[go: up one dir, main page]

JP2009144927A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2009144927A
JP2009144927A JP2009079370A JP2009079370A JP2009144927A JP 2009144927 A JP2009144927 A JP 2009144927A JP 2009079370 A JP2009079370 A JP 2009079370A JP 2009079370 A JP2009079370 A JP 2009079370A JP 2009144927 A JP2009144927 A JP 2009144927A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
lubricating oil
gap
bearing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079370A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawase
達夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009079370A priority Critical patent/JP2009144927A/en
Publication of JP2009144927A publication Critical patent/JP2009144927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1085Channels or passages to recirculate the liquid in the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To refeed lubricating oil led to flow into a circulation groove to a radial bearing clearance by an asymmetric dynamic pressure groove. <P>SOLUTION: A bearing member 1 made of oil-impregnated sintered metal is fixed to the inner periphery of the bottomed cylindrical housing 9, and a shaft member 7 is supported in a non-contact manner by dynamic pressure of oil generated in the radial bearing clearance or a thrust bearing clearance. The shaft member is formed with a flange portion opposed to one end surface of the bearing member, dynamic pressure of lubricating oil is generated in the thrust bearing clearance formed between the end surface of the bearing member and the end surface of the flange portion, and the dynamic pressure groove is asymmetrically formed in order to push the lubricating oil into the thrust bearing clearance. Thereby, the lubricating oil is led to flow into the circulation groove. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軸受隙間に生じた流体動圧で軸を非接触支持する動圧型軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device that supports a shaft in a non-contact manner with a fluid dynamic pressure generated in a bearing gap.

動圧型軸受装置は、非接触で軸を支持することから、高回転精度、高速回転、低騒音、低コスト等の特徴を備えるものであり、近年ではこれらの特徴から、HDD等の磁気ディスク、DVD等の光ディスク、MO等の光磁気ディスクのスピンドルモータやレーザビームプリンタのポリゴンスキャナモータ等におけるスピンドル支持用の軸受としての使用が期待され、あるいは実際に使用されている。   The hydrodynamic bearing device supports the shaft in a non-contact manner, and thus has characteristics such as high rotational accuracy, high speed rotation, low noise, and low cost. In recent years, these characteristics have led to magnetic disks such as HDDs, It is expected to be used as a spindle support bearing in spindle motors for optical disks such as DVDs, magneto-optical disks such as MOs, polygon scanner motors for laser beam printers, and the like.

この動圧型軸受装置は、スリーブ状の軸受部材を有底筒状のハウジングの内周に固定すると共に、軸受部材の内周に挿入した軸を、ラジアル軸受隙間、もしくはラジアル軸受隙間とスラスト軸受隙間の双方で生じた動圧により支持する構造である。一般にこの種の軸受では、ハウジングの底部に形成されたスラスト受け面とこれに対向する軸受部材の端面とで挟まれた空間が密閉構造となるため、この密閉空間を外気に開放させるべく、軸受部材の外周にはその両端面に開口させて軸方向の溝(循環溝)が形成される。   This dynamic pressure type bearing device fixes a sleeve-shaped bearing member to the inner periphery of a bottomed cylindrical housing, and connects a shaft inserted into the inner periphery of the bearing member to a radial bearing gap, or a radial bearing gap and a thrust bearing gap. It is a structure which supports by the dynamic pressure which arose in both. In general, in this type of bearing, the space sandwiched between the thrust receiving surface formed at the bottom of the housing and the end surface of the bearing member facing this has a sealed structure. Therefore, in order to open this sealed space to the outside air, the bearing An axial groove (circulation groove) is formed on the outer periphery of the member so as to open at both end faces thereof.

特開2001−152174号公報JP 2001-152174 A

ところで軸受部材の製造工程では、軸受部材は、スリーブ状の焼結金属をダイに入れてサイジングすることにより、所定寸法に成形される。サイジング後は、脱型に伴ってスプリングバックが生じ、軸受部材の外周が外径側に膨らむが、サイジング中の循環溝部分はダイと接触しておらず、内径側に圧迫されていないため、他所に比べて脱型後のスプリングバック量は小さくなる。そのため、サイジング後は、図8に示すように、軸受部材21の外周や内周は真円ではなく、循環溝23付近を小径とする異形断面形状となる。従来では、軸受部材21の外周二箇所(180°対向位置)に循環溝23を形成することが多く、その場合、サイジング後の断面形状は循環溝23部分を短軸とする楕円形となる。   By the way, in the manufacturing process of a bearing member, a bearing member is shape | molded by the predetermined dimension by putting sleeve-shaped sintered metal in a die and sizing. After sizing, springback occurs with mold removal, and the outer periphery of the bearing member swells to the outer diameter side, but the circulation groove part during sizing is not in contact with the die and is not compressed to the inner diameter side, The amount of springback after demolding is smaller than in other places. Therefore, after sizing, as shown in FIG. 8, the outer periphery and inner periphery of the bearing member 21 are not perfect circles, but have a modified cross-sectional shape with a small diameter near the circulation groove 23. Conventionally, the circulation groove 23 is often formed at two locations on the outer periphery of the bearing member 21 (180 ° facing position). In this case, the cross-sectional shape after sizing is an ellipse having the circulation groove 23 portion as a short axis.

しかしながら、このような楕円形状のままでは、軸受部材21の内周と軸25外周との間のラジアル軸受隙間に狭い部分(短軸方向)と広い部分(長軸方向)とが形成される。この場合、ラジアル軸受隙間の広い部分で流体動圧による軸の浮上効果が低下するため、楕円長軸方向の軸受剛性が低下して軸の振れ回りを招き、NRRO等に悪影響を及ぼすことが懸念される。   However, with such an elliptical shape, a narrow part (short axis direction) and a wide part (major axis direction) are formed in the radial bearing gap between the inner periphery of the bearing member 21 and the outer periphery of the shaft 25. In this case, the floating effect of the shaft due to the fluid dynamic pressure is reduced at the wide radial bearing gap, so the bearing rigidity in the elliptical long axis direction is reduced, causing the shaft to run around, and there is concern that NRRO etc. may be adversely affected. Is done.

そこで、本発明は、スプリングバック後の変形に起因した各方向における軸受剛性差を解消することにより、高い回転精度を有する動圧型軸受装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a hydrodynamic bearing device having high rotational accuracy by eliminating a bearing rigidity difference in each direction due to deformation after springback.

上記目的の達成のため、本発明では、軸部材と、含油焼結金属からなり、軸部材の外周とラジアル軸受隙間を介して対向する軸受部材と、軸受部材を内周に固定したハウジングとを備え、軸部材と軸受部材の相対回転でラジアル軸受隙間に、動圧溝で潤滑油の動圧を発生させて軸部材を非接触支持し、かつ軸受部材の外周に、その両端面に開口させて潤滑が流れる循環溝を形成した動圧型軸受装置において、循環溝を三つ以上有し、軸部材に軸受部材の一方の端面と対向するフランジ部を設け、軸受部材の当該端面とフランジ部の端面との間に形成されたスラスト軸受隙間に潤滑油の動圧を発生させ、前記動圧溝を、前記スラスト軸受隙間に潤滑油を押し込むような非対称形状とすることで、潤滑油を前記循環溝に流入させることとした。 In order to achieve the above object, in the present invention, a shaft member, a bearing member made of an oil-impregnated sintered metal, opposed to the outer periphery of the shaft member via a radial bearing gap, and a housing in which the bearing member is fixed to the inner periphery are provided. The shaft member is supported in a non-contact manner by generating a dynamic pressure of the lubricating oil in the radial bearing gap by the relative rotation of the shaft member and the bearing member, and the outer periphery of the bearing member is opened at both end faces. in the dynamic pressure type bearing device to form a circular groove lubricating oil flows Te, the circulation grooves possess three or more, the flange portion of one end face facing the bearing member provided on the shaft member, the end face of the bearing member and the flange portion By generating a dynamic pressure of the lubricating oil in the thrust bearing gap formed between the end face of the cylinder and the aforesaid dynamic pressure groove having an asymmetric shape that pushes the lubricating oil into the thrust bearing gap. It was decided to flow into the circulation groove .

軸部材に軸受部材の一方の端面と対向するフランジ部を設け、軸受部材の当該端面とフランジ部の端面との間に形成されたスラスト軸受隙間に潤滑油の動圧を発生させることにより、軸部材をスラスト方向でも非接触支持することが可能となる。この場合、スラスト軸受隙間の潤滑油が遠心力の影響でより多く溝に流入するようになるが、三つ以上の循環溝があれば、かかる潤滑油も確実に吸収することができる。 By providing the shaft member with a flange portion facing one end surface of the bearing member, and generating dynamic pressure of the lubricating oil in the thrust bearing gap formed between the end surface of the bearing member and the end surface of the flange portion, The member can be supported in a non-contact manner in the thrust direction. In this case, the lubricating oil in the thrust bearing gap flows more into the groove due to the influence of centrifugal force. However, if there are three or more circulating grooves, the lubricating oil can be reliably absorbed.

軸受面の動圧溝が、上記スラスト軸受隙間に潤滑を押し込むような非対称形状であるので循環溝への潤滑の流入量がさらに増えるが、この場合でも潤滑を余裕を持って吸収することができる。この場合、ハウジングの開口部をシール部材によってシールし、軸受部材とシール部材との間に隙間を形成し、この隙間を介して循環溝をシール部材の内周に連通させる。 The dynamic pressure groove on the bearing surface has an asymmetric shape that pushes the lubricating oil into the thrust bearing gap, so the amount of lubricating oil flowing into the circulation groove further increases, but even in this case, the lubricating oil is absorbed with a margin. can do. In this case, the opening of the housing is sealed by the seal member, a gap is formed between the bearing member and the seal member, and the circulation groove is communicated with the inner periphery of the seal member through the gap.

三つ以上の循環溝を設けることにより、各方向における軸受剛性が増すため、軸受の回転精度を高めることが可能となる。   By providing three or more circulation grooves, the bearing rigidity in each direction is increased, so that the rotation accuracy of the bearing can be increased.

このように本発明によれば、非対称形状の動圧溝で循環溝に流入した潤滑油をラジアル軸受隙間に再供給することができる。
また、軸受部材の外周に三つ以上の循環溝を形成しているので、サイジング後の軸受部材のスプリングバック変形に基づく軸受剛性の不安定化を防止することができ、軸受の回転精度をさらに高めることができる。
As described above, according to the present invention, the lubricating oil flowing into the circulation groove by the asymmetrical dynamic pressure groove can be re-supplied to the radial bearing gap.
Further, since three or more circulation grooves are formed on the outer periphery of the bearing member, it is possible to prevent instability of the bearing rigidity due to the springback deformation of the bearing member after sizing, and further increase the rotation accuracy of the bearing. Can be increased.

本発明にかかる動圧型軸受装置の縦断面図である。1 is a longitudinal sectional view of a hydrodynamic bearing device according to the present invention. 軸受部材の斜視図である。It is a perspective view of a bearing member. 各種軸受における無次元剛性を示す図である。It is a figure which shows the dimensionless rigidity in various bearings. 3円弧軸受の横断面図である。It is a cross-sectional view of a 3-arc bearing. 4円弧軸受の横断面図である。It is a cross-sectional view of a 4-arc bearing. 偏心率を説明する横断面図である。It is a cross-sectional view explaining the eccentricity. 軸方向で非対称のラジアル軸受面を形成した動圧型軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the dynamic pressure type bearing device which formed the axial bearing asymmetrical radial bearing surface. 2円弧軸受の横断面図である。It is a cross-sectional view of a two-arc bearing.

以下、本発明の実施形態を図1乃至図8に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8.

図1に示すように、本実施形態における動圧型軸受装置は、スリーブ状の軸受部材1と、軸部材7と、有底筒状のハウジング9とを主要な構成要素とする。   As shown in FIG. 1, the hydrodynamic bearing device according to the present embodiment includes a sleeve-shaped bearing member 1, a shaft member 7, and a bottomed cylindrical housing 9 as main components.

軸受部材1は、焼結金属に潤滑油あるいは潤滑グリースを含浸させて細孔内に油を保有させた含油焼結金属で形成される。焼結金属としては、例えば銅系あるいは鉄系、またはその双方を主成分とするものが使用でき、望ましくは銅を20〜95%使用して成形される。この軸受部材1は、従来と同様に、圧粉成形→焼結→サイジング→含油の各工程を経て製造され、このようにして得られた軸受部材1の内周面および一方の端面1aには、プレス加工等の手段によって後述する動圧発生用の溝3(動圧溝)が形成される。   The bearing member 1 is formed of an oil-impregnated sintered metal in which a sintered metal is impregnated with lubricating oil or lubricating grease so that the oil is retained in the pores. As the sintered metal, for example, a copper-based or iron-based material, or a material containing both of them as a main component can be used. Preferably, the sintered metal is formed using 20 to 95% of copper. The bearing member 1 is manufactured through the steps of compacting, sintering, sizing, and oil impregnation, as in the prior art, and the bearing member 1 thus obtained has an inner peripheral surface and one end surface 1a. Then, a dynamic pressure generating groove 3 (dynamic pressure groove) described later is formed by means such as press working.

軸受部材1の内周には、動圧発生手段として複数の動圧溝3を有するラジアル軸受面5a,5bが形成される。図示例では、軸方向に離隔させて二つのラジアル軸受面5a,5bを形成した場合を例示しているが、ラジアル軸受面5a,5bの数は、二つに限られず、一つあるいは三つ以上とすることもできる。ラジアル軸受面5a,5bの動圧溝3は、軸方向に対して傾斜した形状であれば足り、図示のようなヘリングボーン形に配列する他、スパイラル形に配列することもできる。この他、調和波形等の動圧溝を有しない非真円形のラジアル軸受面を使用することも可能である。   On the inner periphery of the bearing member 1, radial bearing surfaces 5a and 5b having a plurality of dynamic pressure grooves 3 as dynamic pressure generating means are formed. In the illustrated example, the case where the two radial bearing surfaces 5a and 5b are formed apart from each other in the axial direction is illustrated, but the number of the radial bearing surfaces 5a and 5b is not limited to two, but one or three. It can also be set as above. The dynamic pressure grooves 3 on the radial bearing surfaces 5a and 5b need only be inclined with respect to the axial direction, and may be arranged in a spiral shape as well as in a herringbone shape as shown. In addition, it is also possible to use a non-circular radial bearing surface having no dynamic pressure groove such as a harmonic waveform.

軸部材7は、ステンレス鋼等の金属材で形成され、ストレート状の軸部7aと軸部7aの端部に設けられた円板状のフランジ部7bとで構成される。軸部7aとフランジ部7bは、圧入した別部品で形成する他、鍛造等の手段で一体成形することもできる。   The shaft member 7 is formed of a metal material such as stainless steel, and includes a straight shaft portion 7a and a disk-shaped flange portion 7b provided at an end of the shaft portion 7a. The shaft portion 7a and the flange portion 7b can be formed by separate press-fitted parts, or can be integrally formed by means such as forging.

ハウジング9は一端を開口すると共に、他端を閉じた有底筒状に形成される。軸受部材1は、ハウジング9の内周に圧入や接着等の手段で固定される。この時、軸受部材1の内周に軸部材7の軸部7aが配置され、ハウジング9の底部9aと軸受部材1の一方の端面1aとの間の空間にフランジ部7bが配置される。ハウジング底部9aは、図示のように筒状のハウジング本体9bと一体成形する他、ハウジング本体9bとは別部品で形成し、これらを嵌合することにより組み立てることもできる。ハウジング本体9bの開口部は、潤滑流体としての油の流出を防止するため、シール部材10によって密封されており、シール部材10とこれに対向する軸受部材1の端面1bとの間には、保油効果を高めるため、軸方向の僅かな隙間が形成されている。   The housing 9 is formed in a bottomed cylindrical shape with one end opened and the other end closed. The bearing member 1 is fixed to the inner periphery of the housing 9 by means such as press fitting or adhesion. At this time, the shaft portion 7 a of the shaft member 7 is disposed on the inner periphery of the bearing member 1, and the flange portion 7 b is disposed in the space between the bottom portion 9 a of the housing 9 and one end surface 1 a of the bearing member 1. The housing bottom 9a can be integrally formed with the cylindrical housing main body 9b as shown, or can be formed as a separate part from the housing main body 9b and assembled by fitting them together. The opening of the housing main body 9b is sealed by a seal member 10 to prevent the oil as a lubricating fluid from flowing out, and is maintained between the seal member 10 and the end surface 1b of the bearing member 1 facing the seal member 10. In order to enhance the oil effect, a slight gap in the axial direction is formed.

この状態では、フランジ部7bの両端面7b1,7b2は、軸受部材1の一方の端面1a、およびハウジング底部9aのスラスト受け面9a1とそれぞれ対向している。フランジ部7bと対向する軸受部材1の端面1aおよびスラスト受け面9a1には、動圧発生手段として複数の動圧溝(図示省略)を備えたスラスト軸受面11a,11bがそれぞれ形成される。スラスト軸受面11a,11bの動圧溝形状は任意であり、ラジアル軸受面5a,5bと同様にヘリングボーン形やスパイラル形の動圧溝を形成する他、ステップ形のスラスト軸受面を形成することもできる。動圧溝は、軸受部材端面1aやスラスト受け面9a1に代えてフランジ部7bの両端面7b1,7b2に形成することもでき、この場合には、フランジ部7bの両端面7b1,7b2に上記スラスト軸受面が形成される。   In this state, both end surfaces 7b1 and 7b2 of the flange portion 7b are opposed to one end surface 1a of the bearing member 1 and the thrust receiving surface 9a1 of the housing bottom portion 9a. Thrust bearing surfaces 11a and 11b having a plurality of dynamic pressure grooves (not shown) are formed as dynamic pressure generating means on the end surface 1a of the bearing member 1 and the thrust receiving surface 9a1 facing the flange portion 7b. The dynamic pressure groove shape of the thrust bearing surfaces 11a and 11b is arbitrary, and, like the radial bearing surfaces 5a and 5b, in addition to forming herringbone and spiral dynamic pressure grooves, a step-type thrust bearing surface is formed. You can also. The dynamic pressure grooves can be formed on both end surfaces 7b1 and 7b2 of the flange portion 7b instead of the bearing member end surface 1a and the thrust receiving surface 9a1. In this case, the thrust grooves are formed on both end surfaces 7b1 and 7b2 of the flange portion 7b. A bearing surface is formed.

ラジアル軸受面5a,5bと軸部7aの外周面との間の微小隙間(ラジアル軸受隙間)、およびスラスト軸受面11a,11bとこれに対向する面(図示例ではフランジ部7bの両端面7b1,7b2)との間の微小隙間(スラスト軸受隙間)には、それぞれ潤滑流体としての油が満たされている。軸部材7と軸受部材1の相対回転時(本実施形態では軸部材7の回転時)には、各軸受面5a,5b,11a,11bの作用により、ラジアル軸受隙間およびスラスト軸受隙間に油の動圧が生じ、軸部材7がラジアル方向およびスラスト両方向で軸受部材1に対して非接触支持される。   A minute gap (radial bearing gap) between the radial bearing surfaces 5a, 5b and the outer peripheral surface of the shaft portion 7a, and the thrust bearing surfaces 11a, 11b and opposite surfaces (in the illustrated example, both end surfaces 7b1, 7b1 of the flange portion 7b) 7b2) is filled with oil as a lubricating fluid. During relative rotation of the shaft member 7 and the bearing member 1 (when the shaft member 7 is rotated in the present embodiment), oil acts on the radial bearing gap and the thrust bearing gap by the action of the bearing surfaces 5a, 5b, 11a, and 11b. A dynamic pressure is generated, and the shaft member 7 is supported in a non-contact manner relative to the bearing member 1 in both the radial direction and the thrust direction.

軸受部材1の外周には、従来と同様に、その両端面1a,1bに開口した溝、すなわち循環溝12が軸方向に向けて形成される。この循環溝12は、ハウジング9の底部9aと、軸受部材1の端面1aとの間の密閉空間を軸受外部と連通させるもので、油を軸方向に流動させる通路としての役割を果たす。循環溝12中の油は軸受部材1に吸収され、さらに軸受部材1表面から滲み出して各軸受隙間に再供給される。本発明では、後述する理由から、この循環溝12を円周方向等間隔に三つ以上、好ましくは三つ設けることとしている(図2参照)。   On the outer periphery of the bearing member 1, as in the prior art, grooves opened on both end faces 1 a and 1 b, that is, circulation grooves 12 are formed in the axial direction. The circulation groove 12 communicates the sealed space between the bottom portion 9a of the housing 9 and the end surface 1a of the bearing member 1 with the outside of the bearing, and serves as a passage through which oil flows in the axial direction. The oil in the circulation groove 12 is absorbed by the bearing member 1 and further oozes out from the surface of the bearing member 1 and is resupplied to each bearing gap. In the present invention, three or more, preferably three circulation grooves 12 are provided at equal intervals in the circumferential direction for the reason described later (see FIG. 2).

このように循環溝12を三つ形成した場合、サイジング後は、循環溝12部分と他の部分とのスプリングバック量の相違より、軸受部材1は、図4に示すように、3つの大径円弧13からなる略三角形状の断面に変形する(以下、このように変形した軸受部材を3円弧軸受と称する)。また、循環溝12を四つ形成した場合、同様の理由からサイジング後の軸受部材は、図5に示すように四つの大径円弧13からなる略四角形状の断面に変形する(4円弧軸受と称する)。図示は省略するが、5以上の循環溝12を設けた場合も、循環溝12と同数の大径円弧を有する多角形状(5円弧軸受、6円弧軸受等)の断面に変形する。なお、図4および図5は、理解の容易化のため、真円に対する変形度合いを誇張して描いているが、肉眼ではこれほど明確な変形は確認できない。   When three circulation grooves 12 are formed in this way, after sizing, the bearing member 1 has three large diameters as shown in FIG. 4 due to the difference in the spring back amount between the circulation groove 12 and other portions. The cross section is deformed into a substantially triangular cross section formed by the arc 13 (hereinafter, the deformed bearing member is referred to as a three-arc bearing). In addition, when four circulation grooves 12 are formed, the bearing member after sizing is deformed into a substantially rectangular cross section composed of four large-diameter arcs 13 as shown in FIG. Called). Although illustration is omitted, even when five or more circulation grooves 12 are provided, the cross section is deformed into a polygonal cross section (5 arc bearing, 6 arc bearing, etc.) having the same number of large-diameter arcs as the circulation grooves 12. 4 and 5 depict the degree of deformation with respect to a perfect circle exaggerated for easy understanding, but such a clear deformation cannot be confirmed with the naked eye.

図3は、従来のジャーナル軸受である2円弧軸受、3円弧軸受、および4円弧軸受における油膜の無次元剛性の解析結果を示すものである。これは、軸受隙間内の流体圧力をレイノルズ方程式という二階の微分方程式で表し、それをコンピュータによって数値的に解いて得られたものである。圧力が負圧になる領域では、圧力境界条件としてレイノルズ条件を用いている。ここでいうレイノズル条件は、油膜破断部で圧力勾配が0となり、流量の連続を満足する条件である。   FIG. 3 shows the analysis result of the dimensionless rigidity of the oil film in the two-arc bearing, the three-arc bearing, and the four-arc bearing, which are conventional journal bearings. This is obtained by expressing the fluid pressure in the bearing clearance as a second-order differential equation called Reynolds equation and solving it numerically by a computer. In the region where the pressure is negative, the Reynolds condition is used as the pressure boundary condition. The lay nozzle condition here is a condition in which the pressure gradient becomes 0 at the oil film breaking portion and the flow rate is continuous.

ここでの2円弧軸受、3円弧軸受、および4円弧軸受は、それぞれ円周方向に10°の幅の循環溝12をそれぞれ2つ,3つ,および4つ等間隔に設けた軸受である。また、何れの軸受でも軸受部材1の軸方向長さLと外径Dとの比(L/D)を0.5に設定している。また、軸部材7の偏心率εは、ε=0.1を基準としている(2円弧軸受の場合の偏心率はε=0.0868としている)。なお、ε=0は図6に破線で示すように軸受部材1と軸部材7の軸心が一致した状態を、ε=1は同図に二点鎖線で示すように軸部材7が軸受部材1に内接した状態をそれぞれ表す(図6のラジアル軸受隙間の幅は誇張して描かれている)。   The two-arc bearing, the three-arc bearing, and the four-arc bearing here are bearings provided with two, three, and four circulation grooves 12 each having a width of 10 ° in the circumferential direction. In any bearing, the ratio (L / D) between the axial length L and the outer diameter D of the bearing member 1 is set to 0.5. Further, the eccentricity ε of the shaft member 7 is based on ε = 0.1 (the eccentricity in the case of the two-arc bearing is ε = 0.0868). Note that ε = 0 indicates a state in which the shaft centers of the bearing member 1 and the shaft member 7 coincide with each other as shown by a broken line in FIG. 6, and ε = 1 indicates that the shaft member 7 has a bearing member as indicated by a two-dot chain line in FIG. 1 represents the inscribed state (the width of the radial bearing gap in FIG. 6 is exaggerated).

図中のKxx、Kyy、Kxy、Kyxは油膜の弾性定数を表すもので、それぞれ数値的に解いた圧力部分布を軸受面で積分し、求めたx方向及びy方向の荷重をx、y方向の変位でそれぞれ数値微分することによって求められる。これらは無次元で表され、四つの無次元剛性をKijで表すと、有次元の剛性kijは、以下の式で表される。 In the figure, Kxx, Kyy, Kxy, and Kyx represent the elastic constants of the oil film, and numerically solved pressure part distributions are integrated on the bearing surface, and the obtained loads in the x and y directions are x and y directions. It is obtained by differentiating numerically with each displacement . These are expressed dimensionlessly, and if the four dimensionless stiffnesses are represented by Kij, the dimensional stiffness kij is represented by the following equation.

kij=(W/Cp)Kij
ここでWは軸受荷重、Cpは軸受半径隙間を表す。
kij = (W / Cp) Kij
Here, W represents a bearing load, and Cp represents a bearing radius gap.

添え字のxxはX方向(楕円の短軸方向)の力を生じるX方向の変位を、yyはY方向(楕円の長軸方向)の力を生じるY方向の変位を、xyはX方向の力を生じるY方向の変位を、yxはY方向の力を生じるX方向の変位をそれぞれを表す。添え字xyおよびyxを付したものは、自己ではない他の運動から受ける変位に対して発生する力を示す連成項で、これが大きい場合には軸部材7の振れ回り振動の不安定性が増すこととなる。図3からは、2円弧軸受ではKxxとKyyがバランスされておらず、荷重方向による軸受剛性の差が大きいのに対し、3円弧軸受や4円弧軸受では両値のバランスがとれているためにこのような不都合がないことが理解できる。以上から、スプリングバック後の軸受部材1の断面形状が3円弧軸受や4円弧軸受に近似するよう、循環溝12の数は三つ以上とするのが好ましい。   The subscript xx is the displacement in the X direction that generates a force in the X direction (short axis direction of the ellipse), yy is the displacement in the Y direction that generates a force in the Y direction (long axis direction of the ellipse), and xy is the displacement in the X direction. Yx represents a displacement in the Y direction that generates a force, and yx represents a displacement in the X direction that generates a force in the Y direction. The subscripts xy and yx are coupled terms indicating the force generated with respect to the displacement received from other motions that are not self, and when this is large, the instability of the whirling vibration of the shaft member 7 increases. It will be. From FIG. 3, Kxx and Kyy are not balanced in the two-arc bearing, and the difference in bearing rigidity depending on the load direction is large, whereas both values are balanced in the three-arc bearing and the four-arc bearing. It can be understood that there is no such inconvenience. From the above, it is preferable that the number of the circulation grooves 12 be three or more so that the cross-sectional shape of the bearing member 1 after the spring back approximates to a three-arc bearing or a four-arc bearing.

その一方、量産化する場合のラジアル軸受隙間の隙間管理を考えた場合、4円弧軸受では、計測方向によって内径寸法の差が大きくなるのに対し(図5の矢印参照)、3円弧軸受では、そのような差が小さい(図4の矢印参照)。そのため、4円弧軸受に比べ、3円弧軸受の方が内径寸法の公差レンジを緩くでき、より低コストに製造できる。また、図3によれば、連成項Kxy、Kyxの絶対値は3円弧軸受の方が小さいので、この点でも3円弧軸受の方が好ましい。一方、5円弧以上の軸受では、スプリングバック変形後の断面形状が真円軸受に近くなるため、軸部材7にホワールと呼ばれる不安定な自励振動が生じる懸念があるし、溝加工のコストも増大する。以上の理由から、スプリングバック変形後の断面形状が3円弧軸受に近似するよう、循環溝は三つ形成するのが最も好ましい。   On the other hand, when considering the clearance management of the radial bearing gap in the case of mass production, the difference in the inner diameter dimension becomes larger depending on the measurement direction in the four-arc bearing (see the arrow in FIG. 5), Such a difference is small (see arrow in FIG. 4). Therefore, compared with the 4-arc bearing, the 3-arc bearing can loosen the tolerance range of the inner diameter dimension, and can be manufactured at a lower cost. Further, according to FIG. 3, the absolute values of the coupled terms Kxy and Kyx are smaller in the three-arc bearing, so that the three-arc bearing is also preferable in this respect. On the other hand, in bearings with 5 or more arcs, the cross-sectional shape after spring back deformation is close to a perfect circle bearing, so there is a concern that unstable self-excited vibration called whirl occurs in the shaft member 7, and the cost of grooving is also high. Increase. For the above reasons, it is most preferable to form three circulation grooves so that the cross-sectional shape after deformation of the spring back approximates that of a three-arc bearing.

図7は、二つのラジアル軸受面5a,5bのうち、ハウジング9の閉じ側の軸受面5aを軸方向で非対称に形成し、動圧溝3によるハウジング閉じ側(図面下方)への油の押し込み力を強化した構造である。この場合、油膜の形成領域がハウジング閉じ側にずれるため、循環溝12に流入する油量が増え、従来のような二つの循環溝(23:図8参照)では油の流動速度を十分に吸収できない懸念があるが、上述のように循環溝12を三つ以上設けることにより、かかる不具合を回避することができる。循環溝の数は、油の流動に応じて定めることができるが、回転精度を考えると、上述のように三つの循環溝12を形成するのが最も好ましい。   FIG. 7 shows that, of the two radial bearing surfaces 5a and 5b, the bearing surface 5a on the closed side of the housing 9 is formed asymmetrically in the axial direction, and oil is pushed into the housing closed side (downward in the drawing) by the dynamic pressure groove It is a structure with enhanced power. In this case, since the oil film formation region is shifted toward the housing closing side, the amount of oil flowing into the circulation groove 12 increases, and the conventional two circulation grooves (23: see FIG. 8) sufficiently absorb the oil flow rate. Although there is a concern that it cannot be performed, such a problem can be avoided by providing three or more circulation grooves 12 as described above. Although the number of circulation grooves can be determined according to the flow of oil, it is most preferable to form the three circulation grooves 12 as described above in view of rotational accuracy.

1 軸受部材
1a 端面(ハウジング閉じ側)
1b 端面(ハウジング開き側)
3 動圧溝
5a ラジアル軸受面(ハウジング閉じ側)
5b ラジアル軸受面(ハウジング開き側)
7 軸部材
7a 軸部
7b フランジ部
9 ハウジング
9a ハウジング底部
9a1 スラスト受け面
9b ハウジング本体
10 シール部材
11a スラスト軸受面(ハウジング開き側)
11b スラスト軸受面(ハウジング閉じ側)
12 循環溝
13 大径円弧
1 Bearing member 1a End face (housing closed side)
1b End face (housing opening side)
3 Dynamic pressure groove 5a Radial bearing surface (housing closed side)
5b Radial bearing surface (housing opening side)
7 Shaft member 7a Shaft portion 7b Flange portion 9 Housing 9a Housing bottom portion 9a1 Thrust receiving surface 9b Housing body 10 Seal member 11a Thrust bearing surface (housing opening side)
11b Thrust bearing surface (housing closed side)
12 Circulating groove 13 Large-diameter arc

Claims (3)

軸部材と、含油焼結金属からなり、軸部材の外周とラジアル軸受隙間を介して対向する軸受部材と、軸受部材を内周に固定したハウジングとを備え、軸部材と軸受部材の相対回転でラジアル軸受隙間に、動圧溝で潤滑油の動圧を発生させて軸部材を非接触支持し、かつ軸受部材の外周に、その両端面に開口させて潤滑が流れる循環溝を形成した動圧型軸受装置において、
循環溝を三つ以上有し、軸部材に軸受部材の一方の端面と対向するフランジ部を設け、軸受部材の当該端面とフランジ部の端面との間に形成されたスラスト軸受隙間に潤滑油の動圧を発生させ、前記動圧溝を、前記スラスト軸受隙間に潤滑油を押し込むような非対称形状とすることで、潤滑油を前記循環溝に流入させることを特徴とする動圧型軸受装置。
A shaft member, comprising a bearing member made of oil-impregnated sintered metal and opposed to the outer periphery of the shaft member via a radial bearing gap, and a housing having the bearing member fixed to the inner periphery, the shaft member and the bearing member being relatively rotated. the radial bearing gap, by generating dynamic pressure of the lubricating oil at the dynamic pressure grooves and the non-contact support the shaft member, and the outer periphery of the bearing member, to form a circular groove lubricating oil flows is opened on both end faces thereof kinematic In the pressure bearing device,
The circulating grooves possess three or more, the flange portion of one end face facing the bearing member provided on the shaft member, the thrust bearing gap formed between said end face and the end face of the flange portion of the bearing member of the lubricating oil A dynamic pressure bearing device , wherein dynamic pressure is generated, and the dynamic pressure groove is formed in an asymmetric shape so as to push the lubricating oil into the thrust bearing gap, thereby causing the lubricating oil to flow into the circulation groove .
上記循環溝に流入した潤滑油をラジアル軸受隙間に再供給する請求項1記載の動圧型軸受装置。2. The hydrodynamic bearing device according to claim 1, wherein the lubricating oil flowing into the circulation groove is resupplied to the radial bearing gap. ハウジングの開口部をシール部材によってシールし、軸受部材とシール部材との間に隙間を形成し、この隙間を介して循環溝をシール部材の内周に連通させた請求項1または2記載の動圧型軸受装置。The movement according to claim 1 or 2, wherein the opening of the housing is sealed by a seal member, a gap is formed between the bearing member and the seal member, and the circulation groove is communicated with the inner periphery of the seal member through the gap. Pressure bearing device.
JP2009079370A 2009-03-27 2009-03-27 Dynamic pressure bearing device Pending JP2009144927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079370A JP2009144927A (en) 2009-03-27 2009-03-27 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079370A JP2009144927A (en) 2009-03-27 2009-03-27 Dynamic pressure bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002029520A Division JP2003232353A (en) 2001-11-13 2002-02-06 Dynamic pressure type bearing device

Publications (1)

Publication Number Publication Date
JP2009144927A true JP2009144927A (en) 2009-07-02

Family

ID=40915719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079370A Pending JP2009144927A (en) 2009-03-27 2009-03-27 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2009144927A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155897A (en) * 1997-07-28 1999-02-26 Tokyo Parts Ind Co Ltd Hydrodynamic bearing mounted motor
JPH1182481A (en) * 1997-08-29 1999-03-26 Japan Servo Co Ltd Fluid dynamic pressure bearing device
JP2000320546A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Bearing device and motor provided with the bearing device
JP2000352416A (en) * 1999-06-11 2000-12-19 Ntn Corp Dynamic pressure type bearing unit and its manufacture
JP2001112214A (en) * 1999-10-01 2001-04-20 Nippon Densan Corp Motor
JP2001124059A (en) * 1999-10-27 2001-05-08 Ntn Corp Dynamic pressure bearing unit
JP2001152174A (en) * 1999-11-24 2001-06-05 Hitachi Powdered Metals Co Ltd Sintered oilless bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155897A (en) * 1997-07-28 1999-02-26 Tokyo Parts Ind Co Ltd Hydrodynamic bearing mounted motor
JPH1182481A (en) * 1997-08-29 1999-03-26 Japan Servo Co Ltd Fluid dynamic pressure bearing device
JP2000320546A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Bearing device and motor provided with the bearing device
JP2000352416A (en) * 1999-06-11 2000-12-19 Ntn Corp Dynamic pressure type bearing unit and its manufacture
JP2001112214A (en) * 1999-10-01 2001-04-20 Nippon Densan Corp Motor
JP2001124059A (en) * 1999-10-27 2001-05-08 Ntn Corp Dynamic pressure bearing unit
JP2001152174A (en) * 1999-11-24 2001-06-05 Hitachi Powdered Metals Co Ltd Sintered oilless bearing

Similar Documents

Publication Publication Date Title
US7048444B2 (en) Fluid lubricated bearing device
US7604411B2 (en) Fluid lubricated bearing device
US7604410B2 (en) Fluid lubricated bearing device
JP5674495B2 (en) Fluid dynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
KR20150020567A (en) Fluid dynamic bearing device and motor with same
JP2006194400A (en) Spindle motor and rotating device
JP2003232353A (en) Dynamic pressure type bearing device
KR101367245B1 (en) Dynamic-pressure bearing device, and bearing member manufacturing method
JP2007177808A (en) Hydrodynamic bearing unit
JP2007263311A (en) Dynamic pressure bearing device
JP2009144927A (en) Dynamic pressure bearing device
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP5220359B2 (en) Hydrodynamic bearing device
JP3784580B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
JP2001116046A (en) Dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2007250095A (en) Dynamic pressure bearing arrangement
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2009103179A (en) Fluid bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
WO2025150356A1 (en) Dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP4739247B2 (en) Hydrodynamic bearing device
JP6502036B2 (en) Fluid dynamic bearing device and motor including the same
JP2006177563A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110615