[go: up one dir, main page]

JP2009119847A - Electric heating pressure-molding mold and injection molding mold - Google Patents

Electric heating pressure-molding mold and injection molding mold Download PDF

Info

Publication number
JP2009119847A
JP2009119847A JP2008139282A JP2008139282A JP2009119847A JP 2009119847 A JP2009119847 A JP 2009119847A JP 2008139282 A JP2008139282 A JP 2008139282A JP 2008139282 A JP2008139282 A JP 2008139282A JP 2009119847 A JP2009119847 A JP 2009119847A
Authority
JP
Japan
Prior art keywords
mold
layer
electrothermal
electric heating
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008139282A
Other languages
Japanese (ja)
Inventor
Shimao Hori
志磨生 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008139282A priority Critical patent/JP2009119847A/en
Publication of JP2009119847A publication Critical patent/JP2009119847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate deformation work by locally heating the surface of a molding mold to heat and soften a workpiece or to facilitate pressure working or making the flow of synthetic resin smooth by heating the surface of an injection molding mold. <P>SOLUTION: The electric heating pressure-molding mold is provided with an electric heating layer on one or both surfaces of an upper mold and a lower mold in the molding mold for pressure-molding a woven fabric or a sheet material. The injection molding mold for molding and solidifying molten synthetic resin is provided with a planar electric heating layer on or in proximity to one or both surfaces of an upper mold and a lower mold, an injection means for molten synthetic resin, and a cooling means at one or both of the upper and lower molds. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、成形型の表面の一部又は全部に電気発熱層を設けて、成形型の表面の一部又は全部を瞬間加熱することにより、被成形物を円滑かつ正確に型成形することを目的とした電気加熱加圧成形型又は、成形型の表面の一部又は全部に電気発熱層を設けると共に、前記成形型の肉厚内に冷却手段を設けて、型内へ射出した素材を加熱し、冷却することを目的とした射出成形型に関する。   According to the present invention, an electric heating layer is provided on a part or all of the surface of a molding die, and a part or all of the surface of the molding die is instantaneously heated to mold a workpiece smoothly and accurately. Heating the raw material injected into the mold by providing an electric heating layer on part or all of the surface of the target electric heating and pressure molding mold or the mold, and providing cooling means within the thickness of the mold And an injection mold for the purpose of cooling.

従来気化器の器壁上又は底部に電熱層を設ける技術は知られている。またカーボン粒(又はカーボン繊維)を発熱層とする定温方式の電熱シートが提案されている。   Conventionally, a technique of providing an electrothermal layer on the wall or bottom of a vaporizer is known. In addition, a constant temperature type electric heating sheet using carbon particles (or carbon fibers) as a heat generating layer has been proposed.

次に加熱加圧成形型として、型本体の肉厚内へ電熱ヒーターを埋設する技術が知られている。
実用新案登録第3124014号 特許第3216911号 特開2000−823
Next, a technique for embedding an electric heater in the thickness of the mold body is known as a heating and pressing mold.
Utility model registration No. 3124014 Japanese Patent No. 3216911 JP 2000-823 A

従来プラスチック容器その他のプラスチック製品を成形する時に用いる成形型は、電熱層を型内へ埋設していたので(特許文献3)、型を加熱する場合には、全型が同温度に加熱され、無駄な熱量を消費するのみならず、瞬間加熱(例えば2秒〜5秒)により型の表面を所定の温度とし、溶融プラスチック注入成形後瞬時に冷却することは不可能であった。そこで加工速度の高速化ができない問題点があった。   Conventional molds used when molding plastic containers and other plastic products have an electrothermal layer embedded in the mold (Patent Document 3). When the mold is heated, the entire mold is heated to the same temperature, In addition to consuming wasteful heat, it was impossible to bring the mold surface to a predetermined temperature by instantaneous heating (for example, 2 to 5 seconds) and to cool it immediately after molten plastic injection molding. Therefore, there is a problem that the processing speed cannot be increased.

またフィルムなどを加工する為の加工型は、加工度の大きい部分のみを加熱すれば目的を達成することができるが、型内へ電熱層を埋設すると、結果的に型全体を加熱することになり、部分加熱、部分成形加工が困難になる問題点があった。   In addition, the processing mold for processing a film or the like can achieve the purpose by heating only a portion with a high degree of processing. However, if an electrothermal layer is embedded in the mold, the entire mold is heated as a result. Therefore, there is a problem that partial heating and partial molding are difficult.

また射出成形型においては、溶融合成樹脂を射出して、合成樹脂容器又は成形シートなどを高速成形する技術であるが、前記射出成形型が冷却していると、前記溶融合成樹脂が流動中に冷却する為に流動性が悪くなるので、高圧の加圧流動を必要とするのみならず、均質製品の製造がむつかしくなる問題点があった。また冷却しないと固化が遅くなって成形効率を損するおそれがあった。そこで瞬時に加熱し、速やかに冷却する工程を繰り返すことは至難とされていた。   The injection mold is a technique for injecting a molten synthetic resin and molding a synthetic resin container or a molded sheet at a high speed. However, when the injection mold is cooled, the molten synthetic resin is flowing. Since the fluidity deteriorates due to cooling, there is a problem that not only a high-pressure pressurized flow is required but also the production of a homogeneous product becomes difficult. Further, if not cooled, the solidification may be delayed and the molding efficiency may be impaired. Therefore, it has been difficult to repeat the process of heating instantaneously and cooling quickly.

この発明は、成形型の表面へ電熱加熱層を設けることにより、該部のみを瞬時に加熱して、前記従来の加圧成形型の問題点を解決したのである。   In the present invention, by providing an electrothermal heating layer on the surface of the mold, only the portion is instantaneously heated to solve the problems of the conventional pressure mold.

即ちこの発明は、織布又はシート材を加圧成形する成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、電熱加熱層を設けたことを特徴とする電気加熱加圧成形型であり、電熱加熱層は成形型の被加工材の当接面の全面に均等密度又は不均等密度に設けるものであり、電熱加熱層は、成形型の曲面に設けるものである。   That is, the present invention relates to an electric heating characterized in that an electrothermal heating layer is provided in the molding die for press-molding a woven fabric or a sheet material in the vicinity of one or both surfaces of the upper die or the lower die. It is a pressure molding die, and the electrothermal heating layer is provided on the entire surface of the contact surface of the workpiece of the molding die with uniform density or non-uniform density, and the electrothermal heating layer is provided on the curved surface of the molding die. .

また他の発明は、電熱加熱層は、金属型の表面に絶縁層を設け、その上に電熱層を設け、その上に絶縁層を設けたものであり、電熱加熱層は絶縁シートでカーボン粒電熱層を挟着したものであり、成形型の表面へ、耐熱性の絶縁フィルムを貼着し、該絶縁フィルムの上面へカーボン粒又はカーボン繊維によるカーボン電熱層を設け、該カーボン電熱層の上面へ耐熱性の絶縁フィルムを被着したものであり、成形型の表面へ、プラズマ溶射によりアルミナ絶縁層、ニッケル−クロム電熱層及びアルミナ絶縁層を順次層着したものである。   In another invention, the electrothermal heating layer is an insulating layer provided on the surface of a metal mold, an electrothermal layer is provided thereon, and an insulating layer is provided thereon. An electric heating layer is sandwiched, a heat-resistant insulating film is attached to the surface of a mold, a carbon electric heating layer made of carbon particles or carbon fibers is provided on the upper surface of the insulating film, and the upper surface of the carbon electric heating layer A heat-resistant insulating film is applied, and an alumina insulating layer, a nickel-chromium electrothermal layer, and an alumina insulating layer are sequentially deposited on the surface of the mold by plasma spraying.

また他の発明は、成形型の表面又は表面に近接して電熱加熱層を設けると共に、型の冷却手段を設けることにより、前記従来の問題点を解決したのである。要するに、前記加熱層は成形型の構造上、射出された溶融合成樹脂が冷却し易い部位を加温し、前記溶融合成樹脂のスムースな流動を確保するものである。   In another aspect of the invention, the conventional problem is solved by providing an electrothermal heating layer in the vicinity of the surface of the molding die or by providing a cooling means for the die. In short, the heating layer heats the portion where the injected molten synthetic resin is easy to cool due to the structure of the mold, and ensures a smooth flow of the molten synthetic resin.

前記において、電熱層の表面に十分の強度を有する層を設ける場合(例えば金属又はアルミナ層が表面の場合)には、型の表面に設けることができるが、電熱層の表面が絶縁フィルムの場合には強度がないので、金属薄板などの保護層を設ける必要がある。そこで表面、又は表面に近接して電熱加熱層を設けるようにした。前記保護層は、溶融材料の流動、成型圧に耐えると共に、熱伝導の良好な材料が好ましい。   In the above, when a layer having sufficient strength is provided on the surface of the electrothermal layer (for example, when the metal or alumina layer is the surface), it can be provided on the surface of the mold, but the surface of the electrothermal layer is an insulating film. Since there is no strength, it is necessary to provide a protective layer such as a thin metal plate. Therefore, an electrothermal heating layer is provided on the surface or in the vicinity of the surface. The protective layer is preferably a material that can withstand the flow of the molten material and the molding pressure and has good heat conduction.

また型の内壁面に微小凹凸部を設ける場合には(例えば製品の表面に微小凹凸部を設ける場合などは、型の内壁面に微小凹凸部を設ける)、保護層として表面被覆板が必要となり、電熱層は型の表面に近接して設けられたことになる。   In addition, when a minute uneven portion is provided on the inner wall surface of the mold (for example, when a minute uneven portion is provided on the surface of a product, a minute uneven portion is provided on the inner wall surface of the mold), a surface covering plate is required as a protective layer. The electrothermal layer is provided close to the surface of the mold.

即ちこの発明は、溶融合成樹脂を成形固化する射出成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、電熱加熱層を設けると共に、溶融合成樹脂の射出手段(公知の溶融合成樹脂をノズルから加圧流出させること)及び前記上型、下型の冷却手段を設けたことを特徴とする射出成形型であり、電熱加熱層は、型の表面に絶縁材を溶射してなる絶縁層と、電熱材を溶射してなる電熱加熱層と、絶縁材を溶射してなる絶縁層を順次層着して設けたものであり、電熱加熱層は、カーボン電熱層を絶縁層で挟着したものである。   In other words, the present invention provides an injection mold for molding and solidifying a molten synthetic resin, an electrothermal heating layer is provided in the vicinity of one or both surfaces of the upper mold or the lower mold, and an injection means for the molten synthetic resin (known in the art) And an injection mold characterized in that the upper mold and lower mold cooling means are provided, and the electrothermal heating layer is sprayed with an insulating material on the mold surface. An insulating layer formed by spraying an electric heating material, and an insulating layer formed by spraying an insulating material are sequentially deposited. The electric heating layer insulates the carbon electric heating layer. It is sandwiched between layers.

また他の発明は、電熱加熱層は、成形型に凹入部を設け(又は凹入部を設けることなく)、該凹入部の下から、セラミック材を塗布して絶縁層を設け、該絶縁層の上へカーボン粒を塗布することにより、電熱層を設け、該電熱層の上へセラミック材を塗布して絶縁層を設け、前記成形型の内面へ無電解メッキ層を設けて、型の内面を一連の平面としたことを特徴とする電気加熱成形型であり、冷却手段は冷却流体(例えば冷水)の流動パイプを敷設したものである。   In another aspect of the invention, the electrothermal heating layer is provided with a recessed portion (or without a recessed portion) in the molding die, and an insulating layer is provided by applying a ceramic material from below the recessed portion. An electric heating layer is formed by applying carbon particles on the top, a ceramic material is applied on the electric heating layer to provide an insulating layer, an electroless plating layer is provided on the inner surface of the mold, and the inner surface of the mold is It is an electric heating mold characterized by a series of flat surfaces, and the cooling means is a laying flow pipe of cooling fluid (for example, cold water).

前記において、絶縁材(例えばセラミック材)カーボン粒を塗布するには、スプレー又は静電塗装によるものとする。前記絶縁材のスプレーに際してはシンナーを希釈剤とし、希釈率はスプレーで5〜15wt%、静電塗装で10〜50wt%とするが、絶縁材の粒度などにより異なる(カーボン粒の塗布は、絶縁材に順ずる)。   In the above, the insulating material (for example, ceramic material) carbon particles are applied by spraying or electrostatic coating. When spraying the insulating material, thinner is used as a diluent, and the dilution rate is 5 to 15 wt% by spraying and 10 to 50 wt% by electrostatic coating. However, it varies depending on the particle size of the insulating material. According to the material).

前記塗布の標準膜厚は、20〜40μmであるが、材質及び目的により異なる。例えば発熱の為のカーボン層は、求める温度により異なる。従って塗装回数も1〜2回とする。前記諸元より、標準使用量は200g/m/回であるが、塗膜により前記使用量を前後する。特に発熱用のカーボン層の場合には、求める温度により大差を生じる。前記により塗装したならば、80〜160℃で5分〜15分間予備乾燥し、ついで200℃〜400℃で10分〜20分乾燥した後、無電解メッキを施す。 The standard film thickness of the coating is 20 to 40 μm, but varies depending on the material and purpose. For example, the carbon layer for heat generation varies depending on the required temperature. Therefore, the number of times of painting is also set to 1 to 2 times. From the above specifications, the standard usage amount is 200 g / m 2 / time, but the usage amount depends on the coating film. In particular, in the case of a carbon layer for heat generation, a large difference occurs depending on the required temperature. If it coats by the above, after pre-drying at 80-160 degreeC for 5 minutes-15 minutes and then drying at 200-400 degreeC for 10 minutes-20 minutes, electroless plating is given.

前記カーボン層は0.5秒〜2秒以内に150℃〜200℃に加温される必要がある(型の稼働率の関係から、前記条件が好ましい)。   The carbon layer needs to be heated to 150 ° C. to 200 ° C. within 0.5 seconds to 2 seconds (the above conditions are preferable from the viewpoint of mold availability).

次に他の発明は、溶融合成樹脂を成形固化する射出成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、電熱加熱層と冷却手段とをセットした加熱・冷却ユニットを埋設したことを特徴とする射出成形型であり、加熱・冷却ユニットは、電熱層と冷却パイプとをセットしたものである。   Next, another invention is an injection mold for molding and solidifying a molten synthetic resin. Heating / cooling in which an electrothermal heating layer and a cooling means are set in proximity to one or both surfaces of the upper mold or the lower mold. The injection mold is characterized in that the unit is embedded, and the heating / cooling unit is a set of an electric heating layer and a cooling pipe.

前記において、型の表面の電熱加熱層は瞬時(1秒以内位)に所定温度(例えば150℃)に昇温し、瞬時(例えば1秒以内)に冷却(合成樹脂の固化温度まで冷却)する。   In the above, the electrothermal heating layer on the surface of the mold is heated to a predetermined temperature (eg, 150 ° C.) instantaneously (within about 1 second) and cooled instantaneously (eg, within 1 second) (cooled to the solidification temperature of the synthetic resin) .

前記において、型本体は例えば水冷しているので瞬時に冷却することができる。一方加熱に際しても一種の面ヒーターであるから、瞬時に設定温度(例えば150℃)に加熱される。前記において、冷却は型全体を冷却する為に速度が遅くなるおそれがあったので、表面へ冷却パイプを敷設して、冷却を早くさせることもある。   In the above, since the mold main body is cooled with water, for example, it can be cooled instantaneously. On the other hand, since it is a kind of surface heater in heating, it is instantaneously heated to a set temperature (for example, 150 ° C.). In the above, the cooling may be slowed down to cool the entire mold, so a cooling pipe may be laid on the surface to speed up the cooling.

前記この発明の電熱加熱層は、例えば厚さ1〜2mm程度のきわめて薄層であるから、型面が湾曲していても、自由かつ正確に層着することができる。   Since the electrothermal heating layer of the present invention is a very thin layer having a thickness of, for example, about 1 to 2 mm, the layer can be freely and accurately deposited even if the mold surface is curved.

また成形型の表面のみ加熱するので、型面よりもむしろワーク側を加熱することになり、加熱、冷却共に素早い(例えば1秒以内)ことに特徴がある。   Further, since only the surface of the mold is heated, the work side rather than the mold surface is heated, and both heating and cooling are quick (for example, within 1 second).

また電熱層としてカーボン粒子を層着する場合には、カーボン粒子の密度の選定によって、自動定温用の電熱加熱成形型とすることもできる。またカーボン繊維による織成シートの場合には、電熱温度を調整することができる(例えば100℃〜300℃の間における設定温度を選定できる)。   When carbon particles are deposited as the electrothermal layer, an electrothermal heating mold for automatic constant temperature can be obtained by selecting the density of the carbon particles. Moreover, in the case of the woven sheet | seat by carbon fiber, an electrothermal temperature can be adjusted (for example, the preset temperature between 100 degreeC-300 degreeC can be selected).

更には、プラズマ溶射によりアルミナ絶縁層により、ニッケル−クロム層を挟着した電熱加熱層とすれば、耐久性が大きく、長期の連続使用に耐えることができる。   Furthermore, if an electrothermal heating layer in which a nickel-chromium layer is sandwiched by an alumina insulating layer by plasma spraying is used, the durability is high and it can withstand long-term continuous use.

この発明の被成形素材は、例えば有機繊維又は無機繊維の織布又はフィルムであるから、適温加熱により、加工時間を短縮化できると共に、成形精度を向上させることができる。また射出成形型による成形素材は従来公知の合成樹脂を使用することができるが、型の加熱によって、流動性を確保することができるので、従来のような数百kg以上のような高圧は必要でなくなる。例えば100kg位の圧力で迅速に充填することができる。   Since the material to be molded of the present invention is, for example, a woven fabric or a film of organic fibers or inorganic fibers, processing time can be shortened and molding accuracy can be improved by heating at an appropriate temperature. In addition, a conventionally known synthetic resin can be used as a molding material for an injection mold, but fluidity can be ensured by heating the mold, so a high pressure of several hundred kg or more is required. Not. For example, it can be quickly filled with a pressure of about 100 kg.

この発明は、織布又はシート材などのワークを加圧成形する成形型の上型又は下型又は上下両型の表面又は表面付近へ、電熱加熱層を設けたので、加工面を直接加熱し、瞬間加熱、瞬間冷却(0.5秒〜3秒間)ができる効果がある。   In the present invention, since the electrothermal heating layer is provided on the surface of the upper mold, the lower mold, or both upper and lower molds for press-forming a work such as a woven fabric or a sheet material, the processing surface is directly heated. , Instantaneous heating and cooling (0.5 seconds to 3 seconds) are effective.

また加工度の大きい面に高密度の電熱加熱層を設ければ、ワークの成形が合理的かつ効率よく成形できる効果がある。   Further, if a high-density electrothermal heating layer is provided on a surface with a high degree of processing, there is an effect that the workpiece can be formed rationally and efficiently.

更に加熱成形によって、加工速度を早くする(例えば通常の2倍)ことができると共に、精度がよく、かつ仕上げが綺麗にできるなどの諸効果がある。   Furthermore, by thermoforming, the processing speed can be increased (for example, twice the normal speed), and there are various effects such as high precision and fine finishing.

また射出成形型においては、材料注入時に型を加温するので、材料の流れが良く、高圧にする必要がなく、また大型であっても、温度管理により、材料を均等に加熱冷却するので、製品が均質になり、成形、離脱速度を早くする(高い効率)ことができる効果がある。要するに、比較的低い流入圧力でも加工効率を向上し、製品精度を高く保つことができる効果がある。   In addition, in the injection mold, since the mold is heated at the time of material injection, the flow of the material is good, there is no need to make it high pressure, and even in a large size, the material is heated and cooled evenly by temperature control. There is an effect that the product becomes uniform, and the molding and releasing speed can be increased (high efficiency). In short, there is an effect that the machining efficiency can be improved and the product accuracy can be kept high even at a relatively low inflow pressure.

この発明は、成形型の上型の表面中非平面部へ電熱加熱層を密に、平面部へ電熱加熱層を疎、又は皆無として、加熱加圧成形型を構成した。   According to the present invention, the heating and pressing mold is configured such that the electrothermal heating layer is densely arranged in the non-planar portion in the surface of the upper mold of the molding die, and the electrothermal heating layer is sparse or absent in the plane portion.

また射出成形型の上型と下型の夫々の表面に近接して、面状の電熱加熱層を設けると共に、冷却手段を設け、材料注入時の加熱による固化防止の保温と、溶融合成樹脂を固化温度まで冷却し、その合理化を達成する射出成形型を構成した。   In addition, in the vicinity of the upper and lower mold surfaces of the injection mold, a planar electrothermal heating layer is provided, and a cooling means is provided to keep the heat from solidifying by heating at the time of material injection, and to melt the synthetic resin. An injection mold was constructed that cooled to the solidification temperature and achieved its rationalization.

この発明の実施例を図1について説明すれば、上型1と下型2により、シートなどのワーク3を曲面成形する成形型5において、下型2の内面に、電熱加熱層4の厚さと、同一深さの溝6を設け、該溝6内へ電熱加熱層4を嵌入固定して加工面を面一に成形する。前記電熱加熱層4は、絶縁層4a、4aにより電熱層4bを挟着したものである。   An embodiment of the present invention will be described with reference to FIG. 1. In a molding die 5 in which a workpiece 3 such as a sheet is curvedly formed by an upper die 1 and a lower die 2, the thickness of the electrothermal heating layer 4 is formed on the inner surface of the lower die 2. The groove 6 having the same depth is provided, and the electrothermal heating layer 4 is fitted and fixed in the groove 6 so that the processed surface is formed flush. The electrothermal heating layer 4 is obtained by sandwiching an electrothermal layer 4b with insulating layers 4a and 4a.

前記電熱加熱層4は、シートなどワークの加工度に対応して粗密に配置してあるが、各電熱加熱層4、4に夫々リード線7、7を設け、該リード線7、7をコード8に接続する。   The electrothermal heating layer 4 is arranged roughly according to the degree of processing of a workpiece such as a sheet. The electric heating layers 4 and 4 are provided with lead wires 7 and 7, respectively. Connect to 8.

例えば上型1にコード8の孔を設け、この孔にコード8を挿通した後、軸付近で電源と接続すれば、上型が連続的かつ早く移動しても電気的に問題はない。   For example, if a hole for the cord 8 is provided in the upper die 1 and the cord 8 is inserted into the hole and then connected to a power source near the shaft, there is no electrical problem even if the upper die moves continuously and quickly.

前記実施例によれば、例えばコード8を介して通電することにより、電熱加熱層4を100℃〜200℃の任意の設定温度とすることにより、目的を達成することができる。前記実施例は、溝6へ電熱加熱層4を埋設したが、型面へ層着することもできる。   According to the said Example, the objective can be achieved by making the electrothermal heating layer 4 into arbitrary set temperature of 100 to 200 degreeC by supplying with electricity through the code | cord | chord 8, for example. In the above embodiment, the electrothermal heating layer 4 is embedded in the groove 6, but it can also be deposited on the mold surface.

前記における電熱加熱層4は(伝熱材と、絶縁材を夫々溶射により重ね成形でも、カーボン電熱層を用いる成形でも)従来公知のものを使用することができる。   As the electrothermal heating layer 4 described above, a conventionally known layer can be used (whether the heat transfer material and the insulating material are each formed by thermal spraying or molding using a carbon electrothermal layer).

この発明は、電熱加熱層の材質又は特性を利用するもので、これ自体に発明の技術がある訳でなく、金属型に電熱加熱層を設けること自体に特質がる。   The present invention utilizes the material or characteristics of the electrothermal heating layer, and does not itself have the technology of the invention, but is characterized by providing the electrothermal heating layer in a metal mold.

この発明の他の実施例を図2(a)について説明すれば、上型1の内面の加工度の大きい面に電熱加熱層4を密に設けたものである。   2A, the electrothermal heating layer 4 is densely provided on the surface of the inner surface of the upper mold 1 having a high degree of processing.

この実施例においても電熱加熱層4は上型1の溝に夫々嵌入設置してあるので、上型1の加工面は面一である。   Also in this embodiment, since the electrothermal heating layer 4 is fitted and installed in the groove of the upper mold 1, the processed surface of the upper mold 1 is flush.

この発明の他の実施例を図2(b)について説明すれば、上型1と、下型2の夫々の表面に電熱加熱層4の厚さと同一深さの溝を設け、各溝へ夫々電熱加熱層4を嵌入設置したものである。従って上型と下型の表面は何れも面一に形成されており、ワークを両面から加熱し、成形を容易にしている。前記において、電熱加熱層4の外面の強度が不十分の場合には、保護板で覆い補強することもある。   Referring to FIG. 2B, another embodiment of the present invention will be described. A groove having the same depth as the thickness of the electrothermal heating layer 4 is provided on the surface of each of the upper mold 1 and the lower mold 2, and each groove is provided. The electrothermal heating layer 4 is inserted and installed. Therefore, the surfaces of the upper mold and the lower mold are both flush with each other, and the workpiece is heated from both sides to facilitate molding. In the above, when the strength of the outer surface of the electrothermal heating layer 4 is insufficient, it may be covered and reinforced with a protective plate.

この発明の他の実施例を図3について説明すれば、上型11と、下型12の表面へ、電熱加熱層4、4を設ける。前記電熱加熱層4、4は、絶縁層4a、4a(例えばアルミナ絶縁層)の間に短冊状の電熱層4b(例えばニッケルクロム)を挟着し、前記電熱層4bをリード線7、7と、コード8、8で接続したものである。   If another embodiment of the present invention is described with reference to FIG. 3, electrothermal heating layers 4 and 4 are provided on the surfaces of the upper mold 11 and the lower mold 12. In the electrothermal heating layers 4 and 4, a strip-shaped electrothermal layer 4b (for example, nickel chrome) is sandwiched between insulating layers 4a and 4a (for example, an alumina insulating layer), and the electrothermal layer 4b is connected to lead wires 7 and 7 and the like. , Cords 8 and 8 are connected.

前記における短冊状の電熱層4bは、通電により瞬時(0.5秒位)に加熱され、遮断により速やかに冷却されるので、樹脂溶融液を注入する際に加熱し、注入終了後直ちに冷却することができる。従って、合成樹脂材の射出成形時に加熱し、充填終了後直ちに冷却することができる。   The strip-shaped electrothermal layer 4b is heated instantaneously (about 0.5 seconds) when energized and cooled quickly when shut off. Therefore, the strip-shaped electrothermal layer 4b is heated when pouring the resin melt and cooled immediately after the pouring is completed. be able to. Therefore, it can be heated at the time of injection molding of the synthetic resin material, and can be cooled immediately after filling.

この型を使用すれば、射出時には速やかに材料を充填し、速やかに冷却する。   If this mold is used, the material is quickly filled at the time of injection and cooled quickly.

この発明の他の実施例を図5、6について説明すれば、射出成形型と同質の金属函9(平面形状は、型の底面と相似形)に仕切板13、13を立設し、各仕切板13、13の間へ電熱加熱層4、4と、冷却パイプ14、14を交互に敷設し、前記金属函9に蓋板15を被冠して、冷・熱ユニット10を構成した。前記冷・熱ユニット10は、前記下型12の底面12aの形状と相似形であって、下型12の底部に設けた凹部16へ収容し、前記蓋板15の周縁を下型の底面と面一に成形加工する。前記下型12の一側部には、ヘッドパイプ17と、これに連結する給送パイプ18とが設けてある。図中21は注入孔である。   Referring to FIGS. 5 and 6, another embodiment of the present invention will be described. The partition plates 13 and 13 are erected on a metal box 9 having the same quality as the injection mold (the plane shape is similar to the bottom of the mold). The electrothermal heating layers 4, 4 and the cooling pipes 14, 14 were alternately laid between the partition plates 13, 13, and the metal plate 9 was covered with the lid plate 15 to constitute the cooling / heating unit 10. The cooling / heating unit 10 is similar to the shape of the bottom surface 12a of the lower mold 12, and is accommodated in a recess 16 provided in the bottom of the lower mold 12, and the peripheral edge of the cover plate 15 is the bottom surface of the lower mold 12 Molded to the same level. A head pipe 17 and a feed pipe 18 connected to the head pipe 17 are provided on one side of the lower mold 12. In the figure, 21 is an injection hole.

前記実施例において、電熱加熱層4に通電すれば、設定温度(例えば150℃)に加熱されるので、射出された合成樹脂は、冷却されることなくスムースに流動し、型の空間に充填される。そこで給送パイプ18へ矢示19のように冷媒(冷却空気、冷却水その他)を給送すれば、前記冷媒が型12内の冷却パイプに入り、型の底部を冷却し、矢示20のように排出されるので、射出されている溶融合成樹脂は瞬時に冷却固化される。   In the above embodiment, if the electrothermal heating layer 4 is energized, it is heated to a set temperature (for example, 150 ° C.), so that the injected synthetic resin flows smoothly without being cooled, and is filled in the mold space. The Then, if the refrigerant (cooling air, cooling water, etc.) is fed to the feed pipe 18 as indicated by arrow 19, the refrigerant enters the cooling pipe in the mold 12, cools the bottom of the mold, and the arrow 20 Thus, the injected molten synthetic resin is instantly cooled and solidified.

前記のように、合成樹脂の射出時には型を加熱して、固化乃至粘度上昇を防止し、溶融合成樹脂の流動をスムースにすると共に変質を防止し、ついで冷却して固化する。   As described above, at the time of injection of the synthetic resin, the mold is heated to prevent solidification or increase in viscosity, thereby smoothening the flow of the molten synthetic resin and preventing deterioration, and then cooling to solidify.

従来型は加熱していないので、溶融合成樹脂の高粘度化又は変質(一部固化)を生じるおそれがあり、かつ狭い場合又は薄い場合に、高速流動させるには高圧を要する問題点があった。然るに前記のように、使用合成樹脂に適正な加熱をすれば、変質を生じるおそれがないことは勿論、高圧不用となる利点がある。例えば、給送圧力は10分の1以下にできるので、使用方法、使用器機を大幅に改善することができる。   Since the conventional type is not heated, there is a possibility that the melted synthetic resin may become highly viscous or deteriorated (partially solidified), and there is a problem that high pressure is required to flow at high speed when it is narrow or thin. . However, as described above, if the synthetic resin used is appropriately heated, there is no risk of deterioration, and there is an advantage that high pressure is not required. For example, since the feeding pressure can be reduced to 1/10 or less, the method of use and the equipment used can be greatly improved.

前記において、射出成形型を用いる場合には、短時間に多数の製品を成形しなければならないので、加熱と冷却は瞬時に変わる必要がある。そこで冷媒給送パイプを配置し、冷却時に冷媒を給送することにより、目的を達成したのである。   In the above, when an injection mold is used, since a large number of products must be molded in a short time, heating and cooling must be instantaneously changed. Therefore, the purpose was achieved by arranging a refrigerant feeding pipe and feeding the refrigerant during cooling.

即ち発熱カロリーと、冷却すべきカロリーとは既知であるから、これを満足すべく、電熱加熱層を設け又は必要量の冷媒を給送すれば、瞬時加熱と冷却の目的を達成することができる。   That is, since the calorific value and the calorie to be cooled are known, the purpose of instantaneous heating and cooling can be achieved by providing an electrothermal heating layer or feeding a necessary amount of refrigerant to satisfy this. .

前記実施例は、冷・熱ユニット10を採用したので、従来の型に、必要な凹入部16を設け、この凹部16に前記冷・熱ユニット10をセットすればよいことになり、型の成製について特別の労力と技術を要するおそれはない。   In the above embodiment, since the cooling / heating unit 10 is adopted, a necessary recess 16 is provided in a conventional mold, and the cooling / heating unit 10 is set in the recess 16, so that the mold is formed. There is no risk of requiring special labor and technology for manufacturing.

次に図5(b)について他の実施例を説明すれば、下型12の底面部に設けた凹部16へ、仕切板13、13を設け、該仕切板13、13の間に電熱加熱層4と、冷却パイプ14を交互に設置し、上部へ蓋板15を被冠して、この発明の冷・熱部を構成した。   Next, another embodiment will be described with reference to FIG. 5 (b). Partition plates 13 and 13 are provided in the recess 16 provided in the bottom surface portion of the lower mold 12, and an electrothermal heating layer is provided between the partition plates 13 and 13. 4 and the cooling pipe 14 were alternately installed, and the cover plate 15 was crowned on the upper part to constitute the cold / hot part of the present invention.

前記実施例は、冷・熱ユニット10を使用しないので、型の成形時にセットするものである。従って型の形状に応じ、目的とする加温度(又は冷却度)に対応する能力の冷・熱層を設けることができる。   In the above embodiment, since the cold / heat unit 10 is not used, it is set when the mold is formed. Therefore, according to the shape of the mold, it is possible to provide a cold / hot layer having the ability to correspond to the target heating temperature (or degree of cooling).

前記実施例によれば、型の表面を適宜、加熱、冷却することができるので、熱経済裡に射出成形を進行させることができる。   According to the embodiment, since the surface of the mold can be appropriately heated and cooled, the injection molding can be advanced in a thermoeconomic manner.

この発明の他の実施例を図7、8について説明すると、型21の内面へ、絶縁層23、電熱層24、絶縁層23を順次設けて電熱層とし、上面の絶縁層上へメッキ層25を設ける(凹入部のない場合、図7(a))。また型21の内面の任意の位置へ、凹入部22を設け、該凹入部22の内へ、セラミックス粉塗料による絶縁層23(厚さ0.2m〜0.5mm)を設け、該絶縁層23の上面へ、カーボン粒子よりなる電熱層24(厚さ0.5mm)を設け、該電熱層24の上面へセラミックス粉塗料よりなる絶縁層23(厚さ0.2mm〜0.5mm)を設ける。また前記絶縁層23の上面と、型21の上面とに、メッキ層25(厚さ0.4mm〜0.8mm)を設ける。   7 and 8, the insulating layer 23, the electrothermal layer 24, and the insulating layer 23 are sequentially provided on the inner surface of the mold 21 to form an electrothermal layer, and the plating layer 25 is formed on the upper insulating layer. (When there is no recessed portion, FIG. 7A). Moreover, the recessed part 22 is provided in the arbitrary positions of the inner surface of the type | mold 21, The insulating layer 23 (thickness 0.2m-0.5mm) by ceramic powder coating is provided in this recessed part 22, and this insulating layer 23 is provided. An electric heating layer 24 (thickness 0.5 mm) made of carbon particles is provided on the upper surface of the electrode, and an insulating layer 23 (thickness 0.2 mm to 0.5 mm) made of ceramic powder paint is provided on the upper surface of the electric heating layer 24. A plating layer 25 (thickness 0.4 mm to 0.8 mm) is provided on the upper surface of the insulating layer 23 and the upper surface of the mold 21.

前記絶縁層23をセラミックス粉に代えて耐熱性合成樹脂フィルム(例えばテフロン(登録商標)、シリコンフィルム)を用いることもできる。   The insulating layer 23 may be replaced with ceramic powder, and a heat-resistant synthetic resin film (for example, Teflon (registered trademark), silicon film) may be used.

前記希釈剤は通常シンナーを用いるが、カーボン粒の場合には通電性接着剤を用いる場合もある。   The diluent is usually thinner, but in the case of carbon particles, an electrically conductive adhesive may be used.

前記カーボン層及び絶縁層は、塗布(スプレー)後夫々乾燥し、次工程に移る。例えば絶縁層(セラミックス粉)を設けた後、150℃で10分間予備乾燥し、ついで380℃で15分間乾燥する。   The carbon layer and the insulating layer are dried after coating (spraying), respectively, and then move to the next step. For example, after providing an insulating layer (ceramic powder), it is preliminarily dried at 150 ° C. for 10 minutes, and then dried at 380 ° C. for 15 minutes.

前記処理を終了し、絶縁層が所定の厚さで所定の平面性を有することを確認後、カーボン粒をスプレーして通電層を設ける。ついで150℃で10分間予備乾燥し、350℃で15分〜20分間本乾燥する。前記カーボン層の上面へ、前記と同一要領により絶縁層を設ける。   After the treatment is completed and it is confirmed that the insulating layer has a predetermined thickness and a predetermined flatness, the conductive layer is provided by spraying carbon particles. Next, preliminary drying is performed at 150 ° C. for 10 minutes, and main drying is performed at 350 ° C. for 15 minutes to 20 minutes. An insulating layer is provided on the upper surface of the carbon layer in the same manner as described above.

前記絶縁層の上へ無電解メッキ層を設けるのであるが、絶縁層との関係で被膜形成が不十分の際には、前処理として無電解メッキ(例えばニッケルメッキ)と親和性のある材料(公知の材料)を塗布する場合もある。   An electroless plating layer is provided on the insulating layer. When the film formation is insufficient in relation to the insulating layer, a material having an affinity for electroless plating (for example, nickel plating) as a pretreatment ( In some cases, a known material is applied.

また前記において、電熱層はカーボン粒子に通電性の希釈剤を混合した混合材を薄層(例えば0.5mm)に塗布する。また絶縁層(厚さ0.2mm〜0.5mm)は、セラミック粉末に希釈剤(例えばシンナー)を混合して、この混合材を塗布する。   In the above, the electrothermal layer is applied to a thin layer (for example, 0.5 mm) with a mixed material obtained by mixing carbon particles with an electrically conductive diluent. Moreover, an insulating layer (thickness 0.2 mm-0.5 mm) mixes a diluent (for example, thinner) with ceramic powder, and applies this mixed material.

従って電熱層と、2つの絶縁層を積層しても、厚さは2mm以下となる。前記各層の厚さは一例であって、更に厚くすることもある。また型表面全域に亘って無電解メッキ層(厚さ0.5mm〜1mm)を設け、前記メッキ層の表面へ微小凹凸部を設けることにより、被成形物の表面に微小凹凸部を設ける。   Therefore, even if an electrothermal layer and two insulating layers are laminated, the thickness is 2 mm or less. The thickness of each of the layers is an example, and may be further increased. Further, an electroless plating layer (thickness 0.5 mm to 1 mm) is provided over the entire surface of the mold, and a fine uneven portion is provided on the surface of the molding object by providing a fine uneven portion on the surface of the plated layer.

前記実施例において、図8中電熱層24の上面両側に銀箔26、26aを層着し、各銀箔26、26aにリード線27、27aを夫々連結し、各リード線27、27a、銀箔26、26a及び電熱層(カーボン粒子)24によって発熱回路を構成することができる。   In the embodiment, silver foils 26 and 26a are deposited on both sides of the upper surface of the electrothermal layer 24 in FIG. 8, lead wires 27 and 27a are connected to the silver foils 26 and 26a, respectively, and the lead wires 27 and 27a, the silver foil 26, A heat generating circuit can be constituted by 26 a and the electrothermal layer (carbon particles) 24.

前記メッキ層は無電解メッキ層であって、例えばニッケルメッキとする。   The plating layer is an electroless plating layer, for example, nickel plating.

無電解メッキは公知の方法によるものであるが、形の表面を均一表面とすると共に、微小凹凸部を設ける為に設ける。またメッキ層によって、加熱、冷却温度の均一性を図り、製品(例えば合成樹脂シート)の品質の均一性を図ることができる。   The electroless plating is performed by a known method, but is provided to make the surface of the shape a uniform surface and to provide minute uneven portions. Further, the plating layer can achieve uniformity in heating and cooling temperatures, and can achieve uniformity in the quality of a product (for example, a synthetic resin sheet).

前記における無電解メッキにつき、Niメッキの一例を示すと次のとおりである。金属の表面が触媒となり、次亜リン酸イオンの脱水素反応が起こり、原子状水素Hとメタ亜リン酸イオンPO になる。 Regarding the electroless plating described above, an example of Ni plating is as follows. The surface of the metal serves as a catalyst, and a dehydrogenation reaction of hypophosphite ion occurs, and becomes atomic hydrogen H and metaphosphite ion PO 2 .

[HPO→[PO+2H(cat)・・・・・・・・(1) [H 2 PO 2 ] → [PO 2 ] + 2H (cat) (1)

そこでメタ亜リン酸イオンは水と結合して亜リン酸イオンとなる。   Therefore, metaphosphite ions are combined with water to become phosphite ions.

[PO+HO→[HPO]・・・・・・・・・・・・・(2) [PO 2 ] + H 2 O → [H 2 PO 3 ] (2)

原子状水素Hの一部は直接結合して水素ガスになり、一部はニッケルイオンの還元剤となり、ニッケルを析出させ、一部は次亜リン酸を還元してリンとなり、これはニッケルと合金をつくる。   Part of atomic hydrogen H is directly bonded to form hydrogen gas, part becomes a reducing agent for nickel ions, deposits nickel, part reduces hypophosphorous acid to form phosphorus, Make an alloy.

2H(cat)→H↑・・・・・・・・・・・・・・・・・・・(3) 2H (cat) → H 2 ↑ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3)

Ni2++2H(cat)→NiO+2H・・・・・・・・・・・(4) Ni 2+ + 2H (cat) → NiO + 2H + (4)

[HPO+H(cat)→PO+DH+HO・・・・・・(5) [H 2 PO 2 ] + H (cat) → PO + DH + H 2 O (5)

前記式(3)の反応は式(4)の2倍の反応速度で進行するため、酸性浴の場合便宜なメッキ状態における次亜リン酸塩の利用効率は約33%である。即ちニッケル1モルのメッキに対して、次亜リン酸3モルが必要である。   Since the reaction of formula (3) proceeds at a reaction rate twice that of formula (4), the utilization efficiency of hypophosphite in a convenient plating state is about 33% in the case of an acid bath. That is, 3 moles of hypophosphorous acid are required for 1 mole of nickel plating.

前記無電解メッキのNi−Pメッキ皮膜には次の特性がある。   The electroless plating Ni-P plating film has the following characteristics.

化学組成・・・・・・・Ni:90%〜96%、P:4%〜10%
結晶構造・・・・・・・析出状態はアモルファスであるが、熱処理により結
晶質となる。
比重・・・・・・・・・析出状態で7.9、熱処理で7.8となる。
硬度・・・・・・・・・ビッカース硬さ(HV)500〜700であって、
リン含有率が少ない方が硬度が高い。400℃で熱
処理すればHV950以上になる。
電気抵抗・・・・・・・析出状態で60μΩ/cm、熱処理を行うことによ
り1/3に低下。
熱膨張係数・・・・・・13.0〜14.5μm/m
Chemical composition: Ni: 90% to 96%, P: 4% to 10%
Crystal structure ... The precipitation state is amorphous, but it is formed by heat treatment.
It becomes crystalline.
Specific gravity: 7.9 in the precipitated state and 7.8 in the heat treatment.
Hardness ... Vickers hardness (HV) 500-700,
The lower the phosphorus content, the higher the hardness. Heat at 400 ° C
If processed, it becomes HV950 or more.
Electrical resistance ... ・ By performing heat treatment at 60μΩ / cm in the deposited state
1/3.
Thermal expansion coefficient: 13.0 to 14.5 μm / m 3 C

無電解ニッケルメッキは次のような複合メッキとすることができる。   The electroless nickel plating can be a composite plating as follows.

耐摩耗性皮膜・・・・・炭化ケイ素(SiC)、酸化アルミニウム(Al
)、BCダイヤモンドなどを共析させることがで
きる。
耐食性皮膜・・・・・・Cr、Mo、W、Tiなどの金属粉末を共析させる
こともできる。
Abrasion-resistant coating: Silicon carbide (SiC), aluminum oxide (Al 2 O
3 ), B 4 C diamond can be co-deposited
wear.
Corrosion-resistant coating: Co-depositing metal powders such as Cr, Mo, W, Ti
You can also.

(a)この発明の加圧成形型の実施例の一部を断面した正面図、(b)同じく一部拡大断面図、(c)同じく各電熱加熱層の電気的接続を示す説明図。(A) The front view which carried out the cross section of a part of Example of the press-molding die of this invention, (b) The same partially expanded sectional view, (c) Explanatory drawing which similarly shows the electrical connection of each electrothermal heating layer. (a)同じく他の実施例の一部断面図、(b)同じく他の実施例の一部断面図。(A) Partial sectional view of another embodiment, (b) Partial sectional view of another embodiment. (a)同じく射出成形型の一部を省略し、断面した斜視図、(b)同じく一部拡大断面図。(A) The perspective view which abbreviate | omitted and partially cut the injection mold, (b) The same partially expanded sectional view. 同じく図3における電熱加熱層の電気接続例を示す説明図。Explanatory drawing which similarly shows the electrical connection example of the electrothermal heating layer in FIG. (a)同じく加熱冷却ユニットの一部断面拡大図、(b)同じく型の表面へ加熱・冷却手段を埋設した一部断面拡大図。(A) Partial cross-sectional enlarged view of the heating / cooling unit, and (b) Partial cross-sectional enlarged view in which heating / cooling means are embedded in the surface of the mold. (a)同じく下型の実施例の斜視図、(b)同じく一部断面した平面図。(A) The perspective view of the Example of a lower mold | type similarly, (b) The top view which was also partially cross-sectioned. (a)同じく他の実施例の一部を省略した断面拡大図、(b)同じく他の実施例の一部を省略した断面拡大図。(A) The cross-sectional enlarged view which abbreviate | omitted a part of other Example similarly, (b) The cross-sectional enlarged view which abbreviate | omitted a part of the other Example similarly. (a)同じく他の実施例の一部を省略した平面図、(b)同じく図(a)中一部を省略したA−A断面拡大図。(A) The top view which abbreviate | omitted a part of other Example similarly, (b) The AA cross-sectional enlarged view which abbreviate | omitted a part in figure (a).

符号の説明Explanation of symbols

1 上型
2 下型
3 ワーク
4 電熱加熱層
5 成形型
6 溝
7 リード線
8 コード
9 金属函
10 冷・熱ユニット
11 仕切板
12 下型
13 仕切板
14 冷却パイプ
15 蓋板
16 凹部
17 ヘッドパイプ
18 給送パイプ
23 絶縁層
24 電熱層
25 メッキ層
26 銀箔
1 Upper mold 2 Lower mold 3 Work 4 Electric heating layer 5 Mold 6 Groove 7 Lead wire 8 Cord 9 Metal box 10 Cooling / heating unit 11 Partition plate 12 Lower mold 13 Partition plate 14 Cooling pipe 15 Cover plate 16 Recess 17 Head pipe 18 Feeding pipe 23 Insulating layer 24 Electric heating layer 25 Plating layer 26 Silver foil

Claims (14)

織布又はシート材を加圧成形する成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、電熱加熱層を設けたことを特徴とする電気加熱加圧成形型。   An electric heating and pressing mold characterized in that an electrothermal heating layer is provided in the vicinity of one or both of the upper mold and the lower mold or a surface in a molding mold for press molding a woven fabric or a sheet material. 電熱加熱層は成形型の被加工材の当接面の全面に均等密度又は不均等密度に設けることを特徴とした請求項1記載の電気加熱加圧成形型。   2. The electric heating and pressing mold according to claim 1, wherein the electrothermal heating layer is provided with a uniform density or a non-uniform density over the entire contact surface of the workpiece of the mold. 電熱加熱層は、成形型の曲面に設けることを特徴とした請求項1記載の電気加熱加圧成形型。   2. The electric heating and pressing mold according to claim 1, wherein the electrothermal heating layer is provided on a curved surface of the mold. 電熱加熱層は、成形型の表面に絶縁層を設け、その上に電熱層を設け、その上に絶縁層を設けたことを特徴とする請求項1記載の電気加熱加圧成形型。   2. The electric heating and pressing mold according to claim 1, wherein the electrothermal heating layer is provided with an insulating layer on the surface of the molding die, an electrothermal layer provided thereon, and an insulating layer provided thereon. 電熱加熱層は絶縁シートでカーボン粒電熱層を挟着したことを特徴とする請求項1記載の電気加熱加圧成形型。   2. The electric heating and pressing mold according to claim 1, wherein the electric heating layer is a carbon particle electric heating layer sandwiched between insulating sheets. 溶融合成樹脂を成形固化する射出成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、面状の電熱加熱層を設けると共に、溶融合成樹脂の射出手段及び前記上型又は下型の一方又は両方へ冷却手段を設けたことを特徴とする射出成形型。   In an injection mold for molding and solidifying a molten synthetic resin, a planar electrothermal heating layer is provided in the vicinity of one or both surfaces of the upper mold or the lower mold, and an injection means for the molten synthetic resin and the upper mold Alternatively, an injection mold characterized in that a cooling means is provided on one or both of the lower molds. 電熱加熱層は、射出成形型に凹入部を設け、該凹入部の下から、セラミック材を塗布して絶縁層を設け、該絶縁層の上にカーボン粒又はカーボン繊維により、電熱層を設け、該電熱層の上へセラミック材を塗布して絶縁層を設け、前記成形型の内面へ無電解メッキ層を設けて、一連の平面としたことを特徴とする請求項6記載の射出成形型。   The electrothermal heating layer is provided with a recessed portion in the injection mold, and an insulating layer is formed by applying a ceramic material from below the recessed portion, and an electrically heated layer is formed on the insulating layer with carbon particles or carbon fibers. 7. The injection mold according to claim 6, wherein a ceramic material is applied on the electrothermal layer to provide an insulating layer, and an electroless plating layer is provided on the inner surface of the mold to form a series of flat surfaces. 射出成形型の表面へ、耐熱性の絶縁フィルムを貼着し、該絶縁フィルムの上面へカーボン粒又はカーボン繊維によるカーボン電熱層を設け、該カーボン電熱層の上面へ耐熱性の絶縁フィルムを被着し、該絶縁フィルム上へ保護板を被着したことを特徴とする請求項6記載の射出成形型。   A heat-resistant insulating film is attached to the surface of the injection mold, a carbon electric heating layer made of carbon particles or carbon fibers is provided on the upper surface of the insulating film, and a heat-resistant insulating film is attached to the upper surface of the carbon electric heating layer. 7. An injection mold according to claim 6, wherein a protective plate is deposited on the insulating film. 射出成形型の表面へ、プラズマ溶射によりアルミナ絶縁層、ニッケル−クロム電熱層及びアルミナ絶縁層を順次層着したことを特徴とする請求項6記載の射出成形型。   The injection mold according to claim 6, wherein an alumina insulating layer, a nickel-chromium electrothermal layer, and an alumina insulating layer are sequentially deposited on the surface of the injection mold by plasma spraying. 電熱加熱層は、型の表面に絶縁材を溶射してなる絶縁層と、電熱材を溶射してなる電熱加熱層と、絶縁材を溶射してなる絶縁層を順次層着して設けたことを特徴とする請求項6記載の射出成形型。   The electric heating layer was formed by sequentially depositing an insulating layer formed by spraying an insulating material on the surface of the mold, an electric heating layer formed by spraying the electric heating material, and an insulating layer formed by spraying the insulating material. The injection mold according to claim 6. 電熱加熱層は、カーボン電熱層を絶縁層で挟着したことを特徴とする請求項6記載の射出成形型。   The injection mold according to claim 6, wherein the electrothermal heating layer includes a carbon electrothermal layer sandwiched between insulating layers. 冷却手段は冷却流体の流動パイプを型内へ埋設したことを特徴とする請求項6記載の射出成形型。   7. The injection mold according to claim 6, wherein the cooling means has a cooling fluid flow pipe embedded in the mold. 溶融合成樹脂を成形固化する射出成形型において、上型又は下型の一方又は両方の表面又は表面に近接して、電熱加熱層と冷却手段とをセットした加熱・冷却ユニットを埋設したことを特徴とする射出成形型。   In an injection mold for molding and solidifying a molten synthetic resin, a heating / cooling unit in which an electrothermal heating layer and a cooling means are set is embedded in the vicinity of one or both of the upper mold and the lower mold. An injection mold. 加熱・冷却ユニットは、電熱層と冷却パイプとをセットしたことを特徴とする請求項13記載の射出成形型。   The injection mold according to claim 13, wherein the heating / cooling unit is set with an electrothermal layer and a cooling pipe.
JP2008139282A 2007-07-25 2008-05-28 Electric heating pressure-molding mold and injection molding mold Pending JP2009119847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139282A JP2009119847A (en) 2007-07-25 2008-05-28 Electric heating pressure-molding mold and injection molding mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007193454 2007-07-25
JP2007276562 2007-10-24
JP2008139282A JP2009119847A (en) 2007-07-25 2008-05-28 Electric heating pressure-molding mold and injection molding mold

Publications (1)

Publication Number Publication Date
JP2009119847A true JP2009119847A (en) 2009-06-04

Family

ID=40812533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139282A Pending JP2009119847A (en) 2007-07-25 2008-05-28 Electric heating pressure-molding mold and injection molding mold

Country Status (1)

Country Link
JP (1) JP2009119847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408849B1 (en) * 2012-05-07 2014-06-19 강명호 Injection molding apparatus having heating mold with heating layer, heating mold with heating layer and manufacturing method of heating mold with heating layer
WO2018134900A1 (en) * 2017-01-18 2018-07-26 本田技研工業株式会社 Resin molding apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408849B1 (en) * 2012-05-07 2014-06-19 강명호 Injection molding apparatus having heating mold with heating layer, heating mold with heating layer and manufacturing method of heating mold with heating layer
WO2018134900A1 (en) * 2017-01-18 2018-07-26 本田技研工業株式会社 Resin molding apparatus
JPWO2018134900A1 (en) * 2017-01-18 2019-07-25 本田技研工業株式会社 Resin molding equipment
CN110167733A (en) * 2017-01-18 2019-08-23 本田技研工业株式会社 Resin molding apparatus
US10967543B2 (en) 2017-01-18 2021-04-06 Honda Motor Co., Ltd. Resin molding apparatus
CN110167733B (en) * 2017-01-18 2021-06-25 本田技研工业株式会社 Resin molding device

Similar Documents

Publication Publication Date Title
CN105499572B (en) A kind of electromagnetic induction heating type 3D printer extrudes shower nozzle
US20110229595A1 (en) Casting, molding or pressing tool with temperature control medium channels
MX2014012250A (en) Die insert with layer heating, moulding plate having a die insert of this type, and method for operating a die insert of this type.
TW201540843A (en) Device for heating a mold
JP5833460B2 (en) Mold and method for producing thermoplastic resin fiber reinforced composite material molded article
CN101682936B (en) Spray deposited heater element
CN102575332A (en) Low CTE slush molds with textured surface, and method of making and using the same
JP7119671B2 (en) COMPOSITE HEAT TRANSFER MEMBER AND METHOD FOR MANUFACTURING COMPOSITE HEAT TRANSFER MEMBER
CN104894494A (en) Preparation method of carbon fiber mesh reinforced copper-based wear-resisting material
CN102912263A (en) Carbon fiber reinforced titanium alloy compound material and preparation method thereof
JPH04314506A (en) Adiabatic mold structure with multilayer metal surface layers
CN105473301A (en) Method for producing non-metal self-heatable molds
CN1835835A (en) Heatable tool
JP2009119847A (en) Electric heating pressure-molding mold and injection molding mold
JPWO2017082207A1 (en) Manufacturing method of shaped article and shaped article
WO2022266743A1 (en) Processes and systems for spray deposition onto polymer substrates and via masks to produce flow devices
TWI344414B (en)
CN101214741B (en) Preparing technique of hard silk screen abrasion-proof composite material
JP2008238720A (en) Electroforming mold and its manufacturing method
JP4996763B2 (en) Heat exchange structure and method of manufacturing injection molded product
CN102108534A (en) Mold making method based on ultrasonic pulse electrodeposition and spray forming and mold
CN100506436C (en) Method for rapid fabrication of molds with functionally graded materials
US20240239023A1 (en) Tool insert for a primary shaping tool and primary shaping tool equipped with said tool insert
KR20170026550A (en) Tool and method for injection moulding or embossing/pressing
JPS6139114A (en) Surface temperature controller

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090423

RD02 Notification of acceptance of power of attorney

Effective date: 20090423

Free format text: JAPANESE INTERMEDIATE CODE: A7422