JP2009140624A - Composition for light-emitting layer, and dispersion type el element - Google Patents
Composition for light-emitting layer, and dispersion type el element Download PDFInfo
- Publication number
- JP2009140624A JP2009140624A JP2007312992A JP2007312992A JP2009140624A JP 2009140624 A JP2009140624 A JP 2009140624A JP 2007312992 A JP2007312992 A JP 2007312992A JP 2007312992 A JP2007312992 A JP 2007312992A JP 2009140624 A JP2009140624 A JP 2009140624A
- Authority
- JP
- Japan
- Prior art keywords
- emitting layer
- light emitting
- composition
- dispersion type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- 239000006185 dispersion Substances 0.000 title claims abstract description 65
- 239000000843 powder Substances 0.000 claims abstract description 62
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229920005989 resin Polymers 0.000 claims abstract description 52
- 239000011347 resin Substances 0.000 claims abstract description 52
- 239000010419 fine particle Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 27
- 239000003989 dielectric material Substances 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 42
- 238000000034 method Methods 0.000 description 54
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 46
- 239000010408 film Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 11
- 239000005083 Zinc sulfide Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 229910052984 zinc sulfide Inorganic materials 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- -1 copper activated zinc sulfide Chemical class 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- 229910015999 BaAl Inorganic materials 0.000 description 2
- 101100290380 Caenorhabditis elegans cel-1 gene Proteins 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- CYEIUVUOIGWYLH-UHFFFAOYSA-N 1,1-difluoroethene prop-1-ene hexahydrofluoride Chemical compound CC=C.C=C(F)F.F.F.F.F.F.F CYEIUVUOIGWYLH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- CCCIYAQYQZQDIZ-UHFFFAOYSA-N 6-methylheptan-3-one Chemical compound CCC(=O)CCC(C)C CCCIYAQYQZQDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241001175904 Labeo bata Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910017857 MgGa Inorganic materials 0.000 description 1
- 229910017911 MgIn Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910003668 SrAl Inorganic materials 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical class O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- BJXXCWDIBHXWOH-UHFFFAOYSA-N barium(2+);oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Ba+2].[Ba+2].[Ba+2].[Ba+2].[Ba+2].[Ta+5].[Ta+5].[Ta+5].[Ta+5] BJXXCWDIBHXWOH-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000003081 coactivator Effects 0.000 description 1
- 238000005049 combustion synthesis Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 150000003151 propanoic acid esters Chemical class 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、分散型EL(Electroluminescence)素子の製造に用いる発光層用組成物及び分散型EL素子に関する。 The present invention relates to a composition for a light emitting layer and a dispersion type EL device used for manufacturing a dispersion type EL (Electroluminescence) device.
EL素子はその駆動方法、素子構造によって様々な種類がある。これらのうち交流電圧を印加して発光する素子を一般に無機EL素子と呼ぶ。無機EL素子はその作成方法により、蛍光体粉末と樹脂成分からなる層を発光層とする分散型EL素子と、蛍光体薄膜を発光層とする薄膜型EL素子に大別される。無機EL素子は、面発光をするという特徴から、LCDのバックライト、時計の文字盤、各種照明、表示素子等への利用が進められている。 There are various types of EL elements depending on the driving method and element structure. Among these, an element that emits light by applying an AC voltage is generally called an inorganic EL element. Inorganic EL elements are roughly classified into a dispersion type EL element using a layer made of phosphor powder and a resin component as a light emitting layer and a thin film type EL element using a phosphor thin film as a light emitting layer, depending on the production method. Inorganic EL elements have been used for LCD backlights, clock dials, various types of lighting, display elements, and the like because of their surface emission characteristics.
分散型EL素子は、発光層が蛍光体粉末と樹脂成分からなることを特徴としている。分散型EL素子の一般的な構造は、透明電極上に発光層、誘電体層及び背面電極を順次積層した構造である。分散型EL素子の蛍光体粉末としては、硫化亜鉛を母体として、銅等の付活剤及び塩素等の共付活剤が添加された、いわゆるドナー・アクセプタ対(D・Aペア)型の蛍光体粉末が広く知られている。このような分散型EL素子は、印刷やスプレー等の簡便な塗布工程により作成できる点で優れている。 The dispersion type EL element is characterized in that the light emitting layer is made of phosphor powder and a resin component. A general structure of a dispersion type EL element is a structure in which a light emitting layer, a dielectric layer, and a back electrode are sequentially laminated on a transparent electrode. As a phosphor powder of the dispersion type EL element, a so-called donor / acceptor pair (DA pair) type fluorescence in which zinc sulfide is used as a base and an activator such as copper and a coactivator such as chlorine are added. Body powders are widely known. Such a dispersion type EL element is excellent in that it can be produced by a simple coating process such as printing or spraying.
特許文献1には、無機蛍光体を含む発光層と、発光層に電圧を印加する一対の電極とを有する分散型EL素子であって、無機蛍光体が平均粒子径の異なる第1の無機蛍光粒子と第2の無機蛍光粒子とを含み、第1の無機蛍光体粒子の平均粒子径と第2の無機蛍光体粒子の平均粒子径の比が2〜8である分散型EL素子に関する発明が開示されている。この発明は比較的高い発光輝度を有しかつ耐候性が高い分散型EL素子を得ることができる点で優れている。 Patent Document 1 discloses a dispersion type EL element having a light emitting layer containing an inorganic phosphor and a pair of electrodes for applying a voltage to the light emitting layer, wherein the inorganic phosphor has a different average particle diameter. An invention relating to a dispersion-type EL element comprising particles and second inorganic fluorescent particles, wherein the ratio of the average particle diameter of the first inorganic phosphor particles to the average particle diameter of the second inorganic phosphor particles is 2 to 8. It is disclosed. The present invention is excellent in that a dispersion type EL element having relatively high light emission luminance and high weather resistance can be obtained.
一方、薄膜型EL素子の一般的な構造は、特許文献2の発明に開示されているように、電極上に発光層、誘電体層及び電極を順次積層した構造をしており、発光層が蒸着等により形成される薄膜であることを特徴としている。薄膜型EL素子は薄型のEL素子が形成できる点で優れている。 On the other hand, the general structure of a thin-film EL element has a structure in which a light emitting layer, a dielectric layer, and an electrode are sequentially laminated on an electrode as disclosed in the invention of Patent Document 2, and the light emitting layer is It is a thin film formed by vapor deposition or the like. The thin film EL element is excellent in that a thin EL element can be formed.
しかしながら近年、無機EL素子に対してさらなる薄型化、高発光輝度化が要求される中、上記した従来の分散型EL素子は、発光層に使用するD・Aペア型蛍光体粉末の平均粒子径が一般的に数10μmであるため、薄型化の要求を満足するものではない。また高発光輝度化に対する要求に対しても、十分に満足するものではない。さらに、分散型EL素子を薄型化するためにD・Aペア型蛍光体粉末を粉砕等により小粒径化した場合、D・Aペア型蛍光体粉末の発光輝度が大きく低下するため、薄型化と高発光輝度化を両立することは非常に困難である。 In recent years, however, the inorganic EL element has been required to be thinner and have a higher light emission luminance. The conventional dispersion type EL element described above has an average particle diameter of the D / A pair phosphor powder used in the light emitting layer. However, since it is generally several tens of μm, it does not satisfy the demand for thinning. In addition, it is not fully satisfied with the demand for higher luminance. Furthermore, when the particle size of the D / A pair phosphor powder is reduced by grinding to reduce the thickness of the dispersion type EL element, the emission luminance of the D / A pair phosphor powder is greatly reduced. It is very difficult to achieve both high luminance and high luminance.
また、上記した従来の薄膜型EL素子は、発光層の作成に蒸着、スパッタリング等の工程が必要なため、製造装置が大掛かりとなる点や大面積のEL素子を作成することが困難である点に課題がある。 In addition, the above-described conventional thin film type EL element requires processes such as vapor deposition and sputtering for the production of the light emitting layer, and therefore it is difficult to produce an EL element with a large manufacturing area and a large area. There is a problem.
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、発光輝度が高く、薄型化が可能であり、さらに製造工程が簡単な分散型EL素子を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dispersive EL element that has high emission luminance, can be thinned, and has a simple manufacturing process. .
本発明者らは、前記課題を解決する方法について鋭意検討を重ねた結果、分散型EL素子の発光層を形成するための発光層用組成物に、局在型発光中心を持つ蛍光体粉末及び樹脂成分を含有しかつ形成される発光層が0.15MV/cm以上の耐電圧を有する発光層用組成物を用いることにより本発明を完成するに至った。 As a result of intensive investigations on the method for solving the above problems, the present inventors have developed a phosphor powder having a localized emission center in a composition for a light emitting layer for forming a light emitting layer of a dispersion type EL element, and The present invention has been completed by using a composition for a light emitting layer containing a resin component and having a withstand voltage of 0.15 MV / cm or more.
すなわち本発明は、分散型EL素子の発光層を形成するための発光層用組成物であって、局在型発光中心を持つ蛍光体粉末及び樹脂成分を含有しかつ形成される発光層が0.15MV/cm以上の耐電圧を有することを特徴とする発光層用組成物に関する。また本発明は透明導電層、発光層、誘電体層及び背面電極を有する分散型EL素子において、発光層が前記発光層用組成物により形成される分散型EL素子に関する。 That is, the present invention is a composition for a light emitting layer for forming a light emitting layer of a dispersion type EL device, and contains a phosphor powder having a local light emitting center and a resin component, and the light emitting layer formed is 0. The present invention relates to a composition for a light-emitting layer, which has a withstand voltage of 15 MV / cm or more. The present invention also relates to a dispersion type EL device having a transparent conductive layer, a light emitting layer, a dielectric layer, and a back electrode, wherein the light emitting layer is formed from the composition for light emitting layer.
本発明の発光層用組成物は、分散型EL素子の発光層を形成するための発光層用組成物であって、局在型発光中心を持つ蛍光体粉末及び樹脂成分を含有しかつ形成される発光層が0.15MV/cm以上の耐電圧を有する発光層用組成物であることを特徴としており、そのため該発光層用組成物から形成される発光層を有する本発明の分散型EL素子は、非常に高い発光輝度を有し、絶縁破壊が起こり難く、薄型化が可能であり、さらに簡単な製造工程により得ることができる。 The composition for a light emitting layer of the present invention is a composition for a light emitting layer for forming a light emitting layer of a dispersion type EL device, and contains a phosphor powder having a local emission center and a resin component. The light-emitting layer is a composition for a light-emitting layer having a withstand voltage of 0.15 MV / cm or more. Therefore, the dispersion-type EL device of the present invention having a light-emitting layer formed from the composition for light-emitting layer Can have a very high emission luminance, hardly cause dielectric breakdown, can be thinned, and can be obtained by a simpler manufacturing process.
本発明の発光層用組成物は、分散型EL素子の発光層を形成するための発光層用組成物であって、局在型発光中心を持つ蛍光体粉末及び樹脂成分を含有しかつ形成される発光層が0.15MV/cm以上の耐電圧を有することを特徴とする発光層用組成物である。 The composition for a light emitting layer of the present invention is a composition for a light emitting layer for forming a light emitting layer of a dispersion type EL device, and contains a phosphor powder having a local emission center and a resin component. The light-emitting layer composition has a withstand voltage of 0.15 MV / cm or more.
局在型発光中心を持つ蛍光体粉末は、希土類や遷移金属イオン等の発光中心を母体材料中に有する蛍光体粉末であって、発光中心が局在している。局在型発光中心を持つ蛍光体粉末の発光機構は、該蛍光体粉末を電界中に置いて、電界により加速された高エネルギーの電子が発光中心に衝突した場合に、前記発光中心の基底状態にある電子が励起状態に励起されその後基底状態に緩和することにより発光を生じる発光機構である。 A phosphor powder having a localized emission center is a phosphor powder having an emission center such as a rare earth or a transition metal ion in a base material, and the emission center is localized. The emission mechanism of a phosphor powder having a localized emission center is that the phosphor powder is placed in an electric field, and when the high-energy electrons accelerated by the electric field collide with the emission center, the ground state of the emission center This is a light emission mechanism in which light is emitted when electrons in are excited to an excited state and then relaxed to the ground state.
これに対し従来の分散型EL素子の発光層に用いられているドナー・アクセプタ対(D・Aペア)型蛍光体粉末は、ドナーとアクセプタの間のエネルギー遷移により発光し、発光中心は非局在である。D・Aペア型蛍光体粉末の発光機構は、A.G.Fischerの論文(A.G.Fischer:J.Electrochem.Soc.,109(1962)1043、A.G.Fischer:J.Electrochem.Soc.,110(1963)733)によると、銅付活硫化亜鉛蛍光体(ZnS:Cu,Cl)を例として以下のような発光機構であると推定されている。銅付活硫化亜鉛蛍光体において硫化亜鉛(ZnS)に添加された銅(Cu)の一部は結晶格子に入ってアクセプタ準位を形成し、また塩素(Cl)等はドナー準位となる不純物準位をそれぞれ形成し、これらの間での遷移が発光中心となる。一方、結晶格子に入りきらなかった残りのCuは針状の硫化銅(CuxS)として存在する。蛍光体に電圧を印加すると針状の硫化銅が電子と正孔を放出し、電子がドナーに、正孔がアクセプタにトラップされる。ドナー順位は比較的浅い為、電極の極性が変わるとドナーにトラップされていた電子が飛び出して、アクセプタにトラップされた正孔と再結合し、その際に発光を生じる。 On the other hand, the donor-acceptor pair (D / A pair) type phosphor powder used in the light-emitting layer of the conventional dispersion-type EL element emits light by energy transition between the donor and the acceptor, and the emission center is non-localized. Is. The light emission mechanism of the D / A pair phosphor powder is as follows. G. According to Fischer's paper (AG Fischer: J. Electrochem. Soc., 109 (1962) 1043, AG Fischer: J. Electrochem. Soc., 110 (1963) 733), copper activated zinc sulfide. A phosphor (ZnS: Cu, Cl) is taken as an example to estimate the light emission mechanism as follows. In the copper activated zinc sulfide phosphor, a part of copper (Cu) added to zinc sulfide (ZnS) enters the crystal lattice to form an acceptor level, and chlorine (Cl) or the like is an impurity that becomes a donor level. Each level is formed, and the transition between these becomes the emission center. On the other hand, the remaining Cu that does not fully enter the crystal lattice exists as acicular copper sulfide (Cu x S). When voltage is applied to the phosphor, acicular copper sulfide emits electrons and holes, and the electrons are trapped in the donor and the holes are trapped in the acceptor. Since the donor order is relatively shallow, when the polarity of the electrode is changed, electrons trapped in the donor are ejected and recombined with holes trapped in the acceptor, thereby generating light emission.
上記のとおり局在型発光中心を持つ蛍光体粉末の発光機構は、従来の分散型EL素子に使用されているD・Aペア型蛍光体粉末の発光機構とは異なる。 As described above, the light emission mechanism of the phosphor powder having the local emission center is different from the light emission mechanism of the DA pair type phosphor powder used in the conventional dispersion type EL element.
局在型発光中心を持つ蛍光体粉末としては、例えば、遷移金属及び希土類元素のうち少なくとも1種以上の元素を発光中心として母体材料にドープした局在型発光中心を持つ蛍光体粉末が挙げられる。遷移金属としては、例えば、Mn、Cr等が挙げられる。希土類元素としては、例えば、Ce、Eu、Tb等が挙げられる。母体材料としては、例えば、硫化物系の母体材料、酸化物系の母体材料等が挙げられる。硫化物系の母体材料としては、例えば、ZnS、CaS、SrS、BaS、MgAl2S4、CaAl2S4、SrAl2S4、BaAl2S4、ZnAl2S4、MgGa2S4、CaGa2S4、SrGa2S4、BaGa2S4、ZnGa2S4、MgIn2S4、CaIn2S4、SrIn2S4、BaIn2S4、ZnIn2S4、MgY2S4、CaY2S4、SrY2S4、BaY2S4、ZnY2S4、Ba2ZnS3等が挙げられる。酸化物系の母体材料としては、例えば、Ga2O3、CaGa2O4、ZnGa2O4、BeGa2O4、Ge2O3、CaGeO3、Ca2Ge2O7、Zn2GeO4、MgGeO3、Y2GeO5、Y4GeO8、Y2Ge2O7、CaO、Y2O3、SnO2、Zn2SiO4、Y2SiO5等が挙げられる。 Examples of the phosphor powder having a localized emission center include a phosphor powder having a localized emission center in which at least one element selected from a transition metal and a rare earth element is doped into the base material as an emission center. . Examples of the transition metal include Mn and Cr. Examples of rare earth elements include Ce, Eu, Tb, and the like. Examples of the base material include a sulfide-based base material and an oxide-based base material. Examples of the sulfide-based base material include ZnS, CaS, SrS, BaS, MgAl 2 S 4 , CaAl 2 S 4 , SrAl 2 S 4 , BaAl 2 S 4 , ZnAl 2 S 4 , MgGa 2 S 4 , and CaGa. 2 S 4 , SrGa 2 S 4 , BaGa 2 S 4 , ZnGa 2 S 4 , MgIn 2 S 4 , CaIn 2 S 4 , SrIn 2 S 4 , BaIn 2 S 4 , ZnIn 2 S 4 , MgY 2 S 4 , CaY 2 S 4 , SrY 2 S 4 , BaY 2 S 4 , ZnY 2 S 4 , Ba 2 ZnS 3 and the like. Examples of the oxide base material include Ga 2 O 3 , CaGa 2 O 4 , ZnGa 2 O 4 , BeGa 2 O 4 , Ge 2 O 3 , CaGeO 3 , Ca 2 Ge 2 O 7 , and Zn 2 GeO 4. MgGeO 3 , Y 2 GeO 5 , Y 4 GeO 8 , Y 2 Ge 2 O 7 , CaO, Y 2 O 3 , SnO 2 , Zn 2 SiO 4 , Y 2 SiO 5 and the like.
局在型発光中心を持つ蛍光体粉末としては、具体的には例えば、ZnS:Mn、ZnS:Tb、CaS:Eu、CaS:Ce、SrS:Ce、SrS:Cu、BaAl2S4:Eu、Ba2ZnS3:Mn、Zn2SiO4:Mn、ZnGa2O4:Mnなどが挙げられる。 Specific examples of the phosphor powder having a localized emission center include ZnS: Mn, ZnS: Tb, CaS: Eu, CaS: Ce, SrS: Ce, SrS: Cu, BaAl 2 S 4 : Eu, Ba 2 ZnS 3: Mn, Zn 2 SiO 4: Mn, ZnGa 2 O 4: Mn , and the like.
局在型発光中心を持つ蛍光体粉末の作成方法は特に限定されるものではない。例えば、所定の金属を含有する有機錯体を熱により分解して酸化物系の蛍光体粉末を作成する錯体熱分解法;蛍光体粉末を構成する元素を含んだ燃料の役割を果たす化合物と酸化剤の役割を果たす化合物を出発原料とし、高温の自己伝播反応を利用して蛍光体粉末を作成する燃焼合成法;金属塩を含む溶液を微小液滴とした後に熱処理することにより蛍光体粉末を作成するスプレー熱分解法;所定の粉末原料を混合した後に熱処理することにより蛍光体粉末を作成する固相反応法等が挙げられる。また、共沈法、ゾル―ゲル法、水熱合成法等の液相合成法;蒸発凝縮(PVD)法、気相反応析出(CVD)法等の気相合成法も挙げることができる。 The method for producing the phosphor powder having the localized emission center is not particularly limited. For example, a complex pyrolysis method in which an organic complex containing a predetermined metal is decomposed by heat to produce an oxide-based phosphor powder; a compound that serves as a fuel containing the elements constituting the phosphor powder and an oxidizer Combustion synthesis method using a compound that plays a role as a starting material and making phosphor powder using a high-temperature self-propagation reaction; making phosphor powder by heat-treating a solution containing a metal salt into fine droplets A spray pyrolysis method; a solid phase reaction method in which phosphor powder is prepared by heat treatment after mixing predetermined powder raw materials. Further, liquid phase synthesis methods such as coprecipitation method, sol-gel method and hydrothermal synthesis method; vapor phase synthesis methods such as evaporation condensation (PVD) method and gas phase reaction deposition (CVD) method can also be mentioned.
局在型発光中心を持つ蛍光体粉末は、上記作成方法に加えて粉砕工程を介して作成されることが、高い発光輝度を得ることができる点から好ましい。粉砕工程を介して作成された局在型発光中心を持つ蛍光体粉末を使用することで高い発光輝度を得ることができる理由については必ずしも明らかではない。上記理由について、発明者らは、粉砕工程を介することにより蛍光体粉末の表面の結晶性等が変化することで蛍光体粉末自体の絶縁性が高くなっており、そのため粉砕工程を介して作成された局在型発光中心を有する蛍光体粉末から形成される発光層は、高い電圧を印加しても絶縁破壊し難いため、高い発光輝度を得ることができるものと推測する。粉砕工程は、湿式粉砕でもよく、また乾式粉砕であってもよいが、湿式粉砕であることが、粉砕と同時に溶剤等に分散することができるため工程短縮の点から好ましい。湿式粉砕の場合、原料粉末に溶剤を混合して湿式粉砕を行ってもよく、また原料粉末に溶剤及び樹脂成分を混合して湿式粉砕を行ってもよい。さらに粉砕助剤を用いてもよい。溶剤は、例えば後述する溶剤等が挙げられる。樹脂成分は例えば後述する樹脂成分等が挙げられる。 The phosphor powder having a localized emission center is preferably prepared through a pulverization step in addition to the above preparation method from the viewpoint of obtaining high emission luminance. The reason why a high emission luminance can be obtained by using a phosphor powder having a localized emission center produced through a pulverization process is not necessarily clear. For the above reasons, the inventors have increased the insulating property of the phosphor powder itself by changing the crystallinity and the like of the surface of the phosphor powder through the pulverization process. Since the light emitting layer formed from the phosphor powder having the localized emission center is difficult to break down even when a high voltage is applied, it is assumed that high light emission luminance can be obtained. The pulverization step may be wet pulverization or dry pulverization, but wet pulverization is preferable from the viewpoint of shortening the process because it can be dispersed in a solvent or the like simultaneously with the pulverization. In the case of wet pulverization, the raw material powder may be mixed with a solvent for wet pulverization, or the raw material powder may be mixed with a solvent and a resin component for wet pulverization. Further, a grinding aid may be used. Examples of the solvent include a solvent described later. Examples of the resin component include a resin component described later.
局在型発光中心を持つ蛍光体粉末の平均粒子径は特に限定されるものではない。好ましくは体積基準による50%平均粒子径が0.2〜2.0μm、より好ましくは0.3〜0.7μmである。この範囲の下限値は、発光輝度の点で意義がある。この範囲の上限値は、分散型EL素子を薄型化できる点及び分散型EL素子の駆動電圧を低電圧化できる点で意義がある。ここで、体積基準による50%平均粒子径(以下「平均粒子径」と略すことがある。)とは、レーザードップラー法によって測定される体積基準粒度分布のメジアン径(D50)であって、例えばナノトラックUPA−EX250(日機装社製、商品名、レーザードップラー方式粒度分布測定装置)を用いて測定することができる。 The average particle diameter of the phosphor powder having a localized emission center is not particularly limited. Preferably, the 50% average particle size on a volume basis is 0.2 to 2.0 μm, more preferably 0.3 to 0.7 μm. The lower limit of this range is significant in terms of light emission luminance. The upper limit of this range is significant in that the dispersion type EL element can be thinned and the driving voltage of the dispersion type EL element can be lowered. Here, the volume-based 50% average particle diameter (hereinafter sometimes abbreviated as “average particle diameter”) is the median diameter (D50) of the volume-based particle size distribution measured by the laser Doppler method. It can be measured by using Nanotrac UPA-EX250 (manufactured by Nikkiso Co., Ltd., trade name, laser Doppler type particle size distribution measuring device).
樹脂成分は、特に限定されるものではない。樹脂成分としては、例えば、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等のエポキシ樹脂;シアノエチル化プルラン、シアノエチル化セルロース、シアノエチル化サッカロース、シアノエチル化ポリビニルアルコール、シアノエチル化フェノキシ樹脂等のシアノエチル化樹脂;フッ化ビニリデン−六フッ化プロピレン共重合樹脂、四フッ化エチレン樹脂等のフッ素化樹脂等が挙げられる。また、樹脂成分として上記樹脂等と反応する硬化剤を配合することもできる。硬化剤としては、例えば、イミダゾール系硬化剤、アミン系硬化剤、イソシアネート硬化剤、メラミン硬化剤等が挙げられる。硬化剤を配合することは、形成される層を架橋した膜とし、他の層との混層を抑制することができる点から好ましい。 The resin component is not particularly limited. Examples of the resin component include epoxy resins such as bisphenol A type epoxy resin and phenol novolac type epoxy resin; cyanoethylated resins such as cyanoethylated pullulan, cyanoethylated cellulose, cyanoethylated saccharose, cyanoethylated polyvinyl alcohol, and cyanoethylated phenoxy resin; And fluorinated resins such as vinylidene fluoride-propylene hexafluoride copolymer resin and tetrafluoroethylene resin. Moreover, the hardening | curing agent which reacts with the said resin etc. can also be mix | blended as a resin component. Examples of the curing agent include imidazole curing agents, amine curing agents, isocyanate curing agents, and melamine curing agents. It is preferable to add a curing agent from the viewpoint that the layer to be formed is a crosslinked film and a mixed layer with other layers can be suppressed.
本発明の発光層用組成物は、溶剤を含有することができる。溶剤としては特に限定されるものではない。例えば、具体的には、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;エチルアルコール、ベンジルアルコール等のアルコール類;芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。 The composition for light emitting layers of this invention can contain a solvent. The solvent is not particularly limited. For example, specifically, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, propionic acid Esters such as methyl; ethers such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; ethyl Examples include alcohols such as alcohol and benzyl alcohol; aromatic hydrocarbons and aliphatic hydrocarbons.
本発明の発光層用組成物は、性能を損なうことのない範囲で、他の成分として、顔料分散剤、表面調整剤等を含有していてもよい。 The composition for a light emitting layer of the present invention may contain a pigment dispersant, a surface conditioner, and the like as other components as long as the performance is not impaired.
本発明の発光層用組成物は、形成される発光層が0.15MV/cm以上の耐電圧を有することを特徴とする。耐電圧は、好ましくは0.25〜0.75MV/cmである。この耐電圧を有することにより、発光層を薄層とした場合において、高い電圧を印加しても絶縁破壊を起こし難く、高い発光輝度を得ることができる。ここで耐電圧とは、試験体が絶縁破壊を生じることなく印加できる電圧の上限値を試験体の膜厚で割った値である。耐電圧は、例えば以下の方法により測定することができる。ITO電極を形成したガラス基材(電極面積:1cm×1cm)上に発光層用組成物を膜厚が3μmとなるように塗布し、乾燥させ、発光層膜を形成する。続いて発光層膜上に、前記ITO電極と同じ位置に重なるように金電極(電極面積:1cm×1cm)を蒸着により形成し、電極面積が1cm2となるコンデンサー状の試験体を作製する。試験体の電極それぞれに端子を当て、ピコアンメーター6487(ケースレイ社製、商品名、電流−電圧測定装置)に接続し、電圧を最大500Vまで1Vずつ上昇させながら、そのときの電流値を読み取る。電圧を上昇させている途中で電流値が2.5mAを越える際の電圧又は金電極が破壊され電流の測定が不能となる際の電圧を絶縁破壊電圧とする。この絶縁破壊電圧を膜厚で割った値が耐電圧である。 The composition for light emitting layer of the present invention is characterized in that the light emitting layer to be formed has a withstand voltage of 0.15 MV / cm or more. The withstand voltage is preferably 0.25 to 0.75 MV / cm. By having this withstand voltage, when the light emitting layer is a thin layer, it is difficult to cause dielectric breakdown even when a high voltage is applied, and high light emission luminance can be obtained. Here, the withstand voltage is a value obtained by dividing the upper limit of the voltage that can be applied to the specimen without causing dielectric breakdown by the film thickness of the specimen. The withstand voltage can be measured by, for example, the following method. A composition for a light emitting layer is applied on a glass substrate (electrode area: 1 cm × 1 cm) on which an ITO electrode is formed so as to have a film thickness of 3 μm and dried to form a light emitting layer film. Subsequently, a gold electrode (electrode area: 1 cm × 1 cm) is formed on the light emitting layer film by vapor deposition so as to overlap with the ITO electrode, thereby producing a capacitor-like test body having an electrode area of 1 cm 2 . A terminal is applied to each electrode of the test body and connected to a picoammeter 6487 (product name, current-voltage measuring device, manufactured by Caselay Co., Ltd.), and the current value at that time is increased while increasing the voltage by 1V up to a maximum of 500V. read. The voltage when the current value exceeds 2.5 mA in the middle of increasing the voltage or the voltage when the gold electrode is destroyed and the current cannot be measured is defined as a dielectric breakdown voltage. A value obtained by dividing the dielectric breakdown voltage by the film thickness is a withstand voltage.
前記耐電圧は、形成される発光層における前記局在型発光中心を持つ蛍光体粉末の平均粒子径及び体積濃度、並びに樹脂成分の組成を適宜選択して組合せることにより得ることができる。具体的には例えば、発光層における局在型発光中心を持つ蛍光体粉末の体積基準による50%平均粒子径を0.2〜2.0μmの範囲より適宜選択することや、発光層における局在型発光中心を持つ蛍光体粉末の体積濃度を1〜80%の範囲で適宜選択することにより、前記耐電圧の範囲を得ることができる。 The withstand voltage can be obtained by appropriately selecting and combining the average particle diameter and volume concentration of the phosphor powder having the localized emission center in the light emitting layer to be formed, and the composition of the resin component. Specifically, for example, the 50% average particle diameter based on the volume of the phosphor powder having a localized emission center in the light emitting layer may be appropriately selected from the range of 0.2 to 2.0 μm, or localized in the light emitting layer. The withstand voltage range can be obtained by appropriately selecting the volume concentration of the phosphor powder having the type emission center within the range of 1 to 80%.
本発明の分散型EL素子は、透明導電層、発光層、誘電体層及び背面電極を有する分散型EL素子において、発光層が前記発光層用組成物により形成される分散型EL素子である。 The dispersion-type EL element of the present invention is a dispersion-type EL element having a transparent conductive layer, a light-emitting layer, a dielectric layer, and a back electrode, wherein the light-emitting layer is formed from the composition for light-emitting layer.
透明導電層は、通常当該分野で使用されている透明導電層であれば特に限定することなく使用できる。例えば、インジウム錫酸化物(ITO)、酸化インジウム、酸化錫、フッ素ドープ酸化錫(FTO)、アンチモンドープ酸化錫(ATO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウムドープ酸化亜鉛(IZO)等からなる薄膜等が挙げられる。 The transparent conductive layer can be used without particular limitation as long as it is a transparent conductive layer usually used in the field. For example, indium tin oxide (ITO), indium oxide, tin oxide, fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), indium doped A thin film made of zinc oxide (IZO) or the like can be given.
発光層の膜厚は特に限定されるものではない。発光層の膜厚は好ましくは0.3〜3.0μm、さらに好ましくは0.7〜2.5μmである。この範囲の下限値は、絶縁破壊を起こり難くする点で意義がある。またこの範囲の上限値は、駆動電圧の低電圧化の点で意義がある。 The film thickness of the light emitting layer is not particularly limited. The thickness of the light emitting layer is preferably 0.3 to 3.0 μm, more preferably 0.7 to 2.5 μm. The lower limit of this range is significant in that it is difficult for dielectric breakdown to occur. The upper limit of this range is significant in terms of lowering the drive voltage.
また発光層は局在型発光中心を持つ蛍光体粉末を体積濃度で1〜80%含有することが好ましく、15〜55%含有することがさらに好ましい。この範囲の下限値は、面発光にムラがなく、高い発光輝度を得る点で意義がある。またこの範囲の上限値は絶縁破壊を起こり難くする点で意義がある。 Further, the light emitting layer preferably contains 1 to 80% by volume of phosphor powder having a localized emission center, and more preferably 15 to 55%. The lower limit of this range is significant in that there is no unevenness in surface light emission and high light emission luminance is obtained. The upper limit of this range is significant in that it is difficult to cause dielectric breakdown.
誘電体層は、通常当該分野で使用されている誘電体層を使用することができる。例えば、高誘電体材料の薄膜、樹脂成分からなる層、高誘電体材料及び樹脂成分からなる層等が挙げられる。高誘電体材料としては、例えば、酸化ケイ素(SiO2)、オキシ窒化珪素(SiON)、窒化珪素(Si3N4)、酸化アルミニウム(Al2O3)、酸化イットリウム(Y2O3)、タンタル酸バリウム(BaTa2O6)、酸化タンタル(Ta2O5)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、ニオブ酸鉛(PbNb2O6)等が挙げられる。樹脂成分としては、発光層用組成物の説明において記載した樹脂成分と同様のものを挙げることができる。 As the dielectric layer, a dielectric layer generally used in the art can be used. For example, a thin film of a high dielectric material, a layer made of a resin component, a layer made of a high dielectric material and a resin component, and the like can be given. Examples of the high dielectric material include silicon oxide (SiO 2 ), silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), Barium tantalate (BaTa 2 O 6 ), tantalum oxide (Ta 2 O 5 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), lead niobate (PbNb 2 O) 6 ) and the like. Examples of the resin component include the same resin components as described in the description of the composition for the light emitting layer.
また、誘電体層は、導電性微粒子及び前記樹脂成分を含有する誘電体層を使用することができる。該誘電体層は、低電圧で高い発光輝度を得る点から好ましい。特に、誘電体層は樹脂成分中に導電性微粒子が分散した構造をしていることが絶縁性の点から好ましい。 The dielectric layer may be a dielectric layer containing conductive fine particles and the resin component. The dielectric layer is preferable from the viewpoint of obtaining high emission luminance at a low voltage. In particular, the dielectric layer preferably has a structure in which conductive fine particles are dispersed in a resin component from the viewpoint of insulation.
また、誘電体層は、導電性微粒子及び樹脂成分に加え、高誘電体材料を含有しても良い。 Further, the dielectric layer may contain a high dielectric material in addition to the conductive fine particles and the resin component.
導電性微粒子は、従来公知の導電性微粒子を使用することができる。具体的には、インジウム錫酸化物(以下「ITO」と略すことがある)、酸化インジウム、酸化錫、フッ素ドープ酸化錫(FTO)、アンチモンドープ酸化錫(ATO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウムドープ酸化亜鉛(IZO)等の金属酸化物が好ましい。 As the conductive fine particles, conventionally known conductive fine particles can be used. Specifically, indium tin oxide (hereinafter sometimes abbreviated as “ITO”), indium oxide, tin oxide, fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO) Metal oxides such as gallium-doped zinc oxide (GZO) and indium-doped zinc oxide (IZO) are preferred.
また、導電性微粒子は表面処理されていることが好ましい。導電性微粒子を表面処理することにより、導電性微粒子を絶縁化することができるため、形成される誘電体層の絶縁性を損なうことなく、誘電体層中の導電性微粒子の含有量を高くすることができる。その結果、高い比誘電率を有する誘電体層を形成することができる。 The conductive fine particles are preferably surface-treated. By conducting the surface treatment of the conductive fine particles, the conductive fine particles can be insulated, so that the content of the conductive fine particles in the dielectric layer is increased without impairing the insulating property of the formed dielectric layer. be able to. As a result, a dielectric layer having a high relative dielectric constant can be formed.
表面処理の方法は特に限定されず従来公知の方法が使用できる。具体的には、例えば、導電性微粒子の表面に、テトラエトキシシラン、テトライソプロポキシチタン等の金属アルコキシドをゾル―ゲル反応により金属酸化物として析出することにより表面処理する方法;導電性微粒子をシランカップリング剤と反応させることにより表面処理する方法;シランカップリング剤を介して樹脂により導電性微粒子を表面処理する方法;導電性微粒子と樹脂を機械的に混合して表面処理する方法;導電性微粒子の表面に珪酸ナトリウム等の珪酸塩、アルミン酸ナトリウム等のアルミン酸塩等をpHを調整して金属酸化物として析出させることにより表面処理する方法等が挙げられる。 The surface treatment method is not particularly limited, and a conventionally known method can be used. Specifically, for example, a method in which a metal alkoxide such as tetraethoxysilane or tetraisopropoxytitanium is deposited on the surface of the conductive fine particles as a metal oxide by a sol-gel reaction; Method of surface treatment by reacting with coupling agent; Method of surface treatment of conductive fine particles with resin through silane coupling agent; Method of surface treatment by mechanically mixing conductive fine particles and resin; Conductivity Examples of the method include a method of performing surface treatment on the surface of the fine particles by precipitating a silicate such as sodium silicate or an aluminate such as sodium aluminate as a metal oxide by adjusting pH.
導電性微粒子の体積基準による50%平均粒子径は、10nm〜2000nmが好ましく、10nm〜500nmがさらに好ましい。 The 50% average particle diameter based on volume of the conductive fine particles is preferably 10 nm to 2000 nm, and more preferably 10 nm to 500 nm.
また、導電性微粒子の含有量は、形成される誘電体層の絶縁性及び誘電率の点から、誘電体層中に体積濃度で5〜40%の範囲で含有されることが好ましく、10〜30%の範囲であればさらに好ましい。なお、表面処理された導電性微粒子の含有量においては、表面処理部分を除いた導電性微粒子のみの量を基準に計算する。 In addition, the content of the conductive fine particles is preferably contained in the dielectric layer in a volume concentration range of 5 to 40% from the viewpoint of the insulation and dielectric constant of the dielectric layer to be formed. A range of 30% is more preferable. The content of the surface-treated conductive fine particles is calculated based on the amount of only the conductive fine particles excluding the surface-treated portion.
誘電体層の静電容量密度σは、発光輝度の点から2×10−9F/cm2(2nF/cm2)以上であることが好ましく、4×10−9F/cm2(4nF/cm2)以上であればさらに好ましい。ここで、静電容量密度σは、AC5V、周波数1kHzの条件で測定される静電容量の値を電極面積で除した値であり、静電容量の値は、例えば、日置電機社製のLCR HiTester 3532−50を用いて測定することができる。 The capacitance density σ of the dielectric layer is preferably 2 × 10 −9 F / cm 2 ( 2 nF / cm 2 ) or more from the viewpoint of light emission luminance, and 4 × 10 −9 F / cm 2 (4 nF / cm 2 ) or more is more preferable. Here, the capacitance density σ is a value obtained by dividing the capacitance value measured under the conditions of AC 5 V and frequency 1 kHz by the electrode area. The capacitance value is, for example, LCR manufactured by Hioki Electric Co., Ltd. It can be measured using HiTester 3532-50.
誘電体層の比誘電率は、発光輝度の点から20以上であることが好ましく、25以上であればさらに好ましい。ここで、比誘電率は、前記静電容量密度σ(F/cm2)、層の厚さd(m)、及び真空の誘電率e0=8.82×10−12(F/m)を下記式(1)に代入することにより算出される値である。
比誘電率=(10,000×σ×d)/e0 式(1)
The relative dielectric constant of the dielectric layer is preferably 20 or more from the viewpoint of light emission luminance, and more preferably 25 or more. Here, the relative permittivity is the capacitance density σ (F / cm 2 ), the layer thickness d (m), and the vacuum permittivity e 0 = 8.82 × 10 −12 (F / m). Is a value calculated by substituting into the following formula (1).
Relative permittivity = (10,000 × σ × d) / e 0 formula (1)
誘電体層は透明であってもよくまた不透明であってもよいが、誘電体層が前記透明導電層と前記本発明の発光層の間に積層される場合には、該誘電体層は透明性を有する誘電体層(以下、「透明誘電体層」と略すことがある。)であることが好ましい。透明誘電体層は、高い発光輝度を得ることができる点から、前記導電性微粒子及び前記樹脂成分からなる透明誘電体層であることが好ましい。また、透明誘電体層は、色合いの変化や発光輝度の低下を抑制する点から、発光層が発光する波長範囲における光線透過率が90%以上であることが好ましい。 The dielectric layer may be transparent or opaque, but when the dielectric layer is laminated between the transparent conductive layer and the light emitting layer of the present invention, the dielectric layer is transparent. It is preferable that the dielectric layer has the property (hereinafter sometimes abbreviated as “transparent dielectric layer”). The transparent dielectric layer is preferably a transparent dielectric layer composed of the conductive fine particles and the resin component from the viewpoint that high emission luminance can be obtained. In addition, the transparent dielectric layer preferably has a light transmittance of 90% or more in the wavelength range where the light emitting layer emits light from the viewpoint of suppressing a change in hue and a decrease in light emission luminance.
誘電体層の膜厚は特に限定されるものではない。好ましくは0.3〜5.0μmであり、さらに好ましくは0.5〜1.5μmである。この範囲の下限値は、絶縁破壊を起こり難くする点で意義がある。またこの範囲の上限値は、駆動電圧の低電圧化の点で意義がある。 The film thickness of the dielectric layer is not particularly limited. Preferably it is 0.3-5.0 micrometers, More preferably, it is 0.5-1.5 micrometers. The lower limit of this range is significant in that it is difficult for dielectric breakdown to occur. The upper limit of this range is significant in terms of lowering the drive voltage.
背面電極は、通常当該分野で使用されている背面電極であれば特に限定することなく使用できる。例えば、アルミニウムなどの金属シート;金、アルミニウムなどの金属若しくはITOなどの導電性金属酸化物の蒸着膜又は該蒸着膜を積層したプラスチックシート;銀、アルミニウムなどの金属粉末またはITOなどの導電性金属酸化物を樹脂または溶剤中に分散した導電性ペーストの塗布膜等が挙げられる。 The back electrode can be used without particular limitation as long as it is a back electrode usually used in the field. For example, a metal sheet such as aluminum; a metal film such as gold or aluminum or a conductive metal oxide deposited film such as ITO or a plastic sheet laminated with the deposited film; a metal powder such as silver or aluminum; or a conductive metal such as ITO Examples thereof include a coating film of a conductive paste in which an oxide is dispersed in a resin or a solvent.
本発明の分散型EL素子は、透明導電層、本発明の発光層、誘電体層及び背面電極を有する分散型EL素子であればその素子の積層構造は限定されるものではない。本発明の分散型EL素子においては、誘電体層は1層のみであってもよくまた2層であってもよい。本発明の分散型EL素子は、具体的には例えば、(I)透明導電層の上に、透明誘電体層、本発明の発光層、誘電体層及び背面電極を順次積層してなる分散型EL素子(以下、「分散型EL素子(I)」と略すことがある。)、(II)透明導電層の上に、本発明の発光層、誘電体層及び背面電極を順次積層してなる分散型EL素子(以下、「分散型EL素子(II)」と略すことがある。)、(III)透明導電層の上に、透明誘電体層、本発明の発光層及び背面電極を順次積層してなる分散型EL素子(以下、「分散型EL素子(III)」と略すことがある。)等が挙げられる。 If the dispersion type EL element of the present invention is a dispersion type EL element having a transparent conductive layer, a light emitting layer, a dielectric layer, and a back electrode of the present invention, the laminated structure of the element is not limited. In the dispersion type EL device of the present invention, the dielectric layer may be only one layer or two layers. Specifically, the dispersion type EL element of the present invention is, for example, (I) a dispersion type formed by sequentially laminating a transparent dielectric layer, a light emitting layer of the present invention, a dielectric layer and a back electrode on a transparent conductive layer. EL element (hereinafter abbreviated as “dispersion type EL element (I)”), (II) The light emitting layer, dielectric layer and back electrode of the present invention are sequentially laminated on the transparent conductive layer. Dispersion EL element (hereinafter may be abbreviated as “dispersion EL element (II)”), (III) A transparent dielectric layer, a light emitting layer of the present invention, and a back electrode are sequentially laminated on the transparent conductive layer. And a dispersion type EL element (hereinafter sometimes abbreviated as “dispersion type EL element (III)”).
本発明の分散型EL素子の製造方法は、特に限定されるものではない。上記分散型EL素子(I)を例に挙げると、その製造方法として例えば、透明導電層の上に、透明誘電体層、本発明の発光層、誘電体層及び背面電極を順に積層する製造方法;背面電極の上に、誘電体層、本発明の発光層、透明誘電体層、透明導電層を順に積層する製造方法;透明導電層の上に、透明誘電体層、本発明の発光層までの各層を順に積層したものと背面電極の上に誘電体層を積層したものを張り合わせる製造方法等が挙げられる。 The manufacturing method of the dispersion type EL element of the present invention is not particularly limited. Taking the dispersion type EL element (I) as an example, as a manufacturing method thereof, for example, a manufacturing method in which a transparent dielectric layer, a light emitting layer of the present invention, a dielectric layer and a back electrode are sequentially laminated on a transparent conductive layer. A production method in which a dielectric layer, a light emitting layer of the present invention, a transparent dielectric layer, and a transparent conductive layer are sequentially laminated on the back electrode; up to the transparent dielectric layer and the light emitting layer of the present invention on the transparent conductive layer; And a production method of laminating each of these layers in order and a laminate of a dielectric layer on the back electrode.
特に、分散型EL素子(I)においては、透明導電層の上に透明誘電体層を形成する工程、透明誘電体層の上に本発明の発光層用組成物を塗布・乾燥して発光層を形成する工程、発光層の上に誘電体層を形成する工程、及び誘電体層の上に背面電極を形成する工程をこの順で有する製造方法が、工程が簡単な点及び発光層の視認面側の界面の平滑性の点から好ましい。以下にこの製造方法を詳細に説明する。 In particular, in the dispersion type EL element (I), a step of forming a transparent dielectric layer on the transparent conductive layer, and the light emitting layer composition is coated and dried on the transparent dielectric layer. The manufacturing method having the steps of forming the step, forming the dielectric layer on the light emitting layer, and forming the back electrode on the dielectric layer in this order is simple in process and the visual recognition of the light emitting layer This is preferable from the viewpoint of the smoothness of the interface on the surface side. This manufacturing method will be described in detail below.
透明導電層は取り扱いの点から透明基材の上に形成されていることが好ましい。透明基材は、通常当該分野で使用されている透明基材であれば特に限定することなく使用できる。例えば、ガラス、ポリエチレンテレフタレート(PET)、アクリル板等が挙げられる。透明導電層を透明基材の上に形成する方法は特に限定されるものではなく公知の方法が使用できる。具体的には、例えば、透明基材の上に透明導電性ペーストを塗布・乾燥して透明導電層を形成する方法、透明基材の上に透明導電薄膜を蒸着により形成する方法等が挙げられる。 The transparent conductive layer is preferably formed on a transparent substrate from the viewpoint of handling. The transparent substrate can be used without particular limitation as long as it is a transparent substrate that is usually used in the field. For example, glass, polyethylene terephthalate (PET), an acrylic board, etc. are mentioned. The method for forming the transparent conductive layer on the transparent substrate is not particularly limited, and a known method can be used. Specifically, for example, a method of forming a transparent conductive layer by applying and drying a transparent conductive paste on a transparent substrate, a method of forming a transparent conductive thin film on a transparent substrate by vapor deposition, and the like can be mentioned. .
透明誘電体層は透明導電層の上に形成される。透明誘電体層の形成方法は特に限定されるものではなく公知の方法が使用できる。例えば、誘電体組成物を塗布・乾燥することにより透明誘電体層を形成する方法が、工程が簡単な点から好ましい。誘電体組成物としては、例えば、前記樹脂成分を含有する誘電体組成物や、前記導電性微粒子及び前記樹脂成分を含有する誘電体組成物等が挙げられる。また、誘電体組成物は、性能を損なうことのない範囲で、他の成分として、溶剤、顔料分散剤、表面調整剤等を含有していてもよい。誘電体組成物としては、前記導電性微粒子及び前記樹脂成分を含有する誘電体組成物が、高い発光輝度が得られる点から好ましい。塗布方法は、膜厚が均一であり、かつ平滑な塗面を得ることができる方法であれば特に限定されるものではない。塗布方法は、具体的には、例えばエアスプレー塗装、スピンコート、カーテンコート塗装、ロールコート塗装、スクリーン印刷等を挙げることができる。乾燥条件は、誘電体組成物が溶剤を含有する場合には溶剤を十分に除去する条件、あるいは硬化剤を含有する場合には樹脂と硬化剤が反応する条件であれば、特に限定されるものではなく適宜決定することができる。 The transparent dielectric layer is formed on the transparent conductive layer. The formation method of a transparent dielectric material layer is not specifically limited, A well-known method can be used. For example, a method of forming a transparent dielectric layer by applying and drying a dielectric composition is preferable from the viewpoint of simple steps. Examples of the dielectric composition include a dielectric composition containing the resin component, a dielectric composition containing the conductive fine particles and the resin component, and the like. Moreover, the dielectric composition may contain a solvent, a pigment dispersant, a surface conditioner, etc. as other components as long as the performance is not impaired. As the dielectric composition, a dielectric composition containing the conductive fine particles and the resin component is preferable from the viewpoint of obtaining high luminance. The application method is not particularly limited as long as the film thickness is uniform and a smooth coating surface can be obtained. Specific examples of the application method include air spray coating, spin coating, curtain coating, roll coating, and screen printing. The drying conditions are not particularly limited as long as the dielectric composition contains a solvent and the solvent is sufficiently removed, or the curing condition contains a reaction between the resin and the curing agent. Instead, it can be determined appropriately.
続いて、透明誘電体層の上に本発明の発光層用組成物を塗布・乾燥して発光層を形成する。塗布方法は、膜厚が均一であり、かつ平滑な塗面を得ることができる方法であれば特に限定されるものではない。例えばエアスプレー塗装、スピンコート、カーテンコート塗装、ロールコート塗装、スクリーン印刷等をあげることができる。乾燥条件は、発光層用組成物が溶剤を含有する場合には溶剤を十分に除去する条件、あるいは硬化剤を含有する場合には樹脂と硬化剤が反応する条件であれば、特に限定されるものではなく適宜決定することができる。具体的には例えば、発光層用組成物が溶剤を含有している場合には、発光層用組成物を塗布した後、40〜150℃で5〜60分乾燥を行う乾燥条件が挙げられる。 Then, the composition for light emitting layers of this invention is apply | coated and dried on a transparent dielectric material layer, and a light emitting layer is formed. The application method is not particularly limited as long as the film thickness is uniform and a smooth coating surface can be obtained. For example, air spray coating, spin coating, curtain coating, roll coating, screen printing, and the like can be given. The drying conditions are particularly limited as long as the composition for the light emitting layer contains a solvent, and the conditions for sufficiently removing the solvent, or the curing conditions include a reaction between the resin and the curing agent. It is not a thing and can be determined suitably. Specifically, when the composition for light emitting layers contains the solvent, the drying conditions which dry for 5 to 60 minutes at 40-150 degreeC after apply | coating the composition for light emitting layers are mentioned, for example.
続いて、前記において形成した発光層の上に誘電体層を形成する。誘電体層の形成方法は特に限定されるものではない。例えば、誘電体組成物を塗布・乾燥し、誘電体層を形成する方法が挙げられる。誘電体組成物としては、前記樹脂成分を含有する誘電体組成物や、前記導電性微粒子及び前記樹脂成分を含有する誘電体組成物等が挙げられる。塗布方法及び乾燥方法は、特に限定されるものではなく、例えば前記透明誘電体層の形成方法と同様の方法を採ることができる。 Subsequently, a dielectric layer is formed on the light emitting layer formed above. The method for forming the dielectric layer is not particularly limited. For example, a method of forming a dielectric layer by applying and drying a dielectric composition can be mentioned. Examples of the dielectric composition include a dielectric composition containing the resin component, and a dielectric composition containing the conductive fine particles and the resin component. A coating method and a drying method are not particularly limited, and for example, a method similar to the method for forming the transparent dielectric layer can be adopted.
さらに、前記において形成した誘電体層の上に、背面電極を形成する。背面電極の形成方法は、特に限定されるものではない。具体的には、例えば、金、アルミニウムなどの金属を誘電体層の上に蒸着する方法、アルミニウムなどの金属シートと誘電体層をラミネートにより接合させる方法、又は銀、アルミニウムなどの金属粉末またはITOなどの導電性金属酸化物を樹脂または溶剤中に分散した導電性ペーストを誘電体層の上に塗布した後、乾燥して形成する方法等が挙げられる。 Further, a back electrode is formed on the dielectric layer formed above. The method for forming the back electrode is not particularly limited. Specifically, for example, a method of depositing a metal such as gold or aluminum on a dielectric layer, a method of bonding a metal sheet such as aluminum and a dielectric layer by lamination, or a metal powder such as silver or aluminum or ITO Examples of the method include a method in which a conductive paste in which a conductive metal oxide such as a resin is dispersed in a resin or a solvent is applied on a dielectric layer and then dried.
また分散型EL素子(II)の場合においては、透明導電層の上に本発明の発光層用組成物を塗布・乾燥して発光層を形成する工程、発光層の上に誘電体層を形成する工程、及び誘電体層の上に背面電極を形成する工程をこの順で有する製造方法が、工程が簡単な点及び発光層の視認面側の界面の平滑性の点から好ましい。該製造方法における各層の形成方法は、分散型EL素子(I)の製造方法において詳述した形成方法と同様の方法を採ることができる。 In the case of the dispersion type EL element (II), a step of forming the light emitting layer by applying and drying the composition for the light emitting layer of the present invention on the transparent conductive layer, and forming a dielectric layer on the light emitting layer The manufacturing method which has the process of forming and a process of forming a back electrode on a dielectric material layer in this order is preferable from the point of the smoothness of the interface by the side of the visual recognition surface of a light emitting layer with a simple process. The formation method of each layer in this manufacturing method can take the method similar to the formation method explained in full detail in the manufacturing method of dispersion type EL element (I).
また分散型EL素子(III)の場合においては、透明導電層の上に透明誘電体層を形成する工程、透明誘電体層の上に本発明の発光層用組成物を塗布・乾燥して発光層を形成する工程、発光層の上に背面電極を形成する工程をこの順で有する製造方法が、工程が簡単な点及び発光層の視認面側の界面の平滑性の点から好ましい。該製造方法における各層の形成方法は、分散型EL素子(I)の製造方法において詳述した形成方法と同様の方法を採ることができる。 In the case of the dispersion type EL element (III), the step of forming a transparent dielectric layer on the transparent conductive layer, and the light emitting layer composition of the present invention is applied and dried on the transparent dielectric layer to emit light. The manufacturing method which has the process of forming a layer and the process of forming a back electrode on a light emitting layer in this order is preferable from the point of the smoothness of the interface at the side of the visual recognition surface of a light emitting layer. The formation method of each layer in this manufacturing method can take the method similar to the formation method explained in full detail in the manufacturing method of dispersion type EL element (I).
本発明の分散型EL素子は、高い発光輝度を得ることができることから、交流電圧の印加により発光する電界発光型の分散型EL素子として非常に有用である。 Since the dispersion-type EL element of the present invention can obtain high emission luminance, it is very useful as an electroluminescence-type dispersion-type EL element that emits light when an alternating voltage is applied.
以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。 Hereinafter, the present invention will be described in more detail with reference to examples. “Part” and “%” indicate “part by mass” and “% by mass” unless otherwise specified.
製造例1
局在型発光中心を持つ蛍光体粉末の調製
KX−605A(化成オプトニクス社製、商品名、局在型発光中心を持つ蛍光体粉末、ZnS:Mn、平均粒径5μm)60g及びエタノール140gを混合し、直径0.5mmのYTZボール(ニッカトー社製、商品名)を用いてシェイカーで3時間粉砕を行った後、減圧乾燥を行って局在型発光中心を持つ蛍光体粉末(P−1)を得た。この蛍光体粉末の平均粒子径は0.40μmであった。
Production Example 1
Preparation of phosphor powder having localized emission center KX-605A (product name, phosphor powder having localized emission center, ZnS: Mn, average particle size 5 μm) 60 g and ethanol 140 g After mixing and pulverizing with a shaker for 3 hours using a YTZ ball (trade name, manufactured by Nikkato Co., Ltd.) having a diameter of 0.5 mm, drying under reduced pressure was performed to obtain a phosphor powder having localized emission centers (P-1 ) The average particle size of this phosphor powder was 0.40 μm.
実施例1
発光層用組成物(L−1)の製造
シクロヘキサノンにシアノレジンCR−S(信越化学工業社製、商品名、シアノエチル化プルラン)を溶解させた固形分20%の樹脂溶液31g、局在型発光中心を持つ蛍光体粉末(P−1)23.8g及びシクロヘキサノン45.1gを混合し、シェイカーにて2時間分散を行い、発光層用組成物(L−1)を得た。得られた発光層用組成物(L−1)により形成される発光層の耐電圧は0.27MV/cmであった。
Example 1
Production of composition for light emitting layer (L-1) 31 g of a resin solution having a solid content of 20% in which cyanoresin CR-S (manufactured by Shin-Etsu Chemical Co., Ltd., trade name, cyanoethylated pullulan) is dissolved in cyclohexanone, Phosphor powder (P-1) 23.8 g having a typical emission center and 45.1 g of cyclohexanone were mixed and dispersed for 2 hours with a shaker to obtain a composition for light emitting layer (L-1). The withstand voltage of the light emitting layer formed by the obtained composition for light emitting layer (L-1) was 0.27 MV / cm.
実施例2
発光層用組成物(L−2)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液56.8g、局在型発光中心を持つ蛍光体粉末(P−1)18.6g及びシクロヘキサノン24.6gを混合し、シェイカーにて2時間分散を行い、発光層用組成物(L−2)を得た。得られた発光層用組成物(L−2)により形成される発光層の耐電圧は0.35MV/cmであった。
Example 2
Production of composition for light emitting layer (L-2) 56.8 g of 20% solid resin solution in which cyanoresin CR-S is dissolved in cyclohexanone, phosphor powder having localized emission center (P- 1) 18.6 g and 24.6 g of cyclohexanone were mixed and dispersed with a shaker for 2 hours to obtain a light emitting layer composition (L-2). The withstand voltage of the light emitting layer formed by the obtained composition for light emitting layer (L-2) was 0.35 MV / cm.
実施例3
発光層用組成物(L−3)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液76.7g、局在型発光中心を持つ蛍光体粉末(P−1)14.7g及びシクロヘキサノン8.7gを混合し、シェイカーにて2時間分散を行い、発光層用組成物(L−3)を得た。得られた発光層用組成物(L−3)により形成される発光層の耐電圧は0.50MV/cmであった。
Example 3
Production of composition for light emitting layer (L-3) 76.7 g of a 20% solid resin solution in which cyanoresin CR-S is dissolved in cyclohexanone, phosphor powder having localized emission center (P- 1) 14.7 g and 8.7 g of cyclohexanone were mixed and dispersed with a shaker for 2 hours to obtain a light emitting layer composition (L-3). The withstand voltage of the light emitting layer formed of the obtained composition for light emitting layer (L-3) was 0.50 MV / cm.
実施例4
発光層用組成物(L−4)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液22.2g、局在型発光中心を持つ蛍光体粉末(P−1)25.5g及びシクロヘキサノン52.2gを混合し、シェイカーにて2時間分散を行い、発光層用組成物(L−4)を得た。得られた発光層用組成物(L−4)により形成される発光層の耐電圧は0.21MV/cmであった。
Example 4
Production of composition for light emitting layer (L-4) 22.2 g of 20% solid resin solution in which cyanoresin CR-S is dissolved in cyclohexanone, phosphor powder having localized emission center (P- 1) 25.5 g and 52.2 g of cyclohexanone were mixed and dispersed with a shaker for 2 hours to obtain a composition for light emitting layer (L-4). The withstand voltage of the light emitting layer formed of the obtained composition for light emitting layer (L-4) was 0.21 MV / cm.
実施例5
発光層用組成物(L−5)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液31g、KX−605Aを23.8g及びシクロヘキサノン45.1gを混合し、直径0.5mmのYTZボールを用いてシェイカーにて3時間粉砕・分散を行い、発光層用組成物(L−5)を得た。この発光層用組成物(L−5)に含まれる局在型発光中心を有する蛍光体粉末の平均粒子径を測定したところ、0.48μmであった。得られた発光層用組成物(L−5)により形成される発光層の耐電圧は0.27MV/cmであった。
Example 5
Production of composition for light emitting layer (L-5) 31 g of 20% solid content resin solution of cyanoresin CR-S dissolved in cyclohexanone, 23.8 g of KX-605A and 45.1 g of cyclohexanone were mixed. Then, using a YTZ ball having a diameter of 0.5 mm, the mixture was pulverized and dispersed with a shaker for 3 hours to obtain a composition for light emitting layer (L-5). It was 0.48 micrometer when the average particle diameter of the fluorescent substance powder which has the localization type | mold emission center contained in this composition for light emitting layers (L-5) was measured. The withstand voltage of the light emitting layer formed with the obtained composition for light emitting layer (L-5) was 0.27 MV / cm.
実施例6
発光層用組成物(L−6)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液31g、KX−605Aを23.8g及びシクロヘキサノン45.1gを混合し、直径1.0mmのYTZボールを用いてシェイカーにて3時間粉砕・分散を行い、発光層用組成物(L−6)を得た。この発光層用組成物(L−6)に含まれる局在型発光中心を有する蛍光体粉末の平均粒子径を測定したところ、0.92μmであった。得られた発光層用組成物(L−6)により形成される発光層の耐電圧は0.25MV/cmであった。
Example 6
Production of composition for light emitting layer (L-6) 31 g of a 20% solid content resin solution of cyanoresin CR-S dissolved in cyclohexanone, 23.8 g of KX-605A and 45.1 g of cyclohexanone were mixed. Then, using a YTZ ball having a diameter of 1.0 mm, the mixture was pulverized and dispersed with a shaker for 3 hours to obtain a light emitting layer composition (L-6). It was 0.92 micrometer when the average particle diameter of the fluorescent substance powder which has the localization type | mold emission center contained in this composition for light emitting layers (L-6) was measured. The withstand voltage of the light emitting layer formed of the obtained composition for light emitting layer (L-6) was 0.25 MV / cm.
実施例7
発光層用組成物(L−7)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液31g、KX−605Aを23.8g及びシクロヘキサノン45.1gを混合し、直径0.5mmのYTZボールを用いてシェイカーにて12時間粉砕・分散を行い、発光層用組成物(L−7)を得た。この発光層用組成物(L−7)に含まれる局在型発光中心を有する蛍光体粉末の平均粒子径を測定したところ、0.15μmであった。得られた発光層用組成物(L−7)により形成される発光層の耐電圧は0.30MV/cmであった。
Example 7
Production of composition for light emitting layer (L-7) 31 g of a 20% solid resin solution in which cyanoresin CR-S was dissolved in cyclohexanone, 23.8 g of KX-605A and 45.1 g of cyclohexanone were mixed. Then, using a YTZ ball having a diameter of 0.5 mm, the mixture was pulverized and dispersed with a shaker for 12 hours to obtain a composition for light emitting layer (L-7). It was 0.15 micrometer when the average particle diameter of the fluorescent substance powder which has the local type luminescent center contained in this composition for light emitting layers (L-7) was measured. The withstand voltage of the light emitting layer formed by the obtained composition for light emitting layer (L-7) was 0.30 MV / cm.
実施例8
発光層用組成物(L−8)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液31g、P1−G1(化成オプトニクス社製、商品名、局在型発光中心を持つ蛍光体粉末、Zn2SiO4:Mn)23.8g及びシクロヘキサノン45.1gを混合し、直径0.5mmのYTZボールを用いてシェイカーにて3時間粉砕・分散を行い、発光層用組成物(L−8)を得た。この発光層用組成物(L−8)に含まれる局在型発光中心を有する蛍光体粉末の平均粒子径を測定したところ、0.52μmであった。得られた発光層用組成物(L−8)により形成される発光層の耐電圧は0.26MV/cmであった。
Example 8
Production of composition for light emitting layer (L-8) 31 g of 20% solid resin solution in which cyanoresin CR-S was dissolved in cyclohexanone, P1-G1 (trade name, localized by Kasei Optonics) Phosphor powder having a luminescent center, Zn 2 SiO 4 : Mn) 23.8 g and cyclohexanone 45.1 g are mixed, and pulverized and dispersed with a shaker using a YTZ ball having a diameter of 0.5 mm for 3 hours to emit light A layer composition (L-8) was obtained. It was 0.52 micrometer when the average particle diameter of the fluorescent substance powder which has the local type luminescent center contained in this composition for light emitting layers (L-8) was measured. The withstand voltage of the light emitting layer formed with the obtained composition for light emitting layer (L-8) was 0.26 MV / cm.
実施例9
発光層用組成物(L−9)の製造
シクロヘキサノンにAER ECN−1299(旭化成ケミカルズ社製、商品名、エポキシ樹脂)を溶解させた固形分20%の樹脂溶液31g、KX−605Aを23.8g及びシクロヘキサノン45.1gを混合し、直径0.5mmのYTZボールを用いてシェイカーにて3時間粉砕・分散を行い、発光層用組成物(L−9)を得た。この発光層用組成物(L−9)に含まれる局在型発光中心を有する蛍光体粉末の平均粒子径を測定したところ、0.45μmであった。得られた発光層用組成物(L−9)により形成される発光層の耐電圧は0.30MV/cmであった。
Example 9
Production of composition for light emitting layer (L-9) 31 g of a resin solution having a solid content of 20% in which AER ECN-1299 (manufactured by Asahi Kasei Chemicals Corporation, trade name, epoxy resin) was dissolved in cyclohexanone, KX-605A 23.8 g and 45.1 g of cyclohexanone were mixed and pulverized and dispersed with a shaker using a YTZ ball having a diameter of 0.5 mm for 3 hours to obtain a composition for light emitting layer (L-9). It was 0.45 micrometer when the average particle diameter of the fluorescent substance powder which has the local type luminescent center contained in this composition for light emitting layers (L-9) was measured. The withstand voltage of the light emitting layer formed by the obtained composition for light emitting layer (L-9) was 0.30 MV / cm.
比較例1
発光層用組成物(CL−1)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液9.2g、局在型発光中心を持つ蛍光体粉末(P−1)28.2g及びシクロヘキサノン62.6gを混合し、シェイカーにて2時間分散を行い、発光層用組成物(CL−1)を得た。得られた発光層用組成物(CL−1)により形成される発光層の耐電圧は0.13MV/cmであった。
Comparative Example 1
Production of composition for light emitting layer (CL-1) 9.2 g of 20% solid content resin solution in which cyanoresin CR-S is dissolved in cyclohexanone, phosphor powder (P-1) having localized emission center 28. 2 g and 62.6 g of cyclohexanone were mixed and dispersed with a shaker for 2 hours to obtain a composition for light emitting layer (CL-1). The withstand voltage of the light emitting layer formed of the obtained composition for light emitting layer (CL-1) was 0.13 MV / cm.
製造例2
表面処理導電性微粒子(a)の製造
NanoTek ITO−R(シーアイ化成社製、商品名、ITO微粒子、平均粒子径30nm)10gを脱イオン水90g中に配合し、硝酸でpH4に調整した後、2時間超音波分散を行った。分散後、分散液を40℃に保持しながら攪拌し、その分散液にテトラエトキシシラン13gをゆっくりと滴下した。滴下終了後、40℃に保持したまま、4時間さらに攪拌し、その後、脱イオン水及びアセトンを用いて洗浄、減圧乾燥を行い、表面処理導電性微粒子(a)を得た。得られた表面処理導電性微粒子(a)について、光電子分光法にて組成分析を行い、ITO微粒子にシリカが表面処理されていることを確認した。
Production Example 2
Manufacture of surface-treated conductive fine particles (a) NanoTek ITO-R (trade name, ITO fine particles, average particle diameter 30 nm) 10 g was mixed in 90 g of deionized water and adjusted to pH 4 with nitric acid, Ultrasonic dispersion was performed for 2 hours. After dispersion, the dispersion was stirred while maintaining at 40 ° C., and 13 g of tetraethoxysilane was slowly added dropwise to the dispersion. After completion of dropping, the mixture was further stirred for 4 hours while being kept at 40 ° C., and then washed with deionized water and acetone and dried under reduced pressure to obtain surface-treated conductive fine particles (a). The obtained surface-treated conductive fine particles (a) were subjected to composition analysis by photoelectron spectroscopy to confirm that silica was surface-treated on the ITO fine particles.
製造例3
誘電体組成物(D−1)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液40.5g及び表面処理導電性微粒子(a)6.2gを混合し、シェイカーにて12時間分散を行い、誘電体組成物(D−1)を得た。
Production Example 3
Production of dielectric composition (D-1) 40.5 g of a 20% solid resin solution in which cyanoresin CR-S was dissolved in cyclohexanone and 6.2 g of surface-treated conductive fine particles (a) were mixed. Then, dispersion was carried out with a shaker for 12 hours to obtain a dielectric composition (D-1).
製造例4
誘電体組成物(D−2)の製造
シクロヘキサノンにシアノレジンCR−Sを溶解させた固形分20%の樹脂溶液を用意し、誘電体組成物(D−2)とした。
Production Example 4
Production of dielectric composition (D-2) A resin solution having a solid content of 20% in which cyanoresin CR-S was dissolved in cyclohexanone was prepared as a dielectric composition (D-2).
実施例10
分散型EL素子(EL−1)の製造
ITO膜による透明導電層を形成したガラス基材(3cm×3cm)のITO膜面上に、誘電体組成物(D−1)をスピンコートにより塗布し、140℃のホットプレート上で乾燥を行い、膜厚1.0μmの透明誘電体層を形成した。続いて、透明誘電体層上に発光層用組成物(L−1)をスピンコートにより塗布し、140℃のホットプレート上で乾燥を行い、膜厚1.0μmの発光層を形成した。続いて、誘電体組成物(D−1)をスピンコートにより塗布し、140℃のホットプレート上で乾燥を行い、膜厚1.0μmの誘電体層を形成した。さらに誘電体層上に金を蒸着し、分散型EL素子(EL−1)を製造した。得られた分散型EL素子(EL−1)の発光層、透明誘電体層及び誘電体層の特性並びに分散型EL素子(EL−1)の発光輝度について表1に示した。
Example 10
Production of Dispersion EL Element (EL-1) A dielectric composition (D-1) was applied by spin coating on the ITO film surface of a glass substrate (3 cm × 3 cm) on which a transparent conductive layer was formed with an ITO film. And drying on a hot plate at 140 ° C. to form a transparent dielectric layer having a thickness of 1.0 μm. Subsequently, the composition for light emitting layer (L-1) was applied onto the transparent dielectric layer by spin coating, and dried on a hot plate at 140 ° C. to form a light emitting layer having a thickness of 1.0 μm. Subsequently, the dielectric composition (D-1) was applied by spin coating, and dried on a 140 ° C. hot plate to form a dielectric layer having a thickness of 1.0 μm. Furthermore, gold was vapor-deposited on the dielectric layer to produce a dispersion type EL element (EL-1). Table 1 shows the characteristics of the light-emitting layer, the transparent dielectric layer and the dielectric layer of the obtained dispersion type EL element (EL-1) and the light emission luminance of the dispersion type EL element (EL-1).
実施例11〜23、比較例2
分散型EL素子(EL−2)〜(EL−14)及び(CEL−1)の製造
実施例10において、誘電体組成物及び発光層用組成物を表1に記載のものに変えた以外は、同様の方法により分散型EL素子(EL−2)〜(EL−14)及び(CEL−1)を製造した。なお、各々の分散型EL素子において透明誘電体層と誘電体層は同一の誘電体組成物を使用した。得られた分散型EL素子の発光層、透明誘電体層及び誘電体層の特性並びに分散型EL素子の発光輝度について表1に示した。
Examples 11 to 23, Comparative Example 2
Production of dispersion-type EL elements (EL-2) to (EL-14) and (CEL-1) In Example 10, the dielectric composition and the composition for the light emitting layer are those described in Table 1. Dispersion type EL elements (EL-2) to (EL-14) and (CEL-1) were produced in the same manner except that they were changed. In each dispersion-type EL element, the same dielectric composition was used for the transparent dielectric layer and the dielectric layer. Table 1 shows the characteristics of the light emitting layer, the transparent dielectric layer and the dielectric layer of the obtained dispersion type EL element, and the light emission luminance of the dispersion type EL element.
評価試験
上記した発光層の耐電圧、誘電体層の静電容量及び比誘電率、並びに分散型EL素子の発光輝度は、下記試験方法により測定した。
Evaluation test The withstand voltage of the light emitting layer, the capacitance and relative dielectric constant of the dielectric layer, and the light emission luminance of the dispersion type EL element were measured by the following test methods.
発光層の耐電圧の測定
ITO電極を形成したガラス基材(電極面積:1cm×1cm)上に実施例1〜9の各発光層用組成物をスピンコーターで膜厚が3μmとなるように塗布し、140℃、30分の条件で乾燥を行い、発光層膜を形成した。続いて発光層膜上に、前記ITO電極と同じ位置に重なるように金電極(電極面積:1cm×1cm)を蒸着により形成し、電極面積が1cm2となるコンデンサー状の試験体を作製した。試験体の電極それぞれに端子を当て、ピコアンメーター6487(ケースレイ社製、商品名、電流−電圧測定装置)に接続し、電圧を最大500Vまで1Vずつ上昇させながら、そのときの電流値を読み取った。電圧を上昇させている途中で電流値が2.5mAを越える際の電圧又は金電極が破壊され電流の測定が不能となる際の電圧を絶縁破壊電圧とした。この絶縁破壊電圧を膜厚で割って耐電圧を求めた。
Measurement of the withstand voltage of the light emitting layer On the glass substrate (electrode area: 1 cm × 1 cm) on which the ITO electrode was formed, each light emitting layer composition of Examples 1 to 9 was applied with a spin coater so that the film thickness was 3 μm. And it dried on 140 degreeC and the conditions for 30 minutes, and formed the light emitting layer film | membrane. Subsequently, a gold electrode (electrode area: 1 cm × 1 cm) was formed on the light emitting layer film by vapor deposition so as to overlap with the ITO electrode, thereby producing a capacitor-like test body having an electrode area of 1 cm 2 . A terminal is applied to each electrode of the test body and connected to a picoammeter 6487 (product name, current-voltage measuring device, manufactured by Caselay Co., Ltd.), and the current value at that time is increased while increasing the voltage by 1V up to a maximum of 500V. I read it. The voltage when the current value exceeded 2.5 mA in the middle of increasing the voltage or the voltage when the gold electrode was destroyed and the current could not be measured was taken as the dielectric breakdown voltage. The breakdown voltage was determined by dividing the dielectric breakdown voltage by the film thickness.
誘電体層の静電容量密度及び比誘電率の算出
・静電容量測定用試料の作成
ITO電極を形成したガラス基材(電極面積:1cm×1cm)上に、製造例3及び製造例4の各誘電体組成物をスピンコーターにより塗布し、140℃のホットプレート上で乾燥を行い、膜厚1μmの誘電体層を形成した。続いて、ITO電極と対になるように誘電体層上に金を蒸着し(電極面積:1cm×1cm)、静電容量測定用試料を作成した。
・静電容量の測定及び静電容量密度の算出
上記で作成した静電容量測定用試料について、AC5V、周波数1kHzの条件で静電容量を測定した。測定には、日置電機社製のLCR HiTester 3532−50を用いた。さらに、静電容量の値を電極面積で除して静電容量密度σを算出した。
・比誘電率の算出
先に求めた静電容量密度σの値と誘電体層の厚さd(m)から各試料の比誘電率を下記式(1)にて算出した。
比誘電率=(10,000×σ×d)/e0 式(1)
真空の誘電率e0=8.82×10−12(F/m)
Calculation of Capacitance Density and Dielectric Constant of Dielectric Layer / Creation of Capacitance Measurement Sample On the glass substrate (electrode area: 1 cm × 1 cm) on which the ITO electrode was formed, Production Example 3 and Production Example 4 Each dielectric composition was applied by a spin coater and dried on a hot plate at 140 ° C. to form a dielectric layer having a thickness of 1 μm. Subsequently, gold was deposited on the dielectric layer so as to be paired with the ITO electrode (electrode area: 1 cm × 1 cm), and a sample for measuring capacitance was prepared.
Measurement of capacitance and calculation of capacitance density The capacitance measurement sample prepared above was measured under the conditions of AC 5 V and frequency 1 kHz. For the measurement, LCR HiTester 3532-50 manufactured by Hioki Electric Co., Ltd. was used. Further, the capacitance density σ was calculated by dividing the capacitance value by the electrode area.
The relative dielectric constant of each sample was calculated by the following formula (1) from the value of the capacitance density σ obtained at the calculation destination of the relative dielectric constant and the thickness d (m) of the dielectric layer.
Relative permittivity = (10,000 × σ × d) / e 0 formula (1)
Dielectric constant e 0 = 8.82 × 10 −12 (F / m)
分散型EL素子の発光輝度測定
実施例11〜23の各分散型EL素子に周波数1kHzの交流実効電圧を印加し、100V、125V、150V、200V、250Vにおける初期発光輝度を測定した。発光輝度の測定は、コニカミノルタ社製の輝度計LS−110を用い、分散型EL素子の発光面の中心から垂直方向に5cm離れた位置で測定した。
Measurement of emission luminance of dispersion type EL element An AC effective voltage with a frequency of 1 kHz was applied to each of the dispersion type EL elements of Examples 11 to 23, and initial emission luminance at 100V, 125V, 150V, 200V, and 250V was measured. . The luminance was measured using a luminance meter LS-110 manufactured by Konica Minolta Co., Ltd. at a position 5 cm away from the center of the light emitting surface of the dispersion type EL element in the vertical direction.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007312992A JP2009140624A (en) | 2007-12-04 | 2007-12-04 | Composition for light-emitting layer, and dispersion type el element |
TW097103397A TW200840409A (en) | 2007-01-31 | 2008-01-30 | Dispersion type EL device and method for producing the same |
KR1020080009758A KR20080071932A (en) | 2007-01-31 | 2008-01-30 | Decentralized EL element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007312992A JP2009140624A (en) | 2007-12-04 | 2007-12-04 | Composition for light-emitting layer, and dispersion type el element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009140624A true JP2009140624A (en) | 2009-06-25 |
Family
ID=40871065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007312992A Pending JP2009140624A (en) | 2007-01-31 | 2007-12-04 | Composition for light-emitting layer, and dispersion type el element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009140624A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020175514A1 (en) * | 2019-02-27 | 2020-09-03 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02223191A (en) * | 1989-02-23 | 1990-09-05 | Alps Electric Co Ltd | Electroluminescent device |
JP2001135150A (en) * | 1999-11-09 | 2001-05-18 | Toyobo Co Ltd | Transparent conductive film and electroluminescent panel and touch panel using the same |
WO2005017859A1 (en) * | 2003-08-19 | 2005-02-24 | Fuji Electric Holdings Co., Ltd. | Display and method for driving same |
JP2005116503A (en) * | 2003-02-13 | 2005-04-28 | Fuji Photo Film Co Ltd | Ac-operating electroluminescent element |
-
2007
- 2007-12-04 JP JP2007312992A patent/JP2009140624A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02223191A (en) * | 1989-02-23 | 1990-09-05 | Alps Electric Co Ltd | Electroluminescent device |
JP2001135150A (en) * | 1999-11-09 | 2001-05-18 | Toyobo Co Ltd | Transparent conductive film and electroluminescent panel and touch panel using the same |
JP2005116503A (en) * | 2003-02-13 | 2005-04-28 | Fuji Photo Film Co Ltd | Ac-operating electroluminescent element |
WO2005017859A1 (en) * | 2003-08-19 | 2005-02-24 | Fuji Electric Holdings Co., Ltd. | Display and method for driving same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020175514A1 (en) * | 2019-02-27 | 2020-09-03 | ||
WO2020175514A1 (en) * | 2019-02-27 | 2020-09-03 | コニカミノルタ株式会社 | Electronic device |
JP7487730B2 (en) | 2019-02-27 | 2024-05-21 | コニカミノルタ株式会社 | Organic electroluminescent element and method for manufacturing organic electroluminescent element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7915803B2 (en) | Laminated thick film dielectric structure for thick film dielectric electroluminescent displays | |
WO2007004577A1 (en) | Transparent conductive film and dispersion-type electroluminescent device using such film | |
CN100456903C (en) | Electroluminescent functional film and electroluminescent element | |
JP4230363B2 (en) | Phosphor thin film, manufacturing method thereof, and EL panel | |
CN1177016C (en) | EL phosphor bulk layer film and EL element | |
US6403204B1 (en) | Oxide phosphor electroluminescent laminate | |
WO2006093095A1 (en) | Dispersion-type electroluminescent element | |
KR20060114387A (en) | Electroluminescent Phosphor, Manufacturing Method thereof And Electroluminescent Element | |
US20050189518A1 (en) | Method of producing a fluorescent particle | |
JP2009140624A (en) | Composition for light-emitting layer, and dispersion type el element | |
JP2008210780A (en) | Dispersion-type electroluminescence element and method of manufacturing the same | |
JP2003249373A (en) | Electroluminescence element and its manufacturing method | |
US7714498B2 (en) | Electroluminescent device with acetylacetonato complex salt included in phosphor layer | |
JP2005085571A (en) | Electroluminescent material | |
JP4199673B2 (en) | EL phosphor laminated thin film and EL element | |
KR20080071932A (en) | Decentralized EL element and its manufacturing method | |
KR101064166B1 (en) | Inorganic EL device and manufacturing method thereof | |
JPWO2005122651A1 (en) | Light emitting element and display device | |
TW201044907A (en) | Dispersion-type electroluminescence device | |
JP4954535B2 (en) | Electroluminescent device | |
CN104449684A (en) | Europium-doped alkaline earth indate light-emitting material, and preparation method and application thereof | |
JP2010229178A (en) | Inorganic phosphor material and dispersive electroluminescence device | |
JP2005272798A (en) | Method of producing phosphor particle | |
JPH01200593A (en) | Manufacture of electroluminescence display element | |
JP2005158332A (en) | Manufacturing method for el surface light emitting sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120522 |