JP2009129801A - Metal base circuit board - Google Patents
Metal base circuit board Download PDFInfo
- Publication number
- JP2009129801A JP2009129801A JP2007305388A JP2007305388A JP2009129801A JP 2009129801 A JP2009129801 A JP 2009129801A JP 2007305388 A JP2007305388 A JP 2007305388A JP 2007305388 A JP2007305388 A JP 2007305388A JP 2009129801 A JP2009129801 A JP 2009129801A
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- metal base
- base circuit
- insulating layer
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 74
- 239000002184 metal Substances 0.000 title claims abstract description 74
- 239000000843 powder Substances 0.000 claims abstract description 44
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 36
- 239000003822 epoxy resin Substances 0.000 claims description 33
- 229920000647 polyepoxide Polymers 0.000 claims description 33
- 239000012463 white pigment Substances 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 16
- 239000011256 inorganic filler Substances 0.000 claims description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 239000011787 zinc oxide Substances 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 229910021647 smectite Inorganic materials 0.000 claims description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Natural products C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 17
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000011362 coarse particle Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 235000010215 titanium dioxide Nutrition 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 8
- 238000002310 reflectometry Methods 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 naphthalene type Chemical compound 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 235000012245 magnesium oxide Nutrition 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910021488 crystalline silicon dioxide Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Fastening Of Light Sources Or Lamp Holders (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Led Device Packages (AREA)
Abstract
【課題】光反射機能を併せ持つ金属ベース回路基板を提供する。
【解決手段】金属基板と、金属基板の一方の面に積層された絶縁層と、絶縁層の露出面に形成された回路と、絶縁層及び回路の露出面に積層された白色膜を有する金属ベース回路基板であって、白色膜を構成する組成物に無機質中空粉体が含有され、この無機質中空粉体の中空率が30体積%以上90体積%以下であり、無機質中空粉体の平均粒子径が0.1μm以上30μm以下である金属ベース回路基板である。
【選択図】図1A metal base circuit board having a light reflection function is provided.
A metal having a metal substrate, an insulating layer laminated on one surface of the metal substrate, a circuit formed on the exposed surface of the insulating layer, and a white film laminated on the exposed surface of the insulating layer and the circuit. An inorganic hollow powder is contained in the composition constituting the white film, which is a base circuit board, and the hollow ratio of the inorganic hollow powder is 30 volume% or more and 90 volume% or less, and the average particle of the inorganic hollow powder The metal base circuit board has a diameter of 0.1 μm or more and 30 μm or less.
[Selection] Figure 1
Description
本発明は、光源としてLED(Light Emitting Diode、発光ダイオード)を使用した液晶のバックライト用の金属ベース回路基板に関するものである。 The present invention relates to a metal base circuit board for a liquid crystal backlight using an LED (Light Emitting Diode) as a light source.
従来から、液晶表示装置は、様々の分野で使用されており、特にパーソナルコンピューターやテレビ等の電子産業分野では数多く使用されてきた。これらの液晶表示装置のなかで、特に直下型のバックライトシステムを採用しているものは、液晶パネルの背面にバックライトを配置しており、またエッジライト型では光源からの出射光を導光板に入射させ、その伝播した光を導光板の表面側からプリズムシート等を介して出射させることによって、液晶パネルの背面を全体的に照射するようにしている。バックライトの光源としては、CCFL(Cold Cathode Fluorescent Lamp:冷陰極管)が主に使用されていたが、高輝度化や水銀レスといった環境側面への配慮からLEDを使用したものが増加しつつある。 Conventionally, liquid crystal display devices have been used in various fields, and in particular, have been used in many fields in the electronic industry such as personal computers and televisions. Among these liquid crystal display devices, those that employ a direct-type backlight system have a backlight disposed on the back of the liquid crystal panel. In the edge light type, light emitted from the light source is guided to the light guide plate. And the propagated light is emitted from the surface side of the light guide plate through a prism sheet or the like, so that the entire back surface of the liquid crystal panel is irradiated. CCFL (Cold Cathode Fluorescent Lamp) was mainly used as the light source of the backlight, but the use of LEDs is increasing due to consideration of environmental aspects such as higher brightness and mercury-free. .
特に家庭用テレビの大面積化に伴い、バックライトには高輝度化への要求が高まり、LEDからの出射光のみならず反射光を有効利用する様々な方法が提案されている。 In particular, with the increase in the area of home televisions, the demand for higher brightness has increased for backlights, and various methods for effectively using reflected light as well as light emitted from LEDs have been proposed.
従来反射光を有効利用するためには、光反射シートを用いることが一般的でありLEDと搭載したバックライトにおいても、プリント回路基板上にLEDパッケージを実装し、さらに、該プリント回路基板上に光反射シートを貼り付けて使用していた(特許文献1)。 Conventionally, in order to make effective use of reflected light, it is common to use a light reflecting sheet, and even in a backlight mounted with an LED, an LED package is mounted on the printed circuit board, and further on the printed circuit board. A light reflecting sheet was pasted and used (Patent Document 1).
これに対し、基板自体を白色化する提案が成されているが、これらはLEDが発する熱の拡散性に劣り、安定した輝度が得られないばかりでなく、LED自体の寿命を短くしてしまう等の欠点があり、また、十分は反射率を有するものではなかった(特許文献2)。 On the other hand, proposals have been made to whiten the substrate itself, but these are inferior in the diffusibility of the heat generated by the LED, and not only a stable luminance cannot be obtained, but also the life of the LED itself is shortened. In addition, there was a defect such as the above, and it did not have sufficient reflectivity (Patent Document 2).
従来、バックライト用のLEDパッケージ実装用プリント回路基板には、光反射機能がないため、バックライト用のプリント回路基板として使用する場合は、LEDパッケージ実装後に光反射シートを貼り付ける必要があった。このため、製造時の工数及び必要部材の増加により、製造プロセス上取り扱いが煩雑になり、不便であるという問題があった。 Conventionally, a printed circuit board for mounting an LED package for a backlight does not have a light reflecting function. Therefore, when used as a printed circuit board for a backlight, it has been necessary to attach a light reflecting sheet after mounting the LED package. . For this reason, there has been a problem that the number of man-hours and necessary members at the time of manufacture are complicated and handling is complicated in the manufacturing process, which is inconvenient.
本発明は、以上の様な課題を解決するまったく新しい金属ベース回路基板の提供を目的とする。 An object of the present invention is to provide a completely new metal-based circuit board that solves the above problems.
すなわち、本発明は、金属基板と、金属基板の一方の面に積層された絶縁層と、絶縁層の露出面に形成された回路と、絶縁層及び回路の露出面に積層された白色膜を有する金属ベース回路基板であって、白色膜を構成する組成物に無機質中空粉体が含有され、この無機質中空粉体の中空率を30体積%以上90体積%以下とし、無機質中空粉体の平均粒子径を0.1μm以上30μm以下とし、これにより無機・中空間の屈折率差により効果的に反射率を高め、該可視光(波長範囲:400〜800nm)に対する金属ベース回路基板の反射率の平均を70%以上にするものである。 That is, the present invention includes a metal substrate, an insulating layer laminated on one surface of the metal substrate, a circuit formed on the exposed surface of the insulating layer, and a white film laminated on the exposed surface of the insulating layer and the circuit. An inorganic hollow powder is contained in the composition constituting the white film, the hollow ratio of the inorganic hollow powder being 30% by volume to 90% by volume, and the average of the inorganic hollow powder The particle diameter is 0.1 μm or more and 30 μm or less, thereby effectively increasing the reflectivity due to the difference in refractive index between inorganic and medium spaces, and the reflectivity of the metal base circuit board for the visible light (wavelength range: 400 to 800 nm). The average is 70% or more.
本発明によれば、LED実装後に光反射シートを貼り付けなくても、金属ベース回路基板のみで反射光を有効利用することができ、また、LEDからの発熱を効果的に拡散しLEDの輝度の安定化を図ると共に長寿命化も期待できる。 According to the present invention, it is possible to effectively use reflected light only with a metal base circuit board without attaching a light reflecting sheet after LED mounting, and also effectively diffuses heat generated from the LED to increase the brightness of the LED. It can be expected to increase the service life as well as to stabilize.
以下、図を用いて本発明を説明する。 Hereinafter, the present invention will be described with reference to the drawings.
<実施の形態1・一層>
図1は、本発明の金属ベース回路基板の一例である。本発明の金属ベース回路基板においては、金属基板と絶縁層及び回路とからなる金属ベース回路基板上に高反射率の白色膜14を形成したものである。本発明の金属ベース回路基板は図1に示す様に複数のLEDパッケージ115が半田接合部16などにより接合搭載され使用される。
<
FIG. 1 is an example of a metal base circuit board according to the present invention. In the metal base circuit board of the present invention, a white film 14 having a high reflectance is formed on a metal base circuit board comprising a metal substrate, an insulating layer, and a circuit. As shown in FIG. 1, the metal base circuit board of the present invention is used by mounting and mounting a plurality of LED packages 115 by solder joints 16 or the like.
<実施の形態2・多層>
図2は、本発明の金属ベース回路基板の別の例である。本発明の金属ベース回路基板においては、金属基板上に複数の絶縁層と回路を交互に形成した金属ベース回路基板上において、金属基板と相反する最外層に高反射率の白色膜27を形成したものである。本発明の金属ベース回路基板は図2に示すように複数のLEDパッケージ29が半田接合部28などにより接合搭載され使用される。なお、図2は一例として2層構造を示したが、3層以上の場合も基本構造は同様である。
<
FIG. 2 is another example of the metal base circuit board of the present invention. In the metal base circuit board of the present invention, a white film 27 having a high reflectivity is formed on the outermost layer opposite to the metal substrate on the metal base circuit board in which a plurality of insulating layers and circuits are alternately formed on the metal substrate. Is. As shown in FIG. 2, the metal base circuit board of the present invention is used by mounting and mounting a plurality of LED packages 29 by solder joints 28 or the like. FIG. 2 shows a two-layer structure as an example, but the basic structure is the same when there are three or more layers.
<反射率>
本発明に於いては、白色膜が高反射率を有することが特徴であり、400〜800nmの波長の光に対する反射率の平均が70%以上、好ましくは、白色膜の450〜470nm、520〜570nm、及び620〜660nmのそれぞれの波長の範囲で反射率の最大値がいずれも80%以上、更に好ましくは85%以上である。
<Reflectance>
In the present invention, the white film is characterized by having a high reflectance, and the average reflectance of light having a wavelength of 400 to 800 nm is 70% or more, preferably 450 to 470 nm or 520 to 250 nm. In the respective wavelength ranges of 570 nm and 620 to 660 nm, the maximum value of the reflectance is 80% or more, more preferably 85% or more.
<反射率・定義/測定法>
本発明で用いる反射率とは、基板表面への入射光から基板層中で吸収される光と透過する光を除いたものである。測定装置としては、積分球を備えた分光光度計で、400〜800nmの波長範囲で測定可能なものが望ましい。本発明においては前記仕様を満たす島津分光光度計UV−2550、積分球ISR2200を使用した。この測定装置では220nmから850nmでの波長範囲での測定が可能である。
以下、反射率の測定法について図3を用いて説明する。積分球31下部には測定試料34が取り付け可能であり、積分球上部には入射光用の窓33がある。入射光35が測定試料表面で反射されると、積分球表面にてさらに反射され、側面に設けられた検出器32で検出される。
<Reflectance, definition / measurement method>
The reflectance used in the present invention is obtained by removing light absorbed and transmitted through the substrate layer from incident light on the substrate surface. As the measuring device, a spectrophotometer equipped with an integrating sphere, which is capable of measuring in the wavelength range of 400 to 800 nm is desirable. In the present invention, Shimadzu spectrophotometer UV-2550 and integrating sphere ISR2200 satisfying the above specifications were used. This measuring apparatus can measure in the wavelength range from 220 nm to 850 nm.
Hereinafter, a method for measuring the reflectance will be described with reference to FIG. A measurement sample 34 can be attached to the bottom of the integrating sphere 31, and a window 33 for incident light is provided above the integrating sphere. When the incident light 35 is reflected on the surface of the measurement sample, it is further reflected on the surface of the integrating sphere and detected by the
<絶縁層熱伝導率>
本発明の金属ベース回路基板は、上述の構成を有しており、しかも絶縁層の熱伝導率が1W/mK以上であり、好ましくは1.5W/mK以上である。この熱伝導率は、高ければ高いほどよい。また、導体回路と金属箔との間の耐電圧が1.5kV以上、望ましく2kV以上という、高い放熱性と耐電圧特性を有しており、LED光源から発生する熱を効率よく金属ベース回路基板裏面側に放熱し、さらに、外部に放熱することによりLEDパッケージ実装回路基板の蓄熱を低減し、LEDの温度上昇を小さくするとともに、バックライト面内の温度を均一化することにより、LEDの発光効率低下の抑制と輝度の均一化を図ることができる。このため、光反射機能を持つ高反射率の白色膜の効果とあわせて、明るく且つ長寿命のバックライトを提供することができる。
<Insulation layer thermal conductivity>
The metal base circuit board of the present invention has the above-described configuration, and the thermal conductivity of the insulating layer is 1 W / mK or more, preferably 1.5 W / mK or more. The higher the thermal conductivity, the better. In addition, it has high heat dissipation and withstand voltage characteristics such that the withstand voltage between the conductor circuit and the metal foil is 1.5 kV or more, preferably 2 kV or more, and the metal base circuit board efficiently generates heat generated from the LED light source. Radiating heat to the back side and further radiating to the outside reduces the heat storage of the LED package mounting circuit board, reduces the temperature rise of the LED, and equalizes the temperature in the backlight surface, thereby emitting light from the LED. The reduction in efficiency can be suppressed and the luminance can be made uniform. For this reason, it is possible to provide a bright and long-life backlight together with the effect of the high reflectance white film having a light reflection function.
<絶縁層>
絶縁層を構成する材料としてはフェノール樹脂、イミド樹脂、シリコーン樹脂、エポキシ樹脂などといった回路基板として使用されている樹脂を適宜選択でき、前述の熱伝導率と耐電圧特性を達成するためにはエポキシ樹脂が好ましく、さらに好ましくは当該エポキシ樹脂に無機フィラー、前記エポキシ樹脂用の硬化剤を含有するものが好ましい。
<Insulating layer>
As a material constituting the insulating layer, a resin used as a circuit board such as a phenol resin, an imide resin, a silicone resin, or an epoxy resin can be appropriately selected. To achieve the above-described thermal conductivity and withstand voltage characteristics, an epoxy is used. A resin is preferable, and more preferably, the epoxy resin contains an inorganic filler and a curing agent for the epoxy resin.
<エポキシ樹脂>
エポキシ樹脂としては、公知のエポキシ樹脂、例えば例えばナフタレン型、フェニルメタン型、テトラキスフェノールメタン型、ビフェニル型、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等があげられ、このうち応力緩和性という理由で、主鎖がポリエーテル骨格を有し直鎖状であるエポキシ樹脂が好ましい。
主鎖がポリエーテル骨格を有し主鎖状であるエポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂に代表される脂肪族エポキシ樹脂、およびポリサルファイド変性エポキシ樹脂等があり、これらを複数組み合わせてもよい。
これらエポキシ樹脂のうち、金属ベース回路基板に高い耐熱性が必要な場合には、電気絶縁性、熱伝導率が共に高く、耐熱性の高い樹脂硬化体が得られるビスフェノールA型エポキシ樹脂を用いることが好ましい。また、このビスフェノールA型エポキシ樹脂の効果が発揮する範囲内であれば、当該ビスフェノールA型エポキシ樹脂に他のエポキシ樹脂を組み合わせて用いることもできる。
<Epoxy resin>
Examples of the epoxy resin include known epoxy resins such as naphthalene type, phenylmethane type, tetrakisphenolmethane type, biphenyl type, and bisphenol A alkylene oxide adduct type epoxy resins, among which the reason for stress relaxation Thus, an epoxy resin in which the main chain has a polyether skeleton and is linear is preferable.
The epoxy resin whose main chain has a polyether skeleton is a bisphenol A type, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy. There are aliphatic epoxy resins typified by resins, polysulfide-modified epoxy resins, and the like, and a plurality of these may be combined.
Among these epoxy resins, when high heat resistance is required for the metal base circuit board, use a bisphenol A type epoxy resin that has both high electrical insulation and thermal conductivity, and can provide a cured resin with high heat resistance. Is preferred. Moreover, as long as the effect of this bisphenol A type epoxy resin is exhibited, another epoxy resin may be used in combination with the bisphenol A type epoxy resin.
<ビスフェノールA型エポキシ樹脂>
ビスフェノールA型エポキシ樹脂を用いる場合、エポキシ当量300以下であることが一層好ましい。エポキシ当量が300以下であれば、高分子タイプになるときに見られる架橋密度の低下によるTg(ガラス転移温度)の低下、従って耐熱性の低下を引き起こすことが防止されるからである。また、分子量が大きくなると、液状から固形状となり、無機フィラーを硬化性樹脂中にブレンドすることが困難になり、均一な樹脂組成物が得られなくなるという問題をも避けることができる。
<Bisphenol A type epoxy resin>
When using a bisphenol A type epoxy resin, it is more preferable that the epoxy equivalent is 300 or less. This is because if the epoxy equivalent is 300 or less, it is possible to prevent a decrease in Tg (glass transition temperature) due to a decrease in crosslink density, which is observed when a polymer type is obtained, and hence a decrease in heat resistance. Further, when the molecular weight is increased, the liquid state becomes a solid state, and it becomes difficult to blend the inorganic filler into the curable resin, and the problem that a uniform resin composition cannot be obtained can be avoided.
<エポキシ樹脂・加水分解塩素濃度>
エポキシ樹脂を採用する場合、加水分解性塩素濃度が600ppm以下であることが好ましい。加水分解性塩素濃度が600ppm以下であれば、金属ベース回路基板として充分な耐湿性を示すことができる。
<Epoxy resin / hydrolyzed chlorine concentration>
When employing an epoxy resin, the hydrolyzable chlorine concentration is preferably 600 ppm or less. When the hydrolyzable chlorine concentration is 600 ppm or less, sufficient moisture resistance as a metal base circuit board can be exhibited.
<硬化剤>
エポキシ樹脂には硬化剤を添加することが好ましい。硬化剤としては、芳香族アミン系樹脂、酸無水物系樹脂、フェノール系樹脂及びジシアンアミドからなる群から選ばれる1種類以上を用いることができる。
<Curing agent>
It is preferable to add a curing agent to the epoxy resin. As the curing agent, one or more selected from the group consisting of aromatic amine resins, acid anhydride resins, phenol resins and dicyanamide can be used.
<硬化剤の添加量>
硬化剤の添加量は、エポキシ樹脂100質量部に対して、5質量部以上50質量部以下であることが好ましく、10質量部以上35質量部以下であることが一層好ましい。
<Addition amount of curing agent>
The addition amount of the curing agent is preferably 5 parts by mass or more and 50 parts by mass or less, and more preferably 10 parts by mass or more and 35 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
<硬化触媒>
エポキシ樹脂には硬化触媒を使用することもできる。硬化触媒としては、イミダゾール化合物、有機リン酸化合物、第三級アミン、第四級アンモニウム等が使用され、いずれか1種類以上を選択することができる。硬化触媒の添加量は、硬化温度により変化するため特に制限はないが、硬化触媒の添加量が少ないと硬化触媒を添加した効果が発揮されない傾向にあり、添加量が多いと硬化度合いの制御が難しくなる傾向にあるため、例えば、エポキシ樹脂100質量部に対して0.01質量部以上5質量部以下であることが好ましい。
<Curing catalyst>
A curing catalyst can also be used for the epoxy resin. As the curing catalyst, an imidazole compound, an organic phosphate compound, a tertiary amine, a quaternary ammonium, or the like is used, and any one or more types can be selected. The addition amount of the curing catalyst is not particularly limited because it varies depending on the curing temperature, but if the addition amount of the curing catalyst is small, the effect of adding the curing catalyst tends not to be exhibited, and if the addition amount is large, the degree of curing can be controlled. Since it tends to be difficult, for example, it is preferably 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
<フィラー種>
エポキシ樹脂に含有される無機フィラーとしては、電気絶縁性で熱伝導性に優れるものであればどのようなものでも構わない。このような無機フィラーとして、例えば酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化硼素、酸化マグネシウム、窒化珪素等の単独又はこれらの組み合わせがある。これら無機フィラーのうち、窒化アルミウム及び窒化硼素が高熱伝導性であるという理由で好ましい。また、結晶質二酸化ケイ素、窒化硼素を用いることで硬化体の誘電率を低く抑えることが可能となり、高周波で用いる電気、電子部品の放熱材料に用いる場合に、電気絶縁性が確保しやすいことから好ましい。
更に、ハンドリング性および流動性を向上させるため、前記無機フィラーの粒子形状はアスペクト比が1に近いものが好ましい。粗粒子と微粒子を混ぜ合わせると破砕粒子や球状粒子を単独で用いた場合よりも高充填が可能となり、更に好ましい。
<Filler type>
As the inorganic filler contained in the epoxy resin, any inorganic filler may be used as long as it is electrically insulating and excellent in thermal conductivity. Examples of such an inorganic filler include silicon oxide, aluminum oxide, aluminum nitride, boron nitride, magnesium oxide, silicon nitride, and the like alone or in combination thereof. Of these inorganic fillers, aluminum nitride and boron nitride are preferred because of their high thermal conductivity. In addition, the use of crystalline silicon dioxide and boron nitride makes it possible to keep the dielectric constant of the cured body low, and it is easy to ensure electrical insulation when used as a heat dissipation material for electrical and electronic parts used at high frequencies. preferable.
Furthermore, in order to improve handling properties and fluidity, the inorganic filler preferably has a particle shape with an aspect ratio close to 1. When coarse particles and fine particles are mixed together, it is possible to achieve a higher packing than when crushed particles or spherical particles are used alone, which is more preferable.
<フィラー・粗粉/微粉>
無機フィラーとして粗粒子と微粒子を混ぜ合わせて用いる場合には(a)最大粒子径が100μm以下で且つ粒子径1μm以上12μm以下のものを50体積%以上含有し平均粒子径が5μm以上50μm以下である粗粒子と、(b)粒子径2.0μm以下のものを70体積%以上含有し平均粒子径が0.2μm以上1.5μm以下である微粒子とからなる混合粉を用いることが好ましい。粗粒子と微粒子の割合としては粗粒子が34体積%以上70体積%以下、微粒子が3体積%以上24体積%以下であることが好ましい。また、粗粒子と微粒子を混ぜ合わせて用いる場合には少なくともその一方が球状であることがより好ましい。
<Filler, coarse powder / fine powder>
In the case of using a mixture of coarse particles and fine particles as the inorganic filler, (a) 50% by volume or more having a maximum particle size of 100 μm or less and a particle size of 1 μm to 12 μm and an average particle size of 5 μm to 50 μm It is preferable to use a mixed powder composed of certain coarse particles and (b) fine particles containing 70% by volume or more of particles having a particle size of 2.0 μm or less and having an average particle size of 0.2 μm or more and 1.5 μm or less. As a ratio of the coarse particles to the fine particles, the coarse particles are preferably 34% by volume or more and 70% by volume or less, and the fine particles are preferably 3% by volume or more and 24% by volume or less. In the case where coarse particles and fine particles are used in combination, at least one of them is more preferably spherical.
<フィラー添加量>
無機フィラーの配合割合は、エポキシ樹脂と硬化剤の合計量100質量部に対して70質量部以上95質量部以下が好ましく、下限としてさらに好ましくい値は80質量部、上限としてさらに好ましい値は90質量部である。
<Filler addition amount>
The blending ratio of the inorganic filler is preferably 70 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the total amount of the epoxy resin and the curing agent, a more preferable value as the lower limit is 80 parts by mass, and a more preferable value as the upper limit is 90 Part by mass.
<絶縁層中白色顔料>
本発明の絶縁層には酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上の白色顔料を添加することが可能である。特に最外層となる絶縁層に白色顔料を含有させることにより、金属ベース回路基板上に白色膜を設けた際の反射率を向上させる効果がある。
<White pigment in insulating layer>
At least one or more kinds of white pigments selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite can be added to the insulating layer of the present invention. In particular, the inclusion of a white pigment in the outermost insulating layer has the effect of improving the reflectance when a white film is provided on the metal base circuit board.
<絶縁層中チタニア>
前記白色顔料のうち、二酸化チタンが最も屈折率が大きく、基板の反射率を高める際に用いる場合により好ましい。また、同フィラーにおいて光の散乱効率を高める場合には、平均粒子径が0.30μm以下であることが好ましく、平均粒子径が0.3μm以上のものと混合して使用することでより効果的に反射率を向上することが可能となる。
<Titania in insulating layer>
Of the white pigments, titanium dioxide has the highest refractive index and is more preferable when used for increasing the reflectance of the substrate. In the case of increasing the light scattering efficiency in the filler, it is preferable that the average particle diameter is 0.30 μm or less, and it is more effective to use the mixture with a filler having an average particle diameter of 0.3 μm or more. In addition, the reflectance can be improved.
<絶縁層中酸化亜鉛>
前記白色顔料のうち、酸化亜鉛は高屈折率及び高放熱性を兼備する材料であり、基板の反射率及び放熱性を高める際に用いる場合により好ましい。また、同フィラーにおいて光の散乱効率を高める場合には、平均粒子径が0.35μm以下であることが好ましく、平均粒子径が0.3μm以上のものと混合して使用することでより効果的に反射率を向上することが可能となる。
<Zinc oxide in insulating layer>
Among the white pigments, zinc oxide is a material having both a high refractive index and a high heat dissipation property, and is more preferable when used to increase the reflectance and the heat dissipation property of the substrate. In the case of increasing the light scattering efficiency in the filler, it is preferable that the average particle size is 0.35 μm or less, and it is more effective to use a mixture with an average particle size of 0.3 μm or more. In addition, the reflectance can be improved.
<白色膜・チタニア>
二酸化チタンでは、ルチル型のものは安定性に優れるため光触媒作用が弱く、他の構造のものに比べ樹脂成分の劣化が抑制されるため好適に用いることができる。更に二酸化チタンを表面処理し光触媒作用を抑制したものが好適に用いることができ、表面処理としては、二酸化珪素又は水酸化アルミニウム等によるコーティングがある。
<White film and titania>
Among titanium dioxides, rutile type is excellent in stability and thus has a weak photocatalytic action, and can be suitably used because deterioration of the resin component is suppressed as compared with other structures. Further, titanium dioxide surface-treated and suppressed in photocatalytic action can be suitably used, and examples of the surface treatment include coating with silicon dioxide or aluminum hydroxide.
<絶縁層中無機質中空粉体>
本発明の絶縁層には無機質中空粉体を添加することが可能である。特に最外層となる絶縁層に無機質中空粉体顔料を含有させることにより、金属ベース回路基板上に白色膜を設けた際の反射率を向上させる効果がある。
<Inorganic hollow powder in insulating layer>
An inorganic hollow powder can be added to the insulating layer of the present invention. In particular, the inclusion of the inorganic hollow powder pigment in the outermost insulating layer has the effect of improving the reflectance when a white film is provided on the metal base circuit board.
<無機質中空粉体>
本発明の無機質中空粉体の平均中空率は30体積%以上90体積%以下、平均粒子径が0.1μm以上30μm以下である。平均粒子径が0.1μm以上5μm以下の場合の平均中空率のより好ましい上限は70体積%、更に好ましい上限は60体積%である。また、平均粒子径が5μm以上30μm以下の場合の平均中空率はの好ましい下限50体積%、より好ましい下限は70体積%であり、好ましい上限は90体積%、より好ましい上限は85体積%である。平均中空率を小さくすると屈折率による反射率向上の効果が得られにくくなり、逆に大きくなると粒子の殻厚が薄くなって粒子強度が弱くなって粉体のハンドリング中やゴム又は樹脂との混練中に粒子が破壊する傾向にある。
<Inorganic hollow powder>
The average hollowness of the inorganic hollow powder of the present invention is 30% by volume or more and 90% by volume or less, and the average particle diameter is 0.1 μm or more and 30 μm or less. A more preferable upper limit of the average hollowness when the average particle diameter is 0.1 μm or more and 5 μm or less is 70% by volume, and a further preferable upper limit is 60% by volume. Further, when the average particle size is 5 μm or more and 30 μm or less, the preferable lower limit is 50% by volume, more preferable lower limit is 70% by volume, preferable upper limit is 90% by volume, and more preferable upper limit is 85% by volume. . If the average hollowness is reduced, the effect of improving the reflectivity due to the refractive index is difficult to obtain. Conversely, if the average hollowness is increased, the shell thickness of the particles is reduced and the particle strength is reduced, so that the powder is handled and kneaded with rubber or resin. The particles tend to break inside.
平均中空率とは、粒子の理論密度に対する粒子密度の実測値との比であると定義される。例えば、シリカ中空粒子の密度の実測値が1.1g/cm3である場合、その平均中空率は非晶質シリカの理論密度2.2g/cm3で割って50体積%と算出される。密度は、ピクノメーター法自動粉粒体真密度測定器(例えばセイシン企業社製商品名「オートトゥルーデンサーMAT−7000」)で測定される。 The average hollowness is defined as the ratio of the measured particle density to the theoretical density of the particles. For example, when the measured value of the density of the silica hollow particles is 1.1 g / cm 3 , the average hollow ratio is calculated as 50% by volume divided by the theoretical density of amorphous silica 2.2 g / cm 3 . The density is measured with a pycnometer automatic powder particle true density measuring instrument (for example, trade name “Auto True Densor MAT-7000” manufactured by Seishin Enterprise Co., Ltd.).
本発明の無機質中空粉体の平均粒子径はより好ましくは0.1μm以上20μm以下である。無機質中空粉体の平均粒子径を大きくすると表面の平滑性が損なわれる傾向にあり、小さくすると十分な中空率を得るためには殻厚が薄くって無機質中空粉体が破壊される傾向にあるため、上述の範囲が好ましい。 The average particle diameter of the inorganic hollow powder of the present invention is more preferably 0.1 μm or more and 20 μm or less. When the average particle size of the inorganic hollow powder is increased, the smoothness of the surface tends to be impaired. When the average particle size is decreased, the shell thickness is decreased and the inorganic hollow powder tends to be destroyed in order to obtain a sufficient hollow ratio. Therefore, the above range is preferable.
<平均粒子径測定法>
無機質中空粉体の平均粒子径、最大粒子径は、レーザー回折散乱法による粒度分布を測定して求める。粒度分布は、0.04μm以上2000μm以下の範囲をlog(μm)=0.04の幅で116分割にして測定される。測定機には、例えばベックマンコールター社製「モデルLS−230」がある。測定は、水と試料を混合し、超音波ホモジナイザーで、200Wの出力で1分間分散処理してから行う。PIDS(Polarization Intensity Differential Scattering)濃度を45質量%以上55質量%以下に調整する。水の屈折率には1.33を用い、試料の屈折率にはその材質の屈折率、例えば非晶質シリカでは1.50を用いる。
<Average particle size measurement method>
The average particle size and the maximum particle size of the inorganic hollow powder are obtained by measuring the particle size distribution by the laser diffraction scattering method. The particle size distribution is measured by dividing the range of 0.04 μm or more and 2000 μm or less into 116 divisions with a width of log (μm) = 0.04. An example of the measuring machine is “Model LS-230” manufactured by Beckman Coulter. The measurement is performed after mixing water and a sample, and dispersing with an ultrasonic homogenizer for 1 minute at an output of 200 W. The concentration of PIDS (Polarization Intensity Differential Scattering) is adjusted to 45 mass% or more and 55 mass% or less. The refractive index of water is 1.33, and the refractive index of the sample is the refractive index of the material, for example, 1.50 for amorphous silica.
<無機質中空粉体材質>
無機質中空粉体の材質には特に制限はなく、例えばシリカ、アルミナ、ジルコニア、チタニア、マグネシアの単体又は複合体があり、好ましくは、可視光の反射率が高くなるチタニア粒子が好ましい。
<Inorganic hollow powder material>
There are no particular limitations on the material of the inorganic hollow powder, and examples thereof include silica, alumina, zirconia, titania, and magnesia, or titania particles that have high visible light reflectivity.
<表面処理1>
本発明の無機質中空粉体は、例えばシランカップリング剤等の表面処理剤で処理されていることが好ましい。通常、無機質粉体の表面は親水性であるので、樹脂、有機溶剤など疎水性分散媒への分散性が良くないので、表面処理剤で処理しておくと分散性が改善される。また、無機質中空粉体の材質としてチタニアを用いる場合には光触媒作用抑制効果のある表面処理を施すことが好ましい。
<
The inorganic hollow powder of the present invention is preferably treated with a surface treatment agent such as a silane coupling agent. Usually, since the surface of the inorganic powder is hydrophilic, the dispersibility in a hydrophobic dispersion medium such as a resin or an organic solvent is not good. Therefore, when the surface is treated with a surface treatment agent, the dispersibility is improved. Further, when titania is used as the material of the inorganic hollow powder, it is preferable to perform a surface treatment having a photocatalytic action suppressing effect.
<表面処理2>
表面処理剤としては、シランカップリング剤、Zrキレート、チタネートカップリング剤、アルミニウム系カップリングなどを用いることができる。シランカップリング剤を例示すれば、例えばγ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、例えばアミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシランや、例えばフェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなどである。
また、光触媒作用抑制効果のある表面処理としては二酸化珪素又は水酸化アルミニウム等によるコーティングがある。
<
As the surface treatment agent, a silane coupling agent, a Zr chelate, a titanate coupling agent, an aluminum coupling, or the like can be used. Examples of silane coupling agents include epoxy silanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, such as aminopropyltriethoxysilane and ureidopropyltriethoxy. Examples thereof include aminosilanes such as silane and N-phenylaminopropyltrimethoxysilane, hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, and octadecyltrimethoxysilane, and mercaptosilane.
Further, as a surface treatment having a photocatalytic action suppressing effect, there is a coating with silicon dioxide or aluminum hydroxide.
<絶縁層中白色顔料/無機質中空粉体量>
絶縁層に白色顔料と無機質中空粉体の少なくとも一方又は双方を添加する場合の添加量は、絶縁層全体に対し白色顔料及び無機質中空粉体の合計量として5体積%以上50体積%以下が好ましく、更に好ましくは5体積%以上30体積%以下である。添加量が少ないと十分な反射率向上の効果が得られ難くなる傾向にあり、添加量が多いと十分な分散ができず凝集塊等を形成してしまう傾向にあるためである。白色顔料と無機質中空粉体の比率に特に制限はない。
<White pigment in insulating layer / amount of inorganic hollow powder>
The addition amount when adding at least one or both of the white pigment and the inorganic hollow powder to the insulating layer is preferably 5% by volume or more and 50% by volume or less as the total amount of the white pigment and the inorganic hollow powder with respect to the entire insulating layer. More preferably, it is 5 volume% or more and 30 volume% or less. This is because if the amount added is small, the effect of improving the reflectance sufficiently tends to be difficult to obtain, and if the amount added is large, sufficient dispersion cannot be achieved and aggregates and the like tend to be formed. There is no restriction | limiting in particular in the ratio of a white pigment and inorganic hollow powder.
<絶縁層二層化>
絶縁層の反射率及び絶縁信頼性を調整する場合に、絶縁層構造を二層構造とすることも可能である。絶縁層を二層構造とする場合には、内層となる一層目を絶縁性の高い絶縁層に、外層となる二層目を反射率の高い絶縁層に機能分離構造とすることが好ましい。また、所望の特性を得る為にそれぞれの絶縁層厚み比率を変更することがより効果的である。
<Double insulation layer>
When adjusting the reflectivity and insulation reliability of the insulating layer, the insulating layer structure can be a two-layer structure. In the case where the insulating layer has a two-layer structure, it is preferable that the first layer serving as an inner layer be a highly insulating insulating layer and the second layer serving as an outer layer be a function separating structure having a highly reflective insulating layer. In addition, it is more effective to change the thickness ratio of each insulating layer in order to obtain desired characteristics.
<助剤>
本発明の絶縁層には必要に応じてカップリング剤等の分散助剤、溶剤等の粘度調整助剤など公知の各種助剤を添加することが可能である。
<Auxiliary>
If necessary, the insulating layer of the present invention may contain various known auxiliaries such as a dispersion aid such as a coupling agent and a viscosity adjusting aid such as a solvent.
<金属基板・回路>
本発明の金属基板及び回路として使用する金属については、アルミニウム、鉄、銅の単体又はこれら金属の合金があり、熱放散性を考慮するとアルミニウム、銅の単体又は合金が好ましい。また、絶縁層との密着性を改良するために、絶縁層との接着面側に、サンドブラスト、エッチング、各種メッキ処理、カップリング剤処理等の表面処理も適宜選択可能である。
<Metal substrate / circuit>
The metal used as the metal substrate and circuit of the present invention includes aluminum, iron, copper alone or an alloy of these metals, and aluminum or copper alone or an alloy is preferable in consideration of heat dissipation. Further, in order to improve the adhesion to the insulating layer, surface treatment such as sandblasting, etching, various plating treatments, coupling agent treatment, etc. can be appropriately selected on the adhesive surface side with the insulating layer.
<金属基板厚み>
前記金属基板の厚さは0.013mm以上4mm以下が好ましく、更に好ましい下限は0.05mm、更に好ましい上限は0.50mmである。この厚みが薄いとハンドリング時にしわが生じる傾向にあり、厚くなっても技術的な限定は少ないが、あまりに厚くなると金属ベース回路基板としての用途が見いだせず、実用的でない。
<Metal substrate thickness>
The thickness of the metal substrate is preferably 0.013 mm or more and 4 mm or less, a more preferable lower limit is 0.05 mm, and a further preferable upper limit is 0.50 mm. If this thickness is thin, wrinkles tend to occur during handling, and there are few technical limitations even if it is thick, but if it is too thick, it will not be used as a metal base circuit board and is not practical.
<回路厚み>
前記回路の厚さは、あまりに薄いとバックライト用の回路基板として十分な導通回路を確保できない傾向にあり、あまりに厚いと回路形成の製造プロセス上の問題が生じる傾向にあるため、好ましくい下限は0.005mmであり、更に好ましい下限は0.03mmであり、好ましい上限は0.400mmであり、更に好ましい上限は0.30mmである。
<Circuit thickness>
If the thickness of the circuit is too thin, there is a tendency that a sufficient conduction circuit cannot be secured as a circuit board for a backlight, and if it is too thick, there is a tendency to cause a problem in the manufacturing process of circuit formation. The upper limit is 0.005 mm, the more preferable lower limit is 0.03 mm, the preferable upper limit is 0.400 mm, and the more preferable upper limit is 0.30 mm.
<絶縁層厚み>
本発明において、絶縁層の厚さは、80μm以上200μm以下が好ましい。この範囲が好ましいのは、あまりに薄いと電気絶縁性が確保できなくなる傾向にあり、あまりに厚いと熱放散性が低下する傾向にあり、さらに小型化や薄型化に寄与できなくなる傾向にあるためである。
<Insulation layer thickness>
In the present invention, the thickness of the insulating layer is preferably 80 μm or more and 200 μm or less. This range is preferable because if it is too thin, it tends to be impossible to ensure electrical insulation, and if it is too thick, heat dissipation tends to decrease, and further, it tends not to contribute to downsizing and thinning. .
<白色膜反射率>
本発明の金属ベース回路基板は絶縁層及び回路上に白色膜を設けることにより該白色膜表面は、400nm以上800nm以下の波長の光に対して70%以上の反射率を有する。好ましくは、該白色膜表面の450nm以上470nm以下、520nm以上570nm以下、及び620nm以上660nm以下のそれぞれの波長の範囲で反射率の最大値がいずれも80%以上、更に好ましくは85%以上である。
<White film reflectance>
In the metal base circuit board of the present invention, by providing a white film on the insulating layer and the circuit, the surface of the white film has a reflectance of 70% or more with respect to light having a wavelength of 400 nm to 800 nm. Preferably, the maximum reflectance is 80% or more, more preferably 85% or more in the respective wavelength ranges of 450 nm to 470 nm, 520 nm to 570 nm, and 620 nm to 660 nm on the surface of the white film. .
<白色膜・樹脂>
白色膜は通常レジスト材として使用される紫外線硬化樹脂、熱硬化樹脂の何れか一方を少なくとも含有する樹脂組成物に白色顔料及び無機質中空粉体を含有するものである。これら硬化性樹脂としてはエポキシ樹脂、アクリル樹脂及びこれらの混合物が好適に用いられるが、これらに制限されるものではない。
<White film / resin>
The white film contains a white pigment and an inorganic hollow powder in a resin composition containing at least one of an ultraviolet curable resin and a thermosetting resin usually used as a resist material. As these curable resins, epoxy resins, acrylic resins and mixtures thereof are preferably used, but are not limited thereto.
<白色膜・顔料>
前記白色膜に含有される白色顔料・無機質中空粉体としては、上述の絶縁層中に用いるものと同様のものを用いることが可能である。
<White film / pigment>
As the white pigment / inorganic hollow powder contained in the white film, those similar to those used in the above-mentioned insulating layer can be used.
<白色膜・顔料含有量>
白色膜中の白色顔料及び無機質中空粉体の含有量はその合計量で30体積%以上70体積%以下であり、より好ましくは30体積%以上60体積%以下である。あまりに少ないと十分な反射効果が得られず、あまりに多いと膜形成時の流動性が低下し均一な膜を形成できなくなる傾向にあるためである。白色顔料と無機質中空粉体の比率に特に制限はない。
<White film and pigment content>
The total content of the white pigment and the inorganic hollow powder in the white film is 30% to 70% by volume, more preferably 30% to 60% by volume. If the amount is too small, a sufficient reflection effect cannot be obtained. If the amount is too large, the fluidity at the time of film formation tends to be lowered and a uniform film tends not to be formed. There is no restriction | limiting in particular in the ratio of a white pigment and inorganic hollow powder.
回路上に形成した白色膜にはLEDの搭載部は配線部に開口部を任意に設けることが可能である。 In the white film formed on the circuit, the LED mounting portion can be arbitrarily provided with an opening in the wiring portion.
(実施例1)
35μm厚の銅箔上に、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「EP−828」)対し、硬化剤としてフェノールノボラック(大日本インキ化学工業社製、「TD−2131」)を加え、平均粒子径が1.2μmである破砕状粗粒子の酸化珪素(龍森社製、「A−1」)と平均粒子径が10μmである破砕状粗粒子の酸化珪素(龍森社製、「5X」)を合わせて絶縁層中56体積%(球状粗粒子と球状微粒子は質量比が7:3)となるように配合し、硬化後の厚さが150μmになるように絶縁層を形成した。つぎに、200μm厚のアルミ箔を貼り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の無機フィラー全体でナトリウムイオン濃度が50ppm以下である金属ベース基板を得た。
得られた金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエッチングした後、エッチングレジストを除去して銅回路を形成し金属ベース回路基板とした。さらに、金属ベース回路基板上に高反射率の白色膜を形成するために、白色ソルダーレジスト層を塗布し、熱及び紫外線で硬化した。この時、銅回路上のLEDパッケージ実装部分には白色塗膜を形成しない。白色ソルダーレジストとしては、山栄化学社製、「SSR−6300S」に平均粒径0.4μm、中空率35%の酸化チタン中空粉を5体積%添加し用いた。
得られた基板について反射率の測定を行うとともに、図4に示す様に出力3Wクラスの青色、赤色、緑色のLEDを実装し色彩輝度計(トプコンテクノハウス社製BM−7)により輝度測定を行った。評価結果を表1に示す。
Example 1
Add a phenol novolac (Dainippon Ink & Chemicals, "TD-2131") as a curing agent to bisphenol A type epoxy resin (Japan Epoxy Resin, "EP-828") on a 35 µm thick copper foil In addition, silicon oxide of crushed coarse particles having an average particle diameter of 1.2 μm (manufactured by Tatsumori Co., Ltd., “A-1”) and silicon oxide of crushed coarse particles having an average particle diameter of 10 μm (manufactured by Tatsumori Co., Ltd., “5X”) is combined so that the volume of the insulating layer is 56% by volume (spherical coarse particles and spherical fine particles have a mass ratio of 7: 3), and the insulating layer is formed so that the thickness after curing is 150 μm. did. Next, an aluminum foil having a thickness of 200 μm was bonded and heated to thermally cure the insulating layer, thereby obtaining a metal base substrate having a sodium ion concentration of 50 ppm or less in the entire inorganic filler in the insulating layer.
About the obtained metal base substrate, a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a copper circuit to obtain a metal base circuit substrate. Further, in order to form a white film having a high reflectance on the metal base circuit board, a white solder resist layer was applied and cured with heat and ultraviolet rays. At this time, a white coating film is not formed on the LED package mounting portion on the copper circuit. As the white solder resist, 5% by volume of titanium oxide hollow powder having an average particle size of 0.4 μm and a hollow ratio of 35% was added to “SSR-6300S” manufactured by Yamaei Chemical Co., Ltd.
The reflectance of the obtained substrate is measured, and as shown in FIG. 4, blue, red, and green LEDs with an output of 3 W class are mounted, and the luminance is measured with a color luminance meter (Topcon Technohouse BM-7). went. The evaluation results are shown in Table 1.
(実施例2)
絶縁層中に更に平均粒径0.4μm、中空率35%の酸化チタン中空粉を5体積%添加した以外は実施例1と同様にして金属ベース回路基板を得た。
(Example 2)
A metal base circuit board was obtained in the same manner as in Example 1 except that 5% by volume of titanium oxide hollow powder having an average particle size of 0.4 μm and a hollow rate of 35% was further added to the insulating layer.
(実施例3)
絶縁材層中の酸化珪素(龍森社製、「A−1」)と酸化珪素(龍森社製、「5X」)の添加量を絶縁層中46体積%(球状粗粒子と球状微粒子は質量比が7:3)となるように添加し、更に白色顔料として二酸化チタン(石原産業株式会社PFC104)を絶縁層中10体積%添加した以外は実施例1と同様にして金属ベース回路基板を得た。
(Example 3)
The addition amount of silicon oxide (“A-1” manufactured by Tatsumori Co., Ltd.) and silicon oxide (“5X” manufactured by Tatsumori Co., Ltd.) in the insulating material layer is 46% by volume (spherical coarse particles and spherical fine particles are A metal base circuit board was prepared in the same manner as in Example 1 except that titanium dioxide (Ishihara Sangyo Co., Ltd. PFC104) was added as a white pigment in an amount of 10% by volume in the insulating layer. Obtained.
(実施例4)
絶縁層中に更に平均粒径0.4μm、中空率35%の酸化チタン中空粉を5体積%添加した以外は実施例3と同様にして金属ベース回路基板を得た。
Example 4
A metal base circuit board was obtained in the same manner as in Example 3 except that 5% by volume of titanium oxide hollow powder having an average particle size of 0.4 μm and a hollow ratio of 35% was added to the insulating layer.
得られた基板について反射率の測定を行うとともに、図4に示す様に出力3Wクラスの青色、赤色、緑色のLEDを実装し色彩輝度計(トプコンテクノハウス社製BM−7)により輝度測定を行った。評価結果を表1に示す。 The reflectance of the obtained substrate is measured, and as shown in FIG. 4, blue, red, and green LEDs with an output of 3 W class are mounted, and the luminance is measured with a color luminance meter (Topcon Technohouse BM-7). went. The evaluation results are shown in Table 1.
本発明の金属ベース回路基板は、LEDパッケージを実装する金属ベース基板表面に高反射率の白色塗膜を形成しているので、通常のプリント回路基板と類似の構成のまま光反射機能を有している。このため、高価な光反射シートを使用しなくてもLED光源の反射光を液晶部分に供給することができる。また、液晶バックライト製造時の工数を削減することもでき、効率的であり、LED用の金属べース回路基板として産業上極めて有用である。 Since the metal base circuit board of the present invention has a white coating film with high reflectivity formed on the surface of the metal base board on which the LED package is mounted, the metal base circuit board has a light reflection function with a configuration similar to that of a normal printed circuit board. ing. For this reason, the reflected light of the LED light source can be supplied to the liquid crystal part without using an expensive light reflecting sheet. Moreover, the man-hour at the time of liquid-crystal backlight manufacture can also be reduced, it is efficient, and it is very useful industrially as a metal base circuit board for LED.
11 金属箔
12 絶縁層
13 回路
14 白色膜
15 半田接合部
16 LEDパッケージ
21 金属箔
22 絶縁層1層目
23 絶縁層2層目
24 回路1層目
25 金属柱
26 回路2層目
27 白色膜
28 半田接合部
29 LEDパッケージ
31 積分球
32 検出器
33 入射光用の窓
34 測定試料
35 入射光
36 反射光
41 基板
42 緑色LED
43 赤色LED
44 青色LED
11 Metal foil 12 Insulating layer 13 Circuit 14 White film
15 Solder joint 16 LED package 21 Metal foil 22 Insulating layer first layer 23 Insulating layer second layer 24 Circuit first layer
25 Metal Pillar 26 Circuit Second Layer 27 White Film 28 Solder Joint 29 LED Package 31 Integrating
43 Red LED
44 Blue LED
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007305388A JP2009129801A (en) | 2007-11-27 | 2007-11-27 | Metal base circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007305388A JP2009129801A (en) | 2007-11-27 | 2007-11-27 | Metal base circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009129801A true JP2009129801A (en) | 2009-06-11 |
Family
ID=40820513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007305388A Pending JP2009129801A (en) | 2007-11-27 | 2007-11-27 | Metal base circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009129801A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118108A1 (en) * | 2010-03-23 | 2011-09-29 | 株式会社朝日ラバー | Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate |
JP2012074416A (en) * | 2010-09-27 | 2012-04-12 | Sekisui Chem Co Ltd | Die-bonding material for optical semiconductor device and optical semiconductor device using the same |
WO2012046370A1 (en) * | 2010-10-06 | 2012-04-12 | 日本発條株式会社 | Metal base circuit board |
CN102473824A (en) * | 2009-06-26 | 2012-05-23 | 株式会社朝日橡胶 | White color reflecting material and process for production thereof |
CN103200764A (en) * | 2012-01-05 | 2013-07-10 | 佳能元件股份有限公司 | Flexible printed circuit, illumination apparatus, capsule endoscope and vehicle lighting apparatus |
JP2013157341A (en) * | 2012-01-05 | 2013-08-15 | Canon Components Inc | Led illumination apparatus |
JP2014221915A (en) * | 2014-07-31 | 2014-11-27 | 株式会社カネカ | Heat-conductive curable resin composition and curable resin molded article |
US8963012B2 (en) | 2011-01-17 | 2015-02-24 | Canon Components, Inc. | Flexible circuit board |
US9232634B2 (en) | 2011-01-17 | 2016-01-05 | Canon Components, Inc. | Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus |
JP2016525792A (en) * | 2013-07-09 | 2016-08-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Method of manufacturing a printed circuit board assembly based on printed electronic device fabrication technology and printed circuit board assembly |
CN106356343A (en) * | 2015-07-17 | 2017-01-25 | 株式会社神户制钢所 | Heat dissipation substrate, heat dissipation device, and manufacturing method of heat dissipation substrate |
US9799812B2 (en) | 2014-05-09 | 2017-10-24 | Kyocera Corporation | Light emitting element mounting substrate and light emitting device |
WO2018198982A1 (en) | 2017-04-27 | 2018-11-01 | 京セラ株式会社 | Circuit board and light-emitting device provided with same |
US10326066B2 (en) | 2015-10-29 | 2019-06-18 | Kyocera Corporation | Light emitting element-mounting substrate and light emitting apparatus |
WO2021038771A1 (en) * | 2019-08-28 | 2021-03-04 | 昭和電工マテリアルズ株式会社 | Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device |
US11304291B2 (en) | 2017-06-29 | 2022-04-12 | Kyocera Corporation | Circuit board and light emitting device including circuit board |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0278102A (en) * | 1987-12-24 | 1990-03-19 | Mitsubishi Cable Ind Ltd | light emitting diode lighting equipment |
JPH0963329A (en) * | 1995-08-30 | 1997-03-07 | Minnesota Mining & Mfg Co <3M> | Reflection sheet for liquid-crystal backlight |
JP2001237508A (en) * | 2000-02-24 | 2001-08-31 | Matsushita Electric Works Ltd | Manufacturing method of circuit board |
JP2002322372A (en) * | 2001-04-26 | 2002-11-08 | Denki Kagaku Kogyo Kk | Resin composition and metal-based circuit board using the same |
JP2003133596A (en) * | 2001-10-26 | 2003-05-09 | Matsushita Electric Works Ltd | High heat conductive three-dimensional substrate, manufacturing method therefor and led display device |
JP2005251778A (en) * | 2004-03-01 | 2005-09-15 | Denki Kagaku Kogyo Kk | Metal base circuit board |
JP2006517738A (en) * | 2003-02-07 | 2006-07-27 | 松下電器産業株式会社 | Metal base substrate for light emitter, light emission source, illumination device and display device |
JP2006198975A (en) * | 2005-01-24 | 2006-08-03 | Toyo Kohan Co Ltd | Reflector |
JP2006303082A (en) * | 2005-04-19 | 2006-11-02 | Denki Kagaku Kogyo Kk | Metal base circuit board, manufacturing method thereof, and hybrid integrated circuit using the same |
JP2007235085A (en) * | 2006-02-03 | 2007-09-13 | Hitachi Chem Co Ltd | Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same |
-
2007
- 2007-11-27 JP JP2007305388A patent/JP2009129801A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0278102A (en) * | 1987-12-24 | 1990-03-19 | Mitsubishi Cable Ind Ltd | light emitting diode lighting equipment |
JPH0963329A (en) * | 1995-08-30 | 1997-03-07 | Minnesota Mining & Mfg Co <3M> | Reflection sheet for liquid-crystal backlight |
JP2001237508A (en) * | 2000-02-24 | 2001-08-31 | Matsushita Electric Works Ltd | Manufacturing method of circuit board |
JP2002322372A (en) * | 2001-04-26 | 2002-11-08 | Denki Kagaku Kogyo Kk | Resin composition and metal-based circuit board using the same |
JP2003133596A (en) * | 2001-10-26 | 2003-05-09 | Matsushita Electric Works Ltd | High heat conductive three-dimensional substrate, manufacturing method therefor and led display device |
JP2006517738A (en) * | 2003-02-07 | 2006-07-27 | 松下電器産業株式会社 | Metal base substrate for light emitter, light emission source, illumination device and display device |
JP2005251778A (en) * | 2004-03-01 | 2005-09-15 | Denki Kagaku Kogyo Kk | Metal base circuit board |
JP2006198975A (en) * | 2005-01-24 | 2006-08-03 | Toyo Kohan Co Ltd | Reflector |
JP2006303082A (en) * | 2005-04-19 | 2006-11-02 | Denki Kagaku Kogyo Kk | Metal base circuit board, manufacturing method thereof, and hybrid integrated circuit using the same |
JP2007235085A (en) * | 2006-02-03 | 2007-09-13 | Hitachi Chem Co Ltd | Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102473824A (en) * | 2009-06-26 | 2012-05-23 | 株式会社朝日橡胶 | White color reflecting material and process for production thereof |
US8704258B2 (en) | 2009-06-26 | 2014-04-22 | Asahi Rubber Inc. | White color reflecting material and process for production thereof |
KR101821101B1 (en) * | 2009-06-26 | 2018-01-22 | 가부시키가이샤 아사히 러버 | White color reflecting material and process for production thereof |
JP2014078041A (en) * | 2009-06-26 | 2014-05-01 | Asahi Rubber Inc | White reflector |
EP2448026A4 (en) * | 2009-06-26 | 2013-08-14 | Asahi Rubber Inc | REFLECTIVE MATERIAL OF WHITE COLOR AND PRODUCTION PROCESS |
US9574050B2 (en) | 2010-03-23 | 2017-02-21 | Asahi Rubber Inc. | Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate |
JP2014129549A (en) * | 2010-03-23 | 2014-07-10 | Asahi Rubber Inc | Silicone resin reflective substrate, method for manufacturing the same, and raw material composition used in the reflective substrate |
JPWO2011118109A1 (en) * | 2010-03-23 | 2013-07-04 | 株式会社朝日ラバー | Flexible reflective substrate, method for producing the same, and raw material composition used for the reflective substrate |
US11326065B2 (en) | 2010-03-23 | 2022-05-10 | Asahi Rubber Inc. | Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate |
WO2011118108A1 (en) * | 2010-03-23 | 2011-09-29 | 株式会社朝日ラバー | Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate |
US10533094B2 (en) | 2010-03-23 | 2020-01-14 | Asahi Rubber Inc. | Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate |
JP5519774B2 (en) * | 2010-03-23 | 2014-06-11 | 株式会社朝日ラバー | Silicone resin reflective substrate, method for producing the same, and raw material composition used for the reflective substrate |
WO2011118109A1 (en) * | 2010-03-23 | 2011-09-29 | 株式会社朝日ラバー | Flexible reflective substrate, manufacturing method for same, and base material composition for use in reflective substrate |
JP2012074416A (en) * | 2010-09-27 | 2012-04-12 | Sekisui Chem Co Ltd | Die-bonding material for optical semiconductor device and optical semiconductor device using the same |
JP2012084567A (en) * | 2010-10-06 | 2012-04-26 | Nhk Spring Co Ltd | Metal base circuit board |
KR101366857B1 (en) | 2010-10-06 | 2014-02-21 | 닛폰 하츠죠 가부시키가이샤 | Metal base circuit board |
CN103155721A (en) * | 2010-10-06 | 2013-06-12 | 日本发条株式会社 | Metal base circuit board |
WO2012046370A1 (en) * | 2010-10-06 | 2012-04-12 | 日本発條株式会社 | Metal base circuit board |
US8963012B2 (en) | 2011-01-17 | 2015-02-24 | Canon Components, Inc. | Flexible circuit board |
US9232634B2 (en) | 2011-01-17 | 2016-01-05 | Canon Components, Inc. | Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus |
JP2013157341A (en) * | 2012-01-05 | 2013-08-15 | Canon Components Inc | Led illumination apparatus |
JP2013157592A (en) * | 2012-01-05 | 2013-08-15 | Canon Components Inc | Flexible circuit board for mounting light emitting element |
CN103200764A (en) * | 2012-01-05 | 2013-07-10 | 佳能元件股份有限公司 | Flexible printed circuit, illumination apparatus, capsule endoscope and vehicle lighting apparatus |
EP2613616A3 (en) * | 2012-01-05 | 2015-04-22 | Canon Components, Inc. | Flexible printed circuit for mounting light emitting element, and illumination apparatus, capsule endoscope and vehicle lighting apparatus incorporating the same |
JP2016525792A (en) * | 2013-07-09 | 2016-08-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Method of manufacturing a printed circuit board assembly based on printed electronic device fabrication technology and printed circuit board assembly |
US9799812B2 (en) | 2014-05-09 | 2017-10-24 | Kyocera Corporation | Light emitting element mounting substrate and light emitting device |
JP2014221915A (en) * | 2014-07-31 | 2014-11-27 | 株式会社カネカ | Heat-conductive curable resin composition and curable resin molded article |
CN106356343A (en) * | 2015-07-17 | 2017-01-25 | 株式会社神户制钢所 | Heat dissipation substrate, heat dissipation device, and manufacturing method of heat dissipation substrate |
US10326066B2 (en) | 2015-10-29 | 2019-06-18 | Kyocera Corporation | Light emitting element-mounting substrate and light emitting apparatus |
EP3618129A4 (en) * | 2017-04-27 | 2021-01-13 | KYOCERA Corporation | CIRCUIT BOARD AND LIGHT EMITTING DEVICE WITH IT |
US10950768B2 (en) | 2017-04-27 | 2021-03-16 | Kyocera Corporation | Circuit board and light-emitting device provided with same |
WO2018198982A1 (en) | 2017-04-27 | 2018-11-01 | 京セラ株式会社 | Circuit board and light-emitting device provided with same |
US11304291B2 (en) | 2017-06-29 | 2022-04-12 | Kyocera Corporation | Circuit board and light emitting device including circuit board |
WO2021038771A1 (en) * | 2019-08-28 | 2021-03-04 | 昭和電工マテリアルズ株式会社 | Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device |
JPWO2021038771A1 (en) * | 2019-08-28 | 2021-03-04 | ||
CN114127184A (en) * | 2019-08-28 | 2022-03-01 | 昭和电工材料株式会社 | Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009129801A (en) | Metal base circuit board | |
KR101555386B1 (en) | Metal base circuit board | |
JP2009004718A (en) | Metal base circuit board | |
CN104282828B (en) | Luminescent device | |
US7661841B2 (en) | Illumination device and display device provided with the same | |
TWI441574B (en) | Metal base circuit substrate | |
EP2573454A1 (en) | Lighting device | |
KR20150065595A (en) | Light emitting device | |
JPWO2007007582A1 (en) | Backlight and liquid crystal display device using the same | |
US20090052157A1 (en) | Light emitting device and lighting apparatus | |
CN106980205A (en) | Display device | |
JP2017117867A (en) | Light-emitting device | |
US8258528B2 (en) | Semiconductor light-emitting device | |
KR20150040608A (en) | Liquid crystal display device having backlight unit using quantum dot | |
JP2007308345A (en) | Transparent particle having high refractive index and transparent composite having high refractive index using it as well as light emitting element | |
JP2009130234A (en) | Circuit board and LED module having circuit board | |
US20170040505A1 (en) | Surface-modified phosphor and light emitting device | |
CN106067280A (en) | Display device and manufacture method thereof | |
JP2005306718A (en) | Inorganic powder, resin composition filled with the powder, and use thereof | |
KR100632759B1 (en) | Light-blocking anisotropically electroconductive adhesive film, and liquid crystal display device | |
CN113646909A (en) | Dispersion, composition, sealing member, light-emitting device, lighting device, display device, and method for producing dispersion | |
JP2021170631A (en) | Wavelength conversion member and method for manufacturing the same | |
WO2013118752A1 (en) | Coverlay film, printed wiring board to be equipped with light-emitting element, and light source device | |
KR101997250B1 (en) | Light emitting device and lighting systme having thereof | |
WO2005037942A1 (en) | Optical reflection paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120328 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130604 |