[go: up one dir, main page]

JP2009139321A - Radar signal processing apparatus and method - Google Patents

Radar signal processing apparatus and method Download PDF

Info

Publication number
JP2009139321A
JP2009139321A JP2007318452A JP2007318452A JP2009139321A JP 2009139321 A JP2009139321 A JP 2009139321A JP 2007318452 A JP2007318452 A JP 2007318452A JP 2007318452 A JP2007318452 A JP 2007318452A JP 2009139321 A JP2009139321 A JP 2009139321A
Authority
JP
Japan
Prior art keywords
signal
interference
difference
distance
beat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007318452A
Other languages
Japanese (ja)
Inventor
Mato Takei
真都 竹井
Yukinobu Tokieda
幸伸 時枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007318452A priority Critical patent/JP2009139321A/en
Publication of JP2009139321A publication Critical patent/JP2009139321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【目的】
レーダ受信信号における干渉信号および、ビート信号における不連続点を除去する、周波数変調(FM−CW)レーダ用の信号処理方法を提供する。また干渉除去後に、その後の信号処理に影響を与えないような補間方法を提案する。
【構成】
ビート信号の各標本化時刻における標本値が干渉信号であるか正規の受信信号であるかを判定する干渉判定部と、前記干渉判定部によって前記標本値が干渉信号であると判定された場合に該干渉信号を標本化されたビート信号を用いることによって正しい値に補間するビート信号補間部からなる干渉除去部を有するレーダ信号処理装置。
【選択図】図2
【the purpose】
Provided is a signal processing method for a frequency modulation (FM-CW) radar that eliminates an interference signal in a radar reception signal and a discontinuity in a beat signal. In addition, an interpolation method that does not affect the subsequent signal processing after interference removal is proposed.
【Constitution】
An interference determination unit that determines whether a sample value at each sampling time of a beat signal is an interference signal or a regular reception signal, and the interference determination unit determines that the sample value is an interference signal A radar signal processing apparatus having an interference removal unit including a beat signal interpolation unit that interpolates the interference signal into a correct value by using a sampled beat signal.
[Selection] Figure 2

Description

本発明は、レーダ装置、およびレーダシステムで用いられる方法に係り、特に、レーダの反射信号に見られる、干渉信号を除去するレーダシステム、およびこのための方法に関する。また、干渉除去を行なった後に、信号処理結果に影響を与えないように信号を補間するレーダ信号処理装置に関する。 The present invention relates to a radar apparatus and a method used in the radar system, and more particularly, to a radar system for removing an interference signal found in a reflected signal of a radar and a method for the same. The present invention also relates to a radar signal processing apparatus that interpolates signals so as not to affect signal processing results after performing interference removal.

すでに知られているように、FM−CWレーダは連続的に周波数変調波を送信するレーダである。送信信号と受信信号の周波数の差を観測することで、レーダの測定範囲内に存在する物標の有無、また物標の存在が確認された場合は、物標までの距離を特定することができる。送信信号と受信信号の周波数の差はビート信号を取得することで観測できる。 As already known, FM-CW radar is a radar that continuously transmits a frequency-modulated wave. By observing the difference between the frequency of the transmitted signal and the received signal, the presence or absence of a target within the radar measurement range and the presence of the target can be identified. it can. The difference in frequency between the transmission signal and the reception signal can be observed by acquiring a beat signal.

ビート信号とは送信信号と受信信号の周波数の差を周波数成分として有する信号である。ビート信号をフーリエ変換することにより、そのスペクトルを観測することで、スペクトルの振幅が大きい周波数を、送信信号と受信信号の周波数の差であるビート周波数と特定することができる。 A beat signal is a signal having a frequency difference as a frequency component between a transmission signal and a reception signal. By observing the spectrum of the beat signal by Fourier transform, it is possible to specify a frequency having a large spectrum amplitude as a beat frequency that is a difference between the frequency of the transmission signal and the reception signal.

送信信号と受信信号の周波数の差は、レーダから送信した信号が物標で反射して受信されるまでの時間に比例しているため、ビート周波数を観測することで物標までの距離を特定することができる。 The difference between the frequency of the transmitted signal and the received signal is proportional to the time until the signal transmitted from the radar is reflected and received by the target, so the distance to the target is specified by observing the beat frequency. can do.

FM−CWレーダにおいては図1に示すように、電圧制御型の発振器VCO101から周波数変調波を出力する。VCOから出力された周波数変調波は分配器PD103によって送信アンテナ105に向かう方向と、受信系の周波数混合器111の方向へと分岐される。送信アンテナ105に分岐した信号は、送信アンテナ105から送信されると、物標で反射して受信アンテナ107で受信される。 In the FM-CW radar, a frequency-modulated wave is output from a voltage-controlled oscillator VCO 101 as shown in FIG. The frequency-modulated wave output from the VCO is branched into a direction toward the transmission antenna 105 and a direction of the frequency mixer 111 of the reception system by the distributor PD103. When the signal branched to the transmission antenna 105 is transmitted from the transmission antenna 105, it is reflected by the target and received by the reception antenna 107.

一方、分配器PD103から受信系の周波数混合器111の方向へ分岐した信号は、受信アンテナ107で受信された受信信号と、周波数混合器111によって周波数混合される。周波数混合器の出力を増幅器109に入力し、増幅器109の出力を低域通過フィルタ113に入力する。低域通過フィルタ113の出力は送信周波数と受信周波数の差を周波数成分とするビート信号である。ビート信号はAD変換器115に入力され、アナログ信号を標本化することでディジタル値へと変換される。サンプリングされたビート信号はビート信号補間部を有するレーダ信号処理装置117に入力され、図2に示すデータフローにしたがって信号処理される。 On the other hand, the signal branched from the distributor PD 103 toward the receiving frequency mixer 111 is frequency-mixed by the frequency mixer 111 with the received signal received by the receiving antenna 107. The output of the frequency mixer is input to the amplifier 109, and the output of the amplifier 109 is input to the low-pass filter 113. The output of the low-pass filter 113 is a beat signal whose frequency component is the difference between the transmission frequency and the reception frequency. The beat signal is input to the AD converter 115 and converted into a digital value by sampling the analog signal. The sampled beat signal is input to a radar signal processing device 117 having a beat signal interpolation unit, and signal processing is performed according to the data flow shown in FIG.

AD変換器201で標本化し、ディジタル値に変換した後、信号処理装置に入力されたビート信号は干渉除去部において干渉除去203を施した後にフーリエ変換205によって周波数領域に変換される。周波数領域に変換された信号は、絶対値算出207、対数化209を経て周波数スペクトルとして出力される。FM−CWレーダにおいて、周波数スペクトルの周波数軸は、物標までの距離に対応している。周波数スペクトルを観測することで、その振幅が大きい周波数(距離)に反射物標が存在すると判断し、更には反射物標までの距離を特定することができる。周波数スペクトルの観測結果は観測範囲において、方向や距離と対応させて画像化した後に表示装置211にて表示し、観測する方法が一般的である。 After being sampled by the AD converter 201 and converted to a digital value, the beat signal input to the signal processing device is subjected to interference removal 203 in the interference removal unit, and then converted to the frequency domain by the Fourier transform 205. The signal converted into the frequency domain is output as a frequency spectrum through absolute value calculation 207 and logarithmization 209. In the FM-CW radar, the frequency axis of the frequency spectrum corresponds to the distance to the target. By observing the frequency spectrum, it can be determined that there is a reflective target at a frequency (distance) having a large amplitude, and further, the distance to the reflective target can be specified. In general, the observation result of the frequency spectrum is displayed on the display device 211 after being imaged corresponding to the direction and distance in the observation range and observed.

反射信号の中には雑音や干渉信号等の不要な成分が含まれる。不要な成分にはレーダ装置内の電気的な性質による雑音や、送受信信号がレーダ装置の外で影響を受けた、干渉信号等の外的要因によるものがある。これらの不要な成分はレーダにおける物標探知性能に悪影響を及ぼすため、可能な限り除去する必要がある。
レーダ装置内のシステム雑音はレーダ装置そのものの改造等で改善することができる(非特許文献1を参照)。しかし、送受信波がシステムの外で影響を受ける、干渉信号のような外的要因による成分は不定期且つ形状が定まらないため、除去する手段としては、いかなる突発的な外的要因に対しても、これを自動的に検知し、除去できるような方法を選択するべきである。
The reflected signal includes unnecessary components such as noise and interference signals. Unnecessary components include noise due to electrical properties in the radar apparatus and external factors such as interference signals in which transmission / reception signals are affected outside the radar apparatus. Since these unnecessary components adversely affect the target detection performance of the radar, it is necessary to remove them as much as possible.
System noise in the radar apparatus can be improved by modifying the radar apparatus itself (see Non-Patent Document 1). However, since the components due to external factors such as interference signals, where the transmitted and received waves are affected outside the system, are irregular and undefined, the means to remove them is to prevent any sudden external factors. A method should be selected that can automatically detect and remove this.

雑音成分(干渉信号を含む) は物標の検知において深刻な影響を及ぼす。図3に、物標までの距離に比例したビート周波数成分を有するビート信号をフーリエ変換した結果を示す。301はビート周波数の信号スペクトルを表しており、このスペクトルの周波数を読み取ることでビート周波数、更に物標までの距離を知ることができる。303はビート信号にパルス状の干渉信号を含む信号をフーリエ変換した結果、305は干渉信号を含まない信号をフーリエ変換した結果である。 Noise components (including interference signals) have a serious effect on target detection. FIG. 3 shows the result of Fourier transform of a beat signal having a beat frequency component proportional to the distance to the target. 301 represents the signal spectrum of the beat frequency, and the beat frequency and further the distance to the target can be known by reading the frequency of this spectrum. 303 is a result of Fourier transform of a signal including a pulsed interference signal in the beat signal, and 305 is a result of Fourier transform of a signal not including the interference signal.

パルス状の干渉信号を含む場合、303と305に示すように、周波数軸上で広範囲に渡り、干渉信号を含まない信号に比べてノイズフロアが高くなっている。物標による反射信号のレベルの小さい場合には、ノイズフロアが高いことにより、物標の信号スペクトルがノイズフロアに埋もれてしまう原因となる。また、特定の周波数成分を有する干渉信号については、物標の有無の判定や測距において誤った情報をもたらす原因となる。 When a pulse-like interference signal is included, as shown by 303 and 305, the noise floor is high over a wide range on the frequency axis as compared with a signal not including the interference signal. When the level of the reflected signal by the target is small, the noise floor is high, which causes the signal spectrum of the target to be buried in the noise floor. Further, an interference signal having a specific frequency component may cause erroneous information in determination of the presence or absence of a target or distance measurement.

従来の干渉除去技術では、ビート周波数が高く、干渉信号との形状が似ている場合は、干渉信号の判定が困難である(特許文献1を参照)。本発明は、干渉信号の形状やビート周波数に関わらず干渉信号を検出し、その後の信号処理に影響を与えないよう補間するレーダ信号処理装置に関する。 In the conventional interference cancellation technique, when the beat frequency is high and the shape of the interference signal is similar, it is difficult to determine the interference signal (see Patent Document 1). The present invention relates to a radar signal processing apparatus that detects an interference signal regardless of the shape and beat frequency of the interference signal and performs interpolation so as not to affect subsequent signal processing.

特開2006-171001号公報JP 2006-171001 A 「改訂レーダ技術」、社団法人電子情報通信学会"Revised radar technology", The Institute of Electronics, Information and Communication Engineers

レーダ受信信号における干渉信号および、ビート信号における不連続点を除去する、周波数変調(FM−CW)レーダ用の信号処理方法を提供する。また干渉除去後に、その後の信号処理に影響を与えないような補間方法を提案する。 Provided is a signal processing method for a frequency modulation (FM-CW) radar that eliminates an interference signal in a radar reception signal and a discontinuity in a beat signal. In addition, an interpolation method that does not affect the subsequent signal processing after interference removal is proposed.

前記課題を解決するために、本発明は、周波数変調された連続波信号を送受信することにより移動物体の距離と速度を同時に測定することができるFM−CWレーダの信号処理装置及び方法に関して、
ビート信号の各標本化時刻における標本値が干渉信号であるか正規の受信信号であるかを判定する干渉判定部と、
前記干渉判定部によって前記標本値が干渉信号であると判定された場合に該干渉信号を標本化されたビート信号を用いることによって正しい値に補間するビート信号補間部と、
からなる干渉除去部を有するレーダ信号処理装置とする。
In order to solve the above problems, the present invention relates to an FM-CW radar signal processing apparatus and method capable of simultaneously measuring the distance and velocity of a moving object by transmitting and receiving a frequency-modulated continuous wave signal.
An interference determination unit that determines whether a sample value at each sampling time of the beat signal is an interference signal or a regular reception signal;
A beat signal interpolation unit that interpolates the interference signal to a correct value by using a sampled beat signal when the interference determination unit determines that the sample value is an interference signal;
A radar signal processing apparatus having an interference removing unit consisting of

また、本発明は、前記干渉判定部は、前記標本化されたビート信号の差分列及び差分列の微分をした値によって干渉信号の有無を判定するものであって、
差分列を得るための2点間の距離を差分距離とした場合に、前記標本化されたビート信号に対して、差分距離を予め定めた規定値まで変化させて1階差分の列を計算する1階差分計算部と、
前記1階差分計算部によって計算された1階差分の列を時間微分する時間微分計算部と、
前記1階差分計算部によって計算された1階差分の列に関して全ての時刻にわたって絶対値の平均値を計算することによって1階差分の振幅平均値を取得する1階差分振幅平均計算部と、
1階差分振幅平均値が最小になる差分距離を同相差分距離とする場合に、差分距離を一定量ずつ変化させながら前記1階差分振幅平均計算部によって1階差分の振幅平均値を計算することによって、同相差分距離を探索する同相差分距離探索部と、
同相差分距離において、すべての離散時間の範囲で計算された1階差分の絶対値が予め設定した閾値より大きいとき、あるいは、すべての離散時間の範囲で計算された1階差分の時間微分の絶対値が予め設定した閾値より大きいとき、干渉信号があると判定する第1判定部と、
前記特定の同相差分距離の2倍の差分距離において、すべての離散時間の範囲で計算された1階差分の絶対値が予め設定した閾値より大きいとき、あるいは、すべての離散時間の範囲で計算された1階差分の時間微分の絶対値が予め設定した閾値より大きいとき、干渉信号があると判定する第2判定部と、
前記第1判定部及び第2判定部の判定結果に関して、両判定部において干渉信号があるとした時刻のみに干渉信号が存在し、そうではない時刻においては干渉信号の存在しない正常な受信信号であると判定する総合判定部と
を有する事を特徴とするレーダ信号処理装置及び方法とする。
Further, in the present invention, the interference determination unit determines the presence or absence of an interference signal based on a differential sequence of the sampled beat signal and a value obtained by differentiating the differential sequence,
When the distance between two points for obtaining a difference string is a difference distance, a difference string is changed to a predetermined value with respect to the sampled beat signal, and a first-order difference string is calculated. A first floor difference calculation unit;
A time differentiation calculation unit for differentiating in time the sequence of the first order difference calculated by the first order difference calculation unit;
A first-order difference amplitude average calculation unit that obtains an average amplitude value of the first-order difference by calculating an average value of absolute values over all times with respect to the first-order difference column calculated by the first-order difference calculation unit;
When the difference distance that minimizes the first-order difference amplitude average value is the in-phase difference distance, the first-order difference amplitude average calculation unit calculates the amplitude average value of the first-order difference while changing the difference distance by a certain amount. A common-mode difference distance search unit for searching for a common-mode difference distance;
At the in-phase difference distance, the absolute value of the first-order difference calculated in all discrete time ranges is greater than a preset threshold value, or the time differential of the first-order difference calculated in all discrete time ranges A first determination unit that determines that there is an interference signal when the absolute value is greater than a preset threshold;
When the absolute value of the first-order difference calculated in all discrete time ranges is greater than a preset threshold value or calculated in all discrete time ranges at a difference distance twice the specified in-phase difference distance A second determination unit that determines that there is an interference signal when the absolute value of the time differential of the first-order difference is greater than a preset threshold;
Regarding the determination results of the first determination unit and the second determination unit, there is an interference signal only at the time when there is an interference signal in both determination units, and a normal received signal without the interference signal at a time when it is not. A radar signal processing apparatus and method characterized by having a comprehensive judgment unit for judging that there is a radar signal.

また、本発明は、前記ビート信号補間部は、干渉信号が存在すると判定された際に、該干渉信号の標本化数を数える干渉点数算出部と、
ビート信号の特定の時刻に干渉信号を含むと判断され、なおかつ、前記同相差分距離探索部によって得られた同相差分距離が1ではなかった場合に、該時刻におけるビート信号を、該同相差分距離だけ離れたビート信号上の2点の平均値によって置き換える第1のビート信号置換部と、
前記同相差分距離が前記干渉点数算出部によって得られる標本化数より小さいときに、ビート信号において干渉信号を含まない範囲に関して新たに同相差分距離を探索し、前記時刻から該同相差分距離だけ前方向及び後方向に離れた2点によって平均値を計算し置き換える第2のビート信号置換部と、
前記同相差分距離が1であった場合に、干渉信号の前後の2点から曲線の傾きを算出し、一次近似式を使って置換する値を算出し置き換える第3のビート信号置換部と、
を有し、ビート周波数に影響を与える事無く、干渉が含まれた箇所のビート信号を、干渉を含まない信号に置換することを特徴とする、レーダ信号処理装置及び方法とする。
Further, according to the present invention, the beat signal interpolation unit, when it is determined that an interference signal exists, an interference point number calculation unit that counts the number of sampling of the interference signal;
When it is determined that an interference signal is included at a specific time of the beat signal, and the in-phase difference distance obtained by the in-phase difference distance search unit is not 1, the beat signal at the time is determined as the in-phase difference. A first beat signal replacement unit that replaces the average value of two points on the beat signal separated by a minute distance;
When the in-phase difference distance is smaller than the sampling number obtained by the interference point number calculation unit, a new in-phase difference distance is searched for a range not including an interference signal in the beat signal, and the in-phase difference distance from the time is calculated. A second beat signal replacement unit that calculates and replaces the average value by two points separated in the forward and backward directions,
A third beat signal replacement unit that calculates the slope of a curve from two points before and after the interference signal when the in-phase difference distance is 1, and calculates and replaces a replacement value using a first-order approximation;
And a radar signal processing apparatus and method for replacing a beat signal at a location including interference without affecting the beat frequency with a signal not including interference.

ビート信号において、信号処理の結果に悪影響を及ぼす、干渉信号等の外的要因によるビート信号の不連続点が除去され、更にビート周波数成分に影響を与えないように補間が行なわれることにより、物標の探知確率が向上する。 In beat signals, discontinuities of beat signals due to external factors such as interference signals that adversely affect the results of signal processing are removed, and interpolation is performed so that beat frequency components are not affected. The detection probability of the mark is improved.

本発明による干渉信号の除去は図4に示す干渉除去部において行なわれる。本発明における干渉除去処理では、信号処理装置117に入力されたビート信号配列に対して、図4の401に示す干渉判定部にて干渉信号の有無を判定し、図4の403に示すビート信号補間部にて干渉信号ありと判定した部分を補間する。 The interference signal removal according to the present invention is performed in the interference removal unit shown in FIG. In the interference removal processing according to the present invention, the presence or absence of an interference signal is determined by the interference determination unit 401 shown in FIG. Interpolate the part determined by the interpolator as having an interference signal.

干渉信号を判定するための処理の流れを図5に示す。処理の対象となる信号xは標本化された長さNの時系列信号である。時系列を離散時間(j=1,2,3,…,N)で表す。図5の501に示すように、処理の対象となる信号xと、時間軸において1だけ差分距離をとった信号xj+1との引き算を行なう。引き算は離散時間(j=1,2,3,…,N-1)の範囲において繰り返す。 FIG. 5 shows a flow of processing for determining the interference signal. Subject to the signal x j of the processing is a time-series signal of length N which is sampled. The time series is expressed in discrete time (j = 1, 2, 3,..., N). As indicated by reference numeral 501 in FIG. 5, the signal x j to be processed is subtracted from the signal x j + 1 which is a difference distance of 1 on the time axis. The subtraction is repeated in the range of discrete time (j = 1, 2, 3,..., N−1).

次はxと、時間軸において2だけ差分距離をとった信号xj+2との引き算をとるというように、差分距離dを1から規定値D(たとえばN/4)までずらしていき、1階差分を計算する。
The following is a x j, and so take a subtraction of the two only the signal x j + 2 took the difference metric in the time axis, will shift the differential distance d from 1 to the specified value D (e.g. N / 4), Calculate the first floor difference.

規定値Dは最大でN-1まで可能であるが、差分距離dが大きくなればなるほど1階差分を計算できるデータの範囲は減少し、適切な処理を行なえなくなる恐れがある。そこで規定値Dついてはサンプリング数Nから、たとえばN/4と決めればよい。 The specified value D can be up to N−1, but as the difference distance d increases, the range of data for which the first-order difference can be calculated decreases, and there is a possibility that appropriate processing cannot be performed. Therefore, the specified value D may be determined from the sampling number N, for example, N / 4.

次に、図5の503に示すように各差分距離dにおける1階差分配列Δd,jについて、すべての時刻(j=1,2,3,…,N-d)にわたって絶対値の平均値Aを算出する。
Next, as indicated by reference numeral 503 in FIG. 5, with respect to the first-order difference array Δ d, j at each difference distance d, the average value of absolute values over all times (j = 1, 2, 3,..., N−d). to calculate the a d.

図5の505に示すようにAが最小になったときの差分距離dを同相差分距離δとする。 As indicated by reference numeral 505 in FIG. 5, the difference distance d when Ad is minimized is set as the in-phase difference distance δ.

また、差分距離d=δにおいてΔδ,jの傾斜を知るために、図5の507に示すようにΔδ,jの1階微分Δδ,j´を計算する。
Further, in the differential distance d = [delta] delta [delta], in order to know the slope of the j, the delta [delta] as shown in 507 of FIG. 5, first order differential delta [delta] of j, calculates the j '.

次に、図5の509に示すように同相差分距離δにおける1階微分配列Δd,j´について、すべての時刻(j=1,2,3,…,N-δ-1)にわたって絶対値の平均値Aδ´を算出する。
Next, as shown by 509 in FIG. 5, the first-order differential array Δ d, j ′ at the in-phase difference distance δ is absolute over all times (j = 1, 2, 3,..., N-δ-1). An average value A δ ′ of values is calculated.

d=δのとき、xj+δとxはビート信号の位相が一致するか、もしくは全ての差分距離dの中でxj+dとxの位相が最も近い状態にある。ただし、ビート信号の周波数が低い場合、xj+dについてはdを大きくすればする程、xと位相が離れていく。その場合、d=1のときが最も同相に近い状態であるとみなされδ=1となる。同相差分距離δの値は処理の対象となるビート信号の周波数成分に依存する。 When d = δ, x j + δ and x j have the same beat signal phase, or x j + d and x j are in the closest phase among all difference distances d. However, when the frequency of the beat signal is low, the phase of x j + d becomes farther from x j as d is increased. In that case, when d = 1, it is considered that the state is closest to the same phase, and δ = 1. The value of the in-phase difference distance δ depends on the frequency component of the beat signal to be processed.

干渉の有無の判定方法について説明する。
(1) 同相差分距離δにおいて、干渉信号が存在する点は、離散時間(j=1,2,3,…,N-δ)の範囲で計算された1階差分Δδ,jの振幅が大きくなり、干渉信号以外の点については振幅が小さくなる。よって図5の511に示すように、d=δにおいて平均値Aδで正規化した|Δδ,j|/Aδが、規定の閾値θ(たとえば3)よりも大きい点を干渉信号ありと判定する。また、図7(a)の701に示すように、干渉信号が一定のレベルを保持するような信号の場合、図7(b)の703に示すように|Δδ,j|=0となる。この場合も干渉信号ありと判定する。
A method for determining the presence or absence of interference will be described.
(1) At the in-phase difference distance δ, the point where the interference signal exists is the amplitude of the first-order difference Δ δ, j calculated in the range of discrete time (j = 1, 2, 3,..., N−δ). Increases and the amplitude decreases at points other than the interference signal. Therefore, as indicated by reference numeral 511 in FIG. 5, a point where | Δ δ, j | / A δ normalized by the average value A δ at d = δ is larger than a prescribed threshold value θ (for example, 3) indicates that there is an interference signal. judge. Further, as shown by 701 in FIG. 7A, in the case where the interference signal is a signal that maintains a constant level, | Δ δ, j | = 0 as shown by 703 in FIG. 7B. . Also in this case, it is determined that there is an interference signal.

(2)干渉信号の形状により、たとえば図8(a)に示すような信号の場合は、図8(b)の801に示すように干渉信号が存在する点において1階差分Δδ,jの振幅が高低を繰り返す場合がある。そこで、1階差分Δδ,jの振幅が激しく変動する場合も干渉があると判定するため、図8(c)の803に示すように、同相差分距離δにおいて、離散時間(j=1,2,3,…,N-δ)の範囲で計算されたΔδ,jについての1階微分値Δδ,j´にも注目する。|Δδ,j´|の平均値Aδ´で正規化した|Δδ,j´|/Aδ´を観察し、閾値よりも大きい点を干渉信号ありと判定する。 (2) Depending on the shape of the interference signal, for example, in the case of the signal as shown in FIG. 8A, the first-order difference Δδ , j is different at the point where the interference signal exists as indicated by reference numeral 801 in FIG. The amplitude may repeat high and low. Therefore, in order to determine that there is interference even when the amplitude of the first-order difference Δ δ, j fluctuates drastically, as shown by 803 in FIG. 8C, the discrete time (j = 1) at the in-phase difference distance δ. , 2,3, ..., N-δ ) Δ δ calculated in a range of, first order differential value of the j delta [delta], is also noted j '. | Judged observing the | '/ A [delta]', with interference signal points greater than the threshold and delta [delta], j | | normalized by 'average value A [delta] of' delta [delta], j.

図7(a)の701に示すように、干渉信号が一定のレベルを保持するような信号の場合、図7(c)の705に示すように、|Δδ,j´|=0となる。この場合も、図5の513に示すとおり、干渉信号ありと判定する。 As shown by reference numeral 701 in FIG. 7A, in the case where the interference signal is a signal that maintains a constant level, as shown by reference numeral 705 in FIG. 7C, | Δδ , j ′ | = 0. . Also in this case, it is determined that there is an interference signal as indicated by 513 in FIG.

図5の515に示すように、(1)と(2)の結果より、同相差分距離δにおける1階差分の絶対値|Δδ,j|/Aδが|Δδ,j|/Aδ>θか|Δδ,j|/Aδ=0のときと、または1階差分の時間微分の絶対値|Δd,j´|/Aδ´>θ´あるいは|Δδ,j´|/Aδ´=0のときに干渉信号があると判定し、ディジタル値R (1)=1とする。 As indicated by 515 in FIG. 5, from the results of (1) and (2), the absolute value | Δ δ, j | / A δ of the first-order difference at the in-phase difference distance δ is | Δ δ, j | / A δ > θ or | Δ δ, j | / A δ = 0, or absolute value of time differential of first-order difference | Δ d, j ′ | / A δ ′> θ ′ or | Δ δ, j ′ When | / A δ ′ = 0, it is determined that there is an interference signal, and the digital value R j (1) = 1.

あるいは|Δδ,j|/Aδ>θと|Δδ,j´|/Aδ´>θ´の双方が成り立つとき、|Δδ,j|/Aδ=0と|Δδ,j´|/Aδ´=0の双方が成り立つときもR (1)=1とする。尚、いずれにも該当しない場合、R (1)=0とする。 Or, when both | Δ δ, j | / A δ > θ and | Δ δ, j ′ | / A δ ′> θ ′ hold, | Δ δ, j | / A δ = 0 and | Δ δ, j R j (1) = 1 is set even when both of | ′ / ′ = 0 hold. If none of the above applies, R j (1) = 0.

図9(a)に干渉信号を含むビート信号を示す。図9(a)の901が干渉信号である。図9(b)に901の拡大図を示す。図9(c)に示すd=δにおける1階差分、図9(d)に示す1階差分の時間微分においては、|Δδ,j|や|Δδ,j´|は干渉信号がある点だけではなく、2δ離れた点も振幅が大きくなる。また、図9(e)に示すd=2δにおける1階差分、図9(f)に示す1階差分の時間微分においては4δ離れた点も|Δδ,j|や|Δδ,j´|の振幅が大きくなる。これは鏡像のようなもので、実際に干渉信号が存在しないため、取り除く必要がある。 FIG. 9A shows a beat signal including an interference signal. 901 in FIG. 9A is an interference signal. FIG. 9B shows an enlarged view of 901. In the first-order difference at d = δ shown in FIG. 9C and the time difference of the first-order difference shown in FIG. 9D, | Δ δ, j | and | Δ δ, j ′ | Not only the point but also the point away from 2δ increases in amplitude. Further, in the time differentiation of the first-order difference at d = 2δ shown in FIG. 9 (e) and the first-order difference shown in FIG. 9 (f), the points separated by 4δ are also | Δδ , j | and | Δδ , j ′. The amplitude of | increases. This is like a mirror image, and since there is actually no interference signal, it must be removed.

そこで、d=δに加えて、同相差分距離の2倍にあたるd=2δについても|Δδ,j|や|Δδ,j´|を計算し、上記の(1)と(2)の判定を同様に(3)と(4)の手順で行なう。 Therefore, in addition to d = δ, | Δ δ, j | and | Δ δ, j ′ | are also calculated for d = 2δ, which is twice the in-phase difference distance, and the above (1) and (2) The determination is similarly made in the procedures (3) and (4).

(3)同相差分距離の2倍にあたるd=2δにおいて、干渉信号が存在する点は、離散時間(j=1,2,3,…,N-2δ)の範囲で計算された1階差分Δ2δ,jの振幅が大きくなり、干渉信号以外の点については振幅が小さくなる。図5の517に示すように、d=2δにおいて平均値A2δで正規化した|Δ2δ,j|/A2δが、規定の閾値θ(たとえば3)よりも大きい点を干渉信号ありと判定する。 (3) The point where the interference signal exists at d = 2δ, which is twice the in-phase difference distance, is the first-order difference calculated in the range of discrete time (j = 1, 2, 3,..., N-2δ). The amplitude of Δ2δ, j is increased, and the amplitude is reduced for points other than the interference signal. As indicated by reference numeral 517 in FIG. 5, it is determined that there is an interference signal at a point where | Δ 2δ, j | / A normalized by the average value A at d = 2δ is larger than a predetermined threshold θ (for example, 3). To do.

また、図7(a)の701に示すように、干渉信号が一定のレベルを保持するような信号の場合、図7(b)の703に示すように、d=δのときと同様、|Δ2δ,j|=0となる。この場合も干渉信号ありと判定する。 Further, as indicated by reference numeral 701 in FIG. 7A, in the case where the interference signal has a constant level, as indicated by reference numeral 703 in FIG. Δ 2δ, j | = 0. Also in this case, it is determined that there is an interference signal.

(4)干渉信号の形状により、たとえば図8(a)に示すような信号の場合は、d=δのときと同様、図8(b)の801に示すように干渉信号が存在する点において1階差分Δ2δ,jの振幅が高低を繰り返す場合がある。そこで、1階差分Δ2δ,jの振幅が激しく変動する場合も干渉があると判定するため、図8(c)の803に示すように、同相差分距離の2倍にあたるd=2δにおいて、離散時間(j=1,2,3,…,N-2δ)の範囲で計算されたΔ2δ,jについての1階微分値Δ2δ,j´にも注目する。|Δ2δ,j´|の平均値A2δ´で正規化した|Δ2δ,j´|/A2δ´を観察し、閾値よりも大きい点を干渉信号ありと判定する。 (4) Due to the shape of the interference signal, for example, in the case of a signal as shown in FIG. 8A, as in the case of d = δ, there is an interference signal as shown at 801 in FIG. 8B. There is a case where the amplitude of the first-order difference Δ 2δ, j repeatedly increases and decreases . Therefore, in order to determine that there is interference even when the amplitude of the first-order difference Δ 2δ, j fluctuates drastically, as indicated by 803 in FIG. 8C, at d = 2δ, which is twice the in-phase difference distance, Note also the first-order differential value Δ 2δ, j ′ for Δ 2δ, j calculated in the range of discrete time (j = 1, 2, 3,..., N−2δ). | Δ 2δ, j determines to observe | '/ A 2δ', with interference signal points greater than the threshold value and '| | average value A 2.delta.' In normalized Δ 2δ, j.

図7(a)の701に示すように、干渉信号が一定のレベルを保持するような信号の場合、図7(c)の705に示すように、|Δ2δ,j´|=0となる。この場合も、図5の519に示すとおり、干渉信号ありと判定する。 As shown at 701 in FIG. 7A, in the case of a signal in which the interference signal maintains a constant level, | Δ 2δ, j ′ | = 0 as shown at 705 in FIG. 7C. . Also in this case, it is determined that there is an interference signal as indicated by 519 in FIG.

図5の521に示すように、(3)と(4)の結果より、同相差分距離の2倍にあたるd=2δにおける1階差分の絶対値|Δ2δ,j|/A2δが|Δ2δ,j|/A2δ>θか|Δ2δ,j|/A2δ=0のときと、または1階差分の時間微分の絶対値|Δ2δ,j´|/A2δ´>θ´あるいは|Δ2δ,j´|/A2δ´=0のときに干渉信号があると判定し、ディジタル値R (2)=1とする。 As indicated by 521 in FIG. 5, from the results of (3) and (4), the absolute value of the first-order difference | Δ 2δ, j | / A 2δ at d = 2δ, which is twice the in-phase difference distance, is | Δ 2δ, j | / A > θ or | Δ 2δ, j | / A = 0, or the absolute value of the time differential of the first-order difference | Δ 2δ, j ′ | / A ′> θ ′ or When | Δ 2δ, j ′ | / A ′ = 0, it is determined that there is an interference signal, and the digital value R j (2) = 1 is set.

あるいは|Δ2δ,j|/A2δ>θと|Δ2δ,j´|/A2δ´>θ´の双方が成り立つとき、|Δ2δ,j|/A2δ=0と|Δ2δ,j´|/A2δ´=0の双方が成り立つときもR (2)=1とする。尚、いずれにも該当しない場合、R (2)=0とする。 Or, when both | Δ 2δ, j | / A > θ and | Δ 2δ, j ′ | / A ′> θ ′ hold, | Δ 2δ, j | / A = 0 and | Δ 2δ, j R j (2) = 1 is set even when both of | ′ / A ′ = 0 hold. If none of the above applies, R j (2) = 0.

最終的に、同相差分距離d=δのときと同相差分距離の2倍にあたるd=2δのときの結果を総合して、干渉信号の有無を判定する。R (1)とR (2)のどちらか一方のみ1となった点、すなわち干渉信号があると判定された点は鏡像である。そこで、図5の523に示すように、R (1)とR (2)の論理積を得る総合判定手段によって最終的な結果がR=1のとき、時刻jの信号xが干渉信号であり、そうでないときのxが正常な受信信号であると判定する。 Finally, the presence / absence of an interference signal is determined by combining the results when d = 2δ which is twice the in-phase difference distance and when the in-phase difference distance d = δ. A point where only one of R j (1) and R j (2) is 1, that is, a point determined to have an interference signal is a mirror image. Therefore, as shown at 523 in FIG. 5, when the final result is R j = 1 by the comprehensive judgment means for obtaining the logical product of R j (1) and R j (2) , the signal x j at time j is is an interference signal, it determines that the received signal x j is normal otherwise.

干渉信号があると判断された点は、一度信号を0にして干渉信号を除去した後、補間を行なう必要がある。 When it is determined that there is an interference signal, it is necessary to perform interpolation after setting the signal to 0 once to remove the interference signal.

次に補間法について説明する。干渉信号であると判定された部分については補間する必要がある。補間する際には、先に求めたδを用いる。 Next, the interpolation method will be described. It is necessary to interpolate a portion determined to be an interference signal. When interpolating, the previously obtained δ is used.

補間される場所が1点の場合は前後の2点の平均をとることによって補間する手段が有効である。しかしながら、連続した標本化時刻において干渉を含む場合やビート周波数が高い場合はこの手段は適さないため、本発明ではこの手段は用いない。   When the place to be interpolated is one point, an interpolating means is effective by taking the average of two points before and after. However, this means is not suitable when interference is included at successive sampling times or when the beat frequency is high, and this means is not used in the present invention.

本発明における補間法の流れを図6に示す。まず、図6の601に示すようにビート信号において、先に行なった干渉信号の有無の判定結果Rを走査し、干渉信号があると判定された点において、図6の605に示すようにその次の点における干渉信号についても有無も調べ、干渉信号が連続して存在するかどうかを判定する。連続して存在する場合には、図6の603に示すように連続した干渉信号の点の数Kを調べる。 The flow of the interpolation method in the present invention is shown in FIG. First, the beat signal as shown in 601 of FIG. 6, in that scanning a determination result R j of the presence or absence of interfering signals performed first, it is determined that there is an interference signal, as shown in 605 of FIG. 6 The presence / absence of the interference signal at the next point is also checked to determine whether the interference signal exists continuously. If there are continuous, the number K of consecutive interference signal points is examined as indicated by reference numeral 603 in FIG.

干渉信号が存在する連続した標本化時刻において最初の時間jをiに代入する。つまり、xにおいて、(i=j,j+1,…,j+K-1)の範囲で連続した干渉信号が存在する。連続した複数の点を補間する場合、同じ掃引信号配列において、補間したい点を挟んで、2つの同位相の点について平均値をとって補間する。連続した干渉信号の点の数をKとすると、補間の作業はK回繰り返すことになる。 The first time j is substituted into i at successive sampling times where an interference signal exists. That is, there is a continuous interference signal in the range of (i = j, j + 1,..., J + K−1) at x j . In the case of interpolating a plurality of consecutive points, interpolation is performed by taking an average value of two points having the same phase across the points to be interpolated in the same sweep signal array. If the number of consecutive interference signal points is K, the interpolation operation is repeated K times.

図6の607でδ=1ではないと判定された場合、干渉信号が存在する点の数よりも同相差分距離δが大きいとき、すなわちδ≧Kならば、図6の613に示すように式(5)を用いて補間する値を計算できる。
If it is determined at 607 in FIG. 6 that δ = 1 is not true, if the in-phase difference distance δ is larger than the number of points where an interference signal exists, that is, if δ ≧ K, as indicated by 613 in FIG. The value to be interpolated can be calculated using equation (5).

また、δとの関係がδ< Kならば、補間したい点から最も近くで同相となるべき点にも干渉信号が存在するため、補間するための値の算出に使用できないことになる。そこで、ビート信号配列の中で、干渉信号を含まない点において、図6の615に示すように補間したい点となるべく近くで同相になる同相差分距離δ´を計算する。δ´はK/δにおいて少数点を切り捨てた値を用いて算出する。
If the relationship with δ is δ <K, an interference signal also exists at a point that is closest to the point to be interpolated and should be in phase, so that it cannot be used to calculate a value for interpolation. Therefore, an in-phase difference distance δ ′ that is in phase as close as possible to the point to be interpolated is calculated as shown at 615 in FIG. 6 at a point that does not include an interference signal in the beat signal array. δ ′ is calculated using a value obtained by rounding down a decimal point in K / δ.

このδ´を用いて、式(5)と同様、干渉信号が含まれる点を挟んで平均値をとり、図6の617に示すように補間する値を算出する。
Using this δ ′, as in Equation (5), an average value is obtained across the points including the interference signal, and an interpolated value is calculated as indicated by reference numeral 617 in FIG.

本補間法を使って補間した様子を図10に示す。図10(a)は干渉信号を含むビート信号である。干渉除去後、0で補間すると図10(b)のようになり、不連続な状態になる。本方式を用いた場合、図10(c)のようになめらかに補間できる。この差はフーリエ変換を施すと顕著である。フーリエ変換を行ない周波数領域に変換した結果を図10(d)に示す。図10(d)の1007は、ビート周波数を示す信号スペクトルである。 A state of interpolation using this interpolation method is shown in FIG. FIG. 10A shows a beat signal including an interference signal. After the interference is removed, interpolation by 0 results in a discontinuous state as shown in FIG. When this method is used, smooth interpolation is possible as shown in FIG. This difference is significant when Fourier transform is performed. FIG. 10D shows the result of performing the Fourier transform and converting it to the frequency domain. Reference numeral 1007 in FIG. 10D denotes a signal spectrum indicating the beat frequency.

1001は図10(a)の信号、1003は図10(b)、1005は図10(c)の信号を周波数変換した結果である。本方式を用いた場合、1005に示すようにノイズフロアが他よりも低く、干渉信号部分を適切に補間することでビート信号への影響が小さいことがわかる。 1001 is the result of frequency conversion of the signal in FIG. 10A, 1003 is the result of frequency conversion of the signal in FIG. 10B, and 1005 is the result of FIG. 10C. When this method is used, it can be seen that the noise floor is lower than the others as indicated by 1005, and the influence on the beat signal is small by appropriately interpolating the interference signal portion.

図6の607においてδ=1の場合、すなわちビート周波数が低いとき、ビート信号xの中で同相となる差分距離が不明のため、図6の609に示すように干渉信号が存在する前後の点から式(8)を使って曲線の傾きmを算出し、図6の611に示すように式(9)を使って近似的に一次式を適応して補間する。
When δ = 1 in 607 of FIG. 6, that is, when the beat frequency is low, the difference distance that is in phase in the beat signal x j is unknown, so before and after the presence of the interference signal as indicated by 609 in FIG. 6. The slope m of the curve is calculated from the point using the equation (8), and the linear equation is approximated and interpolated approximately using the equation (9) as indicated by 611 in FIG.

本補間法を使って補間した様子を図11に示す。図11(a)は干渉信号が存在する状態、図11(b)は干渉信号を除去して補間した結果を示す。 FIG. 11 shows a state of interpolation using this interpolation method. FIG. 11A shows a state where an interference signal exists, and FIG. 11B shows a result of interpolation after removing the interference signal.

一般的なFM−CWレーダのシステム図を示す。A system diagram of a general FM-CW radar is shown. 本発明を実施する場合の信号処理の流れを示す。The flow of signal processing when implementing the present invention is shown. ビート信号上に干渉信号が存在するときと、干渉信号が存在しないときのノイズフロアの違いを示す。The difference in noise floor between when there is an interference signal on the beat signal and when there is no interference signal is shown. 本発明で提供する干渉除去方法の流れを示す。The flow of the interference removal method provided by this invention is shown. 干渉信号の有無を判定するための信号処理の流れを示す。The flow of the signal processing for determining the presence or absence of an interference signal is shown. ビート信号の補間をするための信号処理の流れを示す。The flow of signal processing for interpolating beat signals is shown. 干渉信号とその1階差分、時間微分の一例を示す。An example of an interference signal, its first-order difference, and time differentiation is shown. 干渉信号とその1階差分、時間微分の一例を示す。An example of an interference signal, its first-order difference, and time differentiation is shown. 干渉信号とその1階差分、時間微分の一例を示す。また干渉信号の有無を判定する際の鏡像について説明する図である。An example of an interference signal, its first-order difference, and time differentiation is shown. It is also a diagram illustrating a mirror image when determining the presence or absence of an interference signal. 本発明で提供する補間法の効果を示す。The effect of the interpolation method provided by the present invention will be described. 本発明で提供する補間法の効果を示す。The effect of the interpolation method provided by the present invention will be described.

符号の説明Explanation of symbols

101…発信器、 103…分配器、
105…送信アンテナ、 107…受信アンテナ、
109…増幅器、 111…周波数混合器、
113…低域通過フィルタ、 115…AD変換器、
117…信号処理装置、
201…AD変換器、 203…干渉除去のための信号処理、
205…フーリエ変換部、 207…絶対値化部、
209…対数化部、 211…表示装置、
301…信号スペクトル、 303…干渉信号を含む信号スペクトル、
305…干渉信号を含まない信号スペクトル、
401…干渉判定部、 403…ビート信号補間部、
501…ある差分距離における減算処理、
503…1階差分の振幅平均の算出処理、
505…同相差分距離の算出処理、 507…1階差分の傾斜の算出処理、
509…時間微分振幅平均算出処理、
511、513…干渉信号の有無判定のための分岐処理、
515、521…干渉信号判定処理、
517、519…干渉信号の有無判定のための分岐処理、
523…総合判定処理、
601…干渉信号の有無の判定結果による分岐処理、
603…連続する干渉信号の点数カウント処理、
605…次の点における干渉信号の有無の判定結果による分岐処理、
607…ビート周波数が低いかどうかの分岐処理、
609…干渉信号の存在点の前後の点を用いる処理、
611、613…補間処理、 615…同相差分距離の算出処理、
617…補間処理、
701…干渉信号が一定のレベルを保持している状態、
703、705…701の部位を0にした状態、
801…干渉信号が存在し1階差分が上下している状態、
803…点からピークを検知し閾値と比較する部位、
901…干渉信号、
1001…図10(a)の信号、 1003…図10(b)の信号、
1005…図10(c)の信号、
1007…ビート周波数を示す信号スペクトル。

101 ... Transmitter, 103 ... Distributor,
105 ... transmitting antenna, 107 ... receiving antenna,
109 ... Amplifier, 111 ... Frequency mixer,
113 ... Low-pass filter, 115 ... AD converter,
117 ... Signal processing device,
201 ... AD converter, 203 ... Signal processing for interference removal,
205 ... Fourier transform unit, 207 ... Absolute value unit,
209 ... logarithmization unit, 211 ... display device,
301 ... Signal spectrum, 303 ... Signal spectrum including interference signal,
305 ... Signal spectrum not including interference signal,
401 ... interference determination unit, 403 ... beat signal interpolation unit,
501 ... Subtraction processing at a certain difference distance,
503 ... Calculation process of the average amplitude of the first floor difference,
505 ... In-phase difference distance calculation processing, 507 ... First floor difference inclination calculation processing,
509 ... Time differential amplitude average calculation processing,
511, 513 ... branching processing for determining the presence or absence of interference signals,
515, 521 ... interference signal determination processing,
517, 519 ... branch processing for determining the presence or absence of interference signals,
523 ... Comprehensive determination processing,
601... Branching process based on the determination result of the presence or absence of an interference signal,
603... Counting processing of consecutive interference signals,
605... Branching process based on the determination result of the presence or absence of an interference signal at the next point,
607 ... Branch processing of whether the beat frequency is low,
609: Processing using points before and after the presence point of the interference signal,
611, 613 ... interpolation processing, 615 ... in-phase difference distance calculation processing,
617 ... interpolation processing,
701 ... a state in which the interference signal maintains a certain level,
703, 705...
801 ... A state in which an interference signal exists and the first floor difference is moving up and down,
803... Part where a peak is detected from a point and compared with a threshold value,
901 ... Interference signal,
1001... Signal of FIG. 10 (a), 1003 ... signal of FIG. 10 (b),
1005... Signal of FIG.
1007 ... Signal spectrum indicating the beat frequency.

Claims (3)

周波数変調された連続波信号を送受信することにより移動物体の距離と速度を同時に測定することができるFM−CWレーダの信号処理装置及び方法に関して、
ビート信号の各標本化時刻における標本値が干渉信号であるか正規の受信信号であるかを判定する干渉判定部と、
前記干渉判定部によって前記標本値が干渉信号であると判定された場合に該干渉信号を標本化されたビート信号を用いることによって正しい値に補間するビート信号補間部と、
からなる干渉除去部を有するレーダ信号処理装置。
Regarding an FM-CW radar signal processing apparatus and method capable of simultaneously measuring the distance and velocity of a moving object by transmitting and receiving a frequency-modulated continuous wave signal,
An interference determination unit that determines whether a sample value at each sampling time of the beat signal is an interference signal or a regular reception signal;
A beat signal interpolation unit that interpolates the interference signal to a correct value by using a sampled beat signal when the interference determination unit determines that the sample value is an interference signal;
A radar signal processing apparatus having an interference removal unit comprising:
前記干渉判定部は、前記標本化されたビート信号の差分列及び差分列の微分をした値によって干渉信号の有無を判定するものであって、
差分列を得るための2点間の距離を差分距離とした場合に、前記標本化されたビート信号に対して、差分距離を予め定めた規定値まで変化させて1階差分の列を計算する1階差分計算部と、
前記1階差分計算部によって計算された1階差分の列を時間微分する時間微分計算部と、
前記1階差分計算部によって計算された1階差分の列に関して全ての時刻にわたって絶対値の平均値を計算することによって1階差分の振幅平均値を取得する1階差分振幅平均計算部と、
1階差分振幅平均値が最小になる差分距離を同相差分距離とする場合に、差分距離を一定量ずつ変化させながら前記1階差分振幅平均計算部によって1階差分の振幅平均値を計算することによって、同相差分距離を探索する同相差分距離探索部と、
同相差分距離において、すべての離散時間の範囲で計算された1階差分の絶対値が予め設定した閾値より大きいとき、あるいは、すべての離散時間の範囲で計算された1階差分の時間微分の絶対値が予め設定した閾値より大きいとき、干渉信号があると判定する第1判定部と、
前記特定の同相差分距離の2倍の差分距離において、すべての離散時間の範囲で計算された1階差分の絶対値が予め設定した閾値より大きいとき、あるいは、すべての離散時間の範囲で計算された1階差分の時間微分の絶対値が予め設定した閾値より大きいとき、干渉信号があると判定する第2判定部と、
前記第1判定部及び第2判定部の判定結果に関して、両判定部において干渉信号があるとした時刻のみに干渉信号が存在し、そうではない時刻においては干渉信号の存在しない正常な受信信号であると判定する総合判定部と
を有する事を特徴とする請求項1に記載のレーダ信号処理装置及び方法。
The interference determination unit is configured to determine the presence or absence of an interference signal based on a differential sequence of the sampled beat signal and a value obtained by differentiating the differential sequence,
When the distance between two points for obtaining a difference string is a difference distance, a difference string is changed to a predetermined value with respect to the sampled beat signal, and a first-order difference string is calculated. A first floor difference calculation unit;
A time differentiation calculation unit for differentiating in time the sequence of the first order difference calculated by the first order difference calculation unit;
A first-order difference amplitude average calculation unit that obtains an average amplitude value of the first-order difference by calculating an average value of absolute values over all times with respect to the first-order difference column calculated by the first-order difference calculation unit;
When the difference distance that minimizes the first-order difference amplitude average value is the in-phase difference distance, the first-order difference amplitude average calculation unit calculates the amplitude average value of the first-order difference while changing the difference distance by a certain amount. A common-mode difference distance search unit for searching for a common-mode difference distance;
At the in-phase difference distance, the absolute value of the first-order difference calculated in all discrete time ranges is greater than a preset threshold value, or the time differential of the first-order difference calculated in all discrete time ranges A first determination unit that determines that there is an interference signal when the absolute value is greater than a preset threshold;
When the absolute value of the first-order difference calculated in all discrete time ranges is greater than a preset threshold value or calculated in all discrete time ranges at a difference distance twice the specified in-phase difference distance A second determination unit that determines that there is an interference signal when the absolute value of the time differential of the first-order difference is greater than a preset threshold;
Regarding the determination results of the first determination unit and the second determination unit, there is an interference signal only at the time when there is an interference signal in both determination units, and a normal received signal without the interference signal at a time when it is not. The radar signal processing apparatus and method according to claim 1, further comprising a comprehensive determination unit that determines that there is one.
前記ビート信号補間部は、干渉信号が存在すると判定された際に、該干渉信号の標本化数を数える干渉点数算出部と、
ビート信号の特定の時刻に干渉信号を含むと判断され、なおかつ、前記同相差分距離探索部によって得られた同相差分距離が1ではなかった場合に、該時刻におけるビート信号を、該同相差分距離だけ離れたビート信号上の2点の平均値によって置き換える第1のビート信号置換部と、
前記同相差分距離が前記干渉点数算出部によって得られる標本化数より小さいときに、ビート信号において干渉信号を含まない範囲に関して新たに同相差分距離を探索し、前記時刻から該同相差分距離だけ前方向及び後方向に離れた2点によって平均値を計算し置き換える第2のビート信号置換部と、
前記同相差分距離が1であった場合に、干渉信号の前後の2点から曲線の傾きを算出し、一次近似式を使って置換する値を算出し置き換える第3のビート信号置換部と、
を有し、ビート周波数に影響を与える事無く、干渉が含まれた箇所のビート信号を、干渉を含まない信号に置換することを特徴とする、請求項1及び請求項2に記載のレーダ信号処理装置及び方法。

The beat signal interpolation unit, when it is determined that there is an interference signal, an interference point calculation unit that counts the number of sampling of the interference signal;
When it is determined that an interference signal is included at a specific time of the beat signal, and the in-phase difference distance obtained by the in-phase difference distance search unit is not 1, the beat signal at the time is determined as the in-phase difference. A first beat signal replacement unit that replaces the average value of two points on the beat signal separated by a minute distance;
When the in-phase difference distance is smaller than the sampling number obtained by the interference point number calculation unit, a new in-phase difference distance is searched for a range not including an interference signal in the beat signal, and the in-phase difference distance from the time is calculated. A second beat signal replacement unit that calculates and replaces the average value by two points separated in the forward and backward directions,
A third beat signal replacement unit that calculates the slope of a curve from two points before and after the interference signal when the in-phase difference distance is 1, and calculates and replaces a replacement value using a first-order approximation;
The radar signal according to claim 1, wherein a beat signal at a location including interference is replaced with a signal not including interference without affecting the beat frequency. Processing apparatus and method.

JP2007318452A 2007-12-10 2007-12-10 Radar signal processing apparatus and method Pending JP2009139321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318452A JP2009139321A (en) 2007-12-10 2007-12-10 Radar signal processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318452A JP2009139321A (en) 2007-12-10 2007-12-10 Radar signal processing apparatus and method

Publications (1)

Publication Number Publication Date
JP2009139321A true JP2009139321A (en) 2009-06-25

Family

ID=40870056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318452A Pending JP2009139321A (en) 2007-12-10 2007-12-10 Radar signal processing apparatus and method

Country Status (1)

Country Link
JP (1) JP2009139321A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247893A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric R&D Centre Europe B.V. Method for determining whether interference classifier and received signal contain noise burst or interference with sinusoidal signal, and computer program product of the same
JP2012108109A (en) * 2010-10-19 2012-06-07 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Ultra-wideband pulse sensor
KR101429361B1 (en) * 2012-12-13 2014-08-11 주식회사 만도 Impulsive radar interference removal method and apparatus using the same
KR101469364B1 (en) * 2013-05-20 2014-12-04 주식회사 만도 Radar apparatus for a vehicle and target detection method using the same
JP2017538121A (en) * 2014-12-16 2017-12-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for operating an automotive radar system
WO2019141408A1 (en) * 2018-01-18 2019-07-25 Robert Bosch Gmbh Method and device for correcting a radar signal, and radar device
KR20190117929A (en) * 2018-04-09 2019-10-17 주식회사 만도 Vehicle radar and method there of
KR20200041777A (en) * 2018-10-12 2020-04-22 엑시스 에이비 Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit
CN114994664A (en) * 2022-06-22 2022-09-02 山西华阳集团新能股份有限公司 A Differential Enhancement Method for Deep Weak Signals in Geological Radar
WO2022269676A1 (en) * 2021-06-21 2022-12-29 三菱電機株式会社 Radar device and interference wave suppression device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247893A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric R&D Centre Europe B.V. Method for determining whether interference classifier and received signal contain noise burst or interference with sinusoidal signal, and computer program product of the same
JP2012108109A (en) * 2010-10-19 2012-06-07 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Ultra-wideband pulse sensor
KR101429361B1 (en) * 2012-12-13 2014-08-11 주식회사 만도 Impulsive radar interference removal method and apparatus using the same
KR101469364B1 (en) * 2013-05-20 2014-12-04 주식회사 만도 Radar apparatus for a vehicle and target detection method using the same
US10564255B2 (en) 2014-12-16 2020-02-18 Robert Bosch Gmbh Method and device for operating a radar system of a motor vehicle
JP2017538121A (en) * 2014-12-16 2017-12-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for operating an automotive radar system
KR20200105931A (en) * 2018-01-18 2020-09-09 로베르트 보쉬 게엠베하 Radar signal correction method and device, and radar device
US11480653B2 (en) * 2018-01-18 2022-10-25 Robert Bosch Gmbh Method and apparatus for correcting a radar signal, and radar device
KR102680054B1 (en) * 2018-01-18 2024-07-02 로베르트 보쉬 게엠베하 Radar signal correction method and device, and radar device
CN111684294B (en) * 2018-01-18 2024-05-24 罗伯特·博世有限公司 Method and device for correcting radar signals and radar device
WO2019141408A1 (en) * 2018-01-18 2019-07-25 Robert Bosch Gmbh Method and device for correcting a radar signal, and radar device
CN111684294A (en) * 2018-01-18 2020-09-18 罗伯特·博世有限公司 Method and device for correcting radar signals and radar device
KR20190117929A (en) * 2018-04-09 2019-10-17 주식회사 만도 Vehicle radar and method there of
KR102106351B1 (en) 2018-04-09 2020-05-04 주식회사 만도 Vehicle radar and method there of
KR102507305B1 (en) * 2018-10-12 2023-03-06 엑시스 에이비 Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit
KR20200041777A (en) * 2018-10-12 2020-04-22 엑시스 에이비 Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit
WO2022269676A1 (en) * 2021-06-21 2022-12-29 三菱電機株式会社 Radar device and interference wave suppression device
JP7433528B2 (en) 2021-06-21 2024-02-19 三菱電機株式会社 Radar equipment and interference wave suppression equipment
CN114994664A (en) * 2022-06-22 2022-09-02 山西华阳集团新能股份有限公司 A Differential Enhancement Method for Deep Weak Signals in Geological Radar
CN114994664B (en) * 2022-06-22 2025-03-11 山西华阳集团新能股份有限公司 A method for differential enhancement of deep weak signals of geological radar

Similar Documents

Publication Publication Date Title
JP2009139321A (en) Radar signal processing apparatus and method
JP6031267B2 (en) Interference detection apparatus, interference canceller, radar apparatus, interference detection method, and interference detection program
JP5980587B2 (en) Radar apparatus and reflected signal processing method
JP4930130B2 (en) Active sonar device, received signal processing method for sonar, and signal processing program thereof
KR101625754B1 (en) Radar signal processing method and apparatus for eliminating clutter
JP5628590B2 (en) Interference canceling apparatus, signal processing apparatus, radar apparatus, interference canceling method and program
JP2014512526A5 (en)
CN113805166A (en) Target tracking and ranging method and system of radar level meter
AU2015295795B2 (en) Method and apparatus for detecting a speed and a distance of at least one object with respect to a receiver of a reception signal
KR100886613B1 (en) How to improve FMC radar resolution
JP4702117B2 (en) Pulse radar apparatus and distance measuring method
US12235382B2 (en) Method for removing random noise of radar collection signal in biometric signal measurement radar, and apparatus for same
KR101110025B1 (en) FMC radar signal processing method
JP3505441B2 (en) Peak frequency calculation method in FFT signal processing
JP2006258786A (en) Radar installation
US7242344B2 (en) Radar apparatus and radar signal processing method
US8339305B2 (en) Method for detecting an object with a frequency modulated continuous wave (FMCW) ranging system
JP4825574B2 (en) Radar equipment
JP4077092B2 (en) Doppler frequency measurement method and Doppler sonar
JP4827330B2 (en) Radar wave measuring method and apparatus
JP3881078B2 (en) Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter
KR101617433B1 (en) Apparatus and method for detecting intruder based on frequency modulated continuous wave
JP4386282B2 (en) Underwater communication system
JP3964095B2 (en) Atmospheric temperature measuring method and apparatus
JP4728851B2 (en) Water flow velocity measuring device