JP2009101474A - Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting - Google Patents
Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting Download PDFInfo
- Publication number
- JP2009101474A JP2009101474A JP2007276316A JP2007276316A JP2009101474A JP 2009101474 A JP2009101474 A JP 2009101474A JP 2007276316 A JP2007276316 A JP 2007276316A JP 2007276316 A JP2007276316 A JP 2007276316A JP 2009101474 A JP2009101474 A JP 2009101474A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- tool
- coating layer
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 98
- 239000011247 coating layer Substances 0.000 title claims abstract description 51
- 230000001747 exhibiting effect Effects 0.000 title abstract description 3
- 230000001050 lubricating effect Effects 0.000 title abstract 2
- 239000010410 layer Substances 0.000 claims abstract description 204
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011195 cermet Substances 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000004767 nitrides Chemical class 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 15
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 14
- 239000000956 alloy Substances 0.000 abstract description 14
- 239000000843 powder Substances 0.000 description 32
- 239000000203 mixture Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 20
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 238000010891 electric arc Methods 0.000 description 11
- 229910000975 Carbon steel Inorganic materials 0.000 description 9
- 239000010962 carbon steel Substances 0.000 description 9
- 238000007733 ion plating Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000470 constituent Substances 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000005553 drilling Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000003475 lamination Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 102220358403 c.89C>G Human genes 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 102220005308 rs33960931 Human genes 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、すぐれた潤滑性をも有し、したがって、高熱発生を伴う炭素鋼等の高速切削加工に用いた場合にすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた工具特性を示す表面被覆切削工具(以下、被覆工具という)に関するものである。 This invention has a high temperature hardness, high temperature strength, high temperature oxidation resistance, and excellent lubricity as well as a hard coating layer, and is therefore used for high-speed cutting of carbon steel and the like with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance in some cases and exhibits excellent tool characteristics over a long period of time.
一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
従来、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、均一組成のCrとAlの複合窒化物(以下、(Cr,Al)Nで示す)層を設けた被覆工具が知られており、この被覆工具が、耐摩耗性にすぐれることが知られている。
また、工具基体表面に、硬質被覆層として、立方晶構造のCrとAlとSiの複合窒化物(以下、(Cr,Al,Si)Nで示す)層を設けた被覆工具も知られており、この被覆工具が、耐欠損性と耐摩耗性にすぐれることが知られている。
さらに、工具基体表面に、硬質被覆層として、立方晶構造のCrとAlとBの複合窒化物(以下、(Cr,Al,B)Nで示す)層を設けた被覆工具も知られており、この被覆工具が、耐溶着性、耐酸化性、耐摩耗性にすぐれることも知られている。
Conventionally, as one of surface-coated cutting tools, for example, a substrate (hereinafter collectively referred to as tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. A coated tool is known in which a uniform nitride and complex nitride (hereinafter referred to as (Cr, Al) N) layer is provided as a hard coating layer on the surface of a tool base). It is known that a coated tool is excellent in wear resistance.
Also known is a coated tool in which a cubic nitride, composite nitride of Cr, Al, and Si (hereinafter referred to as (Cr, Al, Si) N) layer is provided as a hard coating layer on the surface of the tool base. It is known that this coated tool is excellent in fracture resistance and wear resistance.
Furthermore, a coated tool in which a cubic nitride, composite nitride of Cr, Al, and B (hereinafter referred to as (Cr, Al, B) N) layer is provided as a hard coating layer on the surface of the tool base is also known. It is also known that this coated tool is excellent in welding resistance, oxidation resistance, and wear resistance.
さらに、上記の従来被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Cr,Al)N層、(Cr,Al,Si)N層あるいは(Cr,Al,B)N層の組成に対応した組成を有するCr−Al合金、Cr−Al−Si合金あるいはCr−Al−B合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方、上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体表面に、上記(Cr,Al)N層、(Cr,Al,Si)N層あるいは(Cr,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを特に切削時に高熱発生を伴う高速切削条件で用いた場合には、硬質被覆層の潤滑性が不足するために偏摩耗・チッピング等が発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. For coated tools, especially when used under high-speed cutting conditions with high heat generation during cutting, the lubricity of the hard coating layer is insufficient, and uneven wear and chipping are likely to occur. The current situation is that the service life is reached in a short time.
そこで、本発明者等は、上述のような観点から、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、特に高速切削加工ですぐれた潤滑性を発揮する被覆工具を開発すべく、上記の従来被覆工具の硬質被覆層の構成層に着目し、研究を行った結果、以下の知見を得た。
(a)上記従来の被覆工具の硬質被覆層を構成する(Cr,Al)N層、(Cr,Al,Si)N層あるいは(Cr,Al,B)N層(以下では、これらを総称して、(Cr,Al,M)N層で示す。なお、成分Mを含有する場合、Mは、SiまたはBから選ばれる1種または2種の元素である)の構成成分であるCr成分には高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、M成分としてSi成分を含有させた場合、耐熱塑性変形性を向上させ、B成分を含有させた場合は熱伝導性を向上させる作用があり、そして、硬質被覆層は、これら各成分を含有することによって、耐欠損性、耐溶着性、耐酸化性および耐摩耗性という特性が発揮されること。
In view of the above, the inventors of the present invention have a high-temperature hardness, high-temperature strength, high-temperature oxidation resistance with a hard coating layer, and a coated tool that exhibits excellent lubricity especially in high-speed cutting. As a result of conducting research by focusing on the constituent layers of the hard coating layer of the conventional coated tool, the following knowledge was obtained.
(A) (Cr, Al) N layer, (Cr, Al, Si) N layer or (Cr, Al, B) N layer (hereinafter collectively referred to as the hard coating layer of the conventional coated tool) (Cr, Al, M) N layer, and when component M is contained, M is one or two elements selected from Si or B). Has the effect of improving the high temperature strength and improving the high temperature oxidation resistance in the state where Cr and Al coexist, and when the Si component is contained as the M component, it improves the heat plastic deformation resistance, and B When the components are contained, there is an effect of improving the thermal conductivity, and the hard coating layer has the characteristics of fracture resistance, welding resistance, oxidation resistance and wear resistance by containing these components. Be demonstrated.
(b)ところで、上記従来被覆工具の硬質被覆層を構成する(Cr,Al,M)N層の組成を、組成式:(Cr1-(X+Y)AlXMY)Nで表した場合、Alの含有割合Xが少ない場合(例えば、0.65≦X)には、(Cr,Al,M)N層は立方晶構造の(Cr,Al,M)N層(以下、fcc(Cr,Al,M)N層で示す)であるが、Al含有割合Xを、例えば、X≧0.75というように増加させてやると、その結晶構造は立方晶構造と六方晶構造の混在した結晶構造に変化し、そして、このような立方晶構造と六方晶構造の混在した結晶構造を有する(Cr,Al,M)N層(以下、fcc/hcp(Cr,Al,M)N層で示す)は、潤滑特性が向上するようになるが、上記fcc/hcp(Cr,Al,M)N層は、fcc(Cr,Al,M)N層に比して、高速切削加工時の高温条件下では十分な高温硬さを有さないため、fcc/hcp(Cr,Al,M)N層を、硬質被覆層として単独で蒸着形成することによっては、満足できる耐摩耗性を得ることはできないこと。 (B) By the way, when the composition of the (Cr, Al, M) N layer constituting the hard coating layer of the conventional coated tool is represented by a composition formula: (Cr 1− (X + Y) Al X M Y ) N, When the content ratio X of Al is small (for example, 0.65 ≦ X), the (Cr, Al, M) N layer is a cubic (Cr, Al, M) N layer (hereinafter referred to as fcc (Cr, If the Al content ratio X is increased, for example, X ≧ 0.75, the crystal structure is a mixed crystal of a cubic structure and a hexagonal structure. (Cr, Al, M) N layer (hereinafter referred to as fcc / hcp (Cr, Al, M) N layer) having a crystal structure in which a cubic structure and a hexagonal structure are mixed. ) Improves the lubrication characteristics, but the fcc / hcp (Cr, Al, M) N layer is Compared to the cc (Cr, Al, M) N layer, the fcc / hcp (Cr, Al, M) N layer is hard because it does not have sufficient high-temperature hardness under high-temperature conditions during high-speed cutting. Satisfactory wear resistance cannot be obtained by vapor deposition alone as a coating layer.
(c)そこで、すぐれた高温硬さを有する上記fcc(Cr,Al,M)N層を薄層Aとし、また、すぐれた潤滑特性を有する上記fcc/hcp(Cr,Al,M)N層を薄層Bとし、薄層Aと薄層Bとを交互に積層し、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を構成すると、薄層Aと薄層Bは、それぞれの特性を害することなく、硬質被覆層全体として、すぐれた耐摩耗性を維持しつつ、すぐれた潤滑性をも発揮するようになること。 (C) Therefore, the fcc (Cr, Al, M) N layer having excellent high-temperature hardness is used as the thin layer A, and the fcc / hcp (Cr, Al, M) N layer having excellent lubrication characteristics. Is a thin layer B, and the thin layer A and the thin layer B are alternately laminated to form a hard coating layer composed of an alternating laminated structure of the thin layer A and the thin layer B. Without damaging the characteristics of the hard coating layer as a whole, while maintaining excellent wear resistance, it also exhibits excellent lubricity.
この発明は、上記の研究結果に基づいてなされたものであって、
「(1)炭化タングステン(WC)基超硬合金または炭窒化チタン(TiCN)基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、硬質被覆層としてCrとAlの複合窒化物層((Cr,Al)N層)が蒸着形成され、さらに、CrとAlの複合窒化物層((Cr,Al)N層)は、結晶構造が、立方晶構造(fcc)からなる薄層Aと、立方晶構造(fcc)と六方晶構造(hcp)の混在する薄層Bの交互積層構造として構成されていることを特徴とする表面被覆切削工具(被覆工具)。
(2)前記(1)記載の表面被覆切削工具において、上記CrとAlの複合窒化物層((Cr,Al)N層)と工具基体との間に、立方晶構造(fcc)のCrとAlの複合窒化物層((Cr,Al)N層)からなる下地層を介在形成したことを特徴とする前記(1)記載の表面被覆切削工具(被覆工具)。
(3)炭化タングステン(WC)基超硬合金または炭窒化チタン(TiCN)基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、硬質被覆層としてCrとAlとM(但し、Mは、SiまたはBから選ばれる1種または2種の元素)の複合窒化物層((Cr,Al,M)N層)が蒸着形成され、さらに、CrとAlとMの複合窒化物層((Cr,Al,M)N層)は、結晶構造が、立方晶構造(fcc)からなる薄層Aと、立方晶構造(fcc)と六方晶構造(hcp)の混在する薄層Bの交互積層構造として構成されていることを特徴とする表面被覆切削工具(被覆工具)。
(4)前記(3)記載の表面被覆切削工具において、上記CrとAlとM(但し、Mは、SiまたはBから選ばれる1種または2種の元素)の複合窒化物層((Cr,Al,M)N層)と工具基体との間に、立方晶構造(fcc)のCrとAlとM(但し、Mは、SiまたはBから選ばれる1種または2種の元素)の複合窒化物層((Cr,Al,M)N層)からなる下地層を介在形成したことを特徴とする前記(3)記載の表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool base made of tungsten carbide (WC) -based cemented carbide or titanium carbonitride (TiCN) -based cermet, A composite nitride layer of Cr and Al ((Cr, Al) N layer) is formed by vapor deposition. Further, the composite nitride layer of Cr and Al ((Cr, Al) N layer) has a cubic crystal structure. A surface-coated cutting tool (coated tool), characterized in that it is configured as an alternating laminated structure of a thin layer A made of (fcc) and a thin layer B in which a cubic structure (fcc) and a hexagonal structure (hcp) are mixed ).
(2) In the surface-coated cutting tool according to (1), a cubic structure (fcc) of Cr and a composite nitride layer of Cr and Al ((Cr, Al) N layer) and a tool base The surface-coated cutting tool (coated tool) according to (1) above, wherein an underlayer composed of an Al composite nitride layer ((Cr, Al) N layer) is interposed.
(3) In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base made of tungsten carbide (WC) -based cemented carbide or titanium carbonitride (TiCN) -based cermet, Cr is used as the hard coating layer. And a composite nitride layer ((Cr, Al, M) N layer) of Al and M (where M is one or two elements selected from Si or B) are formed by vapor deposition, and Cr and Al And M composite nitride layer ((Cr, Al, M) N layer) are composed of a thin layer A having a cubic structure (fcc), a cubic structure (fcc) and a hexagonal structure (hcp). A surface-coated cutting tool (coated tool), characterized in that it is configured as an alternately laminated structure of thin layers B mixed with each other.
(4) In the surface-coated cutting tool according to the above (3), a composite nitride layer (Cr, Al, M, where M is one or two elements selected from Si or B) ((Cr, Between the Al, M) N layer) and the tool substrate, a complex nitriding of Cr, Al and M (where M is one or two elements selected from Si or B) having a cubic structure (fcc) The surface-coated cutting tool (coated tool) according to (3) above, wherein an underlayer composed of a physical layer ((Cr, Al, M) N layer) is interposed. "
It has the characteristics.
つぎに、この発明の被覆工具の硬質被覆層に関し、より詳細に説明する。
(a)薄層A
薄層Aを構成する立方晶構造のCrとAlの複合窒化物層あるいはCrとAlとMの複合窒化物層(fcc(Cr,Al,M)N層)は、高熱発生を伴う高速切削加工において、硬質被覆層の耐摩耗性を維持する層として作用する。
既に述べたように、(Cr,Al,M)N層の組成を、
組成式:(Cr1-(X+Y)AlXMY)Nで表した場合、Alの含有割合Xの値を、X≦0.65とすることによって、立方晶構造(fcc)の層として形成することができ、このfcc構造によって耐摩耗性が維持されるが、Alの含有割合Xの値がX<0.25となると、相対的にCrの含有割合が増加し、結晶構造がfccであったとしても、fcc(Cr,Al,M)N層自体の高温硬さが急激な低下傾向を示し、高速切削加工において最小限必要とされる耐摩耗性を確保することが困難になることから、薄層AにおけるAlの含有割合Xは、0.25≦X≦0.65とすることが望ましい。
また、fcc(Cr,Al,M)N層の構成成分であるCr成分は、薄層Aの高温強度を向上させ、硬質被覆層の耐チッピング性・耐欠損性に寄与するとともに、Al成分との共存含有によって、高温耐酸化性向上にも寄与する。
さらに、fcc(Cr,Al,M)N層の構成成分としてM成分を含有させる場合、M成分としては、SiまたはBから選ばれる1種または2種の元素含有させることができ、Si成分は、耐熱塑性変形性を向上させることによって、また、B成分は熱伝導性を向上させることによって、いずれも薄層Aの耐摩耗性向上に寄与するが、M成分の含有割合Yの値(Si含有割合とB含有割合の合計値)が0.1を超えると薄層Aの高温強度が低下することから、薄層AにおけるM成分の含有割合Yは、0≦Y≦0.1とすることが望ましい。
Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
(A) Thin layer A
The cubic Cr-Al composite nitride layer or the Cr-Al-M composite nitride layer (fcc (Cr, Al, M) N layer) constituting the thin layer A is a high-speed cutting process with high heat generation. , It acts as a layer for maintaining the wear resistance of the hard coating layer.
As already mentioned, the composition of the (Cr, Al, M) N layer is
Formula: when expressed in (Cr 1- (X + Y) Al X M Y) N, the value of the proportion X of Al, by the X ≦ 0.65, as a layer of cubic (fcc) structure Although the wear resistance is maintained by the fcc structure, when the value of the Al content ratio X is X <0.25, the Cr content ratio is relatively increased and the crystal structure is fcc. Even if it exists, the high-temperature hardness of the fcc (Cr, Al, M) N layer itself tends to decrease sharply, making it difficult to ensure the minimum wear resistance required for high-speed cutting. Therefore, the content ratio X of Al in the thin layer A is preferably 0.25 ≦ X ≦ 0.65.
Further, the Cr component, which is a constituent component of the fcc (Cr, Al, M) N layer, improves the high-temperature strength of the thin layer A, contributes to the chipping resistance and fracture resistance of the hard coating layer, and Concomitant content of contributes to the improvement of high-temperature oxidation resistance.
Furthermore, when the M component is contained as a constituent component of the fcc (Cr, Al, M) N layer, the M component can contain one or two elements selected from Si or B. The B component contributes to the improvement of the wear resistance of the thin layer A by improving the heat plastic deformation and the heat conductivity, but the value of the M component content Y (Si When the sum of the content ratio and the B content ratio exceeds 0.1, the high-temperature strength of the thin layer A decreases. Therefore, the content ratio Y of the M component in the thin layer A is 0 ≦ Y ≦ 0.1. It is desirable.
(b)薄層B
薄層Bを構成する、立方晶構造と六方晶構造の混在する薄層BのCrとAlの複合窒化物層あるいはCrとAlとMの複合窒化物層(fcc/hcp(Cr,Al,M)N層)は、高熱発生を伴う高速切削加工において、fcc(Cr,Al,M)N層からなる薄層Aに不足する潤滑性を補完することにより、結果としてより一層耐摩耗性を向上させる層として作用する。
fcc/hcp(Cr,Al,M)N層からなる薄層Bの構成成分であるCr成分、M成分の作用は、薄層Aの場合と同様である。
上記薄層Bの構成成分であるAlについて言えば、Alの含有割合Xの値を、X≧0.75とすることによって、立方晶構造(fcc)と六方晶構造(hcp)の混在する結晶構造(fcc/hcp)の薄層Bを形成することができ、このfcc/hcp構造によって高熱発生を伴う高速切削加工条件下での潤滑性が確保されるが、Alの含有割合Xの値がX>0.95となると、相対的なCr含有割合の減少によって、fcc/hcp(Cr,Al,M)N層の高温強度が低下し、チッピング・欠損等を発生しやすくなることから、薄層BにおけるAlの含有割合Xは、0.75≦X≦0.95とすることが望ましい。
また、Alの含有割合Xを、0.75≦X≦0.95の範囲内としたfcc/hcp(Cr,Al,M)N層からなる薄層BについてX線回折を行ったところ、立方晶構造の(200)面からの回折ピーク強度αと、六方晶構造の(100)面からの回折ピーク強度βとの比の値β/αは、表3〜6、11、12、14、15にも示されるように、0.1<β/α<11.5であった。
なお、薄層Bの構成成分としてM成分を含有させた場合、薄層Bの耐摩耗性を向上させつつ薄層Bの高温強度低下を防止するためには、薄層Aの場合と同様、薄層BにおけるM成分の含有割合Yは、0≦Y≦0.1とすることが望ましい。
(B) Thin layer B
The thin layer B is composed of a mixed layer of Cr and Al or a mixed nitride layer of Cr, Al, and M (fcc / hcp (Cr, Al, M ) N layer) improves the wear resistance as a result by complementing the lack of lubricity in the thin layer A composed of the fcc (Cr, Al, M) N layer in high-speed cutting with high heat generation. Acts as a layer to let
The effects of the Cr component and the M component, which are constituent components of the thin layer B composed of the fcc / hcp (Cr, Al, M) N layer, are the same as those of the thin layer A.
Speaking of Al, which is a constituent component of the thin layer B, a crystal having a mixed cubic structure (fcc) and hexagonal structure (hcp) by setting the value of the Al content ratio X to X ≧ 0.75. A thin layer B having a structure (fcc / hcp) can be formed, and this fcc / hcp structure ensures lubricity under high-speed cutting conditions with high heat generation, but the value of the Al content ratio X is When X> 0.95, the relative Cr content decreases, the high temperature strength of the fcc / hcp (Cr, Al, M) N layer decreases, and chipping / defects are likely to occur. The Al content ratio X in the layer B is preferably 0.75 ≦ X ≦ 0.95.
Further, when X-ray diffraction was performed on the thin layer B composed of the fcc / hcp (Cr, Al, M) N layer in which the Al content ratio X was in the range of 0.75 ≦ X ≦ 0.95, cubic was obtained. The values β / α of the diffraction peak intensity α from the (200) plane of the crystal structure and the diffraction peak intensity β from the (100) plane of the hexagonal structure are shown in Tables 3-6, 11, 12, 14, As shown in FIG. 15, 0.1 <β / α <11.5.
In addition, when the M component is contained as a constituent component of the thin layer B, in order to prevent the high temperature strength of the thin layer B from being lowered while improving the wear resistance of the thin layer B, as in the case of the thin layer A, The content ratio Y of the M component in the thin layer B is preferably 0 ≦ Y ≦ 0.1.
(c)薄層Aと薄層Bの交互積層
薄層Aは、その一層層厚が0.025μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って十分発揮することができず、工具寿命短命の原因となり、一方その一層層厚が0.1μmを越えると、チッピングが発生し易くなることから、その一層層厚を0.025〜0.1μmとすることが望ましい。
また、薄層Bについては、その一層層厚が0.025μm未満では、薄層Aの潤滑性不足を補完することはできず、一方その一層層厚が0.1μmを越えると、チッピングが発生し易くなることから、その一層層厚を0.025〜0.1μmとすることが望ましい。
さらに、薄層Aと薄層Bを交互に積層して形成した交互積層について、その合計層厚が1μm未満では、自身のもつすぐれた潤滑性とおよびすぐれた耐摩耗性を長期に亘って発揮することができないため工具寿命短命の原因となり、一方、その合計層厚が8μmを越えると、チッピングが発生し易くなることから、その合計層厚は1〜8μmとすることが望ましい。
なお、fcc(Cr,Al,M)N層からなる薄層Aと、fcc/hcp(Cr,Al,M)N層からなる薄層Bとは同一成分系の硬質被覆層であるため、異成分系の薄層Aと薄層Bとの交互積層に比して、薄層Aと薄層B間の付着強度が大となり、硬質被覆層全体としての高温強度向上に寄与するばかりか、層間剥離等の生じる恐れもない。
(C) Alternating lamination of thin layer A and thin layer B If the layer thickness of the thin layer A is less than 0.025 μm, the excellent wear resistance of itself cannot be sufficiently exhibited over a long period of time. The tool life is shortened. On the other hand, if the layer thickness exceeds 0.1 μm, chipping is likely to occur. Therefore, the layer thickness is preferably 0.025 to 0.1 μm.
For the thin layer B, if the layer thickness is less than 0.025 μm, insufficient lubricity of the thin layer A cannot be supplemented. On the other hand, if the layer thickness exceeds 0.1 μm, chipping occurs. Therefore, it is desirable that the thickness of the single layer be 0.025 to 0.1 μm.
Furthermore, the alternate lamination formed by alternately laminating the thin layer A and the thin layer B, when its total layer thickness is less than 1 μm, exhibits its own excellent lubricity and excellent wear resistance over a long period of time. Therefore, if the total layer thickness exceeds 8 μm, chipping tends to occur. Therefore, the total layer thickness is preferably 1 to 8 μm.
Since the thin layer A composed of the fcc (Cr, Al, M) N layer and the thin layer B composed of the fcc / hcp (Cr, Al, M) N layer are hard coating layers of the same component system, they are different from each other. Compared to the alternate lamination of the component thin layers A and B, the adhesion strength between the thin layers A and B is increased, which not only contributes to the improvement of the high temperature strength of the hard coating layer as a whole. There is no risk of peeling.
(d)下地層
工具基体表面に、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を設けることによって、上記の通り、耐摩耗性を維持したままですぐれた潤滑性を得ることができるが、被覆工具の耐摩耗性を一段と高めるために、工具基体表面と、上記薄層Aと薄層Bからなる交互積層との間に、fcc(Cr,Al)N層あるいはfcc(Cr,Al,M)N層を、0.1〜1.5μmの層厚でさらに介在形成することができる。
下地層のfcc(Cr,Al)N層あるいはfcc(Cr,Al,M)N層は、薄層Aを構成するそれと、同一成分組成、同一結晶構造を有し、すぐれた耐摩耗性を示すことから、被覆工具の耐摩耗性を一段と向上させる。
下地層の層厚は、0.1μm未満では、下地層を設けたことによる耐摩耗性のより一層の向上が期待できず、一方、下地層の層厚が1.5μmを超えると、高速切削でチッピングが発生しやすくなることから、下地層の層厚は、0.1〜1.5μmとすることが望ましい。
(D) Underlayer By providing a hard coating layer composed of an alternately laminated structure of thin layers A and thin layers B on the surface of the tool base, as described above, excellent lubricity can be obtained while maintaining wear resistance. However, in order to further improve the wear resistance of the coated tool, an fcc (Cr, Al) N layer or an fcc (Cr) is provided between the surface of the tool base and the alternate lamination of the thin layers A and B. , Al, M) N layers can be further interposed with a layer thickness of 0.1 to 1.5 μm.
The underlying fcc (Cr, Al) N layer or fcc (Cr, Al, M) N layer has the same composition and the same crystal structure as that of the thin layer A, and exhibits excellent wear resistance. For this reason, the wear resistance of the coated tool is further improved.
If the thickness of the underlayer is less than 0.1 μm, further improvement in wear resistance due to the provision of the underlayer cannot be expected. On the other hand, if the thickness of the underlayer exceeds 1.5 μm, high speed cutting is performed. Therefore, the thickness of the underlayer is preferably 0.1 to 1.5 μm.
この発明の被覆工具は、硬質被覆層が、すぐれた耐摩耗性を示すfcc(Cr,Al,M)N層からなる薄層Aと、すぐれた潤滑性を示すfcc/hcp(Cr,Al,M)N層からなる薄層Bの層間付着強度が大きい交互積層構造を備え、あるいは、耐摩耗性にすぐれた下地層をもさらに備えているので、硬質被覆層全体としてすぐれた高温硬さ、高温強度、高温耐酸化性に加え、すぐれた潤滑性をも有していることから、特に高熱発生を伴う炭素鋼等の高速切削加工でも、硬質被覆層がすぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated tool of the present invention, the hard coating layer is a thin layer A composed of an fcc (Cr, Al, M) N layer exhibiting excellent wear resistance, and fcc / hcp (Cr, Al, M) Since the thin layer B composed of the N layer has an alternate laminated structure having a high interlayer adhesion strength, or further includes an underlayer having excellent wear resistance, the hard coating layer as a whole has excellent high-temperature hardness, In addition to high-temperature strength and high-temperature oxidation resistance, it also has excellent lubricity, so even with high-speed cutting such as carbon steel with high heat generation, the hard coating layer has excellent wear resistance over a long period of time. To demonstrate.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.
(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、所定成分組成の薄層A形成用Cr−Al−M合金、他方側のカソード電極(蒸発源)として、同じく所定成分組成をもった薄層B形成用Cr−Al−M合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下地層形成用Cr−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金によってボンバード洗浄し、
(c)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層Aおよび下地層形成用Cr−Al−M合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚のfcc(Cr,Al,M)N層からなる下地層を蒸着形成(表4、表6)し、
(d)ついで、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層B形成用Cr−Al−M合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下地層形成用Cr−Al−M合金のカソード電極とアノード電極間に同じく50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用Cr−Al−M合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下地層形成用Cr−Al−M合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表3〜表6に示される組成および層厚の(下地層と、)薄層A、薄層Bの交互積層からなる硬質被覆層を蒸着形成することにより、硬質被覆層が、fcc(Cr,Al,M)N層とfcc/hcp(Cr,Al,M)N層の交互積層構造を備える本発明表面被覆切削工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜32をそれぞれ製造した。
なお、本発明被覆超硬チップ11〜20、27〜32についてのみ、上記(c)の工程で、工具基体表面に下地層を設けた。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Cr-Al for forming a thin layer A having a predetermined composition as a cathode electrode (evaporation source) on one side is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus. -As a cathode electrode (evaporation source) on the other side, a Cr-Al-M alloy for forming a thin layer B having the same predetermined component composition is disposed oppositely across the rotary table,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A direct current bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the thin layer A and the Cr—Al—M alloy for forming the underlayer and the anode electrode, whereby the surface of the tool base is made to the Cr— Bombarded with Al-M alloy,
(C) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. In this state, a predetermined current in the range of 50 to 100 A is allowed to flow between the cathode electrode and the anode electrode of the thin layer A and the Cr—Al—M alloy for forming the underlayer to generate arc discharge, A base layer made of an fcc (Cr, Al, M) N layer having a predetermined layer thickness is formed on the surface of the tool base by vapor deposition (Tables 4 and 6).
(D) Next, in a state where a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, the cathode electrode and the anode electrode of the thin layer B forming Cr—Al—M alloy An arc discharge is generated by passing a predetermined current in the range of 50 to 100 A between them to form a thin layer B having a predetermined layer thickness on the surface of the cemented carbide substrate, and after forming the thin layer B, an arc discharge is performed. Instead, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the thin layer A and the Cr-Al-M alloy for forming the underlayer to generate an arc discharge, After forming the thin layer A having a predetermined thickness, the arc discharge is stopped, and the thin layer B is formed again by the arc discharge between the cathode electrode and the anode electrode of the Cr-Al-M alloy for forming the thin layer B; For forming thin layer A and underlayer The formation of the thin layer A by the arc discharge between the cathode electrode and the anode electrode of the r-Al-M alloy is alternately repeated, and the surface of the tool base is shown in Tables 3 to 6 along the layer thickness direction. By vapor-depositing a hard coating layer composed of alternating layers of a thin layer A and a thin layer B of the composition and layer thickness (underlayer), the hard coating layer becomes an fcc (Cr, Al, M) N layer and an fcc. / Hcp (Cr, Al, M) N-layered alternating layer structure of the present invention surface coated carbide throwaway tip (hereinafter referred to as the present coated carbide tip) 1-32 Were manufactured respectively.
In addition, only about this invention coated carbide | carbonized_material chips 11-20, 27-32, the base layer was provided in the tool base | substrate surface by the process of said (c).
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表7に示される組成のCr−Al−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−M合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表7に示される組成および層厚の単一相・単一結晶構造を有する(Cr,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The apparatus was charged with Cr—Al—M alloys having the compositions shown in Table 7 as cathode electrodes (evaporation sources), and the apparatus was first evacuated and maintained at a vacuum of 0.1 Pa or less. After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is passed between the Cr—Al—M alloy of the cathode electrode and the anode electrode. Arc discharge is generated, and the tool base surface is bombarded with the Cr-Al-M alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. The bias voltage applied to the tool base is lowered to -100V, and arc discharge is generated between the cathode electrode and the anode electrode of the Cr-Al-M alloy, thereby the tool bases A-1 to A-10 and B A hard coating layer composed of a (Cr, Al, M) N layer having a single-phase / single-crystal structure having the composition and layer thickness shown in Table 7 is deposited on each surface of -1 to B-6. Thus, comparative surface coated carbide throw-away tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 were produced.
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜32および比較被覆超硬チップ1〜16について、
被削材:JIS・S50Cの丸棒、
切削速度: 300 m/min.、
切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)での炭素鋼の乾式連続高速切削加工試験(通常の切削速度は、180m/min.)、
被削材:JIS・SCM440の丸棒、
切削速度: 320 m/min.、
切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 6 分、
の条件(切削条件B)での合金鋼の乾式連続高速切削加工試験(通常の切削速度は、200m/min.)、
被削材:JIS・S30Cの丸棒、
切削速度: 330 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での炭素鋼の乾式連続高速切削加工試験(通常の切削速度は、180m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8、表9に示した。
Next, the coated carbide chips 1 to 32 of the present invention and the comparative coated carbide chip 1 in the state in which the above various coated carbide chips are screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS / S50C round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 180 m / min.),
Work material: JIS / SCM440 round bar,
Cutting speed: 320 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high-speed cutting test of alloy steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS / S30C round bar,
Cutting speed: 330 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 180 m / min.) Of carbon steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 8 and 9.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表10に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, and each of these raw material powders was blended in the blending composition shown in Table 10, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three kinds of sintered carbide rod forming bodies for forming a carbide substrate having a diameter of 8 mm, 13 mm, and 26 mm were formed, and further, the above three kinds of round bar sintered bodies were ground and shown in Table 10. WC-based cemented carbide with a 4-blade square shape with a cutting blade portion diameter × length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, and a twist angle of 30 degrees. Tool bases (end mills) C-1 to C-8 were manufactured.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11、表12に示される組成および層厚の(下地層と、)薄層A、薄層Bの交互積層からなる硬質被覆層を蒸着形成することにより、硬質被覆層が、fcc(Cr,Al,M)N層とfcc/hcp(Cr,Al,M)N層の交互積層構造を備える本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜16を製造した。
なお、本発明被覆超硬エンドミル9〜16についてのみ、工具基体表面に下地層を形成した。
Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a hard coating layer consisting of alternating layers of thin layer A and thin layer B (underlying layer) having the composition and layer thickness shown in Tables 11 and 12 along the layer thickness direction. The present invention as a surface-coated cutting tool according to the present invention, in which the hard coating layer has an alternately laminated structure of fcc (Cr, Al, M) N layers and fcc / hcp (Cr, Al, M) N layers by vapor deposition. Surface coated carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 16 were produced.
In addition, only about this invention coated carbide end mills 9-16, the base layer was formed in the tool base | substrate surface.
また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表13に示される組成および層厚の単一相・単一結晶構造を有する(Cr,Al,M)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8を製造した。 For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, a hard coating layer composed of a (Cr, Al, M) N layer having a single-phase / single-crystal structure having the composition and layer thickness shown in Table 13 is deposited under the same conditions as in Example 1 above. Thus, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 were produced.
つぎに、上記本発明被覆超硬エンドミル1〜16および比較被覆超硬エンドミル1〜8のうち、
本発明被覆超硬エンドミル1〜3、9〜11および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S50Cの板材、
切削速度: 160 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 500 mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は、85m/min.)を行い、
本発明被覆超硬エンドミル4〜6、12〜14および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SCM440の板材、
切削速度: 140 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 450 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、90m/min.)を行い、
本発明被覆超硬エンドミル7、8、15、16および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S30Cの板材、
切削速度: 150 m/min.、
溝深さ(切り込み): 10 mm、
テーブル送り: 400 mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は、80m/min.)を行い、
上記のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記の測定結果を表11〜表13にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-16 and comparative coated carbide end mills 1-8,
About this invention coated carbide end mills 1-3, 9-11 and comparative coated carbide end mills 1-3,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 160 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 500 mm / min,
A carbon steel dry type high speed grooving test (normal cutting speed is 85 m / min.)
About this invention coated carbide end mills 4-6, 12-14 and comparative coated carbide end mills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 140 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 450 mm / min,
A dry high-speed grooving test of the alloy steel under the conditions (normal cutting speed is 90 m / min.)
For the coated carbide end mills 7, 8, 15, 16 and comparative coated carbide end mills 7, 8 of the present invention,
Work material-Plane: 100 mm x 250 mm, Thickness: 50 mm JIS / S30C plate,
Cutting speed: 150 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 400 mm / min,
A carbon steel dry type high speed grooving test (normal cutting speed is 80 m / min.)
In any of the above groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Tables 11 to 13, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、 8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Tool bases (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were manufactured.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表14、表15に示される組成および層厚の(下地層と、)薄層A、薄層Bの交互積層からなる硬質被覆層を蒸着形成することにより、硬質被覆層が、fcc(Cr,Al,M)N層とfcc/hcp(Cr,Al,M)N層の交互積層構造を備える本発明表面被覆切削工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜16を製造した。
なお、本発明被覆超硬ドリル9〜16についてのみ、工具基体表面に下地層を形成した。
Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The hard coating layer consisting of the alternating lamination of the thin layer A and the thin layer B having the composition and layer thickness shown in Tables 14 and 15 was deposited under the same conditions as in Example 1 above. By forming the surface of the present invention as a surface-coated cutting tool of the present invention, the hard coating layer has an alternately laminated structure of fcc (Cr, Al, M) N layers and fcc / hcp (Cr, Al, M) N layers. Coated carbide drills (hereinafter referred to as the present invention coated carbide drills) 1 to 16 were produced.
In addition, only about this invention coated carbide drills 9-16, the base layer was formed in the tool base | substrate surface.
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−3、D−4〜D−6、D−7、D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表16に示される組成および層厚の単一相・単一結晶構造を有する(Cr,Al,M)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8を製造した。 For comparison purposes, honing is applied to the surfaces of the tool bases (drills) D-1 to D-3, D-4 to D-6, D-7, and D-8, and ultrasonic waves are obtained in acetone. After washing and drying, the sample was charged into the arc ion plating apparatus shown in FIG. 2 and the same composition and layer thickness as shown in Table 16 were applied under the same conditions as in Example 1 above. Comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1 to 8 were manufactured by vapor-depositing a hard coating layer composed of a (Cr, Al, M) N layer having a single crystal structure.
つぎに、上記本発明被覆超硬ドリル1〜16および比較被覆超硬ドリル1〜8のうち、
本発明被覆超硬ドリル1〜3、9〜11および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S50Cの板材、
切削速度: 140 m/min.、
送り: 0.15 mm/rev、
穴深さ: 7 mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、80m/min.)を行い、
本発明被覆超硬ドリル4〜6、12〜14および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SCM440の板材、
切削速度: 120 m/min.、
送り: 0.2 mm/rev、
穴深さ: 15 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、70m/min.)を行い、
本発明被覆超硬ドリル7、8、15、16および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S30Cの板材、
切削速度: 110 m/min.、
送り: 0.25 mm/rev、
穴深さ: 25 mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、60m/min.)を行い、
上記いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表14〜表16にそれぞれ示した。
Next, of the present invention coated carbide drills 1-16 and comparative coated carbide drills 1-8,
About this invention coated carbide drills 1-3, 9-11 and comparative coated carbide drills 1-3,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 140 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 7 mm,
A high-speed wet drilling test of carbon steel under the conditions (normal cutting speed is 80 m / min.),
About this invention coated carbide drills 4-6, 12-14 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 15 mm,
Wet high-speed drilling machining test of alloy steel under the conditions (normal cutting speed is 70 m / min.),
About the coated carbide drills 7, 8, 15, 16 of the present invention and the comparative coated carbide drills 7, 8,
Work material-Plane: 100 mm x 250 mm, Thickness: 50 mm JIS / S30C plate,
Cutting speed: 110 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 25 mm,
The carbon steel was subjected to a wet high-speed drilling test (normal cutting speed was 60 m / min.)
In any of the above wet high-speed drilling tests (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 14 to 16, respectively.
この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜32、本発明被覆超硬エンドミル1〜16および本発明被覆超硬ドリル1〜16の硬質被覆層を構成する下地層、薄層Aおよび薄層Bそれぞれの組成を、また、比較表面被覆切削工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8および比較被覆超硬ドリル1〜8の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡により断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
As a result, the hard coating layers of the present coated carbide tips 1 to 32, the present coated carbide end mills 1 to 16 and the present coated carbide drills 1 to 16 as the surface coated cutting tool of the present invention are obtained. The composition of each of the base layer, thin layer A and thin layer B is also compared with comparative coated carbide tips 1-16, comparative coated carbide end mills 1-8 and comparative coated carbide drills 1-8 as comparative surface coated cutting tools. When the composition was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the target composition.
Further, when the average layer thickness of the constituent layers of the hard coating layer was measured with a transmission electron microscope, the average value was substantially the same as the target layer thickness (average value at five locations).
さらに、本発明表面被覆切削工具の下地層、薄層A、薄層Bを構成する組成の(Cr,Al,M)N層および比較表面被覆切削工具の硬質被覆層を構成する組成の(Cr,Al,M)N層について、各層の結晶構造をX線回折により求め、その結果を表3〜7、11〜16に示した。
また、本発明表面被覆切削工具の薄層Bを構成する組成の(Cr,Al,M)N層については、X線回折により測定した立方晶構造の(200)面からの回折ピーク強度αと、六方晶構造の(100)面からの回折ピーク強度βとの比の値β/αについても、表3〜6、11、12、14、15に示した。
Furthermore, the (Cr, Al, M) N layer of the composition constituting the ground layer, thin layer A, and thin layer B of the surface-coated cutting tool of the present invention and (Cr of the composition constituting the hard coating layer of the comparative surface-coated cutting tool. , Al, M) N layers, the crystal structure of each layer was determined by X-ray diffraction, and the results are shown in Tables 3-7 and 11-16.
In addition, for the (Cr, Al, M) N layer of the composition constituting the thin layer B of the surface-coated cutting tool of the present invention, the diffraction peak intensity α from the (200) plane of the cubic structure measured by X-ray diffraction and Tables 3-6, 11, 12, 14, and 15 also show the value β / α of the ratio to the diffraction peak intensity β from the (100) plane of the hexagonal crystal structure.
表8、9、11〜16に示される結果から、本発明表面被覆切削工具は、硬質被覆層がすぐれた耐摩耗性を示す薄層Aとすぐれた潤滑性を示す薄層Bの交互積層構造を備え、層間付着強度が大であり、あるいは、耐摩耗性にすぐれた下地層をもさらに備えているので、硬質被覆層は全体としてこれらのすぐれた特性を兼ね備えたものとなり、その結果、高熱発生を伴う炭素鋼等の高速切削加工でも、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相・単一結晶構造の(Cr,Al,M)N層からなる被覆工具は、特に硬質被覆層の潤滑性不足が原因で切刃部にチッピング、欠損が生じたり、また、摩耗の進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 8, 9, and 11 to 16, the surface-coated cutting tool of the present invention has an alternating laminated structure of a thin layer A that exhibits excellent wear resistance and a thin layer B that exhibits excellent lubricity. In addition, the hard coating layer has these excellent characteristics as a whole because it has a high interlayer adhesion strength or an undercoat layer with excellent wear resistance. Even when high-speed machining such as carbon steel is generated, it has excellent wear resistance, whereas the hard coating layer is a single-phase, single-crystal (Cr, Al, M) N layer coating. It is apparent that the tool has chipping and chipping at the cutting edge due to insufficient lubricity of the hard coating layer, and wear progresses rapidly, leading to a service life in a relatively short time.
上述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴う高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the surface-coated cutting tool of the present invention exhibits excellent wear resistance not only for cutting under normal cutting conditions such as various types of steel and cast iron, but also for high-speed cutting with high heat generation. In addition, since it shows excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with higher performance of the cutting device, labor saving and energy saving of cutting, and further cost reduction.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007276316A JP2009101474A (en) | 2007-10-24 | 2007-10-24 | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007276316A JP2009101474A (en) | 2007-10-24 | 2007-10-24 | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009101474A true JP2009101474A (en) | 2009-05-14 |
Family
ID=40703786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007276316A Withdrawn JP2009101474A (en) | 2007-10-24 | 2007-10-24 | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009101474A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087914A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Surface-coated cutting tool |
JP2016055350A (en) * | 2015-11-25 | 2016-04-21 | 住友電気工業株式会社 | Coating rotation tool |
JP2016165788A (en) * | 2015-03-10 | 2016-09-15 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
US20220297198A1 (en) * | 2021-03-18 | 2022-09-22 | Tungaloy Corporation | Coated cutting tool |
WO2023007935A1 (en) * | 2021-07-30 | 2023-02-02 | 京セラ株式会社 | Coated tool and cutting tool |
-
2007
- 2007-10-24 JP JP2007276316A patent/JP2009101474A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087914A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Surface-coated cutting tool |
JP2016165788A (en) * | 2015-03-10 | 2016-09-15 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP2016055350A (en) * | 2015-11-25 | 2016-04-21 | 住友電気工業株式会社 | Coating rotation tool |
US20220297198A1 (en) * | 2021-03-18 | 2022-09-22 | Tungaloy Corporation | Coated cutting tool |
US11931811B2 (en) * | 2021-03-18 | 2024-03-19 | Tungaloy Corporation | Coated cutting tool |
WO2023007935A1 (en) * | 2021-07-30 | 2023-02-02 | 京セラ株式会社 | Coated tool and cutting tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594575B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP4702520B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP5344129B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5594576B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5440345B2 (en) | Surface coated cutting tool | |
JP5440346B2 (en) | Surface coated cutting tool | |
JP2009101474A (en) | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting | |
JP2009101490A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP5429693B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2009101475A (en) | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting | |
JP5454788B2 (en) | Surface coated cutting tool | |
JP4007102B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP4702538B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP5459618B2 (en) | Surface coated cutting tool | |
JP5454787B2 (en) | Surface coated cutting tool | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4645820B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5499861B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5440351B2 (en) | Surface coated cutting tool | |
JP5440350B2 (en) | Surface coated cutting tool | |
JP4678582B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP4120499B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP4697660B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP2007069276A (en) | Surface-coated cutting tool having hard coating layer exerting excellent abrasion resistance in high-speed cutting of high-hardness steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110104 |