[go: up one dir, main page]

JP2009119879A - High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method - Google Patents

High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method Download PDF

Info

Publication number
JP2009119879A
JP2009119879A JP2009051636A JP2009051636A JP2009119879A JP 2009119879 A JP2009119879 A JP 2009119879A JP 2009051636 A JP2009051636 A JP 2009051636A JP 2009051636 A JP2009051636 A JP 2009051636A JP 2009119879 A JP2009119879 A JP 2009119879A
Authority
JP
Japan
Prior art keywords
copper
clad laminate
thermosetting resin
drilling
glass cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051636A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Hidenori Kanehara
秀憲 金原
Nobuyuki Ikeguchi
信之 池口
Masakazu Mogi
雅一 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009051636A priority Critical patent/JP2009119879A/en
Publication of JP2009119879A publication Critical patent/JP2009119879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-clad laminate which has a high elastic modulus and is high in quality at through-holes and via holes by carbon dioxide laser drilling. <P>SOLUTION: In the high elastic modulus copper-clad laminate of a thermosetting resin-impregnated glass fabric base material for laser drilling and the method of drilling laminate holes of a diameter of ≤0.15 mm are formed by lasers through a copper-clad laminate having at least one copper foil layer which is laminated on a prepreg obtained by impregnating a thermosetting resin in a glass fabric base material of a thickness of 25-150 μm, the weight of 15-165 g/m<SP>2</SP>and an air permeability of 1-20 cm<SP>3</SP>/cm<SP>2</SP>/sec and drying the base material. The laminate allows the formation of through-holes and the via holes at a high speed. The obtained copper-clad laminate has holes with smooth walls and excellent reliability in connection between inner copper foil and front and back copper foil. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高弾性率のガラス布基材銅張積層板及び孔あけ方法に関する。加えて、メカニカルドリルに代わる、高出力の炭酸ガスレーザーを照射して非常に小径の貫通孔及び/或いはビア孔の形成に適した高密度のガラス布基材銅張積層板及び孔あけ方法に関する。この銅張積層板を用いたプリント配線板は、主として薄型で小型のチップスケールパッケージ(CSP)等の半導体プラスチックパッケージ用としての使用に適している。   The present invention relates to a glass cloth-based copper-clad laminate having a high elastic modulus and a drilling method. In addition, the present invention relates to a high-density glass cloth-based copper-clad laminate suitable for forming a very small diameter through hole and / or via hole by irradiating a high-power carbon dioxide laser instead of a mechanical drill, and a drilling method . A printed wiring board using this copper-clad laminate is suitable for use as a semiconductor plastic package such as a thin and small chip scale package (CSP).

従来、薄型のチップスケールパッケージ(CSP)等に使用される基材としては、ガラスエポキシ材、ポリイミドフィルム材、セラミック材等の薄い板が主に使用されている。これらのパッケージ類のハンダボール間隔は、0.8mm以下が一般的である。しかしながら、近年、ますます薄型、小型、軽量化するプリント配線板において、ハンダボールピッチはますます狭くなってきており、その結果ライン/スペースも狭くなってきている。このため、細線の回路を形成するのに適した表面平滑度の良い銅張積層板が要求されている。更にはスルーホール用貫通孔、ビア孔も小径となり、孔径が0.15mmφ以下となってきている。このような小径の孔をあける場合、ドリル径が細いと、孔あけ時にドリルが曲がる、折れる、加工速度が遅い等の欠点があり、生産性、信頼性等に問題を生じていた。さらに、上下の銅箔にあらかじめネガフィルムを使用して所定の方法で同じ大きさの孔をあけておき、炭酸ガスレーザーで上下を貫通するスルーホールを形成しようとすると、上下の孔の位置にズレを生じ、ランドが形成しにくい等の欠点があった。
また、ガラス布基材の熱硬化性樹脂銅張積層板にビア孔をあける場合、予め表面の銅箔をエッチング除去しておき、低出力の炭酸ガスレーザーエネルギーを照射してビア孔を形成していたが、ビア孔壁にケバが残る等の問題があった。加えて、予め銅箔をエッチング除去する工程が介在するため、作業性が悪かった。また、高出力の炭酸ガスレーザーエネルギーで孔をあけた場合には、孔壁の樹脂層とガラス層の加工速度が異なるため、孔壁の凹凸が大きくなり、孔品質が悪くなるという問題があった。
Conventionally, as a substrate used for a thin chip scale package (CSP) or the like, a thin plate such as a glass epoxy material, a polyimide film material, or a ceramic material is mainly used. The solder ball interval of these packages is generally 0.8 mm or less. However, in recent years, in printed wiring boards that are becoming thinner, smaller, and lighter, the solder ball pitch is becoming increasingly narrower, and as a result, the line / space is also becoming narrower. For this reason, there is a demand for a copper-clad laminate with good surface smoothness that is suitable for forming thin-line circuits. Furthermore, the through hole for the through hole and the via hole have a small diameter, and the hole diameter is 0.15 mmφ or less. When drilling such a small diameter hole, if the drill diameter is small, the drill may be bent at the time of drilling, bend, or have a slow processing speed, which causes problems in productivity, reliability, and the like. In addition, if negative holes are used in the upper and lower copper foils in advance and holes of the same size are made in a predetermined manner, and a through-hole that penetrates the upper and lower sides with a carbon dioxide gas laser is formed, the positions of the upper and lower holes are There were drawbacks such as the occurrence of displacement and the difficulty of forming lands.
In addition, when making a via hole in the thermosetting resin copper clad laminate of a glass cloth substrate, the copper foil on the surface is removed by etching in advance, and a via hole is formed by irradiating low-power carbon dioxide laser energy. However, there were problems such as leaving marks on the via hole walls. In addition, the workability was poor because a step of etching and removing the copper foil in advance was involved. In addition, when holes are drilled with high-power carbon dioxide laser energy, the processing speed of the resin layer and the glass layer on the hole wall is different, resulting in a problem that the unevenness of the hole wall increases and the hole quality deteriorates. It was.

本発明は、以上の問題点を解決した、高出力の炭酸ガスレーザーで、小径の孔を高速で、かつ信頼性の高い孔壁を形成できる銅張積層板及び孔あけ方法の提供を目的とする。   An object of the present invention is to provide a copper-clad laminate and a drilling method capable of forming a hole wall having a small diameter at high speed and with high reliability by using a high-power carbon dioxide laser that solves the above problems. To do.

本発明は、特に薄型、小型、軽量のプリント配線板を作るのに適したガラス布基材に熱硬化性樹脂組成物を含浸したプリプレグを用いて積層成形された少なくとも1層以上の銅箔層を有するレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板及び孔あけ方法に関する。この基材として厚さ25〜150μm、重量15〜165g/m、且つ通気度1〜20cm/cm/sec.のガラス織布を用いて、少なくとも1層以上の銅箔層を有する銅張積層板とすることにより、表面平滑性に優れ、高弾性率で、且つ高エネルギーの炭酸ガスレーザーで小径の孔あけを行った場合に、積層板中の孔壁が均質なものが得られることを見出した。
さらには、熱硬化性樹脂組成物中に絶縁性無機充填剤を添加することにより、より一層弾性率、炭酸ガスレーザーによる小径孔壁の品質の優れたものが提供される。加えて熱硬化性樹脂として多官能性シアン酸エステル、該シアン酸エステルプレポリマーを必須成分として使用することにより、得られた銅張積層板は吸湿後の電気絶縁性、耐マイグレーション性、耐熱性等に優れたものが得られることを見出した。また、孔あけは、両面銅張積層板だけでなく、同様の樹脂組成を用いて得られた多層板でも実施し得る。これらの銅張板は、直接YAG(UV)レーザーで孔あけする場合でも、好適に使用し得る。
The present invention provides at least one or more copper foil layers formed by lamination using a prepreg impregnated with a thermosetting resin composition on a glass cloth substrate particularly suitable for making a thin, small, and lightweight printed wiring board. The present invention relates to a high elastic modulus glass cloth base thermosetting resin copper-clad laminate for laser drilling and a drilling method. Copper having at least one copper foil layer using a glass woven fabric having a thickness of 25 to 150 μm, a weight of 15 to 165 g / m 2 , and an air permeability of 1 to 20 cm 3 / cm 2 / sec. By using a stretched laminate, a uniform hole wall in the laminate can be obtained when drilling small diameters with a carbon dioxide gas laser with excellent surface smoothness, high elastic modulus, and high energy. I found out.
Furthermore, by adding an insulating inorganic filler to the thermosetting resin composition, it is possible to further improve the elastic modulus and the quality of the small-diameter hole wall by the carbon dioxide laser. In addition, by using a polyfunctional cyanate ester as a thermosetting resin and the cyanate ester prepolymer as essential components, the resulting copper-clad laminate has electrical insulation, migration resistance and heat resistance after moisture absorption. It was found that an excellent product can be obtained. Further, the perforation can be carried out not only on the double-sided copper-clad laminate but also on a multilayer board obtained using the same resin composition. These copper-clad plates can be suitably used even when directly drilling with a YAG (UV) laser.

本発明によれば、ガラス布基材としての厚み25〜150μm、重量15〜165g/m、且つ通気度120cm/cm/sec. の織布に熱硬化性樹脂を含浸乾燥して得られたプリプレグを用いたガラス布基材熱硬化性樹脂銅張積層板を提供される。本発明によれば、銅張積層板の表面は平滑で、板は高弾性率であり、極薄のプリント配線板とした時に反り、ネジレの僅かな熱硬化性樹脂銅張積層板が提供される。
本発明によれば、さらに、熱硬化性樹脂として多官能性シアン酸エステル組成物を用い、絶縁性無機充填剤を配合して得られた、ガラス布基材熱硬化性樹脂層の1層あたりの絶縁層の厚み30〜150μmの高弾性率を有する銅張積層板、多層板が提供される。この銅張積層板は、高出力の炭酸ガスレーザーを直接照射して貫通孔、ビア孔を形成でき、得られた孔壁は凹凸が少なく、均質で、スルーホール及びビア孔の吸湿後の電気絶縁性、耐マイグレーション性等の信頼性に優れ、耐熱性等にも優れたプリント配線板が得られた。これを使用した半導体プラスチックパッケージは、ソリも小さく、マザーボードへの接続性についても良好なものを得ることができた。
According to the present invention, a woven fabric having a thickness of 25 to 150 μm, a weight of 15 to 165 g / m 2 , and an air permeability of 120 cm 3 / cm 2 / sec. A glass cloth base thermosetting resin copper-clad laminate using the prepared prepreg is provided. According to the present invention, the surface of the copper clad laminate is smooth, the plate has a high elastic modulus, warps when used as an extremely thin printed wiring board, and a thermosetting resin copper clad laminate having a slight twist is provided. The
According to the present invention, the polyfunctional cyanate ester composition is further used as a thermosetting resin, and is obtained by blending an insulating inorganic filler, per glass cloth base thermosetting resin layer. A copper-clad laminate and a multilayer board having a high elastic modulus with an insulating layer thickness of 30 to 150 μm are provided. This copper clad laminate can form through holes and via holes by directly irradiating a high-power carbon dioxide laser, and the resulting hole wall has few irregularities and is uniform, and the electric power after moisture absorption of the through holes and via holes is achieved. A printed wiring board having excellent reliability such as insulation and migration resistance and excellent heat resistance was obtained. A semiconductor plastic package using this has a small warp and a good connection to the mother board.

ガラス布基材銅張積層板の基材として、厚さ25〜150μm、重量15〜165g/m、且つ通気度が1〜20cm/cm/sec.のガラス織布を用いて、これに熱硬化性樹脂組成物、好適には絶縁性無機充填剤が10〜80重量%、好ましくは20〜70重量%となるように配合し、均一に混合する。更に熱硬化性樹脂として、多官能性シアン酸エステル、該シアン酸エステルプレポリマーを必須成分として使用することにより、銅張積層板の積層板自体の弾性率が向上し、特に薄いプリント配線板に使用する場合、ソリ等の発生が抑えられる。更に炭酸ガスレーザーでの孔あけにおいて、孔壁の均質な小径のスルーホール用貫通孔及び/又はビア孔が形成でき、耐熱性、吸湿後の電気絶縁性、耐マイグレーション性等に優れたものが作成される。 As a glass cloth base material, a glass woven cloth having a thickness of 25 to 150 μm, a weight of 15 to 165 g / m 2 and an air permeability of 1 to 20 cm 3 / cm 2 / sec. The thermosetting resin composition, suitably the insulating inorganic filler, is blended so as to be 10 to 80% by weight, preferably 20 to 70% by weight, and mixed uniformly. Furthermore, by using a polyfunctional cyanate ester and the cyanate ester prepolymer as essential components as a thermosetting resin, the elastic modulus of the copper-clad laminate itself is improved, especially for thin printed wiring boards. When used, the generation of warp is suppressed. Furthermore, in the drilling with a carbon dioxide laser, through holes for via holes and / or via holes with a uniform small diameter on the hole wall can be formed, and those having excellent heat resistance, electrical insulation after moisture absorption, migration resistance, etc. Created.

本発明で得られる両面銅張積層板、銅張多層板は、ガラス織布を基材とし、熱硬化性樹脂組成物中には好ましくは無機絶縁性充填剤を10〜80重量%、さらに好ましくは20〜70重量%混合して、均質とした構成の両面銅張板である。   The double-sided copper-clad laminate and copper-clad multilayer board obtained in the present invention are based on a glass woven fabric, and preferably 10 to 80% by weight, more preferably an inorganic insulating filler in the thermosetting resin composition. Is a double-sided copper-clad plate having a homogeneous structure mixed with 20 to 70% by weight.

基材としては、一般に公知のガラス繊維の織布が使用できる。具体的には、ガラス繊維としてはE、S、D、N、Tクォーツ等、一般に公知のものが挙げられる。また、織り方は公知のものが使用できるが、平織り、ななこ織り、綾織り等が好適に用いられ、これを開繊したものが好適に使用される。ガラス織布としては、厚み25〜150μm、重量15〜165g/cm、且つ通気度1〜20cm/cm/sec. のものを使用する。 As the substrate, generally known glass fiber woven fabrics can be used. Specifically, examples of the glass fiber include generally known ones such as E, S, D, N, and T quartz. Moreover, although a well-known thing can be used for a weaving method, a plain weave, a nanako weave, a twill weave etc. are used suitably, and what opened this is used suitably. A glass woven fabric having a thickness of 25 to 150 μm, a weight of 15 to 165 g / cm 2 , and an air permeability of 1 to 20 cm 3 / cm 2 / sec. Is used.

本発明で使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工でのスルーホール形状の点からは、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。   As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include epoxy resins, polyfunctional cyanate ester resins, polyfunctional maleimide-cyanate ester resins, polyfunctional maleimide resins, unsaturated group-containing polyphenylene ether resins, and the like. Are used in combination. From the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition with a glass transition temperature of 150 ° C. or higher is preferable, moisture resistance, migration resistance, electrical characteristics after moisture absorption, etc. From this point, a polyfunctional cyanate ester resin composition is preferred.

本発明の熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などである。   The polyfunctional cyanate ester compound which is the thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolac with cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149号広報等に記載の多官能性シアン酸エステル化合物類も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
In addition to these, the multifunctionality described in JP-B-41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853 and JP-A-51-63149 Cyanate ester compounds may also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate ester compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by reaction of polyols, hydroxyl group-containing silicon resins and epohalohydrin, and the like. These may be used alone or in combination of two or more.

ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57-005406 に記載の末端三重結合のポリイミド類が挙げられる。   As the polyimide resin, generally known resins can be used. Specific examples include reaction products of polyfunctional maleimides and polyamines and terminal triple bond polyimides described in JP-B-57-005406.

これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。   These thermosetting resins can be used alone, but are preferably used in combination as appropriate in consideration of the balance of characteristics.

本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。
本発明で使用される熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubbers such as polymers, polyisoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide, or Goma; polyurethane, etc. are exemplified, are appropriately used. In addition, other known organic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic agents Various additives such as are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
The thermosetting resin composition used in the present invention is cured by heating, but has a slow curing speed and is inferior in workability, economy, etc., so that it is a known thermosetting catalyst for the thermosetting resin used. Can be used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the thermosetting resin.

無機の絶縁性充填剤としては、一般に公知のものが使用できる。具体的には、天然シリカ、焼成シリカ、アモルファスシリカ等のシリカ類;ホワイトカーボン、チタンホワイト、アエロジル、クレー、タルク、ウオラストナイト、天然マイカ、合成マイカ、カオリン、マグネシア、アルミナ、パーライト、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。添加量は、10〜80重量%、好適には20〜70重量%である。平均粒子径は、1μm以下が好ましい。   As the inorganic insulating filler, generally known ones can be used. Specifically, silicas such as natural silica, calcined silica, amorphous silica; white carbon, titanium white, aerosil, clay, talc, wollastonite, natural mica, synthetic mica, kaolin, magnesia, alumina, perlite, hydroxylated Aluminum, magnesium hydroxide, etc. are mentioned. The addition amount is 10 to 80% by weight, preferably 20 to 70% by weight. The average particle size is preferably 1 μm or less.

最外層の銅箔は、一般に公知のものが使用できる。好適には厚さ3〜12μmの電解銅箔等が使用される。内層の銅箔は、好適には9〜18μmの電解銅箔が使用される。
ガラス布基材銅張積層板は、まず上記ガラス布基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、好適には、ガラス含有量25〜70重量%となるようにプリプレグを作成する。次に、このプリプレグを所定枚数用い、上下に銅箔を配置して、加熱、加圧下に積層成形し、両面銅張積層板とする。この銅張積層板の断面は、ガラス以外の樹脂と無機充填剤が均質に分散していて、レーザー孔あけした場合、孔が均一にあく。また、ガラスが均一に配分されているために、樹脂の加工による孔壁の凹凸が少なく、均質にあく。また、この両面銅張積層板に回路を形成し、必要により銅箔表面処理を施し、同一のプリプレグを用いて積層成形して得られた銅張多層板も同様である。
As the outermost copper foil, generally known copper foils can be used. An electrolytic copper foil having a thickness of 3 to 12 μm is preferably used. The inner layer copper foil is preferably an electrolytic copper foil of 9 to 18 μm.
The glass cloth base copper-clad laminate is prepared by first impregnating the glass cloth base material with a thermosetting resin composition and drying it to form a B stage, preferably a prepreg so that the glass content is 25 to 70% by weight. Create Next, a predetermined number of the prepregs are used, copper foils are arranged on the upper and lower sides, and are laminated by heating and pressurizing to form a double-sided copper clad laminate. In the cross section of the copper clad laminate, the resin other than glass and the inorganic filler are uniformly dispersed, and the holes are evenly formed when laser drilling is performed. In addition, since the glass is uniformly distributed, there is little unevenness of the hole wall due to the processing of the resin, and it is uniform. The same applies to a copper-clad multilayer board obtained by forming a circuit on this double-sided copper-clad laminate, subjecting it to a copper foil surface treatment if necessary, and laminating using the same prepreg.

このガラス布基材銅張積層板の、炭酸ガスレーザーを照射する面の孔形成位置の銅箔表面に、酸化金属処理又は薬液処理を施すか、金属化合物粉、カーボン粉、金属粉の1種或いは2種以上を含む樹脂組成物からなる塗膜又はシートを配置し、直接目的とする径まで絞った炭酸ガスーレーザーを照射することにより表面の銅箔又は裏面の銅箔の孔あけを行なう。バックアップシートは、表面光沢のある金属板の上に樹脂層があるシートを使用するのが、貫通した炭酸ガスレーザーの反射で裏面孔部の変形等が発生するのを防ぐためにも好ましい。   This glass cloth base copper clad laminate is subjected to metal oxide treatment or chemical treatment on the surface of the copper foil at the position where the carbon dioxide laser is irradiated, or one of metal compound powder, carbon powder and metal powder. Or the coating film or sheet | seat which consists of a resin composition containing 2 or more types is arrange | positioned, and the copper foil of a surface or the copper foil of a back surface is drilled by irradiating the carbon dioxide laser narrowed down to the target diameter directly. As the backup sheet, it is preferable to use a sheet having a resin layer on a metal plate having a glossy surface in order to prevent deformation of the back surface hole due to reflection of the penetrating carbon dioxide laser.

炭酸ガスレーザーを、好適には出力20〜60mJ/パルス の1エネルギーを選び、数パルス照射して貫通孔、ビア孔を形成した場合、孔周辺はバリが発生する。そのため、炭酸ガスレーザー照射後、銅箔の両表面を平面的にエッチングし、もとの金属箔の一部の厚さをエッチング除去することにより、同時にバリもエッチング除去し、且つ、得られた銅箔は細密パターン形成に適しており、高密度のプリント配線板に適した孔周囲の両面の銅箔が残存したスルーホールメッキ用貫通孔を形成する。   When a carbon dioxide laser is selected with an energy of preferably 20 to 60 mJ / pulse and irradiated with several pulses to form through holes and via holes, burrs are generated around the holes. Therefore, after irradiating the carbon dioxide laser, both surfaces of the copper foil were planarly etched, and part of the thickness of the original metal foil was removed by etching, so that the burrs were also etched away and obtained. The copper foil is suitable for forming a fine pattern, and a through-hole plating through-hole in which copper foil on both sides around the hole suitable for a high-density printed wiring board remains is formed.

本発明で、炭酸ガスレーザーを直接照射して孔あけする銅箔表面に処理する酸化金属処理は、一般に公知の処理が使用され得る。具体的には、黒色酸化銅処理,MM処理(MacDarmid社)等が好適に使用される。薬液処理も一般に公知のものが使用される。例えばCZ処理(メック社)等が挙げられる。また、銅箔表面には金属化合物粉、カーボン粉或いは金属粉が配置して炭酸ガスレーザーの銅箔の直接孔あけに使用される。酸化金属粉としては、融点900℃以上で、且つ、結合エネルギー300kJ/mol 以上の金属化合物の粉体が使用される。具体的には、酸化物としては、酸化チタン等のチタニア類;酸化マグネシウム等のマグネシア類;酸化鉄等の鉄酸化物類;酸化ニッケル等のニッケル酸化物類;酸化亜鉛等の亜鉛酸化物類;二酸化珪素、二酸化マンガン、酸化アルミニウム、希土類酸化物、酸化錫等のスズ酸化物類;酸化タングステン等のタングステン酸化物類、等が挙げられる。非酸化物としては、炭化珪素、炭化タングステン、窒化硼素、窒化珪素、窒化チタン、窒化アルミニウム、硫酸バリウム等、一般に公知のものが挙げられる。その他、カーボン類も使用できる。更に銀、アルミニウム、ビスマス、コバルト、銅、鉄、マンガン、モリブデン、ニッケル、錫、イタン、亜鉛等の単体、或いはそれらの合金が使用される。これらは、一種或いは二種以上が組み合わせて使用される。平均粒子径は、特に限定しないが、1μm以下が好ましい。使用量は特に限定しないが、3〜97vol%が使用される。これらは有機物、特に樹脂組成物に配合されて使用される。樹脂組成物は、レーザー加工後の残存物除去の点からも水溶性樹脂が好ましい。水溶性樹脂としては、特に制限はないが、混練して銅箔表面に塗布、乾燥した場合、或いはシート状とした場合、剥離欠落のないものを選択して使用する。例えば、ポリビニルアルコール、ポリエステル、ポリエーテル、澱粉等、一般に公知のものが挙げられる。   In the present invention, a known treatment can be generally used as the metal oxide treatment for treating the surface of the copper foil to be perforated by direct irradiation with a carbon dioxide laser. Specifically, black copper oxide treatment, MM treatment (MacDarmid) and the like are preferably used. For the chemical treatment, generally known ones are used. For example, CZ treatment (MEC) and the like can be mentioned. Further, metal compound powder, carbon powder or metal powder is disposed on the surface of the copper foil and used for directly drilling the copper foil of the carbon dioxide laser. As the metal oxide powder, a metal compound powder having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher is used. Specifically, the oxide includes titania such as titanium oxide; magnesia such as magnesium oxide; iron oxide such as iron oxide; nickel oxide such as nickel oxide; zinc oxide such as zinc oxide. And tin oxides such as silicon dioxide, manganese dioxide, aluminum oxide, rare earth oxide, and tin oxide; tungsten oxides such as tungsten oxide; Examples of the non-oxide include generally known materials such as silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, and barium sulfate. In addition, carbons can also be used. Further, simple substances such as silver, aluminum, bismuth, cobalt, copper, iron, manganese, molybdenum, nickel, tin, itane and zinc, or alloys thereof are used. These are used alone or in combination of two or more. The average particle size is not particularly limited, but is preferably 1 μm or less. Although the usage-amount is not specifically limited, 3 to 97 vol% is used. These are used by being blended with organic substances, particularly resin compositions. The resin composition is preferably a water-soluble resin from the standpoint of removing residues after laser processing. Although there is no restriction | limiting in particular as water-soluble resin, When knead | mixing and apply | coating and drying on the copper foil surface, or making it into a sheet form, what does not have a missing peeling is selected and used. For example, generally known materials such as polyvinyl alcohol, polyester, polyether, starch and the like can be mentioned.

金属化合物粉、カーボン粉又は金属粉と樹脂とからなる組成物を作成する方法は、特に限定しないが、ニーダー等で無溶剤にて高温で練り、熱可塑性フィルムにシート状に押し出して付着する方法、水に水溶性樹脂を溶解させ、これに上記粉体を加え、均一に攪拌混合したものを用い、塗料として熱可塑性フィルムに塗布、乾燥して塗膜を形成するか、直接銅箔上に塗布、乾燥して塗膜とする方法等が使用される。厚みは、特に限定しないが、好適には塗膜厚み30〜100μmとする、フィルムに付着させ留場合、好適には総厚み30〜200μmのシートとする。シートとした場合、好適には樹脂層を銅箔側に配置し、加熱、加圧下にラミネートして使用することが好ましい。
バックアップシートは、好適には、上記水溶性樹脂層を銅張板裏面に配置し、その外側に金属板を置いて孔あけする。水溶性樹脂は、銅箔に接着させて使用するのが好ましい。
A method of preparing a composition comprising metal compound powder, carbon powder or metal powder and a resin is not particularly limited, but is a method of kneading at high temperature without solvent with a kneader or the like, and extruding and adhering to a thermoplastic film in a sheet form Then, dissolve the water-soluble resin in water, add the above powder to this, and stir and mix it uniformly, then apply it to a thermoplastic film as a paint and dry it to form a coating film, or directly on the copper foil A method of applying and drying to form a coating film is used. The thickness is not particularly limited, but is preferably a sheet having a total thickness of 30 to 200 μm when it is attached to the film and retained, preferably with a coating thickness of 30 to 100 μm. In the case of a sheet, it is preferable that the resin layer is preferably disposed on the copper foil side and laminated under heating and pressure.
The backup sheet is preferably formed by placing the water-soluble resin layer on the back surface of the copper-clad plate and placing a metal plate on the outside thereof. The water-soluble resin is preferably used after being adhered to a copper foil.

本発明の孔部に発生した銅のバリをエッチング除去する方法としては、特に限定しないが、例えば、特開平02-22887、同02-22896、同02-25089、同02-25090、同02-59337、同02-60189、同02-166789、同03-25995、同03-60183、同03-94491、同04-199592、同04-263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)による。エッチング速度は、0.02〜1.0μm/秒 で行う。   The method for etching and removing the copper burrs generated in the hole of the present invention is not particularly limited, but for example, JP-A Nos. 02-22887, 02-22896, 02-25089, 02-25090, and 02- 59337, 02-60189, 02-166789, 03-25995, 03-60183, 03-94491, 04-199592, 04-263488, a method for dissolving and removing metal surfaces with chemicals (Referred to as the SUEP method). The etching rate is 0.02 to 1.0 μm / sec.

炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。本発明の銅張板は、UVレーザーでの加工にも使用できる。UVレーザーは、一般には200〜400nmの波長が好適に使用される。
又、加工により孔を形成する方法は特に限定はしない。具体的には、スルーホール用貫通孔を形成する場合、メカニカルドリル、レーザー等が使用され、ビア孔用の孔をあける場合は、サンドブラスト法、ルーター、レーザー等が使用できる。
A carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. The copper-clad plate of the present invention can also be used for processing with a UV laser. In general, a wavelength of 200 to 400 nm is suitably used for the UV laser.
Moreover, the method of forming the hole by processing is not particularly limited. Specifically, when forming a through hole for a through hole, a mechanical drill, a laser, or the like is used. When forming a hole for a via hole, a sand blast method, a router, a laser, or the like can be used.

以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。 The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.

実施例1
2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-マレイミドフェニル)メタン100部を150℃に熔融させ、撹拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、油化シェルエポキシ<株>製)400部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN-220F、住友化学工業<株>製)600部を加え、均一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4部を加え、溶解混合し、これに無機絶縁性充填剤(商品名:焼成タルク、平均粒径0.4μm、日本タルク<株>製)500部、及び黒色顔料8部を加え、均一撹拌混合してワニスAを得た。このワニスAを厚さ40μm、重量27g/m2、且つ通気度19cm/cm/sec.の綾織りのガラス織布に含浸し150℃で乾燥して、ゲル化時間(At170℃)120秒、ガラス布の含有量が40重量%のプリプレグ(プリプレグB)を作成した。厚さ12μmの電解銅箔を、上記プリプレグB 3枚の上下に配置し、200℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形し、絶縁層厚み136μmの両面銅張積層板Bを得た。
Example 1
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Yuka Shell Epoxy Co., Ltd.) and 600 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) In addition, it was uniformly dissolved and mixed. Further, 0.4 parts of zinc octylate as a catalyst was added and dissolved and mixed. To this, 500 parts of inorganic insulating filler (trade name: calcined talc, average particle size 0.4 μm, manufactured by Nippon Talc Co., Ltd.) and 8 parts of black pigment were added. Was added and stirred uniformly to obtain varnish A. This varnish A was impregnated into a twilled glass woven fabric having a thickness of 40 μm, a weight of 27 g / m 2 , and an air permeability of 19 cm 3 / cm 2 / sec. And dried at 150 ° C. for gelation time (At 170 ° C.) 120 Second, a prepreg (prepreg B) having a glass cloth content of 40% by weight was prepared. Electrolytic copper foil with a thickness of 12μm is placed above and below the above three prepregs B and laminated for 2 hours under a vacuum of 200 ° C, 20kgf / cm 2 , 30mmHg or less, and a double-sided copper-clad laminate with an insulation layer thickness of 136μm B was obtained.

一方、平均粒径0.86μmの黒色酸化銅粉800部を、ポリビニルアルコール粉体を水に溶解したワニスに加え、均一に攪拌混合した(ワニスC)。これを上記両面銅張積層板の上に、厚さ30μm塗布し、110℃で30分間乾燥して、金属酸化物含有量50wt%の皮膜を形成した。また、下側には100μmの表面光沢のあるアルミニウム箔の上に水溶性ポリエステル樹脂を100μm塗ったバックアップシートを置き、この上側から、孔径100μmの孔を900個直接炭酸ガスレーザーで、出力35mJ/パルスで3パルス(ショット)かけてスルーホール用貫通孔をあけた。SUEP法にて、孔周辺の銅箔バリを溶解除去すると同時に、表面の銅箔も4μmまで溶解した。この板に公知の方法にて銅メッキを15μm(総厚み:19μm)施した。この表面に、公知の方法にて回路(ライン/スペース=50/50μm)、裏面にソルダーボール用ランド等を形成し、半導体チップ搭載部以外の箇所をサンドブラスト用レジストで覆い、サンドブラスト法にてガラス基材及び熱硬化性樹脂組成物を切削除去し、半導体チップ搭載部となる裏面の銅箔を露出した。その後、サンドブラスト用レジストを溶解除去し、ソフトエッチング後、半導体チップ搭載部、ボンディングパッド部、及びハンダボールパッド部を除いてメッキレジストで被覆し、ニッケル、金メッキを施し、25mm角のプリント配線板を作成した。このプリント配線板の半導体搭載部に4mm角の半導体チップを銀ペーストで接着し、ワイヤボンディングし、樹脂封止して半導体プラスチックとした。評価結果を表1及び表2に示す。   On the other hand, 800 parts of black copper oxide powder having an average particle size of 0.86 μm was added to a varnish in which polyvinyl alcohol powder was dissolved in water, and uniformly stirred and mixed (varnish C). This was coated on the double-sided copper-clad laminate with a thickness of 30 μm and dried at 110 ° C. for 30 minutes to form a film with a metal oxide content of 50 wt%. Also, on the lower side, a backup sheet in which 100 μm of water-soluble polyester resin is coated on a 100 μm surface glossy aluminum foil is placed, and from this upper side, 900 holes with a hole diameter of 100 μm are directly output with a carbon dioxide laser, output 35 mJ / Through-holes for through-holes were formed by applying 3 pulses (shots). The copper foil burrs around the holes were dissolved and removed by the SUEP method, and at the same time, the copper foil on the surface was dissolved to 4 μm. This plate was plated with copper by 15 μm (total thickness: 19 μm) by a known method. A circuit (line / space = 50/50 μm) is formed on this surface by a known method, solder ball lands, etc. are formed on the back surface, and portions other than the semiconductor chip mounting portion are covered with a resist for sand blasting, and glass is formed by sand blasting. The base material and the thermosetting resin composition were removed by cutting to expose the copper foil on the back surface serving as the semiconductor chip mounting portion. After that, the resist for sandblasting is dissolved and removed, and after soft etching, it is covered with a plating resist except for the semiconductor chip mounting part, bonding pad part, and solder ball pad part. Created. A 4 mm square semiconductor chip was bonded with a silver paste to the semiconductor mounting portion of this printed wiring board, wire bonded, and sealed with resin to obtain a semiconductor plastic. The evaluation results are shown in Tables 1 and 2.

実施例2
エポキシ樹脂(商品名:エピコート5045)1400部、エポキシ樹脂(商品名:ESCN220F)600部、ジシアンジアミド70部、2-エチル-4-メチルイミダゾール2部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、ワニスDを得た。これを厚さ130μm、重量136g/m2、且つ通気度3cm/cm/sec. の綾織のガラス織布に含浸、乾燥して、ゲル化時間120秒、ガラス布含有量50wt%のプリプレグ(プリプレグE)及びゲル化時間136秒、ガラス布含有量45wt%のプリプレグFを作成した。このプリプレグEを1枚使用し、片面に70μmの電解銅箔を置き、190℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形して片面銅張積層板を作成した。絶縁層の厚みは140μmであった。この銅箔面に回路を形成し、酸化銅処理を施した後、上に上記プリプレグFを各1枚置き、その外側に離型フィルムを配置し、同様に積層成形して内層に1層の銅箔を有する板を作成した。
Example 2
Dissolve 1400 parts of epoxy resin (trade name: Epicoat 5045), 600 parts of epoxy resin (trade name: ESCN220F), 70 parts of dicyandiamide, and 2 parts of 2-ethyl-4-methylimidazole in a mixed solvent of methyl ethyl ketone and dimethylformamide, and varnish D was obtained. This was impregnated into a twilled glass woven fabric having a thickness of 130 μm, a weight of 136 g / m 2 , and an air permeability of 3 cm 3 / cm 2 / sec., Dried, a prepreg having a gel time of 120 seconds and a glass cloth content of 50 wt%. (Prepreg E) and a prepreg F having a gel time of 136 seconds and a glass cloth content of 45 wt% were prepared. One prepreg E was used, an electrolytic copper foil of 70 μm was placed on one side, and laminate molding was performed for 2 hours under a vacuum of 190 ° C., 20 kgf / cm 2 , 30 mmHg or less to prepare a single-sided copper-clad laminate. The thickness of the insulating layer was 140 μm. After forming a circuit on this copper foil surface and performing copper oxide treatment, each of the above prepregs F is placed thereon, a release film is disposed on the outside thereof, and a single layer is formed on the inner layer in the same manner. A plate having a copper foil was prepared.

この裏面のボールパッド部分を、炭酸ガスレーザーの出力17mJ/パルス にて2パルス(ショット)でビア孔をあけ、表面は実施例1と同様にサンドブラスト法にてボンディングパッド部分を内層の銅箔まで孔あけし、デスミア処理を行い、後は実施例1と同様にして25mm角のプリント配線板を作成した。これに大きさ15mm角の半導体チップを銀ペーストで接着し、ワイヤボンディング法で接続し、全体をエポキシコンパウンドで樹脂封止した。評価結果を表1及び表2に示す。   This ball pad part on the back side was drilled with 2 pulses (shot) at a carbon dioxide laser output of 17 mJ / pulse, and the surface was bonded to the inner layer copper foil by the sandblasting method as in Example 1. Drilling and desmearing were performed, and then a 25 mm square printed wiring board was prepared in the same manner as in Example 1. A 15 mm square semiconductor chip was bonded to this with a silver paste, connected by wire bonding, and the whole was resin-sealed with an epoxy compound. The evaluation results are shown in Tables 1 and 2.

比較例1
実施例1において、無機絶縁性充填剤を用いず、加えてガラス織布として厚さ50μm、重量48g/m2、通気度180cm/cm/sec. の綾織りのガラス布にワニスAをガラス布含有量40wt%となるように含浸、乾燥してゲル化時間122秒のプリプレグを作成し、これを2枚使用して上下に12μmの電解銅箔を置き、同様に積層成形して、絶縁層の厚み129μmの両面銅張積層板を作成した。後は同様に炭酸ガスレーザーを照射してスルーホール用貫通孔をあけ、SUEP処理は行なわずにプリント配線板を作成した。又、同様に半導体プラスチックパッケージとした。評価結果を表1及び表2に示す。
Comparative Example 1
In Example 1, varnish A was applied to a twill-woven glass cloth having a thickness of 50 μm, a weight of 48 g / m 2 , and an air permeability of 180 cm 3 / cm 2 / sec. Without using an inorganic insulating filler. Impregnation so as to have a glass cloth content of 40 wt%, dry to create a prepreg with a gel time of 122 seconds, use two sheets to place an electrolytic copper foil of 12 μm above and below, laminate in the same way, A double-sided copper-clad laminate with an insulating layer thickness of 129 μm was prepared. After that, a carbon dioxide laser was irradiated in the same manner to open a through hole for a through hole, and a printed wiring board was prepared without performing the SUEP treatment. Similarly, a semiconductor plastic package was obtained. The evaluation results are shown in Tables 1 and 2.

比較例2
実施例2において、エポキシ樹脂としてエピコート5045単独を2000部使用し、無機充填時を使用せずにワニスGを作成した。厚み100μm、重量105g/cm、通気度28cm/cm/sec. の綾織りのガラス布に、ワニスGを含浸、乾燥してゲル化時間133秒、ガラス布含有量45wt%のプリプレグGを作成した。他は実施例1と同様にして積層成形し、絶縁層の厚さ115μmの両面銅張積層板を作成した。後はSUEP処理を行わずに、実施例2と同様にしてプリント配線板、半導体プラスチックパッケージを作成した。
評価結果を表1及び表2に示す。
Comparative Example 2
In Example 2, 2000 parts of Epicoat 5045 alone was used as an epoxy resin, and varnish G was prepared without using inorganic filling. A prepreg G having a thickness of 100 μm, a weight of 105 g / cm 2 and an air permeability of 28 cm 3 / cm 2 / sec. It was created. Others were laminated in the same manner as in Example 1 to produce a double-sided copper-clad laminate with an insulating layer thickness of 115 μm. Thereafter, a printed wiring board and a semiconductor plastic package were produced in the same manner as in Example 2 without performing the SUEP process.
The evaluation results are shown in Tables 1 and 2.

Figure 2009119879
Figure 2009119879

Figure 2009119879
Figure 2009119879

<測定方法>
1)孔壁形状、及び孔あけ時間
ワークサイズ250mm角内に、300μm間隔に、孔径100μmの孔を、900孔、/ブロック として70ブロック(孔計63,000孔)作成した。孔の表面からの形状及び断面を観察し、壁の凹凸について見た。
2)回路パターン切れ、及びショート
実施例、比較例で、孔のあいていない板を同様に作成し、ライン/スペース=50/50μm の櫛形パターンを作成した後、拡大鏡でエッチング後の200パターンを目視にて観察し、パターン切れ、及びショートしているパターンの合計を分子に示した。
3)ガラス転移温度及び弾性率
DMA法にて測定した。
4)スルーホール及びビア孔・ヒートサイクル試験
各スルーホールにランド径200μmを作成し、900孔を交互につなぎ、1サイクルが、260℃・ハンダ・浸せき30秒→室温・5分 で、200サイクル実施し、抵抗値の変化率の最大値を示した。
5)プレッシャークッカー処理後の絶縁抵抗値
端子間(ライン/スペース=50/50μm)の櫛形パターンを作成し、化学処理後、この上に、それぞれ使用したプリプレグを1枚重ね、積層成形したものを、121℃・203kPAで所定時間処理したものを25℃・60%RHにて2時間後処理し、500VDCを印加60秒後に端子間の絶縁抵抗値を測定した。
6)耐マイグレーション性
上記5)の試験片を85℃、85%RH、50VDC 印加して、端子間の絶縁抵抗を測定した。
7)剛さ
各プリプレグを1枚使用し、積層成形後に銅箔をエッチング除去し、これを40x20mmに切断し、この端部を固定した後、他方の先端に重さ2gの重りを付け、たわんだ距離を計測した。
8)反り
ワークサイズ250x250mmの板を定盤上に置いて、反りの最大値を測定した。
9)表面凹凸
縦方向を表面凹凸計で測定した場合の最大値を湿した。
<Measurement method>
1) Hole wall shape and drilling time Within a work size of 250 mm square, 70 holes were created with a hole diameter of 100 μm at 300 μm intervals and a total of 900 holes / block (63,000 holes total). The shape and cross section from the surface of the hole were observed, and the unevenness of the wall was observed.
2) Circuit pattern cuts and shorts In the examples and comparative examples, a board without holes was created in the same way, and a comb-shaped pattern with line / space = 50/50 μm was created, and then 200 patterns after etching with a magnifying glass. Was visually observed, and the total of the pattern cut and shorted patterns was shown in the molecule.
3) Glass transition temperature and elastic modulus Measured by DMA method.
4) Through hole and via hole / heat cycle test Land diameter 200μm is created in each through hole, 900 holes are connected alternately, and one cycle is 200 cycles at 260 ℃, solder, immersion 30 seconds → room temperature, 5 minutes The maximum value of the change rate of the resistance value was shown.
5) Insulation resistance value after pressure cooker processing Create a comb pattern between terminals (line / space = 50 / 50μm), and after chemical treatment, stack one layer of each prepreg on top of each other. After being treated at 121 ° C./203 kPA for a predetermined time, it was post-treated at 25 ° C./60% RH for 2 hours, and the insulation resistance value between terminals was measured 60 seconds after applying 500 VDC.
6) Migration resistance The test piece of 5) above was applied at 85 ° C, 85% RH, 50VDC, and the insulation resistance between the terminals was measured.
7) Rigidity One prepreg is used, the copper foil is removed by etching after lamination molding, this is cut into 40x20mm, this end is fixed, and a weight of 2g is attached to the other tip, I measured the distance.
8) Warpage A plate with a workpiece size of 250x250mm was placed on the surface plate, and the maximum value of warpage was measured.
9) Surface unevenness The maximum value when the vertical direction was measured with a surface unevenness meter was moistened.

Claims (7)

厚み25〜150μm、重量15〜165g/m2、且つ通気度1〜20cm/cm2 /sec.のガラス織布からなるガラス布基材に熱硬化性樹脂組成物を含浸、乾燥して得られるプリプレグに銅箔が積層された少なくとも1層以上の銅箔層を有する銅張積層板に、孔径0.15mm以下の孔をあけることを特徴とする、レーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板。 Obtained by impregnating and drying a thermosetting resin composition on a glass cloth substrate made of a glass woven cloth having a thickness of 25 to 150 μm, a weight of 15 to 165 g / m 2 , and an air permeability of 1 to 20 cm 3 / cm 2 / sec. A high elastic modulus glass cloth for laser drilling, characterized in that a hole having a hole diameter of 0.15 mm or less is formed in a copper clad laminate having at least one copper foil layer in which copper foil is laminated on a prepreg to be formed Base material thermosetting resin copper clad laminate. 銅張積層板の熱硬化性樹脂組成物中に、該樹脂組成物に対し絶縁性無機充填剤が10〜80重量%配合されている請求項1記載のレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板。 2. The high elastic modulus glass cloth for laser drilling according to claim 1, wherein the thermosetting resin composition of the copper clad laminate contains 10 to 80% by weight of an insulating inorganic filler based on the resin composition. Base material thermosetting resin copper clad laminate. ガラス織布が、厚み25〜40μm、重量15〜27g/m2である請求項1記載のレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板。 The high-modulus glass cloth substrate thermosetting resin copper-clad laminate for laser drilling according to claim 1, wherein the glass woven fabric has a thickness of 25 to 40 µm and a weight of 15 to 27 g / m 2 . 熱硬化性樹脂組成物が、多官能性シアン酸エステル、多官能性シアン酸エステルプレポリマーを必須成分とする樹脂組成物を使用することを特徴とする請求項1、2または3記載のレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板。 The laser hole according to claim 1, 2 or 3, wherein the thermosetting resin composition uses a resin composition comprising a polyfunctional cyanate ester or a polyfunctional cyanate ester prepolymer as an essential component. High elastic modulus glass cloth base thermosetting resin copper clad laminate for punching. 請求項1記載のレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板に、レーザーで孔径0.15mm以下の孔をあけることを特徴とする銅張積層板の孔あけ方法。 Drilling of a copper-clad laminate, wherein a hole having a hole diameter of 0.15 mm or less is drilled in the high-modulus glass cloth base thermosetting resin copper-clad laminate for laser drilling according to claim 1. Method. 孔あけを炭酸ガスレーザーにより出力20〜60mJ/パルスで行うことを特徴とする請求項5記載の銅張積層板の孔あけ方法。 6. The method for drilling a copper-clad laminate according to claim 5, wherein the drilling is performed with a carbon dioxide laser at an output of 20 to 60 mJ / pulse. 請求項1記載のレーザー孔あけ加工用高弾性率ガラス布基材熱硬化性樹脂銅張積層板が、炭酸ガスレーザーにより孔径0.15mm以下の孔あけ加工が施されていることを特徴とする高弾性率ガラス布基材熱硬化性樹脂銅張積層板。 The high-modulus glass cloth base thermosetting resin copper-clad laminate for laser drilling according to claim 1 is subjected to drilling with a hole diameter of 0.15 mm or less by a carbon dioxide gas laser. High elastic modulus glass cloth base thermosetting resin copper clad laminate.
JP2009051636A 2009-03-05 2009-03-05 High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method Pending JP2009119879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051636A JP2009119879A (en) 2009-03-05 2009-03-05 High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051636A JP2009119879A (en) 2009-03-05 2009-03-05 High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21585099A Division JP4348785B2 (en) 1999-07-29 1999-07-29 High elastic modulus glass cloth base thermosetting resin copper clad laminate

Publications (1)

Publication Number Publication Date
JP2009119879A true JP2009119879A (en) 2009-06-04

Family

ID=40812546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051636A Pending JP2009119879A (en) 2009-03-05 2009-03-05 High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method

Country Status (1)

Country Link
JP (1) JP2009119879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081964A (en) * 2011-10-06 2013-05-09 Disco Corp Ablation method for die attach film
JP2014131072A (en) * 2010-03-08 2014-07-10 Ajinomoto Co Inc Formation method of micro wiring trench and manufacturing method for trench-type circuit board using this formation method
TWI581958B (en) * 2016-03-18 2017-05-11 松下知識產權經營股份有限公司 Production method of metal laminated sheet, printed wiring board, metal sheet, and manufacturing method of printed wiring board
JP2017170877A (en) * 2016-08-01 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
CN107509316A (en) * 2017-08-23 2017-12-22 苏州市吴通电子有限公司 Remove the gred head in a kind of pcb board hole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038832A (en) * 1989-06-06 1991-01-16 Asahi Shiyueebell Kk Inorganic yarn woven fabric for laminate
JPH0860484A (en) * 1994-08-19 1996-03-05 Nitto Boseki Co Ltd Glass woven fabric substrate and laminated plate using the same
JPH10157012A (en) * 1996-11-27 1998-06-16 Sumitomo Bakelite Co Ltd Prepreg and laminate
JPH1154914A (en) * 1997-08-06 1999-02-26 Mitsubishi Gas Chem Co Inc Manufacturing built-up multilayered printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038832A (en) * 1989-06-06 1991-01-16 Asahi Shiyueebell Kk Inorganic yarn woven fabric for laminate
JPH0860484A (en) * 1994-08-19 1996-03-05 Nitto Boseki Co Ltd Glass woven fabric substrate and laminated plate using the same
JPH10157012A (en) * 1996-11-27 1998-06-16 Sumitomo Bakelite Co Ltd Prepreg and laminate
JPH1154914A (en) * 1997-08-06 1999-02-26 Mitsubishi Gas Chem Co Inc Manufacturing built-up multilayered printed wiring board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131072A (en) * 2010-03-08 2014-07-10 Ajinomoto Co Inc Formation method of micro wiring trench and manufacturing method for trench-type circuit board using this formation method
KR101906687B1 (en) * 2010-03-08 2018-12-05 아지노모토 가부시키가이샤 Manufacturing method for trench-type circuit board
TWI643895B (en) * 2010-03-08 2018-12-11 味之素股份有限公司 Method for manufacturing trench type circuit substrate
JP2013081964A (en) * 2011-10-06 2013-05-09 Disco Corp Ablation method for die attach film
TWI581958B (en) * 2016-03-18 2017-05-11 松下知識產權經營股份有限公司 Production method of metal laminated sheet, printed wiring board, metal sheet, and manufacturing method of printed wiring board
JP2017170640A (en) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP2017170877A (en) * 2016-08-01 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
CN107509316A (en) * 2017-08-23 2017-12-22 苏州市吴通电子有限公司 Remove the gred head in a kind of pcb board hole
CN107509316B (en) * 2017-08-23 2023-07-07 苏州市吴通电子有限公司 PCB hole deslagging head

Similar Documents

Publication Publication Date Title
KR100630482B1 (en) Printed wiring board for semiconductor plastic package
JP4348785B2 (en) High elastic modulus glass cloth base thermosetting resin copper clad laminate
JP2004330236A (en) Auxiliary sheet for laser boring
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP4595284B2 (en) Auxiliary sheet for drilling with carbon dioxide laser
JP4103188B2 (en) Highly reliable via hole formation method
JP4075178B2 (en) Manufacturing method of copper-clad board for printed wiring board having blind via hole with excellent reliability
JP4078713B2 (en) Backup sheet for drilling through holes with laser
JP2005183599A (en) B stage resin composition sheet and method of manufacturing printed circuit substrate for mounting flip chip using the same
JP2001044597A (en) Copper clad plate having excellent carbon dioxide laser boring properties
JP4854834B2 (en) Method for forming holes in copper-clad plate using carbon dioxide laser
JP2001102491A (en) Printed wiring board for ultra-thin bga semiconductor plastic package
JP4727013B2 (en) Manufacturing method of multilayer printed wiring board having through hole by carbon dioxide laser processing
JP2000061678A (en) Method for forming through hole by laser beam
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JPH11330310A (en) Laser boring copper-plated laminate
JPH11266067A (en) Forming method of hole for through-hole
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JP2001028475A (en) Manufacture of polybenzazole fabric base-material printed wiring board
JP2000061679A (en) Method for forming through hole by laser beam
JP2001156460A (en) Build-up multilayer printed wiring board
JP2001177257A (en) Holing method fort build-up multiplayer printed wiring board
JP2003209365A (en) Method for forming through-hole on multilayer double side copper-plated board by laser
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131