JP2009138059A - 成形用材料、それを用いた成形品およびその製造方法 - Google Patents
成形用材料、それを用いた成形品およびその製造方法 Download PDFInfo
- Publication number
- JP2009138059A JP2009138059A JP2007314012A JP2007314012A JP2009138059A JP 2009138059 A JP2009138059 A JP 2009138059A JP 2007314012 A JP2007314012 A JP 2007314012A JP 2007314012 A JP2007314012 A JP 2007314012A JP 2009138059 A JP2009138059 A JP 2009138059A
- Authority
- JP
- Japan
- Prior art keywords
- molding material
- silica fine
- fine particles
- molded article
- silsesquioxane compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
【課題】散乱や着色の影響がほとんどなく透明で、かつ高い機械特性と低熱膨張係数を有する成形用材料、それを用いた成形品および成形品の製造方法を提供する。
【解決手段】少なくとも、重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料において、前記シルセスキオキサン化合物と前記シリカ微粒子の合計の含有量が95重量%以上であり、かつ前記シリカ微粒子の平均粒子径が1nm以上100nm以下である成形用材料。前記重合性官能部位がアクリル、メタクリル、ビニルまたはエポキシから選ばれる基からなることが好ましい。
【選択図】なし
【解決手段】少なくとも、重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料において、前記シルセスキオキサン化合物と前記シリカ微粒子の合計の含有量が95重量%以上であり、かつ前記シリカ微粒子の平均粒子径が1nm以上100nm以下である成形用材料。前記重合性官能部位がアクリル、メタクリル、ビニルまたはエポキシから選ばれる基からなることが好ましい。
【選択図】なし
Description
本発明は、成形用材料、それを用いた成形品および成形品の製造方法に関する。特に本発明は、例えばレンズ、フィルター、光ファイバー、ミラー、屈折光学素子、そして回折光学素子等に適用可能な成形用透明材料、それを用いた成形品および成形品の製造方法に関する。また本発明は有機−無機ハイブリッド材料に関する。
透明な樹脂材料は光ファイバーや光学レンズなどの光学材料として幅広い分野で用いられている。このような透明な樹脂材料の代表としてはポリメタクリル酸メチル、ポリカーボネート、ポリスチレン、環状ポリオレフィンなどがよく知られている。
しかし、これらの樹脂材料はガラス材料と比較して機械特性が低く熱膨張係数が高い。レンズなどの光学部材に用いる場合、熱膨張係数が高いことは温度変化に対する屈折率の変化が大きいことを意味する。したがって樹脂材料をバルク体として用いることは難しく、樹脂材料は限定的な分野でしか用いられていなかった。
一般的に、樹脂材料の機械特性の向上や熱膨張係数の低下を図る場合、材料に含まれる無機成分比を増加させることが有効である。材料の無機成分比を増加させるためには、樹脂に無機微粒子などの充填材を添加する方法が知られている(特許文献1、特許文献2参照)。
また、無機成分を含む高分子材料として、有機成分と無機成分の骨格が直接結合している材料も多く提案されている(特許文献3、特許文献4参照)。
特開2003−147090号公報
特開2005−055852号公報
特開平11−255883号公報
特開2005−298575号公報
ところが透明樹脂材料に対して無機充填剤を添加・分散させた場合、樹脂材料と無機充填材の屈折率差により散乱が発生し、材料全体として透明性を損なう可能性がある。散乱は樹脂材料と無機充填材との屈折率差が大きいほど発生しやすいという特徴があり、一般的に無機充填材は樹脂材料よりも屈折率が高いことがほとんどである。特に酸化ジルコニウムや酸化チタンなどの無機充填材では屈折率が2を大きく超える。代表的な透明樹脂材料であるポリアクリルやポリカーボネート、ポリシクロオレフィンなどの屈折率はおよそ1.5から1.6の値であるため、屈折率差による散乱は必然的に大きくなる。屈折率差による散乱を抑えるためには、樹脂材料と無機充填材の屈折率差をより小さくすることが望ましく、従って樹脂材料と無機充填材の組み合わせを考慮する必要がある。
また散乱は粒子径が大きいほど発生しやすい。散乱は粒子径の増大に従って階乗的に大きくなるため、散乱を抑えるためには粒子径を小さくすることが有効である。一方で、樹脂材料中の無機充填材の濃度を高めるためには、添加する微粒子の粒子径が大きいほうが有利である。そのため、散乱の抑制と無機成分比の増大をともに満たすことは困難であった。
さらに多くの無機充填材は可視域に吸収をもっているため、樹脂材料に高い充填率で添加した場合は着色の要因になるという問題もある。
上記に述べた散乱と着色のデメリットを考えた場合、従来の方法では樹脂材料の機械特性や熱膨張係数を改善できるほど十分な量の無機充填材を添加することができないのが実際である。
上記に述べた散乱と着色のデメリットを考えた場合、従来の方法では樹脂材料の機械特性や熱膨張係数を改善できるほど十分な量の無機充填材を添加することができないのが実際である。
一方、有機成分と無機成分を直接結合させた有機−無機ハイブリッド材料は、材料中の無機成分比を高め、機械特性や耐熱性を向上させるために用いられている。これまで様々な有機−無機ハイブリッド材料が提案されているが、機械特性の向上や熱膨張係数の低減を図るためには無機成分比をより高くすることが望ましい。
無機成分比を向上させるためには、有機−無機ハイブリッド材料に無機微粒子を添加することが考えられる。例えば、特開2005−331708号公報では有機−無機ハイブリッド材料であるシルセスキオキサン化合物に酸化タンタルを添加している。しかし酸化タンタルの屈折率はおよそ2.1と高く、シルセスキオキサン化合物との屈折率差にともなう散乱が発生し、さらには酸化タンタルによる着色という問題が残っていた。
本発明は、この様な従来技術に鑑みてなされたものであり、散乱や着色の影響がほとんどなく透明で、かつ高い機械特性と低熱膨張係数を有する成形用材料、それを用いた成形品および成形品の製造方法を提供するものである。
上記課題を解決する成形用材料は、少なくとも、重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料において、前記シルセスキオキサン化合物と前記シリカ微粒子の合計の含有量が95重量%以上であり、かつ前記シリカ微粒子の平均粒子径が1nm以上100nm以下であることを特徴とする。
上記課題を解決する成形品は、上記の成形用材料からなることを特徴とする。
上記課題を解決する成形品の製造方法は、上記の成形用材料を型とガラス板の空隙に充填した後、光を照射することにより前記成形用材料を硬化させて前記ガラス板と一体化し、一体化した成形用材料とガラス板を前記型から剥離することを特徴とする。
上記課題を解決する成形品の製造方法は、上記の成形用材料を型とガラス板の空隙に充填した後、光を照射することにより前記成形用材料を硬化させて前記ガラス板と一体化し、一体化した成形用材料とガラス板を前記型から剥離することを特徴とする。
本発明による重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料によれば、散乱や着色の影響がほとんどなく透明で、かつ高い機械特性と低熱膨張係数を有する成形品を作製することが可能である。
本発明では、ベース材料として有機−無機ハイブリッド材料であるシルセスキオキサン化合物を、無機充填材としてシリカ微粒子を添加している。そのため、ベース材料と微粒子の構造が似ているため、ほぼ同等の屈折率を有する。その結果、微粒子起因の散乱が小さく透明性の高い樹脂材料を得ることができる。
またシルセスキオキサン化合物中に存在するシロキサン構造よりも粒子径の大きいシリカ微粒子を添加することで、透明材料中により多くの無機成分を含有させることができる。その結果、低熱膨張係数でかつ優れた機械特性を有する樹脂材料を得ることができる。
本発明に係る成形用材料は、少なくとも、重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料において、前記シルセスキオキサン化合物と前記シリカ微粒子の合計の含有量が95重量%以上であり、かつ前記シリカ微粒子の平均粒子径が1nm以上100nm以下であることを特徴とする。
前記重合性官能部位がアクリル、メタクリル、ビニルまたはエポキシから選ばれる基からなることが好ましい。
次に本発明の実施の形態を詳細に説明する。
次に本発明の実施の形態を詳細に説明する。
本発明は、重合性官能部位を有するシルセスキオキサン化合物にシリカ微粒子を添加し分散させることで、高い機械特性と低熱膨張係数を有しながら、十分な透明性を有する成形用材料を提供するものである。
シルセスキオキサン化合物は、重合性官能部位からなる有機骨格とSiO3/2を主骨格とするシルセスキオキサン構造からなる無機骨格を同時に有する有機−無機ハイブリッド材料である。本発明ではこの材料をベース材料として用い、シリカ微粒子を無機充填材として添加することで、材料全体としての無機成分比を高くすることができる。
本発明で用いる重合性官能部位を有するシルセスキオキサン化合物は、下記の一般式(1)で表される化合物が好ましい。
一般式(1)中のRは重合性官能基を表し、例えばビニル、アクリル、メタクリル、エポキシを含む官能基などがあげられるが、これらに限定されるものではない。なかでも、アクリルやメタクリルなどの重合性官能基はシリカ微粒子と屈折率が近いため、屈折率差に起因する散乱を抑えるのに非常に有利である。
nは任意の自然数を表し、好ましくは3以上の整数である。
シルセスキオキサン化合物は、三官能のアルコキシシランを加水分解することで合成することが可能である。シルセスキオキサン化合物の重合性官能基Rは三官能アルコキシシランの選択によって決まる。例えばアクリル系の三官能アルコキシシランを用いれば、Rにアクリル部位をもつシルセスキオキサン化合物を合成することができる。
シルセスキオキサン化合物は、三官能のアルコキシシランを加水分解することで合成することが可能である。シルセスキオキサン化合物の重合性官能基Rは三官能アルコキシシランの選択によって決まる。例えばアクリル系の三官能アルコキシシランを用いれば、Rにアクリル部位をもつシルセスキオキサン化合物を合成することができる。
重合性官能部位を有する三官能アルコキシシランとして、具体的には、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリイソプロポキシシシラン、メタクリロキシメチルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ブテニルトリメトキシシラン、ブテニルトリエトキシシラン、ヘキセニルトリエトキシシラン、7−オクテニルトリメトキシシラン、7−オクテニルトリエトキシシラン、10−ウンデセニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、5,6エポキシエキシルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリロキシウンデセニルトリメトキシシランなどをあげることができる。
シルセスキオキサン化合物中にシリカ微粒子を分散させることを考慮すると、シルセスキオキサン化合物は常温で液状であることが望ましいが、シルセスキオキサン化合物の重合性官能基Rの種類や合成条件によっては、常温で固体になることもある。
シリカ微粒子はシルセスキオキサン構造と同じシロキサン構造を持つ無色透明な無機充填材である。シリカ微粒子とシルセスキオキサン化合物は同じ構造を有するために、屈折率差が小さい。従ってシングルナノレベルの粒子径を有するシリカ微粒子を用いることで、材料の着色や散乱を抑えることができる。
シリカ微粒子の表面には、シルセスキオキサン化合物に対する分散性を向上させるために表面修飾を施してもよい。例えばRにメタクリロキシプロピル基を有するシルセスキオキサン化合物に対しては、メタクリロキシプロピル基を表面修飾されたシリカ微粒子を用いることで分散性を向上させることができる。表面修飾の種類とシルセスキオキサン化合物のRの種類によっては、シリカ微粒子が分散しないこともあるので注意が必要である。
シリカ微粒子の粒子径が大きいほど無機充填率を大きくできるが、同時に散乱も大きくなり透明性が低下する。一方、一般式(1)に示すようなシルセスキオキサン化合物中のシロキサン構造の直径が最小で約0.5nmであるため、無機充填率を大きくするためには、これよりも大きな粒子径のシリカ微粒子を添加する必要がある。そのため、添加するシリカ微粒子の粒子径は1nm以上100nm以下であることが好ましい。さらにより散乱を低下させるためには添加するシリカ微粒子の粒子径は1nm以上50nm以下であることが好ましい。
成形用材料において、シルセスキオキサン化合物とシリカ微粒子の合計の含有量が95重量%以上、好ましくは98重量%以上であるのが好ましい。
また、シルセスキオキサン化合物とシリカ微粒子の含有割合は、シルセスキオキサン化合物A/シリカ微粒子Bが、A/B=20から80/80から20であるのが好ましい。
また、シルセスキオキサン化合物とシリカ微粒子の含有割合は、シルセスキオキサン化合物A/シリカ微粒子Bが、A/B=20から80/80から20であるのが好ましい。
シリカ微粒子を凝集させることなくシルセスキオキサン化合物中に分散させるためには、分散媒中にシリカ微粒子が分散した分散液を用いることが最もハンドリング性のよい方法である。このとき、分散液の分散媒はシルセスキオキサン化合物と相溶性のよいものを選択する必要がある。また成形物の特性向上のためには、分散液は分散剤をできるだけ含まないものを用いることが望ましい。
シリカ微粒子の分散液に対して、重合性官能基を有するシルセスキオキサン化合物を混合する。シリカ微粒子の分散が困難な場合には、超音波式ホモジナイザーやビーズミルなどの分散装置を適宜使用してもよい。十分にシルセスキオキサン化合物を混合したシリカ微粒子の分散液を攪拌しながら減圧吸引し、溶媒のみを除去することで、シリカ微粒子分散透明材料を得ることができる。
混合条件によっては溶媒除去後に透明性を損なうことがある。そのため混合比や微粒子の粒子径、微粒子濃度、シルセスキオキサン化合物の無機成分比や重合性官能基Rの種類を適宜調整していく必要がある。
混合条件によっては溶媒除去後に透明性を損なうことがある。そのため混合比や微粒子の粒子径、微粒子濃度、シルセスキオキサン化合物の無機成分比や重合性官能基Rの種類を適宜調整していく必要がある。
シリカ微粒子分散透明材料を硬化させるためには、重合性官能部位と硬化プロセスに即した硬化剤、あるいは重合開始剤を添加する。例えばメタクリロキシプロピル基の二重結合を利用して光重合反応を行うのであれば、光重合開始剤を添加し、任意の波長の光を照射することで硬化させることが可能である。光重合開始剤はシリカ微粒子の分散液から溶媒を除去する前に添加してもよいし、溶媒を除去した後に添加してもよい。しかし溶媒除去後のシリカ微粒子分散透明材料は高粘度になりやすいため、材料の均一性を考えた場合、光重合開始剤は溶媒を除去する前に添加することが望ましい。透明性の低下や着色を防ぐため、光重合開始剤の量はシリカ微粒子分散透明材料100重量部中に対して5重量部未満であることが望ましく、さらに好ましくは2重量部以下である。またシルセスキオキサン化合物の重合性官能基Rにエポキシ基を選択し、アミン系の硬化剤でエポキシ基を開環させながら重合させることも可能である。この場合、硬化剤は溶媒を除去した後に添加されることになるため、材料への気泡混入を防ぐ必要がある。
本発明に係る成形品は、上記の成形用材料からなる。
前記成形品としては、レンズ、屈折光学素子、そして回折光学素子等などの光学素子が挙げられる。
本発明に係る成形品の製造方法は、上記の成形用材料を型とガラス板の空隙に充填した後、前記成形用材料を硬化させて前記ガラス板と一体化し、一体化した成形用材料とガラス板を前記型から剥離することを特徴とする。
前記成形品としては、レンズ、屈折光学素子、そして回折光学素子等などの光学素子が挙げられる。
本発明に係る成形品の製造方法は、上記の成形用材料を型とガラス板の空隙に充填した後、前記成形用材料を硬化させて前記ガラス板と一体化し、一体化した成形用材料とガラス板を前記型から剥離することを特徴とする。
具体的には、前記成形用材料を型の上に塗布し、前記成形用材料をガラス板にて押し広げて、成形用材料を型とガラス板の空隙に充填することが好ましい。
以下、実施例を示して本発明を具体的に説明する。
実施例1
シルセスキオキサン化合物の重合性官能部位が、メタクリルである実施例について説明する。
実施例1
シルセスキオキサン化合物の重合性官能部位が、メタクリルである実施例について説明する。
<ベース材料の合成>
メタノール160重量部に3−メタクリロキシプロピルトリメトキシシラン(サイラエースS710;チッソ社製)を30重量部加え、そこにアンモニア水溶液(4.9wt%)10重量部を滴下し、攪拌した。約10分の攪拌を経て、メタノールの存在下において重合性官能基Rにメタクリロキシプロピル基を有するシルセスキオキサン化合物100を合成した。エバポレーターによりメタノールを除去し、シルセスキオキサン化合物のみを抽出し、さらにロータリーポンプにて十分に真空引きを行った。
メタノール160重量部に3−メタクリロキシプロピルトリメトキシシラン(サイラエースS710;チッソ社製)を30重量部加え、そこにアンモニア水溶液(4.9wt%)10重量部を滴下し、攪拌した。約10分の攪拌を経て、メタノールの存在下において重合性官能基Rにメタクリロキシプロピル基を有するシルセスキオキサン化合物100を合成した。エバポレーターによりメタノールを除去し、シルセスキオキサン化合物のみを抽出し、さらにロータリーポンプにて十分に真空引きを行った。
<シリカ微粒子の混合>
シリカ微粒子のトルエン分散液(10wt%)100重量部に上記で作製したメタクリロキシプロピル基のシルセスキオキサン化合物10重量部を混合し、よく攪拌した。ここで用いたシリカ微粒子は、3−メタクリロキシプロピルトリメトキシシランにより表面修飾されており、トルエンに良好に分散する。このシリカ微粒子の粒子径は動的光散乱法により測定した結果、個数平均分布で14nmであった。さらに光重合開始剤(イルガキュア184;チバスペシャリティーケミカルズ社製)をベース材料であるシルセスキオキサン化合物10重量部に対して2wt%になるように混合した。さらにエバポレーターにてトルエンを除去し、シリカ微粒子分散透明材料を得た。
シリカ微粒子のトルエン分散液(10wt%)100重量部に上記で作製したメタクリロキシプロピル基のシルセスキオキサン化合物10重量部を混合し、よく攪拌した。ここで用いたシリカ微粒子は、3−メタクリロキシプロピルトリメトキシシランにより表面修飾されており、トルエンに良好に分散する。このシリカ微粒子の粒子径は動的光散乱法により測定した結果、個数平均分布で14nmであった。さらに光重合開始剤(イルガキュア184;チバスペシャリティーケミカルズ社製)をベース材料であるシルセスキオキサン化合物10重量部に対して2wt%になるように混合した。さらにエバポレーターにてトルエンを除去し、シリカ微粒子分散透明材料を得た。
<成形>
前記シリカ微粒子分散透明材料をガラス板上に塗布し、対面となるもう一枚のガラス板との間に挟み込んだ。このとき、二枚のガラス板間には0.5mm厚のスペーサーを挟み、シリカ微粒子分散材料11の膜厚を調整した。また、片側のガラス板にはコロナ放電処理後にシランカップリング処理を施しておき、シリカ微粒子分散透明材料と十分に密着するようにしておいた。
前記シリカ微粒子分散透明材料をガラス板上に塗布し、対面となるもう一枚のガラス板との間に挟み込んだ。このとき、二枚のガラス板間には0.5mm厚のスペーサーを挟み、シリカ微粒子分散材料11の膜厚を調整した。また、片側のガラス板にはコロナ放電処理後にシランカップリング処理を施しておき、シリカ微粒子分散透明材料と十分に密着するようにしておいた。
なおシランカップリング処理はシランカップリング剤として3−メタクリロキシプロピルトリメトキシシランを用い、ガラスに塗布後80℃にて60分間乾燥させて行った。ガラス板に挟まれたシリカ微粒子分散透明材料に高圧水銀灯(EX250;HOYA CANDEO OPTRONICS社製)の光を照射し、シリカ微粒子分散透明材料を硬化させた。続いてシランカップリング処理がなされていないガラス板を剥離することで、0.5mm厚の平坦な透明膜を得た。
実施例2
シルセスキオキサン化合物の重合性官能部位が、ビニルである実施例について説明する。
シルセスキオキサン化合物の重合性官能部位が、ビニルである実施例について説明する。
<ベース材料の合成>
ベース材料の合成は、実施例1の3−メタクリロキシプロピルトリメトキシシラン30重量部の代わりに10−ウンデセニルトリメトキシシラン(Gelest社製)27重量部を加え、実施例1と同様の手順にて行った。
ベース材料の合成は、実施例1の3−メタクリロキシプロピルトリメトキシシラン30重量部の代わりに10−ウンデセニルトリメトキシシラン(Gelest社製)27重量部を加え、実施例1と同様の手順にて行った。
<シリカ微粒子の混合>
シリカ微粒子のアセトン分散液(8wt%)80重量部に10−ウンデセニルトリメトキシシランによって合成したシルセスキオキサン化合物10重量部を混合し、よく攪拌した。ここで用いたシリカ微粒子は10−ウンデセニルトリメトキシシランにより表面修飾されており、アセトンに良好に分散する。このシリカ微粒子の粒子径は動的光散乱法により測定した結果、個数平均分布で14nmであった。さらに光重合開始剤(イルガキュア184;チバスペシャリティーケミカルズ社製)をベース材料であるシルセスキオキサン化合物の重量に対して2wt%になるように混合した。さらにエバポレーターにてアセトンを除去し、シリカ微粒子分散透明材料を得た。
シリカ微粒子のアセトン分散液(8wt%)80重量部に10−ウンデセニルトリメトキシシランによって合成したシルセスキオキサン化合物10重量部を混合し、よく攪拌した。ここで用いたシリカ微粒子は10−ウンデセニルトリメトキシシランにより表面修飾されており、アセトンに良好に分散する。このシリカ微粒子の粒子径は動的光散乱法により測定した結果、個数平均分布で14nmであった。さらに光重合開始剤(イルガキュア184;チバスペシャリティーケミカルズ社製)をベース材料であるシルセスキオキサン化合物の重量に対して2wt%になるように混合した。さらにエバポレーターにてアセトンを除去し、シリカ微粒子分散透明材料を得た。
<成形>
成形は実施例1と同様にして行い、透明膜を得た。
成形は実施例1と同様にして行い、透明膜を得た。
比較例1
実施例1で合成した、重合性官能基Rがメタクリロキシプロピル基のシルセスキオキサン化合物を、シリカ微粒子を添加せずに成形し、透明膜を得た。成形方法は実施例1と同様にして行った。
実施例1で合成した、重合性官能基Rがメタクリロキシプロピル基のシルセスキオキサン化合物を、シリカ微粒子を添加せずに成形し、透明膜を得た。成形方法は実施例1と同様にして行った。
表1に、実施例1および実施例2で作製した透明膜、比較例1で作製した透明膜の硬度、熱膨張係数、透過率の評価結果を示す。
(硬度)
硬度はナノインデンターで測定した。
○:0.5GPa以上の値を示す。
×:0.5GPa未満の値を示す。
硬度はナノインデンターで測定した。
○:0.5GPa以上の値を示す。
×:0.5GPa未満の値を示す。
(熱膨張係数)
熱膨張係数はTMA(TA5000;TAインスツルメンツ社製)の針入方式により測定した。
○:100×10−6/℃未満の値を示す。
×:100×10−6/℃以上の値を示す。
熱膨張係数はTMA(TA5000;TAインスツルメンツ社製)の針入方式により測定した。
○:100×10−6/℃未満の値を示す。
×:100×10−6/℃以上の値を示す。
(透過率)
透過率は分光光度計(U4000;日立製作所社製)により測定した。
○:波長400nmにて95%以上の値を示す。
透過率は分光光度計(U4000;日立製作所社製)により測定した。
○:波長400nmにて95%以上の値を示す。
本発明の成形用材料は、散乱や着色の影響がほとんどなく透明で、かつ高い機械特性と低熱膨張係数を有するので、レンズ、フィルター、光ファイバー、ミラー、屈折光学素子、回折光学素子等に適用可能な成形用透明材料として利用することができる。
Claims (6)
- 少なくとも、重合性官能部位を有するシルセスキオキサン化合物とシリカ微粒子を含有する成形用材料において、前記シルセスキオキサン化合物と前記シリカ微粒子の合計の含有量が95重量%以上であり、かつ前記シリカ微粒子の平均粒子径が1nm以上100nm以下であることを特徴とする成形用材料。
- 前記重合性官能部位がアクリル、メタクリル、ビニルまたはエポキシから選ばれる基からなることを特徴とする請求項1に記載の成形用材料。
- 請求項1または2に記載の成形用材料からなる成形品。
- 前記成形品が光学素子である請求項3に記載の成形品。
- 請求項1または2に記載の成形用材料を型とガラス板の空隙に充填した後、前記成形用材料を硬化させて前記ガラス板と一体化し、一体化した成形用材料とガラス板を前記型から剥離することを特徴とする成形品の製造方法。
- 前記成形用材料を型の上に塗布し、前記成形用材料をガラス板にて押し広げて、成形用材料を型とガラス板の空隙に充填することを特徴とする請求項5記載の成形品の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007314012A JP2009138059A (ja) | 2007-12-04 | 2007-12-04 | 成形用材料、それを用いた成形品およびその製造方法 |
EP08020875A EP2068177A1 (en) | 2007-12-04 | 2008-12-02 | Optical material, optical element, and method for making optical element |
US12/327,529 US20090148693A1 (en) | 2007-12-04 | 2008-12-03 | Optical material, optical element, and method for making optical element |
CNA2008101816651A CN101450977A (zh) | 2007-12-04 | 2008-12-04 | 光学材料、光学元件和光学元件的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007314012A JP2009138059A (ja) | 2007-12-04 | 2007-12-04 | 成形用材料、それを用いた成形品およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009138059A true JP2009138059A (ja) | 2009-06-25 |
Family
ID=40436317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007314012A Pending JP2009138059A (ja) | 2007-12-04 | 2007-12-04 | 成形用材料、それを用いた成形品およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090148693A1 (ja) |
EP (1) | EP2068177A1 (ja) |
JP (1) | JP2009138059A (ja) |
CN (1) | CN101450977A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004706A1 (ja) * | 2009-07-10 | 2011-01-13 | 東レ株式会社 | 接着組成物、接着シート、それらを用いた回路基板および半導体装置ならびにそれらの製造方法 |
JP2013035274A (ja) * | 2011-07-13 | 2013-02-21 | Kansai Paint Co Ltd | 積層体及び積層体の製造方法 |
WO2014061390A1 (ja) * | 2012-10-15 | 2014-04-24 | スリーボンドファインケミカル株式会社 | 光硬化性シリコーンゲル組成物 |
WO2016031728A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031729A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031731A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031730A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031732A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031733A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2018189946A1 (ja) * | 2017-04-12 | 2018-10-18 | 株式会社ダイセル | 積層体 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2743078B1 (en) * | 2011-08-09 | 2018-12-26 | Mitsubishi Chemical Corporation | Transparent laminated film |
US20150144839A1 (en) * | 2012-06-14 | 2015-05-28 | Koninklijke Philips N.V. | Optical composition |
WO2014038435A1 (ja) * | 2012-09-05 | 2014-03-13 | 旭硝子株式会社 | アポダイズドフィルタ及びその製造方法 |
KR101611935B1 (ko) * | 2014-04-23 | 2016-04-12 | (주)휴넷플러스 | 투명 플라스틱 기판용 수지 조성물 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5346932A (en) * | 1990-01-26 | 1994-09-13 | Shin-Etsu Chemical Co., Ltd. | Silicone rubber composition and method for curing the same |
US6103854A (en) | 1997-11-21 | 2000-08-15 | Orient Chemical Industries, Ltd. | Organic-inorganic hybrid polymer material and process for preparing the same |
KR20060112189A (ko) | 2003-07-23 | 2006-10-31 | 코니카 미놀타 옵토 인코포레이티드 | 촬상 렌즈 및 촬상 장치 |
JP2005331708A (ja) | 2004-05-20 | 2005-12-02 | Olympus Corp | 光学材料 |
US20070260008A1 (en) * | 2005-09-21 | 2007-11-08 | Takashi Saito | Silica-Containing Silicone Resin Composition and Its Molded Product |
-
2007
- 2007-12-04 JP JP2007314012A patent/JP2009138059A/ja active Pending
-
2008
- 2008-12-02 EP EP08020875A patent/EP2068177A1/en not_active Withdrawn
- 2008-12-03 US US12/327,529 patent/US20090148693A1/en not_active Abandoned
- 2008-12-04 CN CNA2008101816651A patent/CN101450977A/zh active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004706A1 (ja) * | 2009-07-10 | 2011-01-13 | 東レ株式会社 | 接着組成物、接着シート、それらを用いた回路基板および半導体装置ならびにそれらの製造方法 |
CN102471461A (zh) * | 2009-07-10 | 2012-05-23 | 东丽株式会社 | 粘合剂组合物、粘合片材、使用它们的电路基板及半导体器件以及它们的制造方法 |
JP2013035274A (ja) * | 2011-07-13 | 2013-02-21 | Kansai Paint Co Ltd | 積層体及び積層体の製造方法 |
WO2014061390A1 (ja) * | 2012-10-15 | 2014-04-24 | スリーボンドファインケミカル株式会社 | 光硬化性シリコーンゲル組成物 |
KR20150070132A (ko) * | 2012-10-15 | 2015-06-24 | 쓰리본드 화인 케미칼 가부시키가이샤 | 광경화성 실리콘 겔 조성물 |
KR102067133B1 (ko) | 2012-10-15 | 2020-01-17 | 쓰리본드 화인 케미칼 가부시키가이샤 | 광경화성 실리콘 겔 조성물 |
JP6064094B2 (ja) * | 2014-08-26 | 2017-01-18 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
JPWO2016031730A1 (ja) * | 2014-08-26 | 2017-04-27 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031730A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031732A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031733A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
JP6062119B2 (ja) * | 2014-08-26 | 2017-01-18 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031729A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
JP6062120B2 (ja) * | 2014-08-26 | 2017-01-18 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
JPWO2016031729A1 (ja) * | 2014-08-26 | 2017-04-27 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
WO2016031731A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス |
JPWO2016031728A1 (ja) * | 2014-08-26 | 2017-04-27 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
US9963624B2 (en) | 2014-08-26 | 2018-05-08 | Lintec Corporation | Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device |
US10774249B2 (en) | 2014-08-26 | 2020-09-15 | Lintec Corporation | Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device |
WO2016031728A1 (ja) * | 2014-08-26 | 2016-03-03 | リンテック株式会社 | 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、及び光デバイス |
US10266734B2 (en) | 2014-08-26 | 2019-04-23 | Lintec Corporation | Curable composition, cured product, method for using curable composition, and optical device |
US10294398B2 (en) | 2014-08-26 | 2019-05-21 | Lintec Corporation | Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device |
JP2018176540A (ja) * | 2017-04-12 | 2018-11-15 | 株式会社ダイセル | 積層体 |
WO2018189946A1 (ja) * | 2017-04-12 | 2018-10-18 | 株式会社ダイセル | 積層体 |
Also Published As
Publication number | Publication date |
---|---|
CN101450977A (zh) | 2009-06-10 |
US20090148693A1 (en) | 2009-06-11 |
EP2068177A1 (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009138059A (ja) | 成形用材料、それを用いた成形品およびその製造方法 | |
JP5466640B2 (ja) | 硬化性組成物及びその硬化物 | |
KR101302277B1 (ko) | 무기산화물 투명 분산액과 무기산화물 입자 함유 수지조성물, 발광소자 밀봉용 조성물 및 발광소자,하드코트막과 광학 기능막 및 광학 부품, 그리고무기산화물 입자 함유 수지 조성물의 제조 방법 | |
KR100968685B1 (ko) | 저굴절률막 형성용 조성물 및 그 경화막 부착 기재 | |
JP5540458B2 (ja) | 無機酸化物透明分散液と樹脂組成物、透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法 | |
US20030227688A1 (en) | Micro-lens array and method of making micro-lens array | |
JP6648360B2 (ja) | 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置 | |
CN1418912A (zh) | 含阳离子聚合化合物的组合物和由该组合物得到的涂层 | |
JP2011088787A (ja) | 反射防止膜用組成物、反射防止膜、反射防止膜の製造方法、反射防止膜付き基材 | |
JP2013014506A (ja) | 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材 | |
US11427696B2 (en) | Curable composition and cured product | |
JP2016190977A (ja) | 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、該組成物を含む画像表示装置用接着剤、該接着剤を用いた画像表示装置及び該接着剤を用いた接着方法 | |
JP4008246B2 (ja) | 複合体組成物、及びこれを架橋させてなる成形硬化物 | |
KR20190081088A (ko) | 금속 산화물을 포함하는 디스플레이용 분산액 조성물의 제조방법 | |
JP2016191001A (ja) | 画像表示装置用紫外線硬化型液状オルガノポリシロキサン組成物、該組成物を含む画像表示装置用接着剤、該接着剤を用いた画像表示装置及び該接着剤を用いた接着方法 | |
JP6778646B2 (ja) | 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法 | |
WO2017159301A1 (ja) | 積層体、積層体の製造方法、及び反射防止フィルムの製造方法 | |
JP5626788B2 (ja) | 封止材用塗料およびその用途 | |
CN103608407A (zh) | 高折射组合物 | |
WO2014069160A1 (ja) | 塗料、光学塗膜および光学素子 | |
JP6726809B2 (ja) | 反射防止フィルム、反射防止物品、偏光板、及び画像表示装置 | |
JP6027841B2 (ja) | 複合金属酸化物含有硬化性樹脂組成物 | |
JP7415230B2 (ja) | 反応性シリコーン組成物およびその硬化物 | |
KR20230162055A (ko) | 자외선 경화성 조성물 및 그의 용도 | |
JP2007171555A (ja) | ハードコート膜と光学機能膜及び光学レンズ並びに光学部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100621 |