[go: up one dir, main page]

JP2009132964A - Ni-based alloy - Google Patents

Ni-based alloy Download PDF

Info

Publication number
JP2009132964A
JP2009132964A JP2007309637A JP2007309637A JP2009132964A JP 2009132964 A JP2009132964 A JP 2009132964A JP 2007309637 A JP2007309637 A JP 2007309637A JP 2007309637 A JP2007309637 A JP 2007309637A JP 2009132964 A JP2009132964 A JP 2009132964A
Authority
JP
Japan
Prior art keywords
amount
phase
alloy
based alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309637A
Other languages
Japanese (ja)
Other versions
JP4982340B2 (en
Inventor
Jun Sato
順 佐藤
Shinya Konno
晋也 今野
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007309637A priority Critical patent/JP4982340B2/en
Publication of JP2009132964A publication Critical patent/JP2009132964A/en
Application granted granted Critical
Publication of JP4982340B2 publication Critical patent/JP4982340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a γ' precipitation-strengthening type Ni-based alloy which has improved corrosion resistance, heat treatment properties and weldability, while maintaining high strength. <P>SOLUTION: The Ni-based alloy includes, by mass, 5 to 15% Co, 13 to 15.5% Cr, 4.0 to 5.5% Al, 0.1 to 2.0% Ti, 0.1 to 1.0% Nb, 0.1 to 3.0% Ta, 0.1 to 2.0% Mo, 4.5 to 10% W, 0.1 to 2.0% Hf, 0.05 to 0.20% C, 0.001 to 0.03% B, 0.01 to 0.1% Zr and the balance Ni except unavoidable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温耐食性に優れるガスタービン静翼用のNi基合金に関する。   The present invention relates to a Ni-based alloy for a gas turbine stationary blade having excellent high-temperature corrosion resistance.

産業用ガスタービンや航空機用ジェットエンジン等に利用されるNi基合金を、高強度化するためには、固溶強化元素であるW,Mo,Ta,Coなどを多く添加するとともに、Al,Tiを添加して強化相であるγ′Ni3(Al,Ti)相を多く析出させることが重要である。 In order to increase the strength of Ni-based alloys used in industrial gas turbines and aircraft jet engines, a large amount of solid solution strengthening elements such as W, Mo, Ta and Co are added, and Al and Ti are added. It is important to add a large amount of γ′Ni 3 (Al, Ti) phase, which is a strengthening phase.

一方で、高温における耐食性を備えていることも重要であり、保護性の皮膜を形成するCrを多く添加することが望ましい。   On the other hand, it is also important to have corrosion resistance at high temperatures, and it is desirable to add a large amount of Cr that forms a protective film.

しかしながら、これらの合金元素を多く含むほど材料の組織の安定性が低下し、長時間の使用に際してσ相などの硬質で脆い有害相が析出することが問題となる。近年のガスタービン用耐熱合金は高強度化に重点が置かれており強化元素を多く添加しているが、有害相が析出しないように耐食性を犠牲にしてもCr量を低減する傾向が強い(特許文献1及び特許文献2参照)。   However, the greater the content of these alloy elements, the lower the stability of the material structure, and the problem is that a hard and brittle harmful phase such as the σ phase precipitates during long-term use. In recent years, heat turbine alloys for gas turbines have been focused on increasing the strength and added a lot of strengthening elements, but there is a strong tendency to reduce the Cr content even at the expense of corrosion resistance so that no harmful phase precipitates ( (See Patent Document 1 and Patent Document 2).

低Cr組成の合金をガスタービン動静翼などに利用する場合は、表面に耐食コーティングを施すなどして耐食性の改善を図るのが一般的である。   When an alloy having a low Cr composition is used for a gas turbine moving blade and the like, it is common to improve the corrosion resistance by applying a corrosion resistant coating to the surface.

しかし、表面コーティングの耐用温度はおよそ950℃とされており、耐用温度950℃以上の耐熱材料は、強度は十分であっても高温腐食により減肉が起こり、材料強度が低下して破損に至ることが問題となる。   However, the service temperature of the surface coating is about 950 ° C., and a heat-resistant material with a service temperature of 950 ° C. or higher is thinned by high-temperature corrosion even if the strength is sufficient, resulting in a decrease in material strength and damage. Is a problem.

Reなどの貴金属元素を多く添加することで、有害相の出現を抑えつつCr量を多くすることも可能であるが、素材が非常に高価になってしまう。そのため、これらの高価な元素を低減した高強度のNi基合金の開発も行われている(特許文献3参照)。   By adding a large amount of noble metal element such as Re, it is possible to increase the amount of Cr while suppressing the appearance of a harmful phase, but the material becomes very expensive. For this reason, development of a high-strength Ni-based alloy in which these expensive elements are reduced has been carried out (see Patent Document 3).

γ′相強化型の高強度Ni基合金のもう一つの問題点は、強度が向上するほど熱処理や溶接などの製造プロセスが困難になることである。γ′相が高温まで安定に存在するために、γ′相を固溶させる熱処理温度幅が狭くなってしまったり、溶接割れなどの欠陥が生じたりするためである。   Another problem with the high-strength Ni-base alloy of the γ ′ phase strengthening type is that the manufacturing process such as heat treatment and welding becomes more difficult as the strength increases. This is because the γ 'phase is stably present up to a high temperature, so that the heat treatment temperature range for dissolving the γ' phase is narrowed, and defects such as weld cracks are generated.

特公平1−59344号公報Japanese Patent Publication No. 1-59344 特開2004−307999号公報JP 2004-307999 A 特開2004−332061号公報JP 2004-332061 A

以上のように、高強度のNi基合金(以下、Ni基超合金やNi基耐熱合金と記載する場合がある)は、一層の高強度化が進むことによって、耐食性と熱処理性・溶接性などのプロセス特性が犠牲になっているのが現状である。   As described above, high-strength Ni-base alloys (hereinafter sometimes referred to as Ni-base superalloys and Ni-base heat-resistant alloys) are subject to corrosion resistance, heat resistance, weldability, etc. as the strength further increases. At present, the process characteristics are sacrificed.

若干のγ′量の減少とそれに伴う強度の低下を許容しつつ、Cr量を増加させて耐食性を改善されれば、材料の長寿命化,信頼性の向上が期待できる他にも、従来コーティングが必要であった部材にコーティングを施す必要が無くなり、製造コストやメンテナンスコストの低減にもつながる。   If the corrosion resistance is improved by increasing the Cr content while allowing a slight decrease in the amount of γ 'and the accompanying strength reduction, the material can be expected to have a longer life and improved reliability. This eliminates the need for coating the parts that needed to be reduced, leading to a reduction in manufacturing costs and maintenance costs.

また、熱処理性や溶接性も改善されることが期待できる。   Moreover, it can be expected that heat treatment properties and weldability are also improved.

本発明の目的は、ガスタービン静翼、特に初段静翼に必要な高温強度を維持しつつ、耐食性と熱処理性・溶接性といったプロセス特性を改善したNi基合金を提供することにある。   An object of the present invention is to provide a Ni-based alloy having improved process characteristics such as corrosion resistance, heat treatment properties and weldability while maintaining high-temperature strength necessary for gas turbine stationary blades, particularly first-stage stationary blades.

発明者らは、強度評価や熱力学計算等のNi基耐熱合金に関する研究を行い、ガスタービン静翼として十分な高温強度を有し、耐食性と熱処理性・溶接性を改善した合金の発明に至った。   The inventors have conducted research on Ni-base heat-resistant alloys such as strength evaluation and thermodynamic calculation, and have led to the invention of an alloy having sufficient high-temperature strength as a gas turbine stationary blade and improved corrosion resistance, heat treatment properties and weldability. It was.

すなわち本発明は、質量で、Co:5〜15%、Cr:13〜15.5%、Al:4.0〜5.5%、Ti:0.1〜2.0%、Nb:0.1〜1.0%、Ta:0.1〜3.0%、Mo:0.1〜2.0%、W:4.5〜10%、Hf:0.1〜1.5%、C:0.05〜0.20%、B:0.001〜0.03%、Zr:0.01〜0.1%、残部が、不可避的不純物を除き、Niからなることを特徴とするNi基合金である。   That is, according to the present invention, Co is 5 to 15%, Cr is 13 to 15.5%, Al is 4.0 to 5.5%, Ti is 0.1 to 2.0%, and Nb is 0.00. 1 to 1.0%, Ta: 0.1 to 3.0%, Mo: 0.1 to 2.0%, W: 4.5 to 10%, Hf: 0.1 to 1.5%, C : 0.05 to 0.20%, B: 0.001 to 0.03%, Zr: 0.01 to 0.1%, the balance being made of Ni except for inevitable impurities It is a base alloy.

以下に、これらの合金元素の効果と合金組成の限定理由を述べる。   The effects of these alloy elements and the reasons for limiting the alloy composition will be described below.

Coは、Niと置換して母相に固溶して高温強度を向上させるとともに、低温でのγ′相析出量を増加させる効果があり、高温耐食性にも寄与することが分かっている。これらの効果が顕著に認められるのは5%以上であるが、過剰に添加すると高温でγ′相が減少して析出強化が弱まったり、σ相やμ相といった有害相が出現したりするため上限は15%とした。より好ましい範囲は7〜10%である。   Co has been found to replace Ni and dissolve in the matrix phase to improve the high-temperature strength and increase the amount of γ ′ phase precipitation at low temperatures, which also contributes to high-temperature corrosion resistance. These effects are remarkably observed in 5% or more. However, if added excessively, the γ 'phase decreases at a high temperature and precipitation strengthening weakens, and harmful phases such as σ phase and μ phase appear. The upper limit was 15%. A more preferable range is 7 to 10%.

Crは、前述のように、表面に緻密な酸化皮膜を形成して耐酸化性,高温耐食性を向上させる元素である。本発明で対象とする静翼などのガスタービン用高温部材に利用するためには少なくとも13%を含有することが必要である。しかし、15.5%以上添加すると、σ相が析出して材料の延性,破壊靭性が悪化するため、15.5%を超えない範囲とする。特に好適な範囲は、13.5〜15.0%である。   As described above, Cr is an element that improves the oxidation resistance and high-temperature corrosion resistance by forming a dense oxide film on the surface. In order to use for the high temperature member for gas turbines, such as a stationary blade made into object by this invention, it is necessary to contain at least 13%. However, if added in an amount of 15.5% or more, the σ phase is precipitated and the ductility and fracture toughness of the material are deteriorated. A particularly preferred range is 13.5 to 15.0%.

Alは、γ′Ni3(Al,Ti)相を形成する元素であり、γ′相強化型耐熱合金の強化には不可欠な元素である。4.0%未満の添加ではγ′相の析出量が少なく、強度が得られない。一方、添加量が多くなるほどγ′相の析出量が多くなり、高温強度は高くなる反面、溶接性や高温延性が低下するため、上限は5.5%とした。 Al is an element that forms a γ′Ni 3 (Al, Ti) phase, and is an indispensable element for strengthening a γ ′ phase strengthened heat-resistant alloy. If less than 4.0% is added, the amount of γ ′ phase precipitated is small and strength cannot be obtained. On the other hand, as the amount added increases, the amount of precipitation of the γ 'phase increases and the high temperature strength increases, but the weldability and high temperature ductility decrease, so the upper limit was made 5.5%.

Tiは、Alと同様にγ′相を構成し、高温強度の向上に寄与する元素である。0.1%以上添加することでその効果が表れるが、本発明の組成範囲では、2.0%を越えるとη相などの形成傾向が強くなり、高温強度への寄与が弱くなる。   Ti, like Al, constitutes a γ 'phase and is an element that contributes to the improvement of high-temperature strength. The effect is exhibited by adding 0.1% or more, but in the composition range of the present invention, when it exceeds 2.0%, the tendency to form η phase and the like becomes strong and the contribution to high temperature strength becomes weak.

Nbは、γ′相に多く固溶し、γ′相を安定化する作用がある。またγ′相自体を強化する効果も有している。効果は0.1%以上の添加で表れるが、硬質で脆いLaves相などの有害相の形成を助長するため、1.0%を超えない範囲とする。より好ましい組成範囲は、0.2〜0.8%である。   Nb has a large amount of solid solution in the γ ′ phase and has an effect of stabilizing the γ ′ phase. It also has the effect of strengthening the γ 'phase itself. The effect is exhibited by addition of 0.1% or more, but in order to promote the formation of a harmful phase such as a hard and brittle Laves phase, the range is not more than 1.0%. A more preferable composition range is 0.2 to 0.8%.

Taも、Nbと同様にγ′相を安定化して強化する効果が大きい。効果は0.1%以上の添加で表れるが、γ′相固溶温度を大幅に上昇させてしまうため、熱処理性・溶接性の観点から3.0%を超えない範囲とする。より好ましい組成範囲は1.0〜2.5%である。   Ta, like Nb, has a great effect of stabilizing and strengthening the γ 'phase. Although the effect is exhibited by addition of 0.1% or more, the γ 'phase solid solution temperature is significantly increased. Therefore, from the viewpoint of heat treatment and weldability, the range is not more than 3.0%. A more preferable composition range is 1.0 to 2.5%.

Moは、固溶強化によって母材を強化する効果がある。0.1%以上の添加でその効果が見られるが、Crと同様にσ相を形成する傾向が強いため、上限は2.0%とする。より好ましい組成範囲は0.2〜1.5%である。   Mo has an effect of strengthening the base material by solid solution strengthening. The effect is seen when 0.1% or more is added, but the upper limit is set to 2.0% because there is a strong tendency to form a σ phase like Cr. A more preferable composition range is 0.2 to 1.5%.

Wも、Moと同様に固溶強化による母相の強度向上に寄与する。顕著な効果を得るには4.5%以上の添加が必要である。しかし、Moよりは傾向が小さいものの、やはりσ相を形成する元素であるため、上限は10%とする。より好ましい範囲は、5.0〜8.5%である。   W also contributes to improving the strength of the parent phase by solid solution strengthening, like Mo. In order to obtain a remarkable effect, addition of 4.5% or more is necessary. However, although the tendency is smaller than that of Mo, it is also an element that forms a σ phase, so the upper limit is made 10%. A more preferable range is 5.0 to 8.5%.

Hfは、γ′相を安定化して高温強度を高めると共に、鋳造性を改善する。0.1%程度の添加でこれらの効果が認められるが、添加量が多くなるに従って粗大な共晶炭化物が形成する傾向が強くなるため、上限は1.5%とする。特に好ましい添加量は、0.8%以下である。   Hf stabilizes the γ ′ phase to increase the high-temperature strength and improve castability. Although these effects are observed with addition of about 0.1%, the tendency to form coarse eutectic carbides becomes stronger as the addition amount increases, so the upper limit is made 1.5%. A particularly preferable addition amount is 0.8% or less.

Cは、母相に固溶して高温での引張強さを向上させると共に、MC,M236などの炭化物を形成することで粒界強度を向上させる。これらの効果は0.05%程度から顕著になるが、過剰なCの添加は粗大な共晶炭化物の原因となり、靭性の低下を招くため0.2%を上限とする。より、0.08〜0.16%の添加量が好ましい。 C dissolves in the matrix and improves the tensile strength at high temperatures, and improves the grain boundary strength by forming carbides such as MC and M 23 C 6 . These effects become remarkable from about 0.05%, but excessive addition of C causes coarse eutectic carbides and causes toughness reduction, so the upper limit is made 0.2%. Therefore, an addition amount of 0.08 to 0.16% is preferable.

B,Zrの2つの元素は、いずれも微量の添加で粒界を強化し、クリープ強度を改善する効果を有する。しかし、過剰な添加は有害相の析出や融点の低下による部分溶融の原因となることから、その適正範囲は、B:0.001〜0.03、Zr:0.01〜0.1とした。   The two elements B and Zr both have the effect of strengthening the grain boundaries and improving the creep strength by adding a small amount. However, excessive addition causes precipitation of harmful phases and partial melting due to lowering of the melting point. Therefore, the appropriate ranges are B: 0.001 to 0.03, Zr: 0.01 to 0.1. .

本発明では、γ′相の安定性を評価するパラメータとしてPとQを以下のように規定した。   In the present invention, P and Q are defined as follows as parameters for evaluating the stability of the γ ′ phase.

P=Al量+0.61×Ti量+0.18×Ta量+0.29×Nb量 …(1) Q=Al量+0.38×Ti量+0.35×Ta量+0.54×Nb量 …(2)各元素の量はいずれも質量%である。       P = Al amount + 0.61 × Ti amount + 0.18 × Ta amount + 0.29 × Nb amount (1) Q = Al amount + 0.38 × Ti amount + 0.35 × Ta amount + 0.54 × Nb amount ((1)) 2) The amount of each element is mass%.

Pは900℃におけるγ′相の析出量に関するパラメータである。1質量%あたりの各元素がγ′相析出量に及ぼす影響を種々調査した結果から、係数を決定している。このパラメータを用いることで、高温に置けるγ′相の析出量を見積もることが可能となる。   P is a parameter relating to the precipitation amount of the γ ′ phase at 900 ° C. Coefficients are determined from the results of various investigations on the influence of each element per 1% by mass on the precipitation amount of the γ 'phase. By using this parameter, it is possible to estimate the amount of precipitation of the γ ′ phase at high temperatures.

既に述べたように、γ′相安定化元素のAl,Ti,Ta,Nbが多くなり、Pの値が大きくなるほどγ′相が多くなるため合金の強度が上昇するが、ガスタービン静翼の材料として、耐用温度950℃を達成するためには、Pが5.2以上となる組成を選択することが望ましい。より好適な範囲としては、P≧5.4となる組成が望ましい。   As already mentioned, the γ 'phase stabilizing elements Al, Ti, Ta, Nb increase, and the larger the value of P, the more the γ' phase increases and the strength of the alloy increases. As a material, in order to achieve a durable temperature of 950 ° C., it is desirable to select a composition in which P is 5.2 or more. As a more preferable range, a composition satisfying P ≧ 5.4 is desirable.

一方、Qはγ′相の固溶温度、すなわち強化相が存在できる上限温度に関するパラメータであり、同様にAl,Ti,Ta,Nbの関数で表される。Qの値が大きくなると、γ′相の固溶温度が上昇するため熱処理や溶接が困難になる。   On the other hand, Q is a parameter relating to the solid solution temperature of the γ ′ phase, that is, the upper limit temperature at which the strengthening phase can exist, and is similarly expressed by a function of Al, Ti, Ta, and Nb. As the value of Q increases, the solid solution temperature of the γ ′ phase increases, and heat treatment and welding become difficult.

現在のガスタービンに実用されている溶接補修が可能な動翼合金のγ′相固溶温度が、1170℃であることから、本発明合金も固溶温度が1170℃を越えない温度にすることが望ましく、そのためにはQの値を6.5以下にする必要がある。より好適な範囲としては、Q≦6.4であることが望ましい。   Since the γ 'phase solution temperature of the rotor blade alloy that can be welded and repaired in the current gas turbine is 1170 ° C, the alloy solution of the present invention should also have a temperature not exceeding 1170 ° C. For this purpose, the value of Q needs to be 6.5 or less. As a more preferable range, it is desirable that Q ≦ 6.4.

P,Qはいずれも、Al,Ti,Ta,Nbの関数であるため、両者を独立に制御することは出来ない。PとQの望ましい範囲を同時に満たす組成を選択することによって、高温強度と熱処理・溶接と言った製造プロセス特性を両立した合金が得られる。   Since P and Q are all functions of Al, Ti, Ta, and Nb, they cannot be controlled independently. By selecting a composition that satisfies the desirable ranges of P and Q at the same time, an alloy having both high temperature strength and manufacturing process characteristics such as heat treatment and welding can be obtained.

なお、本発明のNi基合金において、900℃におけるγ′相析出物の体積率が44%以上であることが好ましく、また、γ′相の固溶温度が1170℃以下であることが好ましい。   In the Ni-based alloy of the present invention, the volume fraction of γ ′ phase precipitates at 900 ° C. is preferably 44% or more, and the solid solution temperature of the γ ′ phase is preferably 1170 ° C. or less.

さらに、(1)式により表される組成パラメータPが、5.2≦Pであることが好ましく、(2)式により表される組成パラメータPが、6.5≧Qであることが好ましい。   Furthermore, the composition parameter P represented by the formula (1) is preferably 5.2 ≦ P, and the composition parameter P represented by the formula (2) is preferably 6.5 ≧ Q.

こうしたNi基合金は、ガスタービン静翼、特に、ガスタービン静翼の初段静翼に適している。   Such a Ni-based alloy is suitable for a gas turbine stationary blade, particularly, a first stage stationary blade of a gas turbine stationary blade.

本発明により、優れた耐酸化性を有すると共に、高温強度と熱処理性・溶接性とを兼ね備えたNi基合金を提供することができる。   According to the present invention, it is possible to provide a Ni-based alloy having excellent oxidation resistance and having both high temperature strength, heat treatment property and weldability.

以下に、本発明の実施例を記載する。   Examples of the present invention will be described below.

表1に、本発明合金と本発明にいたる過程で実験に供した比較合金の化学組成を示す。   Table 1 shows the chemical composition of the alloy of the present invention and the comparative alloy subjected to the experiment in the process leading to the present invention.

Figure 2009132964
Figure 2009132964

No.1〜10が本発明であり、No.11〜20が比較合金である。   Nos. 1 to 10 are the present invention, and Nos. 11 to 20 are comparative alloys.

これらの組成の合金10kgを高周波誘導加熱により溶解し、ロストワックス法によりφ15mmの円柱状インゴットに精密鋳造した。インゴットには1232℃で2時間の溶体化熱処理を施した後、982℃5時間,871℃20時間の時効熱処理を順次施した。   10 kg of alloys having these compositions were melted by high frequency induction heating and precision cast into a cylindrical ingot having a diameter of 15 mm by the lost wax method. The ingot was subjected to solution heat treatment at 1232 ° C. for 2 hours, followed by aging heat treatment at 982 ° C. for 5 hours and 871 ° C. for 20 hours.

いずれの熱処理も大気中で行い、熱処理後は室温まで空冷した。   All the heat treatments were performed in the atmosphere, and after the heat treatment, they were cooled to room temperature.

熱処理後のインゴットから機械加工により各種試験片を作製した。   Various test pieces were produced from the ingot after heat treatment by machining.

表2は、作製したクリープ試験片(平行部長さ:30mm,直径:6mm)を用いて、982℃−137MPaの条件でクリープ試験を行った結果を示している。   Table 2 shows the results of a creep test performed at 982 ° C. to 137 MPa using the prepared creep test pieces (parallel portion length: 30 mm, diameter: 6 mm).

Figure 2009132964
Figure 2009132964

表1及び表2より、本発明合金が、比較合金に比較して、総合的に優れていることが分かる。   From Table 1 and Table 2, it can be seen that the alloy of the present invention is comprehensively superior to the comparative alloy.

図1,図2には各合金のクリープ破断時間と破断伸びをそれぞれ示した。   1 and 2 show the creep rupture time and elongation at break of each alloy.

図1では、クリープ破断時間に対応する耐用温度(静翼材の場合59MPaで100000時間破断せずに耐える温度)を合わせて示している。   In FIG. 1, the service temperature corresponding to the creep rupture time (temperature at which the stator blade material can withstand 100 MPa hours at 59 MPa without breaking) is also shown.

No.1〜10の本発明合金はいずれも950℃を超える耐用温度を有していることが分かる。   It can be seen that all the alloys of the present invention having Nos. 1 to 10 have a service temperature exceeding 950 ° C.

比較例のNo.11合金は一般的な多結晶Ni基超合金に相当する組成の合金であるが、980℃程度の非常に高い耐用温度を示しており、従来の報告と良く一致している。しかし、Cr含有量が少ないため、酸化が著しく、クリープ試験後の試験片外観を観察すると、一部酸化皮膜の剥落が認められた。   The No. 11 alloy of the comparative example is an alloy having a composition corresponding to that of a general polycrystalline Ni-base superalloy, and shows a very high service temperature of about 980 ° C., which is in good agreement with the previous reports. . However, since the Cr content is small, the oxidation is remarkable, and when the appearance of the test piece after the creep test is observed, a part of the oxide film is peeled off.

No.12,13も同様に、Cr量が少ないために本発明よりも耐酸化特性の点で劣っていた。   Similarly, Nos. 12 and 13 were inferior in oxidation resistance characteristics to the present invention due to the small amount of Cr.

No.14,15は、従来材と同等のγ′相析出量であり、また、本発明と同等のCr量を有するため強度,耐酸化性とも良好であるが、γ′相固溶温度も上昇しているため、熱処理性・溶接性の点で従来材からの改善が見込めない。   Nos. 14 and 15 have the same amount of γ 'phase precipitation as that of the conventional material, and since the amount of Cr is the same as that of the present invention, the strength and oxidation resistance are good. Due to the rise, improvement from the conventional material cannot be expected in terms of heat treatment and weldability.

また、図2のクリープ破断伸びの結果と照らし合わせてみると、クリープ破断時間が長い合金ほどクリープ破断伸びは小さくなる傾向が見られる。No.11〜15の高強度合金は本発明合金に比べて伸びが低く、静翼材として望まれる10%の伸びが得られていないことも明らかである。   Further, in comparison with the results of the creep rupture elongation in FIG. 2, the creep rupture elongation tends to be smaller as the alloy has a longer creep rupture time. It is also clear that the high strength alloys No. 11 to 15 have a lower elongation than the alloys of the present invention, and the elongation of 10% desired as a stator blade material is not obtained.

No.16〜18合金は、γ′固溶温度が低いもののクリープ破断時間が短く、耐用温度が、950℃以下であるため本発明の強度目標を達成していない。   No. 16-18 alloys have a low γ ′ solid solution temperature, but have a short creep rupture time and a service temperature of 950 ° C. or less, so they do not achieve the strength target of the present invention.

No.19,20はCr量が多い合金の例であるが、クリープ破断時間,伸びとも低くなっている。試験後の試料を調査した結果、σ相が析出していることが確認され、これを起点として破断が生じていることが分かった。   Nos. 19 and 20 are examples of alloys with a large amount of Cr, but both the creep rupture time and elongation are low. As a result of investigating the sample after the test, it was confirmed that the σ phase was precipitated, and it was found that fracture occurred from this point.

Cr量が多いほど耐酸化性,耐食性は向上するが、強度と信頼性の観点からσ相が析出しない範囲でCr量を調整する必要がある。   As the Cr content increases, the oxidation resistance and corrosion resistance improve, but it is necessary to adjust the Cr content within a range in which the σ phase does not precipitate from the viewpoint of strength and reliability.

こうした図1及び図2からも本発明合金は、耐用温度950℃と、クリープ破断伸び10%以上を満たすバランスの良いクリープ特性を有しており、比較合金に比較して、総合的に優れているものであることが分かる。   1 and 2 also show that the alloy of the present invention has a well-balanced creep property that satisfies a service temperature of 950 ° C. and a creep rupture elongation of 10% or more, and is generally superior to the comparative alloy. You can see that it is.

今回の実験では、γ′相の析出量を評価するために各合金の900℃における析出量を基準として考えた。   In this experiment, in order to evaluate the precipitation amount of the γ ′ phase, the precipitation amount at 900 ° C. of each alloy was considered as a reference.

図3はγ′相析出量と耐用温度の関係を示す図である。   FIG. 3 is a graph showing the relationship between the amount of γ ′ phase precipitation and the service temperature.

この結果を見ると、γ′相の析出量と耐用温度はほぼ直線関係があることが見て取れる。ガスタービンの静翼材として950℃以上の耐用温度を有するためには44%以上のγ′相が析出していることが必要である。   From this result, it can be seen that the precipitation amount of the γ 'phase and the service temperature have a substantially linear relationship. In order to have a service temperature of 950 ° C. or higher as a stationary blade material of a gas turbine, it is necessary that 44% or more of the γ ′ phase is precipitated.

図4は900℃におけるγ′相析出量とパラメータPの関係を示している。   FIG. 4 shows the relationship between the amount of precipitation of γ ′ phase at 900 ° C. and the parameter P.

Al,Ti,Ta,Nbといったγ′相安定化元素が多くなりPが大きくなるほど析出量も増加することがわかる。P<5.2となる比較合金No.16〜19はγ′相析出量が44%に満たないため、図1で示したように目標とするクリープ耐用温度、950℃が得られない。発明合金は、いずれもP≧5.2を満たし、γ′相析出量44%も満足している。図4でP≧5.2の領域にある比較合金は、Cr量の範囲が異なるもの(No.11,12,13,20)や、もう一つのパラメータであるQの値が異なる。   It can be seen that the amount of precipitation increases as the γ ′ phase stabilizing element such as Al, Ti, Ta, Nb increases and P increases. Since the comparative alloys No. 16 to 19 having P <5.2 have a γ ′ phase precipitation amount of less than 44%, the target creep resistance temperature of 950 ° C. cannot be obtained as shown in FIG. The alloys of the invention all satisfy P ≧ 5.2 and satisfy the γ ′ phase precipitation amount of 44%. The comparative alloy in the region of P ≧ 5.2 in FIG. 4 has a different Cr content range (No. 11, 12, 13, 20) and another parameter Q value.

図3と図4の結果と照らし合わせて考えると、耐用温度950℃を満たすために、44%以上のγ′相を得るには、Pの値が5.2以上となる合金組成を選択する必要がある。
強度に関してより好ましくは、Pが5.4以上の範囲である。
Considering the results of FIGS. 3 and 4, in order to obtain a γ ′ phase of 44% or more in order to satisfy the service temperature of 950 ° C., an alloy composition having a P value of 5.2 or more is selected. There is a need.
More preferably, P is in the range of 5.4 or more.

図5は、パラメータQと各合金のγ′相固溶温度の相関を示す図である。   FIG. 5 is a diagram showing a correlation between the parameter Q and the γ ′ phase solid solution temperature of each alloy.

Qの値が大きくなるほどγ′相が安定化されるため、固溶温度も上昇する傾向が見られる。熱処理性と溶接性の観点から固溶温度を1170℃以下にするためには、Qの値を6.5以下にしなくてはならない。Qが6.5を超えるNo.11,13,14,15合金は、固溶温度が高くなりすぎて現在の溶接技術では施工が難しく、また、溶体化などの熱処理に要する時間やコストの面で望ましくない。より好適な範囲はQが6.4以下の範囲である。   Since the γ ′ phase is stabilized as the value of Q increases, the solid solution temperature tends to increase. In order to reduce the solid solution temperature to 1170 ° C. or lower from the viewpoint of heat treatment and weldability, the Q value must be 6.5 or lower. No. 11, 13, 14, and 15 alloys having a Q of over 6.5 have a too high solid solution temperature and are difficult to construct with the current welding technology, and the time and cost required for heat treatment such as solution heat treatment. Is not desirable. A more preferable range is a range where Q is 6.4 or less.

Pの上限値は、Al,Ti,Ta,Nbがそれぞれの組成範囲の最大値をとる場合である。   The upper limit value of P is when Al, Ti, Ta, and Nb have the maximum values in the respective composition ranges.

一方、Qの下限値は、これらの元素が最小値をとる場合である。   On the other hand, the lower limit value of Q is when these elements take the minimum value.

しかしながら、P,QともAl,Ti,Ta,Nbの組成の関数であることから、2つのパラメータを独立に動かすことは出来ない。   However, since both P and Q are functions of the composition of Al, Ti, Ta, and Nb, the two parameters cannot be moved independently.

図6は、各合金のPとQの値をプロットした図であるが、Pが大きくなるとQも大きくなるという相関が見られる。   FIG. 6 is a diagram in which the values of P and Q of each alloy are plotted, and there is a correlation that Q increases as P increases.

PとQの両方とも好適な範囲は図中に斜線で示した領域である。図6に示すように、本発明合金は高強度化に主眼をおいているため、Ti,Ta量が大きく、P,Qともに高い値を示すものが多いが、全て斜線の領域に含まれている。この図は、パラメータPとQの関係のみに着目しており、Al,Ti,Ta,Nb以外の合金元素に関しては考慮していない。そのため比較合金で斜線領域に入っているもの(No.12,20)が見られるが、これらはCrの組成において本発明の請求範囲とは異なっている。   A suitable range for both P and Q is the area shown by hatching in the figure. As shown in FIG. 6, since the alloy of the present invention focuses on increasing strength, the Ti and Ta contents are large, and many of P and Q are high, but all are included in the hatched area. Yes. This figure focuses only on the relationship between parameters P and Q, and does not consider alloy elements other than Al, Ti, Ta, and Nb. Therefore, some of the comparative alloys are in the hatched region (No. 12, 20), but these are different from the claims of the present invention in the composition of Cr.

図7と図8は、Cr量とP,Qの関係をそれぞれ示す図である。   7 and 8 are diagrams showing the relationship between the Cr amount and P and Q, respectively.

Cr量は、耐酸化性・耐食性が得られ、有害相が出ない範囲で規定され、その範囲においてP,Qの条件を満たすことで、高温強度とプロセス特性が良好なNi基耐熱合金が得られる。比較例に示した合金のうち、Cr量の範囲にあるのはNo.14〜18の合金である。図7において、合金No.14,15はCr量、Pの範囲とも条件を満たしているが、図8ではQの範囲が外れていることが明らかである。反対にNo.16〜18は、Qの条件は満たしているが、Pの条件を満たしていない。本発明合金はCr量がこの範囲にあり、なおかつP≧5.2,Q≦6.5の条件を満たしており、クリープ特性,熱処理・溶接性,高温耐食性のバランスに優れ、ガスタービン静翼材料としてきわめて好適な特性を有している。   The amount of Cr is specified in a range where oxidation resistance and corrosion resistance can be obtained and no harmful phase is produced. By satisfying the conditions of P and Q in this range, a Ni-based heat-resistant alloy with good high-temperature strength and process characteristics can be obtained. It is done. Among the alloys shown in the comparative examples, those in the range of Cr amount are Nos. 14 to 18 alloys. 7, the alloys No. 14 and 15 satisfy both the Cr content and the P range, but it is clear that the Q range is out of FIG. 8. On the other hand, Nos. 16 to 18 satisfy the condition of Q, but do not satisfy the condition of P. The alloy of the present invention has a Cr content in this range and satisfies the conditions of P ≧ 5.2 and Q ≦ 6.5, and has an excellent balance of creep characteristics, heat treatment / weldability, and high temperature corrosion resistance, and a gas turbine stationary blade It has very suitable characteristics as a material.

本発明合金を用いて、精密鋳造によって図9に示す形状のガスタービン静翼を製造する。   A gas turbine stationary blade having the shape shown in FIG. 9 is manufactured by precision casting using the alloy of the present invention.

この静翼は外周側のサイドウォールとサイドウォールとの間に翼部が形成され、翼部の先端には、空気通路のスリットが設けられている鋳物である。   This stationary blade is a casting in which a blade portion is formed between sidewalls on the outer peripheral side, and a slit of an air passage is provided at the tip of the blade portion.

図10は翼部の一部切断された斜視図で、ピンフィン冷却用,インピジメント冷却用、及びフィルム冷却用の穴が設けられている。得られたノズルは、溶体化処理と時効処理とが非酸化性雰囲気中で行われる。   FIG. 10 is a partially cut perspective view of the wing portion, and is provided with holes for pin fin cooling, impingement cooling, and film cooling. The obtained nozzle is subjected to solution treatment and aging treatment in a non-oxidizing atmosphere.

本形態のノズルは、1段目(初段)に最も適しているが、2段目,3段目にも設けることができるが、2段目及び3段目にはCo基合金からなる翼部を有するノズルが設けられる。   The nozzle of this embodiment is most suitable for the first stage (first stage), but can be provided in the second and third stages, but the second and third stages are made of a Co-based alloy blade. A nozzle is provided.

初段ノズルは、両端が拘束されるが、2段目,3段目は、サイドウォール外周側の片側で拘束される片側拘束である。2段目,3段目は、初段目よりも翼部幅が大きくなる。   Both ends of the first stage nozzle are constrained, but the second and third stages are one-side restraints that are constrained on one side of the sidewall outer peripheral side. The wing width is larger in the second and third stages than in the first stage.

本形態におけるNi基合金からなるノズルは、γ相マトリックスにγ′相が析出している。   In the nozzle made of the Ni-based alloy in this embodiment, the γ ′ phase is precipitated in the γ phase matrix.

図11は、ガスタービンノズルを有するガスタービンの回転部分の部分断面図である。   FIG. 11 is a partial cross-sectional view of a rotating portion of a gas turbine having a gas turbine nozzle.

10はタービンスタブシャフト、3はタービンブレード、13はタービンスタッキングボルト、18はタービンスペーサ、19はデイスタントピース、20は初段ノズル、6はコンプレッサディスク、7はコンプレッサブレード、16はコンプレッサノズル、8はコンプレッサスタッキングボルト、9はコンプレッサスタブシャフト、4はタービンディスク、11は穴、15は燃焼器である。   10 is a turbine stub shaft, 3 is a turbine blade, 13 is a turbine stacking bolt, 18 is a turbine spacer, 19 is a distance piece, 20 is a first stage nozzle, 6 is a compressor disk, 7 is a compressor blade, 16 is a compressor nozzle, 8 is Compressor stacking bolts, 9 is a compressor stub shaft, 4 is a turbine disk, 11 is a hole, and 15 is a combustor.

本形態のガスタービンは、コンプレッサディスク6が17段あり、タービンブレード3が2段のものである。タービンブレード3は3段の場合もあり、いずれにも本形態の合金が適用できる。   The gas turbine of this embodiment has 17 stages of compressor disks 6 and two stages of turbine blades 3. The turbine blade 3 may have three stages, and the alloy of this embodiment can be applied to any of them.

すなわち、発明者らは、Ni基合金の強化相であるγ′相の析出量や固溶温度について詳細な研究を行ったところ、良好な耐酸化性と耐食性を有し、強度特性と熱処理性や溶接性にも優れる合金組成範囲を明らかにした。   In other words, the inventors conducted detailed studies on the precipitation amount and solid solution temperature of the γ 'phase, which is the strengthening phase of the Ni-base alloy, and found that it has good oxidation resistance and corrosion resistance, and has strength characteristics and heat treatment properties. And the alloy composition range which is excellent also in weldability was clarified.

本形態は、パラメータP,Qで規定される範囲において合金組成を制御することによって、優れた高温強度を維持しつつ、耐食性と熱処理性・溶接性を改善したNi基合金を提供するものである。   The present embodiment provides a Ni-based alloy having improved corrosion resistance, heat treatment property and weldability while maintaining excellent high temperature strength by controlling the alloy composition within a range defined by parameters P and Q. .

本発明におけるNi基合金は、ガスタービン用高温部材、特に、静翼の材料として好適なNi基耐熱合金に関する。特に、ガスタービンの初段静翼に利用可能である。   The Ni-base alloy in the present invention relates to a Ni-base heat-resistant alloy suitable as a material for high-temperature members for gas turbines, particularly a stationary blade. In particular, it can be used for a first stage stationary blade of a gas turbine.

各合金のクリープ破断時間を示すグラフ。The graph which shows the creep rupture time of each alloy. 各合金のクリープ破断伸びを示すグラフ。The graph which shows the creep rupture elongation of each alloy. γ′相析出量(900℃)と耐用温度の関係を示す図。The figure which shows the relationship between (gamma ') phase precipitation amount (900 degreeC), and durable temperature. パラメータPとγ′相析出量の関係を示す図。The figure which shows the relationship between the parameter P and the amount of γ 'phase precipitation. パラメータQとγ′相固溶温度の関係を示す図。The figure which shows the relationship between the parameter Q and (gamma) 'phase solution temperature. パラメータPとQの相関を示す図。The figure which shows the correlation of parameter P and Q. 本発明合金のCr量とPの関係を示す図。The figure which shows the relationship between Cr amount and P of this invention alloy. 本発明合金のCr量とQの関係を示す図。The figure which shows the relationship between Cr amount and Q of this invention alloy. 本形態のNi基合金を用いたタービン静翼を示す図。The figure which shows the turbine stationary blade using the Ni base alloy of this form. 翼部を示す図。The figure which shows a wing | blade part. ガスタービンを示す図。The figure which shows a gas turbine.

符号の説明Explanation of symbols

3 タービンブレード
4 タービンディスク
6 コンプレッサディスク
7 コンプレッサブレード
8 コンプレッサスタッキングボルト
9 コンプレッサスタブシャフト
10 タービンスタブシャフト
11 穴
13 タービンスタッキングボルト
15 燃焼器
16 コンプレッサノズル
18 タービンスペーサ
19 デイスタントピース
20 初段ノズル
3 Turbine blade 4 Turbine disk 6 Compressor disk 7 Compressor blade 8 Compressor stacking bolt 9 Compressor stub shaft 10 Turbine stub shaft 11 Hole 13 Turbine stacking bolt 15 Combustor 16 Compressor nozzle 18 Turbine spacer 19 Distant piece 20 First stage nozzle

Claims (9)

質量で、Co:5〜15%、Cr:13〜15.5%、Al:4.0〜5.5%、Ti:0.1〜2.0%、Nb:0.1〜1.0%、Ta:0.1〜3.0%、Mo:0.1〜2.0%、W:4.5〜10%、Hf:0.1〜1.5%、C:0.05〜0.20%、B:0.001〜0.03%、Zr:0.01〜0.1%、残部が、不可避的不純物を除き、NiからなるNi基合金。   By mass, Co: 5 to 15%, Cr: 13 to 15.5%, Al: 4.0 to 5.5%, Ti: 0.1 to 2.0%, Nb: 0.1 to 1.0 %, Ta: 0.1-3.0%, Mo: 0.1-2.0%, W: 4.5-10%, Hf: 0.1-1.5%, C: 0.05- Ni-based alloy of 0.20%, B: 0.001 to 0.03%, Zr: 0.01 to 0.1%, the balance being made of Ni except for inevitable impurities. 請求項1に記載のNi基合金において、900℃におけるγ′相析出物の体積率が44%以上であるNi基合金。   The Ni-based alloy according to claim 1, wherein the volume fraction of γ 'phase precipitates at 900 ° C is 44% or more. 請求項1に記載のNi基合金において、γ′相の固溶温度が1170℃以下であるNi基合金。   The Ni-based alloy according to claim 1, wherein the solid solution temperature of the γ 'phase is 1170 ° C or lower. 請求項1に記載のNi基合金において、900℃におけるγ′相析出物の体積率が44%以上であり、かつ、γ′相の固溶温度が1170℃以下であるNi基合金。   The Ni-based alloy according to claim 1, wherein the volume fraction of γ 'phase precipitates at 900 ° C is 44% or more and the solid solution temperature of the γ' phase is 1170 ° C or less. 請求項1に記載のNi基合金において、(1)式により表される組成パラメータPが、P≧5.2であることを特徴とするNi基合金。
P=Al量+0.61×Ti量+0.18×Ta量+0.29×Nb量 …(1) ここで元素量の単位は質量%である。
The Ni-based alloy according to claim 1, wherein the composition parameter P expressed by the formula (1) satisfies P ≧ 5.2.
P = Al amount + 0.61 × Ti amount + 0.18 × Ta amount + 0.29 × Nb amount (1) Here, the unit of the element amount is mass%.
請求項1に記載のNi基合金において、(2)式により表される組成パラメータQが、Q≦6.5であることを特徴とするNi基合金。
Q=Al量+0.38×Ti量+0.35×Ta量+0.54×Nb量 …(2) ここで元素量の単位は質量%である。
2. The Ni-based alloy according to claim 1, wherein the composition parameter Q represented by the formula (2) is Q ≦ 6.5. 3.
Q = Al amount + 0.38 × Ti amount + 0.35 × Ta amount + 0.54 × Nb amount (2) Here, the unit of the element amount is mass%.
請求項1に記載のNi基合金において、(1)式及び(2)式により表される組成パラメータP及びQが、P≧5.2かつQ≦6.5であることを特徴とするNi基合金。
P=Al量+0.61×Ti量+0.18×Ta量+0.29×Nb量 …(1) Q=Al量+0.38×Ti量+0.35×Ta量+0.54×Nb量 …(2) ここで元素量の単位は質量%である。
2. The Ni-based alloy according to claim 1, wherein composition parameters P and Q represented by the formulas (1) and (2) are P ≧ 5.2 and Q ≦ 6.5. Base alloy.
P = Al amount + 0.61 × Ti amount + 0.18 × Ta amount + 0.29 × Nb amount (1) Q = Al amount + 0.38 × Ti amount + 0.35 × Ta amount + 0.54 × Nb amount ((1)) 2) Here, the unit of the element amount is mass%.
請求項1〜7に記載のNi基合金を用いたガスタービン静翼。   A gas turbine stationary blade using the Ni-based alloy according to claim 1. 請求項8に記載のガスタービン静翼を用いたガスタービン。   A gas turbine using the gas turbine stationary blade according to claim 8.
JP2007309637A 2007-11-30 2007-11-30 Ni-based alloy, gas turbine stationary blade and gas turbine Active JP4982340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309637A JP4982340B2 (en) 2007-11-30 2007-11-30 Ni-based alloy, gas turbine stationary blade and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309637A JP4982340B2 (en) 2007-11-30 2007-11-30 Ni-based alloy, gas turbine stationary blade and gas turbine

Publications (2)

Publication Number Publication Date
JP2009132964A true JP2009132964A (en) 2009-06-18
JP4982340B2 JP4982340B2 (en) 2012-07-25

Family

ID=40865114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309637A Active JP4982340B2 (en) 2007-11-30 2007-11-30 Ni-based alloy, gas turbine stationary blade and gas turbine

Country Status (1)

Country Link
JP (1) JP4982340B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162808A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
JP2014047388A (en) * 2012-08-31 2014-03-17 Hitachi Ltd HIGH-STRENGTH Ni BASE SUPERALLOY, AND TURBINE ROTOR BLADE OF GAS TURBINE USING THE SAME
US9598774B2 (en) 2011-12-16 2017-03-21 General Electric Corporation Cold spray of nickel-base alloys
US11085103B2 (en) 2018-05-23 2021-08-10 Rolls-Royce Plc Nickel-base superalloy
CN113684396A (en) * 2021-08-26 2021-11-23 大连理工大学 A kind of γ'-Ni3Al-based low-cost superalloy with high content of square nanoparticles precipitation strengthening and preparation method thereof
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187221B2 (en) 2011-09-27 2015-11-17 Crown Packaging Technology, Inc. Can ends having machine readable information
HUE061699T2 (en) 2011-09-27 2023-08-28 Crown Packaging Technology Inc Method of making a can end and use of a can end for playing a game

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145737A (en) * 1986-09-15 1988-06-17 ゼネラル・エレクトリック・カンパニイ Method for forming fatique cracking resistant nickel base superalloy
JPH03177525A (en) * 1989-10-04 1991-08-01 General Electric Co <Ge> Dual alloy-made turbine disk
JPH06293945A (en) * 1993-04-08 1994-10-21 Toshiba Corp Production of high strength ni-base alloy
JPH09170402A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Nozzle for gas turbine, manufacturing method thereof, and gas turbine using the same
JPH1046277A (en) * 1996-05-31 1998-02-17 Mitsubishi Materials Corp Columnar ni base heat resistant alloy casting and turbine blade made of the same
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd High oxidation resistant Ni-base superalloy and gas turbine parts
JP2008525634A (en) * 2004-12-23 2008-07-17 シーメンス アクチエンゲゼルシヤフト Ni-based alloys, components, gas turbine equipment and use of Pd in connection with the alloys

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145737A (en) * 1986-09-15 1988-06-17 ゼネラル・エレクトリック・カンパニイ Method for forming fatique cracking resistant nickel base superalloy
JPH03177525A (en) * 1989-10-04 1991-08-01 General Electric Co <Ge> Dual alloy-made turbine disk
JPH06293945A (en) * 1993-04-08 1994-10-21 Toshiba Corp Production of high strength ni-base alloy
JPH09170402A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Nozzle for gas turbine, manufacturing method thereof, and gas turbine using the same
JPH1046277A (en) * 1996-05-31 1998-02-17 Mitsubishi Materials Corp Columnar ni base heat resistant alloy casting and turbine blade made of the same
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd High oxidation resistant Ni-base superalloy and gas turbine parts
JP2008525634A (en) * 2004-12-23 2008-07-17 シーメンス アクチエンゲゼルシヤフト Ni-based alloys, components, gas turbine equipment and use of Pd in connection with the alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162808A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
US9598774B2 (en) 2011-12-16 2017-03-21 General Electric Corporation Cold spray of nickel-base alloys
JP2014047388A (en) * 2012-08-31 2014-03-17 Hitachi Ltd HIGH-STRENGTH Ni BASE SUPERALLOY, AND TURBINE ROTOR BLADE OF GAS TURBINE USING THE SAME
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
US11085103B2 (en) 2018-05-23 2021-08-10 Rolls-Royce Plc Nickel-base superalloy
CN113684396A (en) * 2021-08-26 2021-11-23 大连理工大学 A kind of γ'-Ni3Al-based low-cost superalloy with high content of square nanoparticles precipitation strengthening and preparation method thereof
CN113684396B (en) * 2021-08-26 2022-05-13 大连理工大学 A γ'-Ni3Al-based low-cost superalloy with high content of square nanoparticles precipitation strengthening and preparation method thereof

Also Published As

Publication number Publication date
JP4982340B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
US7547188B2 (en) Ni-based alloy member, method of producing the alloy member, turbine engine part, welding material, and method of producing the welding material
JP4982340B2 (en) Ni-based alloy, gas turbine stationary blade and gas turbine
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
JP5216839B2 (en) Ni-base heat-resistant alloy, gas turbine member, and turbine with excellent segregation characteristics
WO2011062231A1 (en) Heat-resistant superalloy
US20040221925A1 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP2010215989A (en) Ni BASE ALLOY FOR TURBINE ROTOR OF STEAM TURBINE AND TURBINE ROTOR OF STEAM TURBINE USING THE SAME
JP4906611B2 (en) Ni-based alloy
JPWO2010119709A1 (en) Ni-based single crystal superalloy and turbine blade using the same
JP5597598B2 (en) Ni-base superalloy and gas turbine using it
JP2007191791A (en) Nickel-based superalloy composition
JP2011162808A (en) Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
JP6490407B2 (en) Ni-base cast superalloy and casting made of the Ni-base cast superalloy
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
KR20120053645A (en) Polycrystal ni base superalloy with good mechanical properties at high temperature
JP5502435B2 (en) High heat and oxidation resistant materials
JP2013199680A (en) Nickel-based alloy, cast article, gas turbine blade and gas turbine
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4982340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250