6, and in two moving lens groups, the main driving body 8 holding the moving lens group for focusing has a main driving function and the receiving body 9 holding the moving lens group for zooming 3 is driven by the main driving body 8 by receiving the moving force of the moving lens group for focusing. A driving source for the moving lens group for zooming 3 is eliminated and a piezoelectric linear actuator is adapted to the driving source of the main driving body 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

小型光学機器に搭載するズームレンズ鏡筒におけるズーム機構に関し、特に簡単な機構で可能にした簡易型ズームレンズ機構に関する。   The present invention relates to a zoom mechanism in a zoom lens barrel mounted on a small optical device, and more particularly to a simple zoom lens mechanism made possible by a simple mechanism.

ズームレンズ鏡筒を搭載し被写体画像を対象とする一般の光学機器において携帯性を必要とした場合、機器筐体の小型化のみならず搭載するズームレンズのコンパク化と簡易化が要求される。   When general optical equipment that mounts a zoom lens barrel and targets a subject image requires portability, not only miniaturization of the equipment housing but also compactness and simplification of the mounted zoom lens are required.

ズームレンズの構成としては光軸上に複数のレンズ群を配設し、対物側と焦点側に固定レンズ群を配置した中間にズーミング用とフォーカシング用のそれぞれのレンズ群を光軸に沿って移動可能に配置して得られる内焦式ズームレンズが一般的となっている。移動レンズ群のうち、ズーミング用レンズ群は光軸に沿って移動させることによって被写体像の倍率が連続的に可変でき、他方のフォーカシング用レンズ群は所望の画像倍率の位置で被写体距離の焦点を調整して最良像点を求めるもので、光軸に沿って移動させることによって得られるようになっている。   The zoom lens is composed of a plurality of lens groups on the optical axis, and each lens group for zooming and focusing is moved along the optical axis between fixed lens groups on the objective and focus sides. An in-focus zoom lens that can be arranged in a possible manner is common. Among the moving lens groups, the zoom lens group can be moved along the optical axis to continuously change the magnification of the subject image, and the other focusing lens group can focus the subject distance at the desired image magnification position. The best image point is obtained by adjustment and is obtained by moving along the optical axis.

このようなズームレンズの構成では2つの移動レンズ群をそれぞれに移動させるために2つの動力源を用い、別々の移動手段で構成するのが一般的であるが、更なる小型化や簡易性を求める場合には限界があった。   In such a zoom lens configuration, it is common to use two power sources to move the two moving lens groups respectively, and to use separate moving means. However, further downsizing and simplicity are possible. There was a limit when asked.

この解決手段として、特許文献1では1個の駆動源でズーミングもフォーカシングも行える方式を提案しているが、駆動源に回転モータを使用し、減速機構と直列のカム環配置やクラッチ機構など大がかりで、コンパクト性やコスト削減に対しては必ずしも最良とは言えないものであった。   As a solution to this problem, Patent Document 1 proposes a method that can perform zooming and focusing with a single drive source. However, a rotary motor is used as the drive source, and a cam ring arrangement or a clutch mechanism in series with the speed reduction mechanism is large. Therefore, it was not necessarily the best for compactness and cost reduction.

一方、動力源として回転モータを用い、レンズのズーム機構等に使用する場合、回転を直進にする変換手段が必要であった。その手段にカムやスクリュー機構を用いることが一般的であるが、実用上、変換効率や占有するスペースの問題が有った。この動力源の問題解決方法として近年、圧電型リニアアクチュエータが注目されていて、その中における動作原理の1つを特許文献2に開示されている。すなわち図7に示す円盤状の金属弾性板10aに分極された圧電基板10bを貼り合わせて一体化したものを圧電素子10とし、圧電基板10bの電極A,Bに印加する信号の極性によって膨張と収縮の現象が生じ、金属弾性板10aと圧電基板10bの間に歪みが生じる。このため圧電基板10bの電極A、B間に交番信号を加えれば円盤状圧電素子10の中心が微少ながら凹凸に変形する歪み動作を繰り返すことになる。すなわちA電極に+、B電極に−の電圧を加えれば圧電基盤10bが収縮し金属弾性板10aがZ1のように凸状に反り上がり、A電極に−、B電極に+の電圧を加えれば圧電基盤10bが膨張し金属弾性板10aがZ2のように凹状に変化するため円盤の中心に振動軸11を直立状に固着すれば印加する交番信号に合わせて振動軸11が上下に微小変位Δx1とΔx2を伴った振動が得られることになる。   On the other hand, when a rotary motor is used as a power source and used in a lens zoom mechanism or the like, conversion means for making the rotation go straight has been required. It is common to use a cam or screw mechanism as the means, but there have been practical problems of conversion efficiency and occupied space. In recent years, piezoelectric linear actuators have attracted attention as a method for solving this power source problem, and one of the operating principles is disclosed in Patent Document 2. That is, a piezoelectric element 10 is formed by laminating and integrating a polarized piezoelectric substrate 10b and a disk-shaped metal elastic plate 10a shown in FIG. 7, and the piezoelectric element 10 expands due to the polarity of a signal applied to the electrodes A and B of the piezoelectric substrate 10b. The phenomenon of contraction occurs, and distortion occurs between the metal elastic plate 10a and the piezoelectric substrate 10b. For this reason, if an alternating signal is applied between the electrodes A and B of the piezoelectric substrate 10b, the distortion operation in which the center of the disk-like piezoelectric element 10 is deformed into a concavo-convex shape is repeated. That is, if a voltage of + is applied to the A electrode and a voltage of-is applied to the B electrode, the piezoelectric substrate 10b contracts and the metal elastic plate 10a warps in a convex shape as Z1, and if a voltage of-is applied to the A electrode and a voltage of + is applied to the B electrode. Since the piezoelectric substrate 10b expands and the metal elastic plate 10a changes into a concave shape like Z2, if the vibration shaft 11 is fixed upright at the center of the disk, the vibration shaft 11 is vertically displaced by a small amount Δx1 according to the applied alternating signal. And a vibration accompanied by Δx2.

図8に示すようにこの振動軸11に対して摺動可能であって圧接状態で充分な摩擦を有した移動体12を嵌入させ、移動体12の持つ慣性と振動軸11との摩擦の関係を適宜に設定された状態で圧電素子10の電極A,Bに鋸歯状波のパルス信号を与えれば振動軸11が緩慢な加速度と急峻な加速度で上下に振られることになる。これに応じて嵌入している移動体12も振られるが、緩慢な加速度のときは摩擦力によって軸と一緒に変位Δx1或いはΔx2だけ移動し、急峻な加速度の時は移動体12の慣性力で振動軸11の移動に応動出来ずに摺動し、現状位置を保つことになるため、これの振動周期をn回繰り返せば移動体がnΔx1又はnΔx2の距離だけ振動軸11に沿って一方向に移動させることが出来ると言うのが圧電型リニアアクチュエータの動作原理である。   As shown in FIG. 8, a movable body 12 that is slidable with respect to the vibration shaft 11 and has sufficient friction in the press-contact state is fitted, and the relationship between the inertia of the movable body 12 and the friction between the vibration shaft 11 and the like. If a sawtooth wave pulse signal is applied to the electrodes A and B of the piezoelectric element 10 in a state in which is appropriately set, the vibration shaft 11 is swung up and down with a slow acceleration and a steep acceleration. In response to this, the moving body 12 inserted is also shaken, but when the acceleration is slow, it is moved by the displacement Δx1 or Δx2 along with the shaft by the frictional force, and when the acceleration is steep, the inertial force of the moving body 12 is used. Since it slides without responding to the movement of the vibration shaft 11 and keeps the current position, if the vibration cycle is repeated n times, the moving body moves in one direction along the vibration shaft 11 by a distance of nΔx1 or nΔx2. The principle of operation of the piezoelectric linear actuator is that it can be moved.

圧電素子10に印加する信号において振動軸11が上方移動する加速度を緩慢にし、下方向移動を急峻にすれば移動体12は上方向に移動し、これとは反対の信号を印加すれば移動体12は下方向に移動させることが可能となることから、この原理によって駆動可能な圧電型リニアアクチュエータ1個を用い、前記ズーミング用移動レンズ用とフォーカシング用移動レンズを移動させる簡易型のズームレンズ機構を提供しようとするものである。
特開平4−317015号公報 特表2007−516688号公報
In the signal applied to the piezoelectric element 10, if the acceleration at which the vibration shaft 11 moves upward is slowed and the downward movement is steep, the moving body 12 moves upward, and if the opposite signal is applied, the moving body Since 12 can be moved downward, a simple zoom lens mechanism that moves the zooming moving lens and the focusing moving lens using one piezoelectric linear actuator that can be driven by this principle. Is to provide.
JP-A-4-317015 Special table 2007-516688 gazette

ズームレンズを搭載する光学機器のなかで、使用条件によっては高度な仕様よりも、性能を維持した上で機器の小型化と簡便性を求める機器の需要が有り、この要件に応えるべく撮影レンズ鏡筒及びズームレンズ機構の簡略化を果たし、機器の小型化、組立効率の向上及びコスト低減の課題を解決する。   Among optical equipment equipped with a zoom lens, there is a demand for equipment that requires miniaturization and simplicity of equipment while maintaining performance rather than advanced specifications depending on usage conditions. It simplifies the cylinder and zoom lens mechanism, and solves the problems of downsizing the equipment, improving assembly efficiency, and reducing costs.

両端に設置する固定レンズ群の間にズーミング用移動レンズ群とフォーカシング用移動レンズ群の2つの移動レンズ群を配設した内焦式ズームレンズの鏡筒で、光軸を中心とした周囲に、光軸と平行な主動軸と受動軸をそれぞれ配設し、主動軸にはフォーカシング用移動レンズ群の鏡枠と一体の主動体が摺動可能に挿嵌され、受動軸にはズーミング用移動レンズ群の鏡枠と一体の受動体が摺動可能に挿嵌されていて、主動体と受動体が光軸に沿って移動可能とし、2つの移動レンズ群のうちで、フォーカシング用移動レンズ群を保持する主動体に主動的機能を持たせてあり、このフォーカシング用移動レンズ群の移動力を受けて、ズーミング用移動レンズ群を保持する受動体が主動体に従動させる方法を採り、ズーミング用移動レンズ群の動力源を省略した。   A lens barrel of an internal focus type zoom lens in which two moving lens groups, a zooming moving lens group and a focusing moving lens group, are arranged between fixed lens groups installed at both ends, around the optical axis, A main axis and a passive axis parallel to the optical axis are arranged, and a main body integrated with a lens frame of a focusing moving lens group is slidably fitted on the main axis, and a zooming moving lens is provided on the passive axis. A passive body integral with the lens frame of the group is slidably inserted, and the main moving body and the passive body are movable along the optical axis, and the focusing moving lens group is selected from the two moving lens groups. The main moving body to be held has a main dynamic function, and the passive body holding the moving lens group for zooming is driven by the main moving body in response to the moving force of the moving lens group for focusing. Lens group movement The source was omitted.

このためレンズの動作形態としてはフォーカシングの調整限界点である無限位置あるいは至近位置へ移動後、ズーミング動作を開始させると言う作動順序に割り切りを与えていて、被写体が至近と無限位置の間に在る場合は主動体が移動後受動体を合体した状態で移動して所望の撮影倍率に達した時点で、受動体のズーミング用移動レンズ群を到達位置に静止残留させ、フォーカシング用移動レンズ群の主動体が反転移動することによって受動体から分離し、合焦動作を行わせる方法を採った。   For this reason, the lens operation mode is divided into the operation sequence of starting the zooming operation after moving to the infinite position or the closest position, which is the focusing adjustment limit point, and the subject is located between the closest and infinite positions. When the main moving body moves with the passive body united after moving and reaches the desired magnification, the moving zoom lens group of the passive body remains stationary at the arrival position, and the focusing moving lens group A method in which the main moving body is separated from the passive body by reversing and performing a focusing operation is adopted.

主動体の駆動手段として、主動軸を一端が圧電素子の固着した圧電型リニアアクチュエータの振動軸とし、振動軸の振動で主動体を移動させることが可能な圧電型リニアアクチュエータを適応させて解決を図った。   As a driving means for the main moving body, the main driving shaft is used as the vibration axis of the piezoelectric linear actuator with one end fixed to the piezoelectric element, and the piezoelectric linear actuator that can move the main moving body by the vibration of the vibration shaft is applied to solve the problem. planned.

駆動源が1個で可能となる構造で、その駆動源も単純構造の圧電型リニアアクチュエータであるため、機構が極めて簡単となり、部品点数の削減と共に省スペースによる小型化と、コスト低減の効果が大きい。   With a structure that enables a single drive source, the drive source is also a simple piezoelectric linear actuator, so the mechanism is extremely simple, reducing the number of parts, reducing space and reducing the cost, and reducing costs. large.

本発明の実施例について以下図面を参照しながら説明をする。図1は本発明のズームレンズ機構の斜視図で、図2は本機構の主動軸と受動軸側から見た斜視図、図3は主動体と受動体の動作説明図、図4は本機構を搭載する鏡筒の分解図、図5は本機構を作動させるための電子回路の概略図で、図6は動作説明のためのフローチャート、図7は圧電型リニアアクチュエータの圧電素子による振動原理説明図と図8は圧電型リニアアクチュエータ本体図である。 Embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view of the zoom lens mechanism of the present invention, FIG. 2 is a perspective view of the mechanism as viewed from the main driving shaft and the passive shaft side, FIG. 3 is an operation explanatory diagram of the main driving body and the passive body, and FIG. FIG. 5 is a schematic diagram of an electronic circuit for operating the mechanism, FIG. 6 is a flowchart for explaining the operation, and FIG. 7 is an explanation of the principle of vibration by the piezoelectric element of the piezoelectric linear actuator. FIG. 8 and FIG. 8 are diagrams of the piezoelectric linear actuator main body.

本発明におけるズームレンズは図4に示すように光軸Lを中心に対物側の第1固定レンズ群1と焦点側の第2固定レンズ2の間にズーミング用移動レンズ群3とフォーカシング用移動レンズ群4を直列に並べた構成で、移動レンズ群3を光軸Lに沿って移動させることにより撮影倍率が連続的に可変でき、移動レンズ群4を光軸Lに沿って移動させることにより被写体距離における焦点調整ができるようになっている。本発明はこのズーミング用移動レンズ群3とフォーカシング用移動レンズ群4の移動機構について、簡便な方法を提供するものである。   As shown in FIG. 4, the zoom lens according to the present invention has a zooming moving lens group 3 and a focusing moving lens between the first fixed lens group 1 on the objective side and the second fixed lens 2 on the focal side with the optical axis L as the center. With the configuration in which the groups 4 are arranged in series, the photographing magnification can be continuously changed by moving the moving lens group 3 along the optical axis L, and the subject can be moved by moving the moving lens group 4 along the optical axis L. The focus can be adjusted at a distance. The present invention provides a simple method for the moving mechanism of the zooming moving lens group 3 and the focusing moving lens group 4.

図1に示すものがそのズーム機構で、光軸Lの周囲に3本の軸を光軸Lと平行に立設してあり、その1つは能動的に動力を与える側の主動軸5と、1つはその動力を受ける側の受動軸6及びこれら2つの共有する回転防止と案内役のガイド軸7の3本である。主動軸5の下方端には圧電素子10が固着されていて、圧電素子の振動に合わせて主動軸5が上下に振動するようになっている。すなわち図8に示す圧電素子10と振動軸11及び移動体12で構成する圧電型リニアアクチュエータの振動軸11が主動軸5で、移動体12が主動体8と同等になっている。   FIG. 1 shows the zoom mechanism, in which three axes are erected around the optical axis L in parallel with the optical axis L, one of which is a main driving shaft 5 on the side for actively supplying power. One is a passive shaft 6 on the power receiving side, and these two are a shared shaft 7 for preventing rotation and guiding. A piezoelectric element 10 is fixed to the lower end of the main driving shaft 5 so that the main driving shaft 5 vibrates up and down in accordance with the vibration of the piezoelectric element. That is, the vibration shaft 11 of the piezoelectric linear actuator constituted by the piezoelectric element 10, the vibration shaft 11 and the moving body 12 shown in FIG. 8 is the main driving shaft 5, and the moving body 12 is equivalent to the main moving body 8.

主動軸5には主動体8が挿嵌されているが、主動体8は中心にフォーカシング用移動レンズ群4を保持する鏡枠8aと主動軸5を握持する摺動可能な握持部8bとガイド軸7をU字部で挟持し、滑動可能な挟持部8cを一体にしたもので、主動軸5に対して貫通穴8eの欠落部に設置した板バネ8dによって圧接して摩擦力を与えているため、静止位置で保持力を有している。また主動体8にはマグネットスケーラ20が固着されていて、近接して固定側に設置している不図示のマグネットセンサー21があり、このセンサー21により主動体8の位置、及び移動量が検出できるようになっている。   A main moving body 8 is inserted into the main driving shaft 5. The main moving body 8 has a lens barrel 8 a that holds the focusing moving lens group 4 at the center and a slidable gripping portion 8 b that holds the main driving shaft 5. The guide shaft 7 is sandwiched between the U-shaped portions, and a slidable sandwiching portion 8c is integrated. The main shaft 5 is pressed against the main shaft 5 by a leaf spring 8d installed in a missing portion of the through hole 8e to generate a frictional force. Therefore, it has a holding force at a stationary position. In addition, a magnet scaler 20 is fixed to the main moving body 8, and there is a magnet sensor 21 (not shown) installed close to the fixed side, and the position and amount of movement of the main moving body 8 can be detected by this sensor 21. It is like that.

一方の受動軸6には受動体9が挿嵌されているが、受動体9は中心にズーミング用移動レンズ群3を保持する鏡枠9aと受動軸6を握持する摺動可能な握持部9bとガイド軸7をU字部で挟持し、滑動可能な挟持部9cを一体にしたもので、受動軸6に対して貫通穴9eの欠落部に設置した板バネ9dによって圧接して摩擦力を与えているため、静止位置で保持力を有している。   A passive body 9 is inserted into one of the passive shafts 6. The passive body 9 has a slidable gripper that grips the passive shaft 6 and a lens frame 9 a that holds the moving lens group 3 for zooming at the center. The portion 9b and the guide shaft 7 are sandwiched by a U-shaped portion, and a slidable sandwiching portion 9c is integrated. Since a force is applied, it has a holding force at a stationary position.

主動軸5と受動軸6は接近した状態で並立していて図2に示すように受動軸6に挿嵌されている受動体9の凹部9fに対して主動軸5に挿嵌している受動体8の凸部8fが軸方向の遊びをもって噛み合っている。このため主動体8の主動軸5上の移動では凸部8fが上昇して受動体の凹部9fの上制限9fuに当接すると受動体9が主動体8の推力を受けて合体状態で上昇し、主動体8の下方向移動では凸部8fが受動体凹部9fの下制限9fdに当接すると受動体9が主動体8の下方向の推力を受けて、合体状態で降下するようになっている。   The main driving shaft 5 and the passive shaft 6 are juxtaposed in a close state, and the passive shaft inserted into the main driving shaft 5 with respect to the recess 9f of the passive body 9 inserted into the passive shaft 6 as shown in FIG. The protrusions 8f of the body 8 are engaged with each other with play in the axial direction. For this reason, when the main moving body 8 moves on the main driving shaft 5, when the convex portion 8f rises and comes into contact with the upper limit 9fu of the concave portion 9f of the passive body, the passive body 9 receives the thrust of the main moving body 8 and rises in the combined state. In the downward movement of the main moving body 8, when the convex portion 8f comes into contact with the lower limit 9fd of the passive body concave portion 9f, the passive body 9 receives the downward thrust of the main moving body 8 and descends in the combined state. Yes.

具体的にはズーミング用移動レンズ群3を保持している受動体9の移動が撮影倍率を可変するもので、フォーカシング用移動レンズ群4を保持する主動体8の移動は各倍率における被写体の焦点調整のためのものであるが、ズーミングするためには主動体8の凸部8fを上制限9fuか下制限9fdまで移動しなければならない。言い換えれば主動体8の凸部8fに対する受動体9の凹部9fの遊び量がその撮影倍率における被写体距離に対する焦点調整範囲となる。図3の(A)に示すXの範囲である。例えば主動体8の凸部8fが受動体9の凹部9fの下制限9fdに当接している位置がその倍率における無限位置であり、上制限9fuに当接する位置は至近位置となる。このためズーミングするには被写体に対して一旦、無限位置か至近位置に調整をずらしてから行ない、その後所望のズーム位置で改めて焦点調整をすると言う動作順序の割り切りを行っている。   Specifically, the movement of the passive body 9 holding the zooming moving lens group 3 changes the photographing magnification, and the movement of the main moving body 8 holding the focusing moving lens group 4 is the focus of the subject at each magnification. Although it is for adjustment, in order to zoom, the convex part 8f of the main moving body 8 must be moved to the upper limit 9fu or the lower limit 9fd. In other words, the play amount of the concave portion 9f of the passive body 9 with respect to the convex portion 8f of the main moving body 8 becomes the focus adjustment range with respect to the subject distance at the photographing magnification. This is the range of X shown in FIG. For example, the position where the convex portion 8f of the main moving body 8 is in contact with the lower limit 9fd of the concave portion 9f of the passive body 9 is an infinite position in the magnification, and the position of contact with the upper limit 9fu is the closest position. For this reason, zooming is performed after shifting the adjustment from the infinite position to the closest position with respect to the subject, and then performing the focus adjustment again at a desired zoom position.

図3は主動体8と受動体9の移動時における関係動作を示したもので、この図とこの動作を制御する概略の回路ブロックを示す図5及び作動フローチャートの図6と合わせて、具体的な動作形態について説明すると、この方式の動作基準は本機器の不使用持には必ず原点にあることが条件で、動作の開始位置は原点からで、作動終了後は必ず原点に戻る作動条件を課している。先ず図5の回路が立ち上がった状態では図3の(A)に示す主動体8が原点位置に在るか否かの動作から開始される。主動体8の原点位置とは具体的にはフォーカシング用移動レンズ群4とズーミング用移動レンズ群が第2固定レンズ群に近接する位置、例えばこのレンズ仕様における広角位置で無限距離の組み合わせ位置が原点となり、主動体8及び受動体9の可動範囲における下限界に位置する。これが図3の(A)に示す状態にある時である。   FIG. 3 shows a relational operation when the main moving body 8 and the passive body 9 are moved. Specifically, this figure, FIG. 5 showing a schematic circuit block for controlling this operation, and FIG. The operation standard of this method is that the origin is always at the origin when the equipment is not used, the operation start position is from the origin, and the operation condition that always returns to the origin after the operation is finished. Imposing. First, in the state where the circuit of FIG. 5 is started, the operation is started from whether or not the main moving body 8 shown in FIG. Specifically, the origin position of the main moving body 8 is a position where the moving lens group 4 for focusing and the moving lens group for zooming are close to the second fixed lens group, for example, a combined position at an infinite distance at a wide angle position in this lens specification. Thus, it is located at the lower limit in the movable range of the main moving body 8 and the passive body 9. This is when it is in the state shown in FIG.

回路が起動状態になると図6のフローチャートにあるように、動作のスタート30から先ず35で原点確認を行うが、図3及び図5に示す主動体8のマグネットスケーラ20からマグネットセンサー21による位置信号31でCPU50によって、主動体8の現在位置を認識し、原点位置にないと判断されると主動体移動34で主動体8を上下に移動させて原点に戻す動作を最初に行う。このようにズーミング作動は原点からのスタートが初動作の条件となる。   When the circuit is in an activated state, as shown in the flowchart of FIG. 6, the origin is first confirmed at 35 from the start 30 of the operation, but the position signal by the magnet sensor 21 from the magnet scaler 20 of the main moving body 8 shown in FIGS. In 31, the CPU 50 recognizes the current position of the main moving body 8, and if it is determined that the main moving body 8 is not at the origin position, the main moving body 8 is moved up and down by the main moving body movement 34 to return to the origin. Thus, in the zooming operation, starting from the origin is a condition for the initial operation.

原点位置とはズーム位置がWideで距離は無限位置であるからこの原点位置において、図5の操作ボタン53から図6の36で示すズームのTele信号32が出ているかどうかの判断をするが、NOならばWide位置のまま被写体Qの測距で合焦判定37をするが、不合焦ならばCPU50からドライバー54に信号を受け、圧電型リニアアクチュエータの圧電素子10に上昇方向(+)の駆動信号が送られて主動体8が上昇して行く。図3の(A)に示すXの範囲で焦点調整が行われるため、図6の37で合焦判定が得られるまで上昇移動を継続する。合焦判定は被写体Qの投影画像を撮像素子52で受け、その画像信号をCPU50で画像処理され合焦か否かの判断を行う。図6の37でYESの判定が得られると、CPU50からの停止信号により圧電型リニアアクチュエータ動力が停止し(図6の39)、主動体8のフォーカシング用移動レンズ群4の位置が決定(図6のEND40)される。   Since the zoom position is Wide and the distance is an infinite position, it is determined whether or not the zoom Tele signal 32 indicated by 36 in FIG. 6 is output from the operation button 53 in FIG. If NO, the focus determination 37 is performed by measuring the subject Q in the Wide position. If the focus is not in focus, a signal is received from the CPU 50 to the driver 54 and the piezoelectric element 10 of the piezoelectric linear actuator is driven in the upward direction (+). A signal is sent and the main moving body 8 rises. Since focus adjustment is performed in the range of X shown in FIG. 3A, the upward movement is continued until the in-focus determination is obtained in 37 of FIG. In focus determination, the image of the subject Q is received by the image sensor 52, and the image signal is processed by the CPU 50 to determine whether or not it is in focus. When a determination of YES is obtained in 37 of FIG. 6, the power of the piezoelectric linear actuator is stopped by the stop signal from the CPU 50 (39 in FIG. 6), and the position of the focusing moving lens group 4 of the main moving body 8 is determined (FIG. 6). 6 END40).

前記は受動体9が移動しないWide位置での動作であったが、図5の操作ボタン53からTele信号をCPU50が受けた場合を説明すると、図6に示す32のTele信号の発信により36ではYESとなり主動体8が上昇(+)移動41となる。上昇移動を継続し図3の(B)に示す主動体8がWideの焦点調整範囲Xだけ移動してしまうと、主動体8の凸部8fが受動体9の凹部の上限界9fuに当接し、主動体8と受動体9が合体した形になる。図6の42であって、43のように更に主動体8の上昇移動が継続されると、受動体9を押して合体状態で上昇して行き、44で示すようにズーム停止信号が来るまで継続される。   The above is the operation at the Wide position where the passive body 9 does not move. However, when the CPU 50 receives the Tele signal from the operation button 53 of FIG. 5, the transmission of the Tele signal of 32 shown in FIG. YES and the main moving body 8 is in the ascending (+) movement 41. When the main moving body 8 shown in FIG. 3B moves by the wide focus adjustment range X by continuing the upward movement, the convex portion 8f of the main moving body 8 comes into contact with the upper limit 9fu of the concave portion of the passive body 9. The main moving body 8 and the passive body 9 are combined. If the main moving body 8 continues to move upward as indicated by 43 in FIG. 6, the passive body 9 is pushed and lifted in the combined state, and continues until a zoom stop signal is received as indicated at 44. Is done.

最大倍率であるTele位置に到達し、図5における操作ボタン53の操作を止めるか、図3に示す主動体8のマグネットスケーラ20の位置からマグネットセンサー21による限界信号によって、CPU50から停止信号がドライバー54に送られ、圧電素子10の駆動を止め、合体したまま一旦停止する(図6の45)。この状態が図3の(C)状態で、望遠(Tele)の位置であって、距離調整は至近の位置であるので、被写体Qの像の合焦位置を検出する必要があるので、この位置で合焦判定を行い(図6の46)、NOならばCPU50からドライバー54に反転信号を送り、圧電型リニアアクチュエータの圧電素子10に下降(−)の駆動信号が送られ主動体8が下降して行く(図6の47)。この時、受動体9のズーミング用移動レンズ群3は現位置(Tele位置)に置いたまま主動体8だけが受動体9から分離して被写体Qの合焦点を求めて下降して行くことになる(図6の48)。この間合焦判定を繰り返しながら、主動体8のフォーカシング用移動レンズ群4は下降し、合焦判定がYESとなる位置でCPU50から停止信号が送出され、圧電型リニアアクチュエータの駆動が停止し、主動体8が移動を停止する(図6の49)。この位置が被写体Qの合焦点であって所望のズームは望遠(Tele)位置で、撮像素子52の結像面で最良像面が得られたことになる(図6のEND50)。これは図3において(D)の状態で表している。   When reaching the Tele position, which is the maximum magnification, the operation of the operation button 53 in FIG. 5 is stopped, or the stop signal is sent from the CPU 50 by the limit signal by the magnet sensor 21 from the position of the magnet scaler 20 of the main moving body 8 shown in FIG. 54, the driving of the piezoelectric element 10 is stopped, and the piezoelectric element 10 is temporarily stopped while being united (45 in FIG. 6). 3 is the telephoto (Tele) position and the distance adjustment is a close position, so it is necessary to detect the in-focus position of the image of the subject Q. (No in 46 of FIG. 6), if NO, an inversion signal is sent from the CPU 50 to the driver 54, and a descent (-) drive signal is sent to the piezoelectric element 10 of the piezoelectric linear actuator, and the main moving body 8 is lowered. (47 in FIG. 6). At this time, only the main moving body 8 separates from the passive body 9 while the moving lens group 3 for zooming of the passive body 9 is placed at the current position (Tele position) and descends to obtain the focal point of the subject Q. (48 in FIG. 6). While the focus determination is repeated during this time, the focusing moving lens group 4 of the main moving body 8 is lowered, a stop signal is sent from the CPU 50 at a position where the focus determination is YES, the drive of the piezoelectric linear actuator is stopped, and the main drive The body 8 stops moving (49 in FIG. 6). This position is the focal point of the subject Q, the desired zoom is the telephoto (Tele) position, and the best image plane is obtained on the imaging plane of the image sensor 52 (END50 in FIG. 6). This is represented by the state (D) in FIG.

この状態は図5のモニター画面51で被写体Qの画像が確認でき、この時点で画像を記録するには操作ボタン53の中心の決定ボタンを押し、撮影のレリーズ信号をCPU50に送信すれば、撮像素子52で得られた画像信号をCPU50で処理された信号に変換されて、記録信号としてメモリー回路55に送られ、画像が記録される。   In this state, the image of the subject Q can be confirmed on the monitor screen 51 of FIG. 5. To record the image at this time, the determination button at the center of the operation button 53 is pressed, and a shooting release signal is transmitted to the CPU 50. The image signal obtained by the element 52 is converted into a signal processed by the CPU 50 and sent to the memory circuit 55 as a recording signal to record an image.

図3の(D)は前述の説明の通り、ズームは望遠(Tele)位置で、被写体距離は中間位置の例を示したが、継続して像倍率をその望遠(Tele)から広角(Wide)方向へ変えようとした場合を以下に説明すると、操作ボタン53のWideボタンを押すズームWide信号(図6の33)によってCPU50から送出される信号は圧電型リニアアクチュエータの駆動を更に下降方向に移動する指令となり、主動体8は図3の(D)の合焦位置から一旦、不合焦の無限位置まで下方に移動して、主動体8の凸部8fが静止している受動体9の凹部9fの下限界9fdに当接した後、主動体8が受動体9を合体状態で押しながら下方(Wide方向)に移動していく。これは図3の(E)の状態を示している。所望のズーム位置で操作ボタン53からのWide信号を断てば、CPU50の停止信号によって、主動体8が停止するが、受動体9をその所望のズーム位置に静止させて、受動体9から分離して主動体8だけが上方向に反転して移動していき、合焦点で停止する。これが図3の(F)の状態で、前述の(A)から(D)の動態説明と同じであって、制御のための主動体8の移動方向が反対だけである。   FIG. 3D shows an example in which the zoom is at the telephoto (Tele) position and the subject distance is at the intermediate position as described above, but the image magnification is continuously changed from the telephoto (Tele) to the wide angle (Wide). The case of changing the direction will be described below. A signal sent from the CPU 50 in response to a zoom Wide signal (33 in FIG. 6) that pushes the Wide button of the operation button 53 moves the drive of the piezoelectric linear actuator further in the downward direction. The main moving body 8 temporarily moves downward from the in-focus position shown in FIG. 3D to the in-focus infinite position, and the convex section 8f of the main moving body 8 is stationary. After contacting the lower limit 9fd of 9f, the main moving body 8 moves downward (Wide direction) while pushing the passive body 9 in the combined state. This shows the state shown in FIG. If the Wide signal from the operation button 53 is cut off at the desired zoom position, the main moving body 8 is stopped by the stop signal from the CPU 50, but the passive body 9 is stopped at the desired zoom position and separated from the passive body 9. Then, only the main moving body 8 moves in the upward direction and stops at the focal point. This is the same as the description of the dynamics from (A) to (D) described above in the state of FIG. 3 (F), and the moving direction of the main moving body 8 for control is only opposite.

本機器による撮影又はズーミング動作終了後、或いは機器の通電を遮断した場合は必ず主動体8が下方に移動し、途中で受動体9と合体しながら原点である図3の(A)状態に戻すようCPUでプログラムされている。   After the photographing or zooming operation by the device is completed, or when the device is de-energized, the main moving body 8 always moves downward, and returns to the state shown in FIG. It is programmed by the CPU.

以上説明のように動作に割り切りを勘案させれば、非常に単純な構成でズームレンズ機構が完成でき、図4の鏡筒ユニットの分解図で示すように地板15に本発明のズームレンズ機構を構設し、第2固定レンズ群2を保持する鏡枠16に載設した上に、第1固定レンズを保持する外筒17を覆設すればズームレンズ鏡筒ユニットが完成すると言う極めて単純で作業効率の良い製品として提供出来る。   If the operation is taken into account as described above, the zoom lens mechanism can be completed with a very simple configuration. As shown in the exploded view of the lens barrel unit of FIG. The zoom lens barrel unit is completed simply by constructing and mounting on the lens frame 16 holding the second fixed lens group 2 and covering the outer cylinder 17 holding the first fixed lens. It can be provided as a product with good work efficiency.

本発明のズームレンズ機構図である。It is a zoom lens mechanism diagram of the present invention. 本機構の主動軸と受動軸側からの斜視図である。It is a perspective view from the main drive shaft and passive shaft side of this mechanism. 主動体と受動体の動作説明図である。It is operation | movement explanatory drawing of a main moving body and a passive body. 本機構搭載のズームレンズ鏡筒ユニットの分解図である。It is an exploded view of the zoom lens barrel unit equipped with this mechanism. 本本機構を作動させるための電子回路ブロック図である。It is an electronic circuit block diagram for operating this book mechanism. 動作説明のためのフローチャートである。It is a flowchart for operation | movement description. 圧電型リニアアクチュエータの圧電素子による振動原理説明図である。It is explanatory drawing of the vibration principle by the piezoelectric element of a piezoelectric linear actuator. 圧電型リニアアクチュエータ本体図である。It is a piezoelectric type linear actuator main body figure.

符号の説明Explanation of symbols

1 第1固定レンズ群
2 第2固定レンズ群
3 ズーミング用移動レンズ群
4 フォーカシング用移動レンズ群鏡枠
5 主動軸
6 受動軸
7 ガイド軸
8 主動体
9 受動体
10 圧電素子
11 振動軸
12 移動体
15 地板
16 鏡枠
17 外筒
20 マグネットスケーラ
21 マグネットセンサー
DESCRIPTION OF SYMBOLS 1 1st fixed lens group 2 2nd fixed lens group 3 Zooming moving lens group 4 Focusing moving lens group Frame 5 Main driving shaft 6 Passive shaft 7 Guide shaft 8 Main moving body 9 Passive body 10 Piezoelectric element 11 Vibration shaft 12 Moving body 15 Base plate 16 Mirror frame 17 Outer cylinder 20 Magnet scaler 21 Magnet sensor

Claims (8)

光軸に沿って両端に固定レンズ群と当該固定レンズ群の中間に2つの移動レンズ群を配設してなるレンズ鏡筒であって、該移動レンズ群の1つは被写体の撮影倍率が可変可能なズーミング用で、他の1つは焦点調整のためのフォーカシング用として構成する鏡筒の前記2つの移動レンズ群をそれぞれ光軸に沿って移動可能にしたズームレンズ機構において、前記光軸を中心とした周囲に、該光軸と平行な主動軸と受動軸がそれぞれ配設され、前記主動軸には前記フォーカシング用移動レンズ群の鏡枠と一体の主動体が摺動可能に挿嵌され、前記受動軸には前記ズーミング用移動レンズ群の鏡枠と一体の受動体が摺動可能に挿嵌されていて、前記主動軸における主動体の駆動によって、前記受動軸の受動体が従動可能な構成により、前記ズーミング用移動レンズ群とフォーカシング用移動レンズ群が光軸に沿って移動可能にしたことを特徴とする簡易型ズームレンズ機構。 A lens barrel having a fixed lens group at both ends along the optical axis and two moving lens groups in the middle of the fixed lens group. One of the moving lens groups has a variable shooting magnification of a subject. In a zoom lens mechanism in which the two movable lens groups of the lens barrel that is configured for focusing for focus adjustment and for focusing for focus adjustment can be moved along the optical axis, respectively. A main driving shaft and a passive shaft parallel to the optical axis are arranged around the center, and a main driving body integral with a lens frame of the focusing moving lens group is slidably inserted into the main driving shaft. In addition, a passive body integral with a lens frame of the zooming moving lens group is slidably fitted on the passive shaft, and the passive body of the passive shaft can be driven by driving the main body of the main driving shaft. The structure of the Zoomin A simple zoom lens mechanism characterized in that the moving lens group for focusing and the moving lens group for focusing are movable along the optical axis. 前記ズーミング用移動レンズ群の鏡枠と一体の受動体は受動軸に対して、摩擦力によって静止位置を維持する保持力を有しているが、前記主動軸に沿って前記フォーカシング用移動レンズ群の鏡枠と一体の主動体が移動するときの駆動力が前記受動体に及ぶ場合、当該受動体も受動軸にそって一緒に移動可能な力関係を有していることを特徴とする請求項1記載の簡易型ズームレンズ機構。 The passive body integrated with the lens frame of the zooming moving lens group has a holding force to maintain a stationary position by a frictional force with respect to the passive axis, but the focusing moving lens group along the main driving axis. When a driving force when the main moving body integral with the lens frame moves reaches the passive body, the passive body also has a force relationship capable of moving together along the passive axis. Item 4. A simplified zoom lens mechanism according to Item 1. 前記主動体と受動体はそれぞれ隣接した並列位置にあって、軸方向に遊びをもった係合関係にあり、該主動体の主動軸に沿った移動は遊び分遅れて該受動体と合体し、前記フォーカシング用移動レンズ群の鏡枠と前記ズーミング用移動レンズ群が一体で前記光軸に沿って移動可能な構成であることを特徴とする請求項2記載の簡易型ズームレンズ機構。 The main moving body and the passive body are in an adjacent parallel position, and are in an engaging relationship with play in the axial direction, and the movement of the main moving body along the main driving shaft is delayed by play and merges with the passive body. 3. The simple zoom lens mechanism according to claim 2, wherein a lens frame of the focusing moving lens group and the moving lens group for zooming are integrally movable along the optical axis. 前記主動体と受動体はそれぞれ隣接した並列位置にあって、軸方向に遊びをもった係合関係にあり、当該遊びは前記ズーミング用移動レンズ群の移動位置において、焦点調整のために前記フォーカシング用移動レンズ群が最大移動可能な調整幅であることを特徴とする請求項2及び請求項3記載の簡易型ズームレンズ機構。 The main moving body and the passive body are in adjacent parallel positions and are in an engagement relationship with play in the axial direction, and the play is the focus for adjusting the focus at the moving position of the zooming moving lens group. 4. The simple zoom lens mechanism according to claim 2, wherein the movable lens group has an adjustment range that allows maximum movement. 前記ズーミング用移動レンズ群による被写体に対するズーミング動作は前記主動体が前記受動体との係合遊び部分を移動し、合体後に移動する動作であって、そのズーム位置における前記フォーカシング用移動レンズ群による合焦動作は前記主動体が受動体から反転分離し、前記遊び部分の移動調整で得られることを特徴とする請求項4記載の簡易型ズームレンズ機構。 The zooming operation on the subject by the zooming moving lens group is an operation in which the main moving body moves in the engagement play portion with the passive body and moves after the uniting, and the zooming position is adjusted by the focusing moving lens group at the zoom position. 5. The simple zoom lens mechanism according to claim 4, wherein the main moving body is inverted and separated from the passive body and the movement is adjusted by moving the play portion. 前記主動体の主動軸及び光軸に沿っての移動範囲おいて、固定側に設けてある原点位置に対する該主動体の位置及び移動量が計測可能で有ることを特徴とする請求項1記載の簡易型ズームレンズ機構。 The position and amount of movement of the main moving body with respect to the origin position provided on the fixed side can be measured in a moving range along the main driving axis and the optical axis of the main moving body. Simple zoom lens mechanism. 光軸を中心とした周囲に、配設されている当該光軸と平行な前記主動軸と前記受動軸に対して、該光軸を挟んだほぼ対向位置に前記主動体の直進移動するためのガイドと前記受動体の直進移動するためのガイドを共有する直進ガイド軸を設置したことを特徴とする請求項1記載の簡易型ズームレンズ機構。 Around the optical axis, the main moving body moves linearly to a position substantially opposite to the main driving axis and the passive axis parallel to the optical axis with respect to the optical axis. 2. The simple zoom lens mechanism according to claim 1, further comprising a straight guide shaft that shares a guide and a guide for moving the passive body in a straight line. 前記光軸を中心とした周囲にあって、該光軸と平行な主動軸は一端に圧電素子が固着された圧電型リニアアクチュエータの振動軸であって、当該軸に挿嵌する前記主動体は該圧電型リニアアクチュエータの圧電素子に印加するパルス信号によって振動軸の軸方向の超音波振動で駆動されることを特徴とする請求項1記載及び請求項7記載の簡易型ズームレンズ機構。

A main driving axis that is around the optical axis and is parallel to the optical axis is a vibration axis of a piezoelectric linear actuator in which a piezoelectric element is fixed to one end, and the main driving body that is fitted into the axis is 8. The simple zoom lens mechanism according to claim 1, wherein the zoom lens mechanism is driven by ultrasonic vibration in an axial direction of a vibration axis by a pulse signal applied to a piezoelectric element of the piezoelectric linear actuator.

JP2007321564A 2007-12-13 2007-12-13 Simplified zoom lens mechanism Pending JP2009145516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321564A JP2009145516A (en) 2007-12-13 2007-12-13 Simplified zoom lens mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321564A JP2009145516A (en) 2007-12-13 2007-12-13 Simplified zoom lens mechanism

Publications (1)

Publication Number Publication Date
JP2009145516A true JP2009145516A (en) 2009-07-02

Family

ID=40916197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321564A Pending JP2009145516A (en) 2007-12-13 2007-12-13 Simplified zoom lens mechanism

Country Status (1)

Country Link
JP (1) JP2009145516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110047132A (en) * 2009-10-29 2011-05-06 시코 가부시키가이샤 Linear drive
JP2011099900A (en) * 2009-11-04 2011-05-19 Konica Minolta Opto Inc Lens unit, image pickup device using the same, and method for connecting optical element
CN113595435A (en) * 2021-08-19 2021-11-02 吉林大学 Continuous zoom lens for piezoelectric driving micro-miniature equipment and driving method
JP2023126679A (en) * 2017-09-29 2023-09-07 株式会社ニコン Lens barrel and image capturing device
WO2024034170A1 (en) * 2022-08-10 2024-02-15 アルプスアルパイン株式会社 Lens holder driving device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110047132A (en) * 2009-10-29 2011-05-06 시코 가부시키가이샤 Linear drive
JP2011095446A (en) * 2009-10-29 2011-05-12 Shicoh Engineering Co Ltd Linear driving device
KR101659630B1 (en) * 2009-10-29 2016-09-26 신시코 카기 가부시키가이샤 Linear Driving Device
JP2011099900A (en) * 2009-11-04 2011-05-19 Konica Minolta Opto Inc Lens unit, image pickup device using the same, and method for connecting optical element
JP2023126679A (en) * 2017-09-29 2023-09-07 株式会社ニコン Lens barrel and image capturing device
CN113595435A (en) * 2021-08-19 2021-11-02 吉林大学 Continuous zoom lens for piezoelectric driving micro-miniature equipment and driving method
CN113595435B (en) * 2021-08-19 2023-01-31 吉林大学 Continuous zoom lens for piezoelectrically driven micro-miniature equipment and driving method
WO2024034170A1 (en) * 2022-08-10 2024-02-15 アルプスアルパイン株式会社 Lens holder driving device

Similar Documents

Publication Publication Date Title
JP3834032B2 (en) Lens transfer device
JP6481242B2 (en) LENS DRIVE DEVICE, CAMERA DEVICE, AND ELECTRONIC DEVICE
JP6617395B2 (en) LENS DRIVE DEVICE, CAMERA DEVICE, AND ELECTRONIC DEVICE
JP2008076485A (en) Lens barrel and imaging apparatus
JP2009145516A (en) Simplified zoom lens mechanism
JP4317508B2 (en) Camera module and portable terminal equipped with the camera module
JP2006330053A (en) Lens barrel
JP5880541B2 (en) Vibration actuator
JP2007089246A (en) Driver and lens barrel, and imaging apparatus
JP2006330054A (en) Lens barrel
JP2006119584A (en) Zoom camera optical device
JP2017055554A (en) Vibration actuator, lens unit, and imaging device
JP2009086433A (en) Compact zoom lens barrel unit
JP7198506B2 (en) LENS DRIVING DEVICE, LENS DRIVING DEVICE MANUFACTURING METHOD, CAMERA DEVICE, AND ELECTRONIC DEVICE
JP2006098595A (en) Camera module and portable terminal equipped with the camera module
JP2007114748A (en) Lens module
JP2012242499A (en) Zoom mirror cell, imaging apparatus, and portable information terminal
JP4623714B2 (en) Camera module and portable terminal using the camera module
US7652829B2 (en) Lens barrel and image pickup apparatus
JP4484652B2 (en) Camera module and portable terminal using the camera module
JP2007300708A (en) Piezoelectric driving device, imaging device, and portable terminal device
JP5569665B1 (en) DRIVE DEVICE AND IMAGING DEVICE USING THE SAME
JP4688552B2 (en) Lens driving device and camera module
JP4623713B2 (en) Camera module and portable terminal using the camera module
JP2014010213A (en) Lens barrel