[go: up one dir, main page]

JP2009115754A - Device and method for measuring leakage current in electric equipment - Google Patents

Device and method for measuring leakage current in electric equipment Download PDF

Info

Publication number
JP2009115754A
JP2009115754A JP2007292127A JP2007292127A JP2009115754A JP 2009115754 A JP2009115754 A JP 2009115754A JP 2007292127 A JP2007292127 A JP 2007292127A JP 2007292127 A JP2007292127 A JP 2007292127A JP 2009115754 A JP2009115754 A JP 2009115754A
Authority
JP
Japan
Prior art keywords
leakage current
phase
ground
value
ground voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292127A
Other languages
Japanese (ja)
Inventor
Ryoichi Yano
良一 矢野
Katsuji Takeya
勝次 武谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SBC CO Ltd
Original Assignee
SBC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SBC CO Ltd filed Critical SBC CO Ltd
Priority to JP2007292127A priority Critical patent/JP2009115754A/en
Publication of JP2009115754A publication Critical patent/JP2009115754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for measuring the leakage current Igr value flowing through a ground insulation resistor of electric equipment and its circuit that are driven by a switching power supply such as an inverter. <P>SOLUTION: A signal processing section 14 for signal-processes the ground voltages VU, VV and VW of the switching power supply 2 sequentially input by a change-over switch 10 and the leakage current 10 detected from a power supply cable 4 by a zero-phase current transformer 8, and measures the phase difference between one of the ground voltages VU, VV and VW and the leakage current 10, and signal-processes it. The leakage current Igr flowing via a ground leakage resistor 7 is calculated based on the effective value of the leakage current 10 obtained in the signal processing section 14, the effective values of the ground voltages VU, VV and VW, and the phase difference between one of the ground voltages VU, VV and VW and the leakage current 10. The leakage current Igr calculated by the arithmetic section 15 is displayed on a display section 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、インバータ等のスイッチング電源で駆動される電動機を有する電気機器の電圧印加部分から接地部分へ流れる漏洩電流を測定する電気機器における漏洩電流測定装置及びその測定方法に関する。   The present invention relates to a leakage current measuring apparatus and method for measuring leakage current in an electric device that measures a leakage current flowing from a voltage application portion to a ground portion of an electric device having an electric motor driven by a switching power source such as an inverter.

電気の利用は、便利な反面、適切な管理や使用を誤れば、大変危険な側面も兼ね備えており、電気火災や感電事故等の重大な事故を引き起こす可能性も少なくない。例えば、その重大事故の原因の一つとして、電路や電気機器の絶縁不良がある。電路及び電気機器の絶縁状態を調べる方法として、被測定電路及び電気機器を停電させて、絶縁抵抗計で測定する方法が従来の標準であった。   The use of electricity is convenient, but if it is not properly managed and used, it also has very dangerous aspects, and there are many possibilities of causing serious accidents such as electric fires and electric shocks. For example, one of the causes of the serious accident is an insulation failure of an electric circuit or an electric device. As a method of examining the insulation state of the electric circuit and the electric device, a method of measuring the electric circuit and electric device to be measured with a power failure and measuring with an insulation resistance meter has been a conventional standard.

近年のように、停電が許されない配電線や連続操業の工場等には適用が制限される等の欠点がある。つまり、現在の社会状況では、コンピュータが社会の各方面に利用され、インテリジェントビルの普及拡大及び工場のFA(ファクトリー・オートメーション)化により、24時間連続稼動するシステムが構築されており、絶縁状態を調べるために、一時的に停電状態にすることができない状況となっている。   As in recent years, there are drawbacks such as restrictions on application to distribution lines where continuous power failure is not permitted, continuous operation factories, and the like. In other words, in the current social situation, computers are used in various areas of society, and a system that operates continuously for 24 hours has been constructed by the spread of intelligent buildings and factory automation (FA). In order to investigate, it is in a situation where it cannot temporarily be brought into a power failure state.

特に、インバータなどのスイッチング電源で駆動される電動機を有する電気機器における漏洩電流の測定については、電子回路で構成されるスイッチング電源を絶縁抵抗測定時の高電圧から保護するため電動機のみを切り離して測定する必要があり、停電手続きや、その結線の開放、再接続などに多くの手間と時間とを必要としている。これにより、連続操業の工場等ではラインの停止時間が制限されるので、絶縁抵抗計の適用が制限される等の問題点がある。   Especially when measuring leakage current in electrical equipment that has an electric motor driven by a switching power supply such as an inverter, measure only the electric motor to protect the switching power supply composed of electronic circuits from high voltage during insulation resistance measurement. Therefore, it takes a lot of time and effort for the power outage procedure, opening the connection, and reconnecting. As a result, the line stop time is limited in a continuous operation factory or the like, and there is a problem that application of the insulation resistance meter is limited.

したがって、現在では、このような高度情報化による社会の無停電化の要請から、電路及び電気機器の絶縁不良管理が停電を伴う絶縁抵抗計による方法から、電気を切ることなく測定できる漏洩電流測定方法が用いられるようになっている。そして、漏電遮断器や漏電火災警報機等により漏洩電流を測定して絶縁状態を管理する通電中の予防策は、種々提案されている。   Therefore, at present, leakage current measurement that can be measured without turning off electricity from the method of insulation resistance meter with power outage due to the demand for society uninterrupted due to such advanced informationization, insulation failure management of electric circuits and electrical equipment. A method is being used. And various preventive measures during energization in which the leakage current is measured by an earth leakage breaker, an earth leakage fire alarm, or the like and the insulation state is managed have been proposed.

通電状態のまま電路及び電気機器の絶縁状態を調べる方法として、特開平3−179271号公報(特許文献1)、特開2002−125313号公報(特許文献2)等に開示されているように、零相変流器によって検出する、電路及び電気機器の充電部分から接地部分への漏れ電流、即ち零相電流I0を検知する方法が一般的に行われている。漏れ電流I0は、電路及び電気機器の充電部分と接地部分間の絶縁抵抗を通じて流れる漏れ電流Igrと、この絶縁部分に通常存在する対地静電容量を通じて流れる漏れ電流Igcとのベクトル和で構成されている。   As disclosed in Japanese Patent Laid-Open No. 3-179271 (Patent Document 1), Japanese Patent Application Laid-Open No. 2002-125313 (Patent Document 2), etc. In general, a method of detecting a leakage current from a charged part of an electric circuit and an electric device to a grounded part, that is, a zero-phase current I0, which is detected by a zero-phase current transformer, is performed. The leakage current I0 is composed of the vector sum of the leakage current Igr that flows through the insulation resistance between the charging part and the grounding part of the electric circuit and electrical equipment, and the leakage current Igc that flows through the ground capacitance that normally exists in this insulating part. Yes.

インバータ等のスイッチング電源によって駆動される電動機を有する電気機器にあっては、その電動機の運転周波数(以下、基本周波数という)及び電圧が絶えず変化し、漏れ電流に直接関係する対地電圧そのものも変化する。また、電動機の対地絶縁抵抗測定時の電流Igrは、数mA以下がある場合が多く、以上述べた条件のもとでは、測定そのものが極めて困難である。   In an electric device having an electric motor driven by a switching power source such as an inverter, the operating frequency (hereinafter referred to as a basic frequency) and voltage of the electric motor constantly change, and the ground voltage itself directly related to the leakage current also changes. . Further, the current Igr at the time of measuring the ground insulation resistance of the motor is often several mA or less, and measurement itself is extremely difficult under the above-described conditions.

他の方式である200V3相3線のうちの1線を接地する配電方式の測定方法は、零相電流Ioと線間電圧との間の位相差を測定し、この値から漏洩電流Igrの値を算出する。スイッチング電源より商用周波数電源側の配電系統の計測は可能であるが、周波数が変化し対地電圧も変化するスイッチング電源側で駆動される電動機の計測は困難である。特殊な回路をつけ加えて漏洩電流Igrを計測する方法も同様で、スイッチング電源の故障の原因になり、精密な制御を行っている電動機の運転に悪影響を及ぼす。
特開平3−179271号公報 特開2002−125313号公報
The distribution method measuring method for grounding one of the 200V three-phase three wires, which is another method, measures the phase difference between the zero-phase current Io and the line voltage, and from this value, the value of the leakage current Igr is measured. Is calculated. Although it is possible to measure the distribution system on the commercial frequency power supply side from the switching power supply, it is difficult to measure the motor driven on the switching power supply side where the frequency changes and the ground voltage also changes. The method of measuring the leakage current Igr by adding a special circuit is also the same, which causes a failure of the switching power supply and adversely affects the operation of the motor that performs precise control.
JP-A-3-179271 JP 2002-125313 A

本発明は、通電状態のまま電気機器が有する電動機の絶縁抵抗を通じて流れる漏れ電流Igr、特にスイッチング電源で駆動される電動機を有する電気機器の対地絶縁抵抗を通じて流れる漏れ電流Igrを運転状態のままで検出することができる電気機器における漏洩電流測定装置及びその測定方法の提供を目的とする。   The present invention detects the leakage current Igr flowing through the insulation resistance of the electric motor of the electric device in the energized state, particularly the leakage current Igr flowing through the ground insulation resistance of the electric device having the electric motor driven by the switching power supply in the operating state. It is an object of the present invention to provide a leakage current measuring device and a measuring method thereof in an electrical device that can be used.

本発明に係る電気機器における漏洩電流測定装置は、上述の課題を解決するため、電圧測定手段がスイッチング電源各相の対地電圧を順次入力測定し、零相電流測定手段が上記スイッチング電源から電動機や電気機器や配線を通じて流れる対地漏洩電流である零相電流I0を測定し、信号処理手段が零相電流測定手段により測定した零相電流I0から、電圧測定手段により測定したスイッチング電源の入力された相の対地電圧と同相方向の成分である有効成分を順次入力された各相ごとに算出し、演算手段が信号処理手段により算出された零相電流I0の各相ごとの有効成分と電圧測定手段により入力されたスイッチング電源各相の対地電圧の値から上記電気機器の対地絶縁抵抗を通じて流れる漏れ電流Igrを演算する。   In order to solve the above-described problem, the leakage current measuring apparatus in the electric apparatus according to the present invention is configured such that the voltage measuring unit sequentially inputs and measures the ground voltage of each phase of the switching power supply, and the zero-phase current measuring unit receives the electric motor or the The phase of the switching power supply measured by the voltage measuring means from the zero phase current I0 measured by the signal processing means by the zero-phase current measuring means is measured. The effective component, which is a component in the same phase direction as the ground voltage, is calculated for each phase sequentially input, and the calculation means calculates the effective component and voltage measurement means for each phase of the zero-phase current I0 calculated by the signal processing means. The leakage current Igr flowing through the ground insulation resistance of the electric device is calculated from the ground voltage value of each phase of the switching power supply input.

本発明に係る電気機器における漏洩電流測定方法では、上記課題を解決するために、電圧測定工程においてスイッチング電源各相の対地電圧を順次入力測定し、零相電流測定工程においてスイッチング電源から電動機や電気機器や配線を通じて流れる対地漏洩電流である零相電流I0を測定し、信号処理工程において零相電流測定工程で測定した零相電流I0から、電圧測定工程で測定したスイッチング電源が入力された相の対地電圧と同相方向の成分である有効成分を順次入力された各相ごとに算出し、演算工程において信号処理工程で算出された零相電流I0の各相ごとの有効成分と電圧測定工程で入力されたスイッチング電源各相の対地電圧の値から上記電気機器の対地絶縁抵抗を通じて流れる漏れ電流Igrを演算する。   In order to solve the above problems, the leakage current measurement method for an electrical apparatus according to the present invention sequentially inputs and measures the ground voltage of each phase of the switching power supply in the voltage measurement process, and the motor and the electric Measure the zero-phase current I0, which is the ground leakage current that flows through the equipment and wiring, and from the zero-phase current I0 measured in the zero-phase current measurement process in the signal processing process, The effective component, which is the component in the same phase direction as the ground voltage, is calculated for each phase sequentially input, and the effective component for each phase of the zero-phase current I0 calculated in the signal processing step in the calculation step and input in the voltage measurement step The leakage current Igr flowing through the ground insulation resistance of the electric device is calculated from the ground voltage value of each phase of the switching power supply.

スイッチング電源が電気機器を駆動するために発生する3相電圧は、外部から受電した商用周波数の電圧をスイッチング電源装置の中で整流した結果発生する直流電圧部分の+・−電位の中央電位である0電位に対して、120度の位相差で大きさが等しい3相電圧(以下、この三相電圧を駆動電圧という。)を発生している。前記0電位点の対地電圧(以下、対地0電位電圧という。)は、外部の商用周波数電源の接地方式によって異なる電圧値と周波数成分とを持っており、例えば、3相のうちの1相接地方式では、前記対地0電位電圧は、外部の商用周波数電源の線間電圧を√3で割ったいわゆる相電圧であり、周波数は商用周波数とこの高調波である。駆動電圧の周波数は、低速時0〜30Hzの範囲にあり、運転時30〜60Hzの範囲にあることが一般的で、電圧は60Hzで電動機の定格電圧、60Hz未満では周波数にほぼ比例して低くなる。従って、スイッチング電源出力端子の対地電圧は両電圧の合成となり、周波数は両周波数の平均及び差の半分の周波数の波形が重畳したものになる。例えば、商用周波数60Hz、駆動周波数30Hzの場合には、45Hzと15Hz周波数の波形が重畳され、駆動周波数50Hzの場合には、55Hzと5Hzの周波数が重畳する。合成電圧値は、長い周期で変動し、その最大値は両電圧値の最大値の和になる。また、スイッチング電源の電圧電流波形は、直流電圧を裁断した方形波を組み合わせた構成のため、周波数が多い高調波成分を多く含んでいる。   The three-phase voltage generated when the switching power supply drives the electrical equipment is the central potential of the +/- potential of the DC voltage portion generated as a result of rectifying the commercial frequency voltage received from outside in the switching power supply device. A three-phase voltage (hereinafter, this three-phase voltage is called a drive voltage) having the same magnitude with a phase difference of 120 degrees is generated with respect to the zero potential. The ground voltage at the zero potential point (hereinafter referred to as ground zero potential voltage) has different voltage values and frequency components depending on the grounding method of the external commercial frequency power supply. For example, one of three phases In the ground system, the ground potential voltage is a so-called phase voltage obtained by dividing the line voltage of an external commercial frequency power source by √3, and the frequency is the commercial frequency and this harmonic. The frequency of the drive voltage is in the range of 0 to 30 Hz at low speed and is generally in the range of 30 to 60 Hz during operation. The voltage is 60 Hz, the rated voltage of the motor, and less than 60 Hz is almost proportional to the frequency. Become. Therefore, the ground voltage of the switching power supply output terminal is a combination of both voltages, and the frequency is a superposition of the waveform of the average of both frequencies and a half frequency difference. For example, when the commercial frequency is 60 Hz and the driving frequency is 30 Hz, waveforms of 45 Hz and 15 Hz are superimposed, and when the driving frequency is 50 Hz, the frequencies of 55 Hz and 5 Hz are superimposed. The combined voltage value fluctuates in a long cycle, and the maximum value is the sum of the maximum values of both voltage values. Further, the voltage / current waveform of the switching power supply includes a combination of square waves obtained by cutting a DC voltage, and thus includes many harmonic components having a high frequency.

スイッチング電源の対地電圧は、前述したように、3相の駆動電圧と単相の対地0電位電圧の異なった電源の集合であるので、この2つの電源別に検討し、重畳の理によって後で加え合わせる方法で説明を行う。本発明に係る電気機器で、電圧が加わる部分とそれを覆っている接地された金属部分又は地面との間には対地静電容量が存在する。この対地静電容量は駆動電圧の3相各相に対してほとんど同じ静電容量の値を示すので、周波数f、相電圧値Eの駆動電圧を対地静電容量Cに印加すると、各相の対地静電容量を流れる電流は大きさが同じで位相差が120度になり、3相分を合計した電流値は0になる。周波数f0、電圧値E0の単相の対地0電位電圧に対しては各相の対地静電容量を流れる電流は同方向となり合計値となる。絶縁劣化の結果対地絶縁抵抗rを通じて流れる漏れ電流Igrが発生すればこの電流と前述の対地静電容量を流れる電流の合計との合成値が漏れ電流I0として計測される。   As described above, the ground voltage of the switching power source is a set of power sources having different three-phase driving voltages and single-phase ground potential voltages. It explains by the method of matching. In the electric device according to the present invention, a ground capacitance exists between a portion to which a voltage is applied and a grounded metal portion covering the portion or the ground. Since this ground capacitance shows almost the same capacitance value for each of the three phases of the driving voltage, when a driving voltage having a frequency f and a phase voltage value E is applied to the ground capacitance C, The current flowing through the ground capacitance is the same, the phase difference is 120 degrees, and the total current value for the three phases is zero. For a single-phase ground zero potential voltage having a frequency f0 and a voltage value E0, the current flowing through the ground capacitance of each phase is in the same direction and is a total value. If a leakage current Igr flowing through the ground insulation resistance r is generated as a result of the insulation deterioration, a combined value of this current and the sum of the currents flowing through the above-mentioned ground capacitance is measured as the leakage current I0.

スイッチング電源の対地電圧が測定のため入力された相に対地漏洩抵抗rを通じて漏洩電流Igrが流れたとき、相電圧値Eの駆動電圧に起因する漏れ電流をI0dとすると、前述のように3相の対地静電容量Cを通じて流れる電流の合計は0となり、対地漏洩抵抗rを通じて流れる電流のみであるので、漏れ電流I0dは下記の式(1)に示すようになる。   When the leakage current Igr flows through the ground leakage resistance r to the phase where the ground voltage of the switching power supply is input for measurement, if the leakage current due to the driving voltage of the phase voltage value E is I0d, the three-phase as described above The total current flowing through the ground capacitance C is 0, and only the current flowing through the ground leakage resistance r, so the leakage current I0d is expressed by the following equation (1).

I0d=E/r ・・・(1)
次に、電圧値E0の対地0電位電圧に起因する漏れ電流をI00とし、ベクトル記号法で、電圧E0より90度進んだ成分記号をjとすると、コンデンサCを流れる電流は印加された電圧E0より90度進み、3相分の合計となるので、漏れ電流I00は、下記の式(2)に示すようになる。
I0d = E / r (1)
Next, let I00 be the leakage current due to the voltage of the ground potential 0 with the voltage value E0, and let j be the component symbol that is 90 degrees ahead of the voltage E0 by the vector symbol method, the current flowing through the capacitor C is the applied voltage E0. Since it is further 90 degrees and is the sum of the three phases, the leakage current I00 is expressed by the following equation (2).

I00=E0/r+j・2πf0×3CE0 ・・・(2)
そして、最大対地電圧時は相電圧値Eの駆動電圧と電圧値E0の対地0電位電圧のピーク値とが重なったとき、つまりベクトルの方向が一致したときで、両電圧の合計値はE+E0となり、このときの漏れ電流をI0とすると、重ねの理より、式(1)、式(2)を加算して、漏れ電流をI0は、下記の式(3)に示すようになる。
I00 = E0 / r + j · 2πf0 × 3CE0 (2)
At the time of the maximum ground voltage, when the driving voltage of the phase voltage value E and the peak value of the ground potential voltage of the voltage value E0 overlap, that is, when the vector directions coincide, the total value of both voltages becomes E + E0. Assuming that the leakage current at this time is I0, the equation (1) and equation (2) are added according to the principle of superposition, and the leakage current I0 becomes as shown in the following equation (3).

I0=I0d+I00=(E+E0)/r+j・2πf0×3CE0 ・・・(3)
上記式(3)において、(E+E0)/rの部分が対地漏洩抵抗rを通じて流れる漏洩電流Igrであるので、対地電圧(E+E0)のときの漏洩電流Igrは、下記の式(4)で表される。
I0 = I0d + I00 = (E + E0) / r + j · 2πf0 × 3CE0 (3)
In the above equation (3), since the portion (E + E0) / r is the leakage current Igr flowing through the ground leakage resistance r, the leakage current Igr at the time of the ground voltage (E + E0) is expressed by the following equation (4). The

Igr=(E+E0)/r ・・・(4)
従って、漏洩電流Igrを求めるには、スイッチング電源のある相の対地電圧を測定のための電圧として入力し、漏洩電流I0の、この入力電圧と同相方向の成分つまり実数部分の値を求めれば、前記式(3)、式(4)に示されるように、この値が入力相の対地電圧(E+E0)のときの漏洩電流Igrの値になる。
Igr = (E + E0) / r (4)
Therefore, in order to obtain the leakage current Igr, the ground voltage of a phase of the switching power supply is input as a voltage for measurement, and the component of the leakage current I0 in the same phase direction as the input voltage, that is, the value of the real part is obtained. As shown in the equations (3) and (4), this value is the value of the leakage current Igr when the input phase ground voltage (E + E0).

このIgr部分は、式(3)においてjがつかない実数部分で、周波数に関係しない式(4)だけで構成されているので、スイッチング電源のように周波数が変化する場合の測定に好都合である。   This Igr portion is a real number portion where j is not attached in Equation (3), and is composed only of Equation (4) not related to frequency, which is convenient for measurement when the frequency changes like a switching power supply. .

実際の測定では、入力された対地電圧は数秒から十数秒の比較的長い周期で変動するので、この電圧が最大になる時間帯でIgr値を複数回測定し、その最大値をその入力相のIgrの値として採用する。また、前述の式(3)から、漏れ電流I0と入力電圧(E+E0)との位相差をベクトルで表すと漏れ電流I0と入力電圧(E+E0)とのなす角度、つまり位相角は0度から90度の範囲であるが、予期しないノイズや、対地漏洩抵抗rが存在する相が測定のため対地電圧を入力した相と異なるときは、この範囲外となることがあるので、位相角が0度から90度の範囲であることも測定の条件とする。   In actual measurement, the input ground voltage fluctuates in a relatively long cycle of several seconds to several tens of seconds. Therefore, the Igr value is measured several times in the time zone when this voltage is maximum, and the maximum value is measured for the input phase. Adopted as the value of Igr. Further, from the above equation (3), when the phase difference between the leakage current I0 and the input voltage (E + E0) is represented by a vector, the angle formed by the leakage current I0 and the input voltage (E + E0), that is, the phase angle is 0 to 90 degrees. If the phase with unexpected noise or ground leakage resistance r is different from the phase where the ground voltage is input for measurement, the phase angle may be out of this range. It is also a measurement condition that the angle is within a range of 90 degrees.

このように対地電圧入力相が対地漏洩抵抗rが存在する相に一致したときに、上述したとおりの関係が成立するので、対地電圧入力相を切り換えて順次測定し、その中のIgrの最大値を入力電圧(E+E0)時のIgr値とする。また、対地漏洩抵抗rが存在する相が複数相のときは、複数相それぞれのIgrの値の合計値を入力電圧(E+E0)時のIgr値とする。次に、運転条件によっては、測定時の入力電圧(E+E0)が、当該電気機器の定格対地電圧V0に達しないことがあるので、このとき計測されたIgrの値を電気機器の定格対地電圧V0と測定された対地電圧とで補正する。   As described above, when the ground voltage input phase coincides with the phase where the ground leakage resistance r exists, the relationship as described above is established. Therefore, the ground voltage input phase is switched and sequentially measured, and the maximum value of Igr in the phase is measured. Is the Igr value at the time of input voltage (E + E0). When the ground leakage resistance r exists in a plurality of phases, the total value of the Igr values of the plurality of phases is set as the Igr value at the input voltage (E + E0). Next, since the input voltage (E + E0) at the time of measurement may not reach the rated ground voltage V0 of the electric device depending on the operating conditions, the value of Igr measured at this time is used as the rated ground voltage V0 of the electric device. And the measured ground voltage.

また、入力電圧(E+E0)の波形がその周波数によって異なり、これがIgrの測定値に影響を及ぼすので、このとき計測されたIgrの値を前記周波数に関係する係数を用いて補正する。   Further, since the waveform of the input voltage (E + E0) varies depending on the frequency and this affects the measured value of Igr, the measured value of Igr is corrected using a coefficient related to the frequency.

本発明によれば、スイッチ電源で駆動される電気機器を稼動状態のままでも、漏洩電流Igrの値を測定できるので、絶縁劣化の程度を常時監視可能で、絶縁劣化が進行して発生する地絡故障を未然に防止することができる。また、設備全体の信頼性を著しく向上させることができる。さらに、法律で要求されている定期点検作業でも、停電させて、結線を開放し、その後再結線等を行う手間と時間を節約し、さらに、費用の大幅な節減も可能になる。   According to the present invention, since the value of the leakage current Igr can be measured even when the electric device driven by the switch power supply is in an operating state, the degree of insulation deterioration can be constantly monitored and It is possible to prevent a fault from occurring. Moreover, the reliability of the whole equipment can be remarkably improved. Furthermore, even in the periodic inspection work required by law, it is possible to save power and time for power disconnection, release the connection, and then perform reconnection, etc., and further reduce the cost.

以下、本発明を適用した電気機器における漏洩電流測定装置及び測定方法の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of a leakage current measuring device and a measuring method in an electrical apparatus to which the present invention is applied will be described with reference to the drawings.

まず、スイッチング電源で駆動される電動機を有する電気機器の漏洩電流Igrの測定に本発明を適用したときの構成を図1を参照して説明する。   First, the configuration when the present invention is applied to the measurement of the leakage current Igr of an electric device having an electric motor driven by a switching power supply will be described with reference to FIG.

図1において、商用周波数である配電用3相電源1は、配電線のうちの1本又は電源変圧器の中性点が接地され、サーボモータ等のスイッチング電源2への給電のため接続されている。スイッチング電源2の3出力端子U,V,Wから電気機器運転時の周波数は、起動から低速時にかけては0から30Hzの範囲で変化し、定常運転時は30Hzから60Hzの範囲で変化し、電圧が電気機器定格電圧の約40%から定格電圧の範囲で変化する駆動電圧が給電ケーブル4を経由して電気機器5に供給されている。端子U,V,Wの対地電圧は、商用周波数電源の配電線の1線が接地のときは電動機の定格電圧からその85%程度まで変化し、定常運転時の周波数の変化は商用周波数の前後10〜20Hzであるので商用周波数と同様の計測が可能である。   In FIG. 1, a power distribution three-phase power source 1, which is a commercial frequency, has one of the distribution lines or a neutral point of a power transformer grounded and connected to supply power to a switching power source 2 such as a servo motor. Yes. The frequency at the time of electric equipment operation from the three output terminals U, V, W of the switching power supply 2 changes in the range of 0 to 30 Hz from the start to the low speed, and changes in the range of 30 Hz to 60 Hz in the steady operation. However, a drive voltage that changes in a range from about 40% of the rated voltage of the electric device to the rated voltage is supplied to the electric device 5 via the feeder cable 4. The ground voltage of terminals U, V, and W changes from the rated voltage of the motor to about 85% when one line of the distribution line of the commercial frequency power supply is grounded, and the change in frequency during steady operation is around the commercial frequency. Since it is 10-20 Hz, the same measurement as a commercial frequency is possible.

電動機5では、電圧が加わる巻線部分と鉄心を含むフレーム部分との間に対地静電容量6が存在する。また、対地漏洩抵抗7も存在する。   In the electric motor 5, a ground capacitance 6 exists between a winding portion to which a voltage is applied and a frame portion including an iron core. There is also a ground leakage resistance 7.

図1に示した概略系統図にあって、漏洩電流測定装置は、スイッチング電源2の出力端子3から測定ケーブル11を介して3相電源電圧を計測器17に入力し、且つ給電ケーブル4から零相変流器8を介して零相電流I0を計測器17に入力して、電動機の漏洩電流Igrを測定する。   In the schematic system diagram shown in FIG. 1, the leakage current measuring device inputs a three-phase power supply voltage from the output terminal 3 of the switching power supply 2 through the measurement cable 11 to the measuring instrument 17 and zeros from the power supply cable 4. The zero-phase current I0 is input to the measuring device 17 via the phase current transformer 8, and the leakage current Igr of the motor is measured.

計測器17は、切換開閉器10によって順次入力されたスイッチング電源2の対地電圧VU,VV,VWと、零相変流器8が給電ケーブル4から検出した漏洩電流I0とを信号処理し、上記対地電圧VU,VV,VWのいずれかと漏洩電流I0との位相差を計測し信号処理する信号処理部14と、この信号処理部14からの信号処理によって得られた測定電流I0の実効値、対地電圧VU,VV,VWの実効値、対地電圧VU,VV,VWのいずれかと漏洩電流I0との位相差に基いて、対地漏洩抵抗rを経由して流れる漏洩電流Igrを演算する。   The measuring instrument 17 performs signal processing on the ground voltages VU, VV, VW of the switching power supply 2 sequentially input by the switching switch 10 and the leakage current I0 detected by the zero-phase current transformer 8 from the power supply cable 4. A signal processing unit 14 that measures and processes a phase difference between any one of the ground voltages VU, VV, and VW and the leakage current I0, an effective value of the measured current I0 obtained by signal processing from the signal processing unit 14, and the ground Based on the phase difference between the effective value of the voltages VU, VV, VW and any one of the ground voltages VU, VV, VW and the leakage current I0, the leakage current Igr flowing through the ground leakage resistance r is calculated.

この漏洩電流測定装置は、さらに、演算部15によって演算された漏洩電流Igrを表示する表示部16とを備えている。   The leakage current measuring device further includes a display unit 16 that displays the leakage current Igr calculated by the calculation unit 15.

すなわち、図1に示す図において、漏洩電流測定装置の計測器17では、切換開閉器10によってスイッチング電源2の対地電圧VU,VV,VWを順次信号処理部14に入力する。さらに、零相変流器8によって検出された漏洩電流I0も信号処理部14に入力する。また、信号処理部14では前記対地電圧VU,VV,VWと漏洩電流I0との位相差を計測する信号処理も行う。演算部15は、信号処理部14からの信号処理によって得られた測定電流I0の実効値、対地電圧VU,VV,VWの実効値、対地電圧VU,VV,VWのいずれかと漏洩電流I0との位相差に基いて、前述した対地漏洩抵抗rを経由して流れる漏洩電流Igrを演算する。表示部16は、演算部15によって演算された漏洩電流Igrを表示する。   That is, in the diagram shown in FIG. 1, in the measuring instrument 17 of the leakage current measuring device, the ground voltage VU, VV, VW of the switching power supply 2 is sequentially input to the signal processing unit 14 by the switching switch 10. Further, the leakage current I 0 detected by the zero-phase current transformer 8 is also input to the signal processing unit 14. The signal processing unit 14 also performs signal processing for measuring the phase difference between the ground voltages VU, VV, VW and the leakage current I0. The calculation unit 15 calculates the effective value of the measurement current I0 obtained by the signal processing from the signal processing unit 14, the effective value of the ground voltages VU, VV, VW, the ground voltage VU, VV, VW and the leakage current I0. Based on the phase difference, the leakage current Igr flowing through the ground leakage resistance r described above is calculated. The display unit 16 displays the leakage current Igr calculated by the calculation unit 15.

図2は、図1に示す概略系統図と漏洩電流測定装置の等価回路である。すなわち、図2は、配電電源1とスイッチング電源2をまとめた電圧源19は、EU,EV,EWの駆動電圧とE0の対地0電位電圧とを図1に示すように組み合わせた回路と等価である。零相電流I0は、零相変流器8によって検出され、計測器17に供給される。   FIG. 2 is an equivalent system of the schematic system diagram and the leakage current measuring apparatus shown in FIG. That is, FIG. 2 is equivalent to a circuit in which the voltage source 19 including the distribution power source 1 and the switching power source 2 is combined with the driving voltage of EU, EV, and EW and the ground potential 0 of E0 as shown in FIG. is there. The zero phase current I 0 is detected by the zero phase current transformer 8 and supplied to the measuring instrument 17.

3相駆動電圧EU,EV,EWと対地0電位電圧E0とは重畳されて対地出力電圧となるが、この電圧値は一定せず、スイッチング電源の特性から、比較的長い周期で各相別に周期的に変動する。この現象も従来の測定方法での測定を困難なものとしているが、本発明では前記対地電圧が最大になる時間帯でIgr値を複数回測定し、その最大値を入力電圧(E+E0)のときの値とする。また、前述のI0の式から、漏洩電流I0と入力電圧(E+E0)との位相差、ベクトルでは漏洩電流I0と入力電圧(E+E0)とのなす角度、つまり位相角は、0度から90度の範囲であるが、予期しないノイズや、対地漏洩抵抗rが存在する相が入力相と異なるときは、この範囲外となることがあるので、位相角が0度から90度の範囲であることも測定の条件とする。位相角をθとすると、位相角θは下記の式(5)に示す範囲となる。   The three-phase drive voltages EU, EV, EW and the ground 0 potential voltage E0 are superimposed on each other to become the ground output voltage. However, this voltage value is not constant, and due to the characteristics of the switching power supply, each phase has a relatively long cycle. Fluctuates. This phenomenon also makes measurement with the conventional measurement method difficult, but in the present invention, the Igr value is measured a plurality of times in the time zone in which the ground voltage is maximum, and the maximum value is the input voltage (E + E0). The value of Further, from the above-described equation of I0, the phase difference between the leakage current I0 and the input voltage (E + E0), the angle between the leakage current I0 and the input voltage (E + E0) in the vector, that is, the phase angle is 0 degree to 90 degrees. Although it is in the range, if the phase where the unexpected noise or ground leakage resistance r exists is different from the input phase, it may be out of this range, so the phase angle may be in the range of 0 to 90 degrees. The measurement conditions. Assuming that the phase angle is θ, the phase angle θ is in the range shown in the following equation (5).

90度>θ>0度 ・・・(5)
この計測は各相の対地電圧を順次入力しながら同様に行い、条件に適合した最大の値を、又は入力相各相のうち条件に適合した相の測定値の合計値をそのときの計測値とする。
90 degrees>θ> 0 degrees (5)
This measurement is performed in the same way while sequentially inputting the ground voltage of each phase, and the maximum value that meets the conditions or the total value of the measured values of the phases that meet the conditions among the input phases is the measured value at that time. And

配線4及び電気機器5には3相それぞれの相に対地静電容量6が存在し、これに漏れ電流Igcが流れる。これら各相の対地静電容量6の値はほぼ等しく、スイッチング電源2が発生する駆動電圧による各相の漏れ電流Igcの合計は0になるが、単相の電圧値E0の対地0電位電圧による電流が重畳される。   The wiring 4 and the electrical device 5 have a ground capacitance 6 in each of the three phases, and a leakage current Igc flows therethrough. The value of the ground capacitance 6 of each phase is substantially equal, and the total of the leakage current Igc of each phase due to the drive voltage generated by the switching power supply 2 is 0, but the value of the single-phase voltage value E0 depends on the ground potential 0 voltage. Current is superimposed.

零相変流器8は、給電ケーブル4を囲み電気機器5の漏洩電流を零相電流I0の値として計測器17へ出力する。電気機器と接地部分間の絶縁が劣化すれば、先に説明したように、対地漏洩抵抗7を通じて漏洩電流Igrが流れるので、この電流も対地0電位電圧による対地静電容量6中を流れる漏れ電流に合流して零相電流I0になる。   The zero-phase current transformer 8 surrounds the power feeding cable 4 and outputs the leakage current of the electric device 5 to the measuring instrument 17 as the value of the zero-phase current I0. If the insulation between the electrical equipment and the grounding portion deteriorates, as described above, the leakage current Igr flows through the ground leakage resistance 7, so that this current also leaks through the ground capacitance 6 due to the ground potential 0 voltage. To zero-phase current I0.

このように、スイッチング電源2の各相の対地電圧は周波数及び大きさが異なった駆動電圧Eと対地0電位電圧E0との合成電圧で電圧値はゆるやかに変動している。この合成電圧が最高値を示す時点で、両電圧のピーク値がほぼ一致するので、この時間帯で複数回測定し、このとき最高値を示したIgrの値を入力相の対地電圧(E+E0)のときの漏洩電流Igrの値で、前述した式(4)で表される。   In this manner, the voltage value of the ground voltage of each phase of the switching power supply 2 is a gradual fluctuation due to the combined voltage of the drive voltage E and the ground 0 potential voltage E0 having different frequencies and magnitudes. Since the peak value of both voltages substantially coincides at the time when this combined voltage shows the maximum value, measurement is performed a plurality of times during this time period. The value of the leakage current Igr at this time is expressed by the above-described equation (4).

以上で説明した駆動電圧Eと対地0電位電圧E0のピーク値がほぼ一致する時間帯では、スイッチング電源2の各相の対地電圧VU,VV,VWがある時間差で次々に最大値(E+E0)となる。   In the time zone in which the drive voltage E and the peak value of the ground zero potential voltage E0 substantially coincide with each other, the ground voltages VU, VV, VW of the respective phases of the switching power supply 2 are successively increased to a maximum value (E + E0) with a certain time difference. Become.

先に示した式(3)、式(4)式は、対地電圧が(E+E0)の時点の式で、且つ、対地電圧が(E+E0)を示した相に対地漏洩抵抗7が存在することが必要である。従って、対地電圧VU,VV,VWを切換開閉器10によって順次入力して測定を行い、対地漏洩抵抗7が存在する場合に測定したIgr値が他の相の対地電圧を入力して測定したIgr値より大きくなるので、そのときの最大Igrの値を対地電圧が(E+E0)のときのIgrの値とする。また、複数相に対地漏洩抵抗7が存在するときは、それらの相毎に測定したIgrの値の合計をIgrの値とする。   The expressions (3) and (4) shown above are expressions when the ground voltage is (E + E0) and the ground leakage resistance 7 exists in the phase where the ground voltage indicates (E + E0). is necessary. Accordingly, the ground voltages VU, VV, and VW are sequentially input by the switching switch 10 to perform measurement, and when the ground leakage resistance 7 exists, the measured Igr value is measured by inputting the ground voltage of another phase. Since it becomes larger than the value, the value of the maximum Igr at that time is set as the value of Igr when the ground voltage is (E + E0). Further, when the ground leakage resistance 7 exists in a plurality of phases, the sum of the values of Igr measured for each phase is set as the value of Igr.

漏洩電流I0と入力電圧VU,VV,VW、それらの最大値(E+E0)との関係は、図3のベクトル図で表され、入力対地電圧に対する漏洩電流I0の位相角はθであり、上記の式(3)、式(4)から入力対地電圧が最大値(E+E0)を示したときのIgrは、このときのI0の入力電圧(E+E0)との同相成分となり,下記の式(6)より求められる。   The relationship between the leakage current I0 and the input voltages VU, VV, VW and their maximum values (E + E0) is represented by the vector diagram of FIG. 3. The phase angle of the leakage current I0 with respect to the input ground voltage is θ. From the equations (3) and (4), Igr when the input ground voltage shows the maximum value (E + E0) is an in-phase component with the input voltage (E + E0) of I0 at this time, and from the following equation (6) Desired.

Igr=I0×cosθ ・・・(6)
そして、入力される対地電圧の周波数のために影響されるIgr値を周波数によって補正し、さらに、入力対地電圧(E+E0)が電気機器の定格対地電圧V0に達していないときは、Igrは下記の式(7)によって補正される。
Igr = I0 × cos θ (6)
Then, the Igr value affected by the frequency of the input ground voltage is corrected by the frequency, and when the input ground voltage (E + E0) does not reach the rated ground voltage V0 of the electrical device, Igr is It is corrected by equation (7).

補正Igr=Igr×V0/(E+E0) ・・・(7)
次に、図1における信号処理部14の詳細について、図4を参照して説明する。図4は、信号処理部14の具体的構成を示す図である。信号処理部14は零相電流I0を検出するI0検出器20と、増幅器21と、フィルタ22と、実効値変換器23と、位相差計測器24と、電圧検出器31と、増幅器32と、フィルタ33と、実効値変換器34とを備える。
Correction Igr = Igr × V0 / (E + E0) (7)
Next, details of the signal processing unit 14 in FIG. 1 will be described with reference to FIG. FIG. 4 is a diagram illustrating a specific configuration of the signal processing unit 14. The signal processing unit 14 includes an I0 detector 20 that detects a zero-phase current I0, an amplifier 21, a filter 22, an effective value converter 23, a phase difference measuring device 24, a voltage detector 31, an amplifier 32, A filter 33 and an effective value converter 34 are provided.

I0検出器20は、給電ケーブル4から電動機5の漏洩電流の合計である零相電流つまり漏洩電流I0を零相変流器8を通じて取り込む。増幅器21は、I0検出器20が検出した漏洩電流I0を適量まで増幅する。フィルタ22は、増幅器21で増幅した漏洩電流I0の駆動電圧の周波数を超える周波数を減衰させる。実効値変換器23は、フィルタ22でフィルタリングされた漏洩電流I0の交流電流波形を両波整流して実効値に比例したアナログ値に変換し、演算部15へ入力する。   The I0 detector 20 takes in the zero-phase current that is the sum of the leakage currents of the electric motor 5 from the power supply cable 4, that is, the leakage current I0 through the zero-phase current transformer 8. The amplifier 21 amplifies the leakage current I0 detected by the I0 detector 20 to an appropriate amount. The filter 22 attenuates the frequency exceeding the frequency of the drive voltage of the leakage current I0 amplified by the amplifier 21. The effective value converter 23 performs both-wave rectification on the alternating current waveform of the leakage current I 0 filtered by the filter 22, converts it to an analog value proportional to the effective value, and inputs the analog value to the calculation unit 15.

位相差計測器24は、前記漏洩電流I0と、スイッチング電源2の各相の対地電圧VU,VV,VWのうちの入力された電圧Vの間の位相角θを計測する。電圧Vが最大値(E+E0)を示す時点付近では、フイルタ22、フイルタ33で処理された両者の波形は図6の波形に近似しており、図3のベクトル図に示されるように漏洩電流I0は電圧Vより進んでいる。両者の波形が大きさ零、いわゆる横軸を通過したいわゆるゼロクロッシングした時点から、波高値を同一にした定量のパルス波形を、図6中のIZ,VZのように出力する。両パルスの差は、位相差パルスVZ〜IZで表され、図6に示される面積S1が位相差θつまり位相角θに比例する。I0の半波パルスの面積S2とともに14演算部へ入力し、下記の式(8)に示す演算処理を行う。   The phase difference measuring device 24 measures a phase angle θ between the leakage current I0 and the input voltage V among the ground voltages VU, VV, VW of each phase of the switching power supply 2. In the vicinity of the time point when the voltage V shows the maximum value (E + E0), both waveforms processed by the filter 22 and the filter 33 approximate the waveform of FIG. 6, and the leakage current I0 is shown in the vector diagram of FIG. Is ahead of the voltage V. A fixed pulse waveform with the same peak value is output as IZ and VZ in FIG. 6 from the time when both waveforms have zero magnitude, that is, so-called zero crossing after passing the so-called horizontal axis. The difference between the two pulses is represented by phase difference pulses VZ to IZ, and the area S1 shown in FIG. 6 is proportional to the phase difference θ, that is, the phase angle θ. Along with the area S2 of the half wave pulse of I0, it is input to the 14 arithmetic unit, and the arithmetic processing shown in the following equation (8) is performed.

θ=180S1/S2 ・・・(8)
また、定量パルス波形VZの立ち上がり立下り時点の時間差からその周波数を知ることができ、この値をもとに測定したIgr値の補正を行う。
θ = 180S1 / S2 (8)
Further, the frequency can be known from the time difference between the rising and falling times of the quantitative pulse waveform VZ, and the measured Igr value is corrected based on this value.

電圧検出器31は、スイッチング電源2の出力端子3のW相の対地電圧を分圧して取り込む。増幅器32は、電圧検出器31が検出した上記W相の対地電圧を適量まで増幅する。フィルタ33は、増幅器32で増幅された上記W相の対地電圧の駆動電圧最高周波数を超える周波数を減衰させる。実効値変換器34は、フィルタ33でフィルタリングされた上記W相の対地電圧を両波整流して実効値に比例したアナログ値に変換し、演算部15へ入力する。   The voltage detector 31 divides and captures the W-phase ground voltage of the output terminal 3 of the switching power supply 2. The amplifier 32 amplifies the W-phase ground voltage detected by the voltage detector 31 to an appropriate amount. The filter 33 attenuates the frequency exceeding the drive voltage maximum frequency of the ground voltage of the W phase amplified by the amplifier 32. The effective value converter 34 rectifies the W-phase ground voltage filtered by the filter 33, converts it into an analog value proportional to the effective value, and inputs the analog value to the arithmetic unit 15.

演算部15では、位相差計測器24から出力されたパルスの面積S1,S2の値を前記した位相角を算定する式(8)に従って求められた位相角度θ、実効値変換器23,34から出力された電流I0、順次出力された対地電圧VU,VV,VWの最大値(E+E0)の値から、前述した式(6)、式(7)に従ってIgrの値を算出し、測定した対地電圧の周波数によってその値の補正を行う。   In the calculation unit 15, the values of the pulse areas S 1 and S 2 output from the phase difference measuring device 24 are obtained from the phase angle θ and the effective value converters 23 and 34 obtained according to the above equation (8) for calculating the phase angle. From the output current I0 and sequentially output ground voltage values VU, VV, VW, the maximum value (E + E0), the value of Igr is calculated according to the above-mentioned formulas (6) and (7), and the measured ground voltage The value is corrected according to the frequency.

また、演算部15では、前述した条件式(5)にθが適合しているかを確認しながら、適合する入力相を切換開閉器10に指令して選定し、このときのIgrの値又は合計Igrの値を対地電圧が(E+E0)のときのIgrの値とし、最大Igrの値を示した入力相が漏洩電流Igrが最も増加している相であるとの判定を行う。   In addition, the calculation unit 15 instructs the switching switch 10 to select a suitable input phase while confirming that θ satisfies the conditional expression (5) described above, and the value or total of Igr at this time is selected. The value of Igr is set to the value of Igr when the ground voltage is (E + E0), and it is determined that the input phase showing the maximum value of Igr is the phase in which the leakage current Igr is most increased.

さらに、変化する入力電圧が最大値を示す時間帯を判断し、その時間帯に複数回の測定を指令し、その測定値の中で最大のIgr値を仮選定し、次に入力相の切り換えを指令し、同様な測定を行い、仮選定値のうちの最大Igr値又は測定されたIgr値の合計の値を前記式(7)によって補正し、補正Igrの値を表示部16に出力しIgrの値として表示させる。   Furthermore, the time zone in which the changing input voltage shows the maximum value is judged, and a plurality of measurements are commanded in the time zone, and the maximum Igr value is temporarily selected among the measured values, and then the input phase is switched. The same measurement is performed, the maximum Igr value of the temporarily selected values or the total value of the measured Igr values is corrected by the above equation (7), and the corrected Igr value is output to the display unit 16. It is displayed as the value of Igr.

このように、図1に示すように構成された漏洩電流測定装置によれば、通電状態のまま電気機器が有する電動機の絶縁抵抗を通じて流れる漏れ電流Igr、特にスイッチング電源で駆動される電動機を有する電気機器の対地絶縁抵抗を通じて流れる漏れ電流Igrを運転状態のままで検出することができ、かつ漏洩電流Igrが増加している相の判定を行うことができる。   As described above, according to the leakage current measuring apparatus configured as shown in FIG. 1, the leakage current Igr flowing through the insulation resistance of the electric motor included in the electric device in the energized state, in particular, the electric motor having the electric motor driven by the switching power source. The leakage current Igr flowing through the ground insulation resistance of the device can be detected in the operating state, and the phase in which the leakage current Igr is increasing can be determined.

また、本発明に係る漏洩電流測定装置は、図5に示すように、配電ケーブル4に遮断器9(CBU,CBV,CBW)を設け、演算部15の演算の結果により、遮断器9(CBU,CBV,CBW)の遮断を制御する構成としてもよい。演算部15は、演算して得られた漏れ電流Igrの値が所定の値を超えたときに遮断器9を用いて全線路を遮断する。このため、スイッチング電源により駆動される電動機を有する電気機器は、対地絶縁抵抗に流れてしまった漏れ電流が所定の値より大きくなったときに、速やかに全線路を遮断することができ、過大な漏洩電流による事故を未然に防止できる。   Further, as shown in FIG. 5, the leakage current measuring apparatus according to the present invention is provided with a circuit breaker 9 (CBU, CBV, CWB) in the power distribution cable 4, and the circuit breaker 9 (CBU) is calculated according to the calculation result of the calculation unit 15. , CBV, CBW). The calculating part 15 interrupts | blocks all the lines using the circuit breaker 9, when the value of the leakage current Igr obtained by the calculation exceeds a predetermined value. For this reason, an electric device having an electric motor driven by a switching power supply can quickly shut off all the lines when the leakage current that has flowed through the ground insulation resistance becomes larger than a predetermined value. Accidents due to leakage current can be prevented.

さらに、本発明に係る漏洩電流測定装置は、図5に示すように、演算部15によって演算された漏れ電流Igrの値が所定の値を超えたときに警報を発する警報器18をさらに設けるようにしてもよい。これにより、スイッチング電源により駆動される電動機を有する電気機器は、対地絶縁抵抗に流れてしまった漏れ電流が所定の値より大きくなったときに、速やかに異常があることを警報器18により告知することができ、過大な漏洩電流による事故を未然に防止できる。   Furthermore, as shown in FIG. 5, the leakage current measuring apparatus according to the present invention further includes an alarm 18 that issues an alarm when the value of the leakage current Igr calculated by the calculation unit 15 exceeds a predetermined value. It may be. As a result, the electric device having the electric motor driven by the switching power supply promptly notifies the alarm device 18 that there is an abnormality when the leakage current that has flowed through the ground insulation resistance becomes larger than a predetermined value. It is possible to prevent accidents due to excessive leakage current.

なお、本発明に係る漏洩電流測定装置においては、使用される環境や条件により、遮断機9及び警報器18のいずれか一方のみを設けるようにしたものであってもよい。   In the leakage current measuring apparatus according to the present invention, only one of the breaker 9 and the alarm device 18 may be provided depending on the environment and conditions used.

図1及び図5を参照して説明した漏洩電流測定装置は、本発明の漏洩電流測定方法を実行している。すなわち、切換開閉器10は、スイッチング電源2の各相対地電圧を入力して電圧の測定ステップを行う。また、零相変流器8は、スイッチング電源2から流出する対地漏洩電流を測定する零相電流測定ステップを行う。計測器17の信号処理部14は、測定電圧の測定ステップにより、切換開閉器10により入力された測定電圧と零相変流器8が測定した漏洩電流I0の位相を比較して位相差パルスS1と漏洩電流I0の半周期パルスS2の面積を算出する。演算部15は、信号処理部14が信号処理ステップを行って算出した位相差パルスS1と漏洩電流I0の半周期パルスS2とから位相角θを算出し、この位相角θと漏洩電流I0と順次入力された対地電圧とから、対地絶縁抵抗rに流れる漏れ電流Igrを演算する演算ステップを行う。   The leakage current measuring apparatus described with reference to FIGS. 1 and 5 executes the leakage current measuring method of the present invention. That is, the switching switch 10 inputs each relative ground voltage of the switching power supply 2 and performs a voltage measurement step. The zero-phase current transformer 8 performs a zero-phase current measurement step for measuring a ground leakage current flowing out from the switching power supply 2. The signal processing unit 14 of the measuring instrument 17 compares the phase of the leakage voltage I0 measured by the zero-phase current transformer 8 with the measurement voltage input by the switching switch 10 in the measurement voltage measurement step. And the area of the half-cycle pulse S2 of the leakage current I0 is calculated. The calculation unit 15 calculates the phase angle θ from the phase difference pulse S1 calculated by the signal processing unit 14 performing the signal processing step and the half-cycle pulse S2 of the leakage current I0, and sequentially calculates the phase angle θ and the leakage current I0. A calculation step of calculating a leakage current Igr flowing through the ground insulation resistance r from the input ground voltage is performed.

配電系統や電気機器においては、電気災害の予防の観点から絶縁測定が要求されている。従来は停電して測定していたが、近年は停電が制限され、特にインバータなどのスイッチング電源で駆動される電動機は、ロボットや自動機械その他の機械設備に多数使用され、その停止は生産の停止につながる。本発明は、これまでできなかったこれらの機器を停電させることなく測定することを可能となし、連続的な監視による予防保全も実施可能とする。これらスイッチング電源駆動機器の実用件数は年々増加しており、かつこれらの設備に対する信頼性確保の要求もレベルアップし、これらの分野での使用が可能である。   In distribution systems and electrical equipment, insulation measurement is required from the viewpoint of preventing electrical disasters. Previously, measurements were taken after a power failure, but in recent years power failures have been limited. In particular, many electric motors driven by switching power supplies such as inverters are used in robots, automatic machines, and other mechanical equipment. Leads to. The present invention makes it possible to measure these devices, which could not be performed before, without causing a power failure, and also enables preventive maintenance by continuous monitoring. The number of practical use of these switching power supply driving devices has been increasing year by year, and the requirement for ensuring the reliability of these facilities has been improved, so that they can be used in these fields.

スイッチング電源で駆動される電動機の漏洩電流Igrの測定に本発明を適用したときの構成を示す概略系統及び漏洩電流測定装置の構成図である。It is a block diagram of a schematic system and a leakage current measuring device showing a configuration when the present invention is applied to measurement of a leakage current Igr of an electric motor driven by a switching power supply. 図1の概略系統図と漏洩電流測定装置の等価回路である。It is the schematic system diagram of FIG. 1, and the equivalent circuit of a leakage current measuring apparatus. 零相電流I0、入力電圧VU,VV,VW、位相角θ、漏洩電流Igrの関係を表すベクトル図である。It is a vector diagram showing the relationship between zero phase current I0, input voltages VU, VV, VW, phase angle θ, and leakage current Igr. 本発明に係る漏洩電流測定装置を構成する信号処理部を示すブロック図である。It is a block diagram which shows the signal processing part which comprises the leakage current measuring apparatus which concerns on this invention. 遮断器と警報器を制御する構成を備えた本発明に係る漏洩電流測定装置を示す構成図である。It is a block diagram which shows the leakage current measuring apparatus which concerns on this invention provided with the structure which controls a circuit breaker and an alarm device. 入力電圧Vが最大値時間帯でのVと漏洩電流I0の波形の位相関係を表す図である。It is a figure showing the phase relationship of the waveform of V and the leakage current I0 in case the input voltage V is the maximum value time zone.

符号の説明Explanation of symbols

1 配電電源、2 スイッチング電源、3 出力端子、4 給電ケーブル、5 電気機器、6 対地静電容量、7 対地漏洩抵抗、8 零相変流器、9 遮断器、10 切換開閉器、11 測定ケーブル、14 信号処理部、15 演算部、16 表示部、17 計測器、18 警報機   1 Power Distribution Power Supply, 2 Switching Power Supply, 3 Output Terminals, 4 Feeding Cable, 5 Electrical Equipment, 6 Ground Capacitance, 7 Ground Leakage Resistance, 8 Zero Phase Current Transformer, 9 Circuit Breaker, 10 Switching Switch, 11 Measurement Cable , 14 Signal processing unit, 15 Calculation unit, 16 Display unit, 17 Measuring instrument, 18 Alarm

Claims (11)

電気機器を駆動するスイッチング電源の三相各相の対地電圧を測定する対地電圧測定手段と、
上記スイッチング電源から給電される電線及び/又は電動機を含む電気機器を通じて流れる対地漏洩電流である零相電流を測定する零相電流測定手段と、
上記対地電圧測定手段により測定した各相の対地電圧と、上記零相電流測定手段により測定した零相電流との間の位相差を算出する信号処理手段と、
上記信号処理手段により算出した位相差と、上記対地電圧測定手段によって測定された対地電圧と、上記零相電流測定手段によって測定された零相電流と、上記電気機器の定格対地電圧との値から、上記電気機器の対地絶縁抵抗に流れる漏れ電流を演算する演算手段と
を備えることを特徴とする電気機器における漏洩電流測定装置。
A ground voltage measuring means for measuring a ground voltage of each of the three phases of the switching power source that drives the electric device;
Zero-phase current measuring means for measuring a zero-phase current that is a ground leakage current flowing through an electric device including an electric wire and / or an electric motor fed from the switching power supply;
Signal processing means for calculating a phase difference between the ground voltage of each phase measured by the ground voltage measuring means and the zero phase current measured by the zero phase current measuring means;
From the phase difference calculated by the signal processing means, the ground voltage measured by the ground voltage measuring means, the zero phase current measured by the zero phase current measuring means, and the rated ground voltage of the electric device. An apparatus for measuring leakage current in an electrical apparatus, comprising: an arithmetic means for calculating a leakage current flowing in a ground insulation resistance of the electrical apparatus.
上記演算手段は、上記対地電圧(E+E0)、上記零相電流I0、上記位相差θ及び上記電気機器の定格対地電圧V0の値を用い、以下の式(1)から、対地絶縁抵抗に起因する漏れ電流Igrを演算することを特徴とする請求項1記載の漏洩電流測定装置。
Igr=I0×cosθ×V0/(E+E0) ・・・(1)
The calculation means uses the values of the ground voltage (E + E0), the zero phase current I0, the phase difference θ, and the rated ground voltage V0 of the electric device, and is derived from the ground insulation resistance from the following equation (1). The leakage current measuring apparatus according to claim 1, wherein the leakage current Igr is calculated.
Igr = I0 × cos θ × V0 / (E + E0) (1)
上記対地電圧、上記零相電流の測定、及び上記位相差の算出を行うための測定は、各相別にその対地電圧値又は対地絶縁抵抗に起因する漏れ電流の値が最大を示す時間帯に複数回行うことを特徴とする請求項1又は2記載の漏洩電流測定装置。   The ground voltage, the zero-phase current measurement, and the measurement for calculating the phase difference are performed for each phase in a time zone in which the ground voltage value or the leakage current value due to the ground insulation resistance is maximum. The leakage current measuring device according to claim 1, wherein the leakage current measuring device is performed once. 上記対地電圧、上記零相電流の測定、及び上記位相差の算出を行うための測定は、各相別にその対地電圧値又は対地絶縁抵抗に起因する漏れ電流の値が最大を示す時間帯に複数回行い、位相差算出値の絶対値が0度から90度又は0から4分の1周期の範囲にあることを条件として対地絶縁抵抗に起因する漏れ電流の演算を行うことを特徴とする請求項1に記載の漏洩電流測定装置。   The ground voltage, the zero-phase current measurement, and the measurement for calculating the phase difference are performed for each phase in a time zone in which the ground voltage value or the leakage current value due to the ground insulation resistance is maximum. And the leakage current caused by the ground insulation resistance is calculated on the condition that the absolute value of the phase difference calculation value is in the range of 0 to 90 degrees or 0 to ¼ cycle. Item 2. The leakage current measuring device according to Item 1. 上記対地絶縁抵抗に起因する漏れ電流を各相別に算出し、得られた値の合計値を対地絶縁抵抗に起因する漏れ電流の値として演算を行うことを特徴とする請求項4記載の漏洩電流測定装置。   5. The leakage current according to claim 4, wherein the leakage current caused by the ground insulation resistance is calculated for each phase, and the total value obtained is calculated as the value of the leakage current caused by the ground insulation resistance. measuring device. 上記対地絶縁抵抗に起因する漏れ電流の値を上記対地電圧の周波数の値に関連する係数によって補正する演算を行うことを特徴とする請求項3〜5のいずれか1に記載の漏洩電流測定装置。   6. The leakage current measuring device according to claim 3, wherein a calculation is performed to correct a leakage current value caused by the ground insulation resistance by a coefficient related to a frequency value of the ground voltage. . 上記演算手段によって演算された上記漏れ電流の値が所定の値を超えたときに警報を発する警報手段をさらに備えることを特徴とする請求項1〜6のいずれか1に記載の漏洩電流測定装置。   7. The leakage current measuring device according to claim 1, further comprising alarm means for issuing an alarm when the value of the leakage current calculated by the calculation means exceeds a predetermined value. . 上記演算手段によって演算された上記漏れ電流の値が所定の値を超えたときに電路を遮断する遮断手段をさらに備えることを特徴とする請求項1〜7のいずれか1に記載の漏洩電流測定装置。   The leakage current measurement according to any one of claims 1 to 7, further comprising a blocking means for cutting off the electric circuit when the value of the leakage current calculated by the calculation means exceeds a predetermined value. apparatus. 上記信号処理手段は、上記位相差を算出するとともに、上記スイッチング電源の各相の対地電圧値及び上記零相電流値を実効値に変換することを特徴とする請求項1記載の漏洩電流測定装置。   2. The leakage current measuring apparatus according to claim 1, wherein the signal processing means calculates the phase difference and converts the ground voltage value and the zero-phase current value of each phase of the switching power supply into an effective value. . 電気機器を駆動するスイッチング電源の三相各相の対地電圧を測定する対地電圧測定工程と、
上記スイッチング電源から給電される電線及び/又は電動機を含む電気機器を通じて流れる対地漏洩電流である零相電流を測定する零相電流測定工程と、
上記対地電圧測定工程により測定した各相の対地電圧と、上記零相電流測定工程により測定した零相電流との間の位相差を算出する信号処理工程と、
上記信号処理工程により算出した位相差と、上記対地電圧測定工程によって測定された対地電圧と、上記零相電流測定工程によって測定された零相電流と、上記電気機器の定格対地電圧との値から、上記電気機器の対地絶縁抵抗に流れる漏れ電流を演算する演算工程と
を備えることを特徴とする電気機器における漏洩電流測定方法。
A ground voltage measurement process for measuring a ground voltage of each of the three phases of the switching power source that drives the electric device;
A zero-phase current measurement step of measuring a zero-phase current that is a ground leakage current flowing through an electric device including an electric wire and / or an electric motor fed from the switching power supply;
A signal processing step for calculating a phase difference between the ground voltage of each phase measured by the ground voltage measurement step and the zero phase current measured by the zero phase current measurement step;
From the phase difference calculated by the signal processing step, the ground voltage measured by the ground voltage measurement step, the zero phase current measured by the zero phase current measurement step, and the rated ground voltage of the electrical device. And a calculation step of calculating a leakage current flowing through the ground insulation resistance of the electric device.
上記対地電圧、上記零相電流の測定、及び上記位相差の算出は、各相別に、その対地電圧値又は対地絶縁抵抗に起因する漏れ電流値が最大を示す時間帯に複数回行うことを特徴とする請求項10記載の漏洩電流測定方法。   The measurement of the ground voltage, the zero-phase current, and the calculation of the phase difference are performed a plurality of times for each phase in a time zone in which the leakage voltage value due to the ground voltage value or the ground insulation resistance is maximum. The leakage current measuring method according to claim 10.
JP2007292127A 2007-11-09 2007-11-09 Device and method for measuring leakage current in electric equipment Pending JP2009115754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292127A JP2009115754A (en) 2007-11-09 2007-11-09 Device and method for measuring leakage current in electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292127A JP2009115754A (en) 2007-11-09 2007-11-09 Device and method for measuring leakage current in electric equipment

Publications (1)

Publication Number Publication Date
JP2009115754A true JP2009115754A (en) 2009-05-28

Family

ID=40783032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292127A Pending JP2009115754A (en) 2007-11-09 2007-11-09 Device and method for measuring leakage current in electric equipment

Country Status (1)

Country Link
JP (1) JP2009115754A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153913A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
JP2011153910A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
CN102809717A (en) * 2011-06-01 2012-12-05 三菱电机株式会社 Insulation aging monitoring system
KR101228386B1 (en) * 2009-10-16 2013-01-31 한성전공(주) System for monitoring insulation condition of electric motors
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
WO2014068194A1 (en) * 2012-11-05 2014-05-08 Kone Corporation Safety arrangement, elevator system, frequency converter and a method for monitoring electrical safety in an elevator system
WO2014192217A1 (en) 2013-05-27 2014-12-04 タナシン電機株式会社 Leakage current calculation device and method for calculating leakage current
KR101648512B1 (en) * 2015-04-29 2016-08-17 삼화디에스피주식회사 Motor protection relay for detecting resistive ground fault current
TWI571638B (en) * 2015-06-19 2017-02-21 三菱電機股份有限公司 Leakage current detection device
JP2018128270A (en) * 2017-02-06 2018-08-16 株式会社日立産機システム Insulation monitoring device and insulation monitoring system
KR20180115663A (en) * 2016-03-09 2018-10-23 오므론 가부시키가이샤 Leakage Current Calculation Device and Leakage Current Calculation Method
US10401415B2 (en) 2017-05-30 2019-09-03 Fanuc Corporation Motor drive apparatus to detect inverter with large leakage current
KR102039269B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Residual Current Detection Circuit
KR102039270B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Ground-Fault Current Detection Circuit
KR102039271B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Earth Leakage Current Detection Circuit
KR102039268B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 An Alternating and Direct Current Detection Circuit
CN110456133A (en) * 2019-08-27 2019-11-15 河海大学 Method for Determining Cable Parameters Based on Phase-Mode Transformation
EP3590879A1 (en) * 2018-07-04 2020-01-08 KONE Corporation Elevator brake controller with earth fault detection
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method
JP2022043788A (en) * 2020-09-04 2022-03-16 日本テクノ株式会社 Insulation status grasp and cutoff operation prediction device based on three-phase AC zero-phase current
WO2022239432A1 (en) * 2021-05-14 2022-11-17 株式会社村田製作所 Insulation resistance calculation device and insulation resistance calculation method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228386B1 (en) * 2009-10-16 2013-01-31 한성전공(주) System for monitoring insulation condition of electric motors
JP2011153910A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
JP2011153913A (en) * 2010-01-27 2011-08-11 Patokkusu Japan Kk Leak current measuring device and measurement method in electric apparatus
CN102809717A (en) * 2011-06-01 2012-12-05 三菱电机株式会社 Insulation aging monitoring system
JP2012251817A (en) * 2011-06-01 2012-12-20 Mitsubishi Electric Corp Insulation deterioration monitoring system
JP2013170961A (en) * 2012-02-22 2013-09-02 Sanwa Technology Research Institute Apparatus and method for measuring power and leakage current
US10934133B2 (en) 2012-11-05 2021-03-02 Kone Corporation Elevator safety arrangement having earth fault detection
WO2014068194A1 (en) * 2012-11-05 2014-05-08 Kone Corporation Safety arrangement, elevator system, frequency converter and a method for monitoring electrical safety in an elevator system
US9884742B2 (en) 2012-11-05 2018-02-06 Kone Corporation Elevator safety arrangement having earth fault detection
CN106882667A (en) * 2012-11-05 2017-06-23 通力股份公司 The safety device of elevator device
KR20150131395A (en) 2013-05-27 2015-11-24 다나신덴기가부시키가이샤 Leakage current calculation device and method for calculating leakage current
CN105264393A (en) * 2013-05-27 2016-01-20 德利信电机株式会社 Leakage current calculation device and method for calculating leakage current
KR101630591B1 (en) 2013-05-27 2016-06-14 다나신덴기가부시키가이샤 Leakage current calculation device and method for calculating leakage current
US9465065B2 (en) 2013-05-27 2016-10-11 Tanashin Denki Co., Ltd. Leakage current calculation device and method for calculating leakage current
TWI474014B (en) * 2013-05-27 2015-02-21 Tanashin Denki Co Leakage current calculating device and leakage current calculating method
JP2014228519A (en) * 2013-05-27 2014-12-08 タナシン電機株式会社 Leak current calculation device and leak current calculation method
WO2014192217A1 (en) 2013-05-27 2014-12-04 タナシン電機株式会社 Leakage current calculation device and method for calculating leakage current
KR101648512B1 (en) * 2015-04-29 2016-08-17 삼화디에스피주식회사 Motor protection relay for detecting resistive ground fault current
TWI571638B (en) * 2015-06-19 2017-02-21 三菱電機股份有限公司 Leakage current detection device
KR20180115663A (en) * 2016-03-09 2018-10-23 오므론 가부시키가이샤 Leakage Current Calculation Device and Leakage Current Calculation Method
KR102007909B1 (en) 2016-03-09 2019-08-06 오므론 가부시키가이샤 Leakage Current Calculation Device and Leakage Current Calculation Method
JP2018128270A (en) * 2017-02-06 2018-08-16 株式会社日立産機システム Insulation monitoring device and insulation monitoring system
DE102018112806B4 (en) 2017-05-30 2020-06-10 Fanuc Corporation MOTOR DRIVE DEVICE FOR DETECTING THE INVERTER WITH A LARGE LEAKAGE
US10401415B2 (en) 2017-05-30 2019-09-03 Fanuc Corporation Motor drive apparatus to detect inverter with large leakage current
CN110683434B (en) * 2018-07-04 2023-09-29 通力股份公司 Elevator with a motor
EP3590879A1 (en) * 2018-07-04 2020-01-08 KONE Corporation Elevator brake controller with earth fault detection
CN110683434A (en) * 2018-07-04 2020-01-14 通力股份公司 Elevator with a movable elevator car
US12098056B2 (en) 2018-07-04 2024-09-24 Kone Corporation Elevator
KR102039270B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Ground-Fault Current Detection Circuit
KR102039271B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Earth Leakage Current Detection Circuit
KR102039268B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 An Alternating and Direct Current Detection Circuit
KR102039269B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 A Residual Current Detection Circuit
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method
CN110456133A (en) * 2019-08-27 2019-11-15 河海大学 Method for Determining Cable Parameters Based on Phase-Mode Transformation
CN110456133B (en) * 2019-08-27 2021-11-09 河海大学 Cable parameter determination method based on phase-mode transformation
JP2022043788A (en) * 2020-09-04 2022-03-16 日本テクノ株式会社 Insulation status grasp and cutoff operation prediction device based on three-phase AC zero-phase current
WO2022239432A1 (en) * 2021-05-14 2022-11-17 株式会社村田製作所 Insulation resistance calculation device and insulation resistance calculation method
JPWO2022239432A1 (en) * 2021-05-14 2022-11-17
JP7409560B2 (en) 2021-05-14 2024-01-09 株式会社村田製作所 Insulation resistance calculation device and insulation resistance calculation method

Similar Documents

Publication Publication Date Title
JP2009115754A (en) Device and method for measuring leakage current in electric equipment
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
EP2482411B1 (en) Drive Failure Protection
JP2008164375A (en) Device and method for measuring leakage current in electric apparatus
Yun et al. Detection and classification of stator turn faults and high-resistance electrical connections for induction machines
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US7944068B2 (en) Optimizing converter protection for wind turbine generators
US9933487B2 (en) System and method for detecting, localizing, and quantifying stator winding faults in AC motors
US20180294751A1 (en) Apparatus, system and method of fault diagnosis for permanent magnet motor
JP2012215423A (en) Leak current measuring device and leak current measuring method in power supply system
CN104364989A (en) System and method for high resistance ground fault detection and protection in power distribution systems
JP6480316B2 (en) Motor control device
WO2019142574A1 (en) Electric circuit failure detecting device
JP2009145122A (en) Apparatus for measuring leakage current
JP2018121434A (en) Arc failure detector
JP5380702B2 (en) Leakage current measuring device and measuring method
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP2006211782A (en) Servo controller
JP2009229211A (en) Leakage current measuring device and its measuring method
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP2010044621A (en) Earth fault detection device of reactive power compensator
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
CN110609181A (en) Phase-missing judgment method and device for distribution transformer
JPH099487A (en) Controller for air conditioner
JP6604882B2 (en) Transformer high voltage side phase loss detection system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120229