[go: up one dir, main page]

JP2009100433A - Method of interpolating image frame - Google Patents

Method of interpolating image frame Download PDF

Info

Publication number
JP2009100433A
JP2009100433A JP2007292568A JP2007292568A JP2009100433A JP 2009100433 A JP2009100433 A JP 2009100433A JP 2007292568 A JP2007292568 A JP 2007292568A JP 2007292568 A JP2007292568 A JP 2007292568A JP 2009100433 A JP2009100433 A JP 2009100433A
Authority
JP
Japan
Prior art keywords
frame
frames
image
interpolation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292568A
Other languages
Japanese (ja)
Inventor
Norihiko Fukinuki
敬彦 吹抜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007292568A priority Critical patent/JP2009100433A/en
Publication of JP2009100433A publication Critical patent/JP2009100433A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Television Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of interpolating an image frame by which burden on an interpolation circuit using a motion vector or the like that is complicated and has a risk of malfunction is reduced, an effect equal to or more than that of this method can be achieved, and the effect is quite great in practical use. <P>SOLUTION: An image of a frame to be interpolated is a spatial low resolution image. Accordingly, the objects (reduction of flicker, prevention of image quality deterioration caused by erroneous vector search) can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

発明の詳細の説明Detailed description of the invention

本発明は,テレビのフレーム(画像コマ)を内挿してフレーム数を倍増する方式に関する.  The present invention relates to a method of doubling the number of frames by interpolating television frames (image frames).

最近,フレームを内挿して表示する装置が広く開発発売されている.例えば,液晶テレビでは動領域でボヤケるので,時間的に連続する2個の既存のコマの間に新しいコマを内挿してフレーム数を2倍にして表示する.この目的は,明るさ増強とフリッカ防止である.前者(明るさ増強)に関しては,動領域のボヤケを防止するために表示する時間の割合(ホールド率)を小さくすると,明るさが大幅に減る.これを防ぐため,フレーム数を倍増して表示する.後者(フリッカ)は,NTSC方式のようにフィールド周波数が60Hzの場合はあまり問題にならないが,大面積の明るい領域で起きることがある.  Recently, devices that interpolate and display frames have been widely developed and released. For example, LCD TVs are blurred in the moving area, so a new frame is inserted between two existing frames that are continuous in time and the number of frames is doubled. The purpose is to increase brightness and prevent flicker. With regard to the former (brightness enhancement), the brightness decreases significantly if the percentage of time displayed (hold rate) is reduced to prevent blur in the moving area. To prevent this, double the number of frames. The latter (flicker) is not a problem when the field frequency is 60 Hz as in the NTSC system, but may occur in a bright area with a large area.

また,欧州のPAL方式テレビのようにフィールド周波数が50Hzの場合,フリッカが目立つので,同じようにフレームを内挿してフレーム数を倍増して表示することが行われている.  In addition, flicker is conspicuous when the field frequency is 50 Hz as in European PAL system television, so the number of frames is doubled and displayed in the same way.

ここでは簡単のため,まず入力画像信号が順次走査である場合を述べる.また,飛越走査の場合,これを順次走査に変換された信号を扱う.
従来技術では,内挿するには,内挿するフレームの前後の既存のフレームから動きベクトルを探索し,これを時間分割して,動対象を移動させて,内挿フレームを形成する.これにより,毎秒当たりにコマ数は2倍になる
なお,3倍,4倍などにする場合もある.ここではこれらを総称して倍増ということにする.
Here, for simplicity, the case where the input image signal is a sequential scan is described first. In the case of interlaced scanning, signals converted to sequential scanning are handled.
In the prior art, for interpolation, a motion vector is searched from existing frames before and after the frame to be interpolated, this is time-divided, and the moving object is moved to form an interpolation frame. As a result, the number of frames per second is doubled. In some cases, the number of frames is tripled or quadrupled. Here, these are collectively referred to as doubling.

図3は従来技術および本発明の信号の時間関係を示す図である.1,2,3,4はテレビ信号のフレーム番号を示す.2倍速表示する場合は1,2,3などの時間を半分にし,その間に連続する2つのフレームから内挿されたフレーム,例えばフレーム1と2から(01)を作る.このようにして(12)(23)などを作り,同図下に示すように配置する.このような信号により倍速表示する.  FIG. 3 is a diagram showing the time relationship between the prior art and the signal of the present invention. 1, 2, 3, 4 indicate the frame number of the TV signal. When displaying at double speed, the time of 1, 2, 3, etc. is halved, and (01) is created from frames interpolated from two consecutive frames, for example, frames 1 and 2. In this way, (12), (23), etc. are made and arranged as shown below in the figure. Such a signal is displayed at double speed.

図4はこれを実現するための周知の装置のブロック図である.フレーム内挿回路11は,入力信号13とフレーム記憶14を経て遅延された信号により内挿フレームを作る.ここでは詳述しないが,例えば2つのフレーム1,2から動きベクトルを探索して,これも基づきその中間のフレーム12を作る.  FIG. 4 is a block diagram of a known apparatus for realizing this. The frame interpolation circuit 11 creates an interpolation frame from the signal delayed through the input signal 13 and the frame memory 14. Although not described in detail here, for example, a motion vector is searched from two frames 1 and 2, and based on this, an intermediate frame 12 is created.

これらのフレーム信号や内挿信号は時間短縮回路15,16に加えられ,半分の時間で読み出す.例えば,回路15は,フレーム1,2,…を記憶しながら,半分の時間で読み出す.回路16は,内挿された信号(12)(23)…を記憶しながら,半分の時間で読み出す.  These frame signals and interpolation signals are added to the time shortening circuits 15 and 16 and read out in half the time. For example, the circuit 15 reads out the frame in half time while storing the frames 1, 2,. The circuit 16 reads out the signal in half time while storing the interpolated signals (12) (23).

スイッチ17は,これらの回路15,16の出力を順次切り替えて出力し,表示する.  The switch 17 sequentially switches and outputs the outputs of these circuits 15 and 16 for display.

発明が解決しようとする課題Problems to be solved by the invention

一般に知られているように,上記における動きベクトル探索には極めて高速な処理を要し,かつ,誤探索もある.いわゆるMPEGなどフレーム間符号化では,ある程度の誤探索があっても符号化効率にはあまり影響はないが,フレーム内挿では僅かの誤りでも大きな画質劣化につながる.したがって,上記のような厳しい内挿は避けられるものなら避けたい.  As is generally known, the motion vector search described above requires extremely fast processing, and there are also erroneous searches. In interframe coding such as so-called MPEG, even if there is a certain amount of erroneous search, the coding efficiency is not significantly affected. Therefore, we would like to avoid the severe interpolation described above if it can be avoided.

内挿に関連して,テレビ信号を時空間周波数領域で解析すると,後述するように,必ずしも内挿フレームは高解像度である必要はないことが判る.むしろ,誤探索の危険性のある高解像度内挿フレームよりは低解像度画像の方が全体としての画質が良いことが判る.  In relation to interpolation, when a TV signal is analyzed in the spatio-temporal frequency domain, it is found that the interpolation frame does not necessarily have a high resolution, as will be described later. Rather, it can be seen that the overall image quality of the low-resolution image is better than that of the high-resolution interpolation frame, which has the risk of erroneous search.

即ち,動きベクトル探索で誤探索があると誤内挿のため大きな画質劣化になることがあるが,低域濾波器があると,多くは帯域外となって,目立ち難いことが期待される.換言すれば,その分,動き探索回路を含めて内挿回路11の要求精度は著しく緩和され,簡略化される.  In other words, if there is a false search in motion vector search, the image quality may be greatly degraded due to false interpolation, but if there is a low-pass filter, many will be out of the band and expected to be inconspicuous. In other words, the required accuracy of the interpolation circuit 11 including the motion search circuit is remarkably relaxed and simplified accordingly.

ここで,内挿するフレームが低解像度で良い理由を説明する.数値として,PAL方式のフレーム倍速を想定し,低解像度のフレームを内挿するとすれば,内挿された後の信号では,
高解像度成分の繰返し周波数: 50Hz,
低解像度成分の繰返し周波数:100Hz,
となる.なお,飛越走査のままの原信号では,厳密にはフレームではなくフィールドという.
Here, the reason why the interpolated frame should be low resolution is explained. Assuming that the frame rate of the PAL method is assumed as a numerical value and a low resolution frame is interpolated, the signal after interpolation is
High-resolution component repetition frequency: 50 Hz,
Low-resolution component repetition frequency: 100 Hz
It becomes. Strictly speaking, the original signal in the interlaced scan is called a field, not a frame.

ヒトの視覚特性は,静止画像に対しては細かな模様まで見ることが出来るが,動きが大きくなったり,点滅の回数が増すにつれて大まかな模様しか見えない.50Hz程度の明るさの変化に対しては,大まかな模様でないとフリッカを感じない.それ以上の回数の点滅には感じない.  As for human visual characteristics, even a fine pattern can be seen for still images, but only a rough pattern can be seen as the movement increases or the number of blinks increases. For changes in brightness of about 50 Hz, flicker is not felt unless the pattern is rough. I don't feel it blinking more than that.

簡単のため,静止画像を対象として,内挿された結果のテレビ信号の場合の時空間周波数スペクトルを,[空間周波数μ−時間周波数f]領域で図2に示す.図において,水平軸は空間周波数軸(例えば水平周波数μ)である.垂直軸は時間周波数fである.  For simplicity, the spatio-temporal frequency spectrum for the interpolated TV signal for still images is shown in Fig. 2 in the [spatial frequency μ-temporal frequency f] region. In the figure, the horizontal axis is the spatial frequency axis (eg horizontal frequency μ). The vertical axis is the time frequency f.

上記のように,高解像度成分の繰返し周波数は50Hzであり,低解像度成分の繰返し周波数は100Hzであるから,そのスペクトルは図2の通りである.  As described above, since the repetition frequency of the high resolution component is 50 Hz and the repetition frequency of the low resolution component is 100 Hz, the spectrum is as shown in FIG.

図2の中のダイアモンド型の四角系は,視覚で見える範囲,即ち,視覚系の通過帯域を示す.上述のように,静止画像に対しては細かな模様まで見ることが出来るが,動きが大きくなると大まかな模様しか見られず,50Hz程度のフリッカでは,大まかな模様でないと感じない.この結果,ヒトが感じることの出来る時空間周波数帯域は,1次近似として,図示するようなダイアモンド型の内部である.  The diamond-shaped square system in Fig. 2 shows the visible range, that is, the pass band of the visual system. As described above, even a fine pattern can be seen for a still image, but only a rough pattern can be seen when the movement is large, and a flicker of about 50 Hz does not feel that it is not a rough pattern. As a result, the spatio-temporal frequency band that humans can perceive is inside the diamond type as shown in the figure as a first order approximation.

この時,50Hzにある成分に空間低域周波数成分がなければ,テレビ成分はダイアモンド型通過特性に入らない.この結果,視覚で検知できないので,フリッカにはならない.このことから判るように,空間低周波数成分のみを内挿すれば,フレーム内挿の目的を達することが出来る.  At this time, if there is no spatial low-frequency component in the component at 50 Hz, the television component does not enter the diamond-type pass characteristic. As a result, it cannot be detected visually, so it does not cause flicker. As can be seen from this, the purpose of frame interpolation can be achieved by interpolating only spatial low-frequency components.

なお,高域成分は50Hzで,低域成分の100Hzの半分であるので,その分を振幅補償することが望ましい.即ち,上記と同様,周知の方法で,上記の高解像度画像の空間的高域周波数成分を2倍に強調することが望ましい.  Since the high frequency component is 50 Hz and half of the low frequency component 100 Hz, it is desirable to compensate for the amplitude. That is, like the above, it is desirable to enhance the spatial high-frequency component of the high-resolution image twice by a known method.

因みに,周知のように,画像の動画領域では,図2で水平に描いたスペクトルが斜めになる.μ=0の位置は変わらない.なお,50Hzでは同様に穴が空いている.このことから,この動画の場合も上記の動作は同様に働くので説明は省く.  Incidentally, as is well known, in the moving image area of the image, the spectrum drawn horizontally in Fig. 2 is slanted. The position of μ = 0 does not change. In addition, at 50Hz, there is a hole in the same way. For this reason, the above operation works in the same way for this movie, so the explanation is omitted.

なお,この考え方を発展させると,内挿の方法として,動きベクトルを用いた移動領域のシフトを行うのではなく,単に前後の2フレームの平均値の空間低解像度画像でも良いことが判る.  If this idea is developed, it can be seen that as a method of interpolation, a spatial low-resolution image of the average value of the previous and next two frames may be used instead of shifting the moving region using motion vectors.

さらに,若干の画質劣化を容認すれば,前フレームの画像をそのまま空間低域濾波することも考えられる.この場合は図1のフレーム25が不要になるなど回路はさらに簡単化される.  Furthermore, if a slight image quality degradation is allowed, it may be possible to filter the previous frame image as it is. In this case, the circuit is further simplified such that the frame 25 in FIG.

以上,順次走査信号を用いる場合を説明したが,飛越走査の信号でも,2フレーム(フィールド)の平均や前フレーム(フィールド)を用いる場合などは同様に成り立つ.ここでは,厳密にはフレームはフィールドである.飛越走査信号で,飛ばした走査線は黒を表示する.  The case where the progressive scanning signal is used has been described above, but the same holds true for the interlaced scanning signal when the average of two frames (field) or the previous frame (field) is used. Here, strictly speaking, a frame is a field. In the interlaced scanning signal, the skipped scanning line displays black.

図1を用いて実施例における具体的動作を,図4の従来例との違いを中心に説明する.  The specific operation in the embodiment will be described with reference to FIG. 1, focusing on the difference from the conventional example in FIG.

上述のように,内挿された画像では空間的に低周波成分のみがあればよい.このため,内挿回路18と時間短縮回路20の間に低域濾波器19が置かれる.空間的低域濾波器は該当する中心画素の値とその周辺の画素の値の加重和を求めるもので,周知であるから詳述を省く.低域濾波器19と時間短縮回路20の順序は逆でも良い.  As mentioned above, the interpolated image need only have low frequency components spatially. Therefore, a low-pass filter 19 is placed between the interpolation circuit 18 and the time shortening circuit 20. The spatial low-pass filter calculates the weighted sum of the values of the relevant central pixel and the surrounding pixels, and is not described in detail because it is well known. The order of the low-pass filter 19 and the time reduction circuit 20 may be reversed.

また,前述のように,高域成分は空間高域周波数成分を2倍に強調する.時間短縮回路20の前に強調回路22が置かれる.この構成は,濾波器と同様に周知なので,詳述は省く.高域強調回路21と時間短縮回路20の順序は逆でも良い.  As mentioned above, the high frequency component emphasizes the spatial high frequency component twice. An enhancement circuit 22 is placed in front of the time reduction circuit 20. Since this configuration is well known as a filter, it will not be described in detail. The order of the high frequency emphasis circuit 21 and the time shortening circuit 20 may be reversed.

そして,スイッチ24で,従来通り,これらの出力を切替えて表示装置に送る.以後は,従来例と同様である.  Then, with the switch 24, these outputs are switched as before and sent to the display device. The rest is the same as the conventional example.

発明の効果The invention's effect

上記のように,本発明によれば複雑でかつ誤動作の危険性のある動きベクトルを用いた内挿回路などの負担を軽減して,この方法によるフレーム内挿と同等以上の効果を挙げることが出来るので,実用に供して効果がすこぶる大である.  As described above, according to the present invention, it is possible to reduce the burden of an interpolation circuit using a motion vector which is complicated and has a risk of malfunction, and can achieve an effect equal to or better than the frame interpolation by this method. Because it is possible, it is very effective for practical use.

本発明の構成図である.It is a block diagram of the present invention. 本発明における説明図である.It is explanatory drawing in this invention. 従来例および本発明の説明図である.It is explanatory drawing of a prior art example and this invention. 従来例の構成図である.It is a block diagram of a conventional example.

符号の説明Explanation of symbols

11,18, フレーム内挿回路
14, フレームメモリー
15,16,21,22,時間短縮回路
18, フレーム内挿回路
19, 低域濾波器
22, 高域強調回路
25, フレームメモリー
11, 18, Frame interpolation circuit 14, Frame memory 15, 16, 21, 22, Time shortening circuit 18, Frame interpolation circuit 19, Low-pass filter 22, High-frequency enhancement circuit 25, Frame memory

Claims (1)

テレビフレーム(画像コマ)を内挿してフレーム数を倍増する信号変換する装置おいて,空間的低解像度画像を内挿することを特徴とする画像フレーム内挿方式.  An image frame interpolation method characterized by interpolating spatially low resolution images in a signal conversion device that doubles the number of frames by interpolating TV frames (image frames).
JP2007292568A 2007-10-15 2007-10-15 Method of interpolating image frame Pending JP2009100433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292568A JP2009100433A (en) 2007-10-15 2007-10-15 Method of interpolating image frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292568A JP2009100433A (en) 2007-10-15 2007-10-15 Method of interpolating image frame

Publications (1)

Publication Number Publication Date
JP2009100433A true JP2009100433A (en) 2009-05-07

Family

ID=40702972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292568A Pending JP2009100433A (en) 2007-10-15 2007-10-15 Method of interpolating image frame

Country Status (1)

Country Link
JP (1) JP2009100433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051426A1 (en) * 2010-08-30 2012-03-01 Koichi Takagi Code amount reducing apparatus, encoder and decoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051426A1 (en) * 2010-08-30 2012-03-01 Koichi Takagi Code amount reducing apparatus, encoder and decoder
JP2012050014A (en) * 2010-08-30 2012-03-08 Kddi Corp Encoding quantity reduction device and encoder

Similar Documents

Publication Publication Date Title
US6118488A (en) Method and apparatus for adaptive edge-based scan line interpolation using 1-D pixel array motion detection
US6690427B2 (en) Method and system for de-interlacing/re-interlacing video on a display device on a computer system during operation thereof
Castagno et al. A method for motion adaptive frame rate up-conversion
CN100469101C (en) Single-chip multi-function display controller and method of use thereof
Li et al. Reliable motion detection/compensation for interlaced sequences and its applications to deinterlacing
JP3798440B2 (en) Method and apparatus for motion compensation interpolation of intermediate field or intermediate frame
US20050018077A1 (en) Spatial resolution of video images
CA2139416A1 (en) Motion compensated video processing
US20090279609A1 (en) Motion-compensated processing of image signals
US8345148B2 (en) Method and system for inverse telecine and scene change detection of progressive video
KR20050037293A (en) Artifacts suppress apparatus of video signal and a method thereof
US6909752B2 (en) Circuit and method for generating filler pixels from the original pixels in a video stream
US8233085B1 (en) Method and system for interpolating a pixel value of a pixel located at an on-screen display
US8274605B2 (en) System and method for adjacent field comparison in video processing
JP2000152191A (en) Non-interlace image display processor and display processing method
JP2007526705A (en) Protection with corrected deinterlacing device
JP2009100433A (en) Method of interpolating image frame
KR100356358B1 (en) Vdt stress mitigating device and method, vdt stress risk quantifying device and method, and recording medium
KR101577703B1 (en) Video picture display method to reduce the effects of blurring and double contours and device implementing this method
KR100574943B1 (en) Image conversion method and device
KR20020068065A (en) Motion compensated upconversion for video scan rate conversion
KR20010034918A (en) Image conversion device and method
EP0648046B1 (en) Method and apparatus for motion compensated interpolation of intermediate fields or frames
KR101144435B1 (en) Methods of edge-based deinterlacing using weight and image processing devices using the same
JP2007295226A (en) Video processor