[go: up one dir, main page]

JP2009099604A - Light control member, light flux control member, light emitting device, and illumination device - Google Patents

Light control member, light flux control member, light emitting device, and illumination device Download PDF

Info

Publication number
JP2009099604A
JP2009099604A JP2007266903A JP2007266903A JP2009099604A JP 2009099604 A JP2009099604 A JP 2009099604A JP 2007266903 A JP2007266903 A JP 2007266903A JP 2007266903 A JP2007266903 A JP 2007266903A JP 2009099604 A JP2009099604 A JP 2009099604A
Authority
JP
Japan
Prior art keywords
light
point
light emitting
control member
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266903A
Other languages
Japanese (ja)
Inventor
Fumio Kokubo
文雄 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007266903A priority Critical patent/JP2009099604A/en
Publication of JP2009099604A publication Critical patent/JP2009099604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light control member, a luminous flux control member, a light-emiting device, and a lighting device, which can obtain a sufficient use efficiency of the light and smoothly collecting the light emitted from a light-emitting element. <P>SOLUTION: The light-emitting device 10 is composed as follows: assuming that a cross-point between an optical axis Z and a light-emitting surface of a light-emitting element 1 is a reference point O, an angle between a line connecting a point on a light entrance face 2a with the reference point O and the optical axis Z is α<SB>1</SB>, and a distance between the point on the light entrance face 2a and the reference point O is R<SB>1</SB>, the R<SB>1</SB>monotonously increases in accordance with an increase in α<SB>1</SB>at least in the range of α<SB>1</SB><π/3; assuming that an angle between a line connecting a point on a light output face 2b with the reference point O and the optical axis Z is α<SB>2</SB>, a distance between a point on the light ouput face 2b and the reference point O is R<SB>2</SB>, the R<SB>2</SB>monotonously increases in accordance with an increase in α<SB>2</SB>at least in the range of α<SB>2</SB><π/3; and assuming that a refractive index of a material of the light control member 2 is n, and a value -ΔR<SB>2</SB>/(R<SB>2</SB>Δα<SB>2</SB>) with the increment ΔR<SB>2</SB>of R<SB>2</SB>to the increment Δα<SB>2</SB>of α<SB>2</SB>divided by R<SB>2</SB>and multiplied by -1 is A<SB>2</SB>, an equation A<SB>2</SB><1/√(n<SP>2</SP>-1) is satisfied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光制御部材、光束制御部材、発光装置及び該発光装置を備える照明装置に関し、例えば、光源からの光を集光する光制御部材、光束制御部材、光制御部材又は光束制御部材を備え室内の一般照明などの各種照明に用いることができる発光装置及び該発光装置を備える照明装置に関する。   The present invention relates to a light control member, a light beam control member, a light emitting device, and a lighting device including the light emitting device, and includes, for example, a light control member, a light beam control member, a light control member, or a light beam control member that collects light from a light source. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device that can be used for various types of illumination such as general illumination in a room and a lighting device including the light emitting device.

近年、室内の一般照明などの各種照明に用いられる照明装置として、発光ダイオード(以下、LEDという)等の発光素子を光源とした発光装置を備える照明装置が知られている。このような照明装置に用いられるLEDを光源とした発光装置として、例えば、特許文献1や特許文献2に開示された発光装置を挙げることができる。   2. Description of the Related Art In recent years, an illumination device including a light-emitting device using a light-emitting element such as a light-emitting diode (hereinafter referred to as an LED) as a light source is known as an illumination device used for various types of illumination such as indoor general illumination. As a light emitting device using an LED used for such an illumination device as a light source, for example, the light emitting devices disclosed in Patent Literature 1 and Patent Literature 2 can be given.

図8は、特許文献1に開示された従来の発光装置100の模式的断面図である。発光装置100は、発光素子101と、該発光素子101からの光を集光する光制御部材102とを備えている。光制御部材102は、発光素子101からの光が入射する光入射面102aと、該光入射面102aに入射した光が出射される光出射面102bとを有している。光出射面102bは、楕円の長径の一端を頂点とした楕円の長径まわりの回転楕円面に形成してあり、光制御部材102は、楕円の長径を含む直線が光軸Xとなるようにしてある。そして、光入射面102bは、楕円の頂点から遠い焦点を極として焦点から頂点へ向く直線を始線とする極座標を(r、θ)とした場合、光制御部材の屈折率がn、焦点と光軸上の所定の点との間の距離がaであるとき、   FIG. 8 is a schematic cross-sectional view of a conventional light emitting device 100 disclosed in Patent Document 1. As shown in FIG. The light emitting device 100 includes a light emitting element 101 and a light control member 102 that collects light from the light emitting element 101. The light control member 102 includes a light incident surface 102a on which light from the light emitting element 101 is incident, and a light emitting surface 102b from which light incident on the light incident surface 102a is emitted. The light exit surface 102b is formed on a rotational ellipsoid around the major axis of the ellipse with one end of the major axis of the ellipse as a vertex, and the light control member 102 is arranged so that a straight line including the major axis of the ellipse becomes the optical axis X. is there. The light incident surface 102b has a refractive index of the light control member of n, a focal point, and a polar coordinate whose starting point is a straight line extending from the focal point far from the vertex of the ellipse to the vertex. When the distance between a predetermined point on the optical axis is a,

Figure 2009099604
Figure 2009099604

を満たす形状にしてある。このとき所定の点に光源(発光素子101)を配置することにより光源の虚像と焦点とが一致するため、光源から出射した光は、光入射面102aにて楕円の長径に平行をなす方向に屈折されることとなり、光源から出射した光を平行光にすることができる。 It has a shape that satisfies At this time, by arranging the light source (light emitting element 101) at a predetermined point, the virtual image of the light source coincides with the focal point, so that the light emitted from the light source is in a direction parallel to the major axis of the ellipse at the light incident surface 102a. Since the light is refracted, the light emitted from the light source can be converted into parallel light.

次に、特許文献2に開示された従来の発光装置110の模式的断面図を図9に示す。発光装置110は、発光素子であるLED111と、LED111の側面光を前方に反射させるべく、放物面又はその近似曲面に形成された反射面112cを有する光制御部材である反射器本体112とを備えている。反射器本体112の反射面112c中心部には、LED111が入れられる凹部112aが形成されている。また、凹部112a内のLED111の前方位置には、LED111から前方に向けて出射した光の進行方向を補正するためのレンズ112bが設けられている。LED111から横方向に出射した光Lを反射面112cにて反射させて出射面から出射させることが可能であるため、光利用効率の向上を図ることが可能となる。
特開平4−99074号公報 特開2003−281909号公報
Next, a schematic cross-sectional view of a conventional light emitting device 110 disclosed in Patent Document 2 is shown in FIG. The light emitting device 110 includes an LED 111 which is a light emitting element, and a reflector main body 112 which is a light control member having a parabolic surface or a reflective surface 112c formed on an approximate curved surface thereof in order to reflect the side light of the LED 111 forward. I have. In the central part of the reflecting surface 112c of the reflector body 112, a recess 112a into which the LED 111 is inserted is formed. In addition, a lens 112b for correcting the traveling direction of the light emitted forward from the LED 111 is provided at the front position of the LED 111 in the recess 112a. Since the light L emitted from the LED 111 in the lateral direction can be reflected by the reflecting surface 112c and emitted from the emitting surface, the light utilization efficiency can be improved.
Japanese Patent Laid-Open No. 4-99074 JP 2003-281909 A

しかしながら、これら従来の発光装置においては、以下の問題点を有している。特許文献1の発光装置100においては、図8に示す光入射面102aに対応するαの角度範囲以外の方向にLED101から出射した光は、光入射面102aに入射しないため集光できないという問題がある。この問題を解決するため、LED101からの出射光の大部分が光入射面102aに入射することが可能なようにLED101を光制御部材102に近づけることが考えられるが、反射率が増大してしまうという問題がある。すなわち特許文献1の発光装置100においては、十分な光利用効率が得られないという問題がある。   However, these conventional light emitting devices have the following problems. In the light emitting device 100 of Patent Document 1, light emitted from the LED 101 in a direction other than the angle range of α corresponding to the light incident surface 102a shown in FIG. 8 cannot be condensed because it does not enter the light incident surface 102a. is there. In order to solve this problem, it is conceivable that the LED 101 is brought close to the light control member 102 so that most of the light emitted from the LED 101 can enter the light incident surface 102a, but the reflectance increases. There is a problem. That is, the light emitting device 100 of Patent Document 1 has a problem that sufficient light utilization efficiency cannot be obtained.

また、特許文献2の発光装置においては、図9に示す如く、光制御部材112が複雑な形状を有しているため、製作が容易ではなく、またコストが増大するという問題がある。また、この発光装置を一般照明に用いた場合、光制御部材112の反射器本体112とレンズ112bでは作用が異なり、夫々の作用部材により、別々に照度分布が形成されるため、これらをうまく構成しないと、照度分布が滑らかにならないという問題が生じる。この問題に対応するため、照度分布を滑らかにするための対策が別途必要になると共に、コストが増大する。   Further, in the light emitting device of Patent Document 2, since the light control member 112 has a complicated shape as shown in FIG. 9, there is a problem that the manufacture is not easy and the cost increases. In addition, when this light emitting device is used for general illumination, the reflector body 112 and the lens 112b of the light control member 112 have different actions, and each action member forms an illuminance distribution separately. Otherwise, there is a problem that the illuminance distribution is not smooth. In order to cope with this problem, a separate measure for smoothing the illuminance distribution is required and the cost increases.

本発明は、上記課題を解決するためになされたものであって、十分な光利用効率を得つつ、発光素子から出射された光を滑らかに集光することが可能な光制御部材、光束制御部材、光制御部材又は光束制御部材を有する発光装置及び該発光装置を備える照明装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a light control member and a light flux control capable of smoothly collecting light emitted from a light emitting element while obtaining sufficient light use efficiency. It is an object of the present invention to provide a light emitting device having a member, a light control member, or a light flux controlling member, and an illumination device including the light emitting device.

本発明に係る発光装置は、発光素子と、該発光素子から出射された光を制御する光制御部材とを備える発光装置において、前記光制御部材は、前記発光素子から出射された光が光制御部材に入射する光入射面と、該光入射面に入射した光が光制御部材から出射される光出射面とを備え、前記光入射面は、前記発光素子の基準光軸に対し軸対称な凹の曲面部分を有し、前記基準光軸と前記発光素子の発光面との交点を基準点としたとき、前記光入射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα1 、前記光入射面上の任意の点と前記基準点との距離をR1 として、少なくともα1 <π/3の範囲においては、α1 の増加に従いR1 は単調増加し、前記光出射面は、前記基準光軸に対し軸対称な凸の曲面部分を有する形状であり、前記光出射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα2 、前記光出射面上の任意の点と前記基準点との距離をR2 として、少なくともα2 <π/3の範囲においては、α2 の増加に従いR2 は単調減少し、前記光制御部材の前記出射面において全反射を抑制し、照射面における照度ムラを抑制したことを特徴とする。 The light-emitting device according to the present invention includes a light-emitting element and a light control member that controls light emitted from the light-emitting element, wherein the light control member controls light emitted from the light-emitting element. A light incident surface that is incident on the member; and a light exit surface from which light incident on the light incident surface is emitted from the light control member, the light incident surface being axially symmetric with respect to a reference optical axis of the light emitting element. A straight line connecting an arbitrary point on the light incident surface and the reference point when the reference point is an intersection of the reference optical axis and the light emitting surface of the light emitting element, and the reference 1 the angle between the optical axis alpha, the distance between the arbitrary point and the reference point on the light incident surface as R 1, at least α 1 <π / 3 range, R 1 with increasing alpha 1 Increases monotonously, and the light exit surface has a convex curved surface portion that is axisymmetric with respect to the reference optical axis. There, a straight line connecting said reference point and an arbitrary point on the light emitting surface, 2 the angle between the reference optical axis alpha, a distance between the reference point and an arbitrary point on the light emitting surface As R 2 , at least in the range of α 2 <π / 3, R 2 monotonously decreases as α 2 increases, suppressing total reflection on the exit surface of the light control member, and suppressing illuminance unevenness on the irradiated surface. It is characterized by that.

本発明にあっては、光入射面上の点と基準点とを結ぶ直線と、基準光軸とのなす角の増加に応じて、光入射面上の点と基準点との間の距離が単調増加しているため、光入射面にて光が基準光軸に近付く方向に屈折され、さらに光出射面の点と基準点とを結ぶ直線と、基準光軸とのなす角の増加に応じて、光出射面上の点と基準点との間の距離が単調減少しているため、さらに光入射面にて光が基準光軸に近付く方向に屈折される。光入射面及び光出射面と基準点との間の距離が、一般的な発光素子から出射した光束の3/4程度が含まれる、基準光軸からπ/3の角度範囲に亘って夫々単調増加又は単調減少するように光入射面及び光出射面を形成しているから、照度分布に急激な変化を発生させることなく、光を滑らかに集光させることが可能となる。また、光出射面を適切に形成することにより、光出射面における全反射が抑制される。このため、光出射面の一部領域から光が出射しない等の照度ムラの原因の抑制が可能になる。   In the present invention, the distance between the point on the light incident surface and the reference point is increased according to an increase in the angle formed between the straight line connecting the point on the light incident surface and the reference point and the reference optical axis. Because it increases monotonically, light is refracted in the direction of approaching the reference optical axis at the light incident surface, and further according to the increase in the angle between the straight line connecting the point of the light exit surface and the reference point and the reference optical axis Thus, since the distance between the point on the light exit surface and the reference point is monotonously decreased, the light is further refracted in the direction of approaching the reference optical axis at the light incident surface. The distance between the light incident surface and the light emitting surface and the reference point is monotonous over an angular range of π / 3 from the reference optical axis, including about 3/4 of the light beam emitted from a general light emitting element. Since the light incident surface and the light output surface are formed so as to increase or monotonously decrease, it is possible to collect light smoothly without causing a sudden change in the illuminance distribution. Further, by appropriately forming the light emitting surface, total reflection on the light emitting surface is suppressed. For this reason, it becomes possible to suppress the cause of uneven illuminance such as light not being emitted from a partial region of the light emitting surface.

本発明に係る発光装置は、発光素子と、該発光素子から出射された光が入射する光入射面及び該光入射面に入射した光が出射される光出射面を有する光制御部材とを備える発光装置において、前記光制御部材は、前記光入射面及び光出射面が、前記発光素子の光軸に関して軸対称の曲面部分を夫々有するように形成してあり、前記光入射面は、少なくともα1 <π/3の範囲において、α1 の増加に従いR1 が単調増加するように形成してあり、
但し、
α1 ;前記発光素子の発光面及び前記光軸の交点と前記光入射面上の点とを結ぶ直線並びに前記光軸のなす角、
1 ;前記交点と前記光入射面上の点との間の距離
前記光出射面は、少なくともα2 <π/3の範囲において、α2 の増加に従いR2 が単調減少し、以下の条件式(1)
A light emitting device according to the present invention includes a light emitting element, a light incident surface on which light emitted from the light emitting element is incident, and a light control member having a light emitting surface from which light incident on the light incident surface is emitted. In the light emitting device, the light control member is formed such that the light incident surface and the light emitting surface have curved portions that are axially symmetric with respect to the optical axis of the light emitting element, and the light incident surface has at least α In the range of 1 <π / 3, R 1 is monotonically increased as α 1 increases,
However,
α 1 ; a light-emitting surface of the light-emitting element, a straight line connecting an intersection of the optical axes and a point on the light incident surface, and an angle formed by the optical axis,
R 1 : Distance between the intersection and a point on the light incident surface The light exit surface has a monotonous decrease in R 2 as α 2 increases in the range of at least α 2 <π / 3, and the following conditions: Formula (1)

Figure 2009099604
Figure 2009099604

を満たすように形成してあることを特徴とする。
但し、
α2 ;前記発光素子の発光面及び前記光軸の交点と前記光出射面上の点とを結ぶ直線並びに前記光軸のなす角、
2;前記交点と前記光出射面上の点との間の距離、
n;前記光制御部材を構成する材料の屈折率、
2 ;前記α2 の増分Δα2 に対するR2 の増分ΔR2 をR2 で除算して、−1を乗じた値−ΔR2 /(R2 Δα2
It is formed so that it may satisfy | fill.
However,
α 2 ; a straight line connecting a light emitting surface of the light emitting element and an intersection of the optical axes and a point on the light emitting surface, and an angle formed by the optical axes,
R 2 : distance between the intersection and a point on the light exit surface;
n: the refractive index of the material constituting the light control member,
A 2; the increment [Delta] R 2 of R 2 with respect to increment [Delta] [alpha] 2 of the alpha 2 is divided by R 2, a value multiplied by -1 -ΔR 2 / (R 2 Δα 2)

本発明にあっては、光入射面上の点と交点とを結ぶ直線と、光軸とのなす角の増加に応じて、光入射面上の点と交点との間の距離が単調増加しているため、光入射面にて光が光軸に近付く方向に屈折され、さらに光出射面の点と交点とを結ぶ直線と、光軸とのなす角の増加に応じて、光出射面上の点と交点との間の距離が単調減少しているため、さらに光入射面にて光が光軸に近付く方向に屈折される。光入射面及び光出射面と交点との間の距離が、一般的な発光素子から出射した光束の3/4程度が含まれる、光軸からπ/3の角度範囲に亘って夫々単調増加又は単調減少するように光入射面及び光出射面を形成しているから、照度分布に急激な変化を発生させることなく、光を滑らかに集光させることが可能となる。また、A2 が条件式(1)を満たすように光出射面を形成しているから、光出射面における全反射が抑制される。このため、光出射面の一部領域から光が出射しない等の照度ムラの原因の抑制が可能になる。 In the present invention, the distance between the point on the light incident surface and the intersection point increases monotonously as the angle between the straight line connecting the point on the light incident surface and the intersection point and the optical axis increases. Therefore, the light is refracted in the direction of approaching the optical axis at the light incident surface, and further, on the light output surface according to the increase in the angle between the straight line connecting the point of the light output surface and the intersection and the optical axis. Since the distance between the point and the intersection is monotonously decreasing, the light is further refracted in the direction of approaching the optical axis at the light incident surface. The distance between the light incident surface and the light emitting surface and the intersection point monotonically increases over an angle range of π / 3 from the optical axis, including about 3/4 of a light beam emitted from a general light emitting element, or Since the light incident surface and the light output surface are formed so as to monotonously decrease, it is possible to smoothly collect light without causing a sudden change in the illuminance distribution. Moreover, since the light exit surface is formed so that A 2 satisfies the conditional expression (1), total reflection on the light exit surface is suppressed. For this reason, it becomes possible to suppress the cause of uneven illuminance such as light not being emitted from a partial region of the light emitting surface.

また、本発明に係る発光装置は、前記光制御部材は、前記光入射面において、α1 が0のとき、A1 が0であり、
但し、
1 ;前記α1 の増分Δα1 に対するR1 の増分ΔR1 をR1 で除算した値ΔR1 /(R1 Δα1
前記光出射面において、α2 が0のとき、A2 が0であるように構成してあることを特徴とする。
In the light emitting device according to the present invention, when the light control member has α 1 of 0 on the light incident surface, A 1 is 0.
However,
A 1; the alpha 1 increment [Delta] [alpha] 1 value increment [Delta] R 1 of R 1 divided by R 1 for ΔR 1 / (R 1 Δα 1 )
The light emitting surface is configured such that when α 2 is 0, A 2 is 0.

本発明にあっては、光軸上に出射された光は、光制御部材の光入射面及び光出射面において曲げられずに光制御部材から出射されるため、光軸上が暗くなる照度ムラを抑制することが可能になる。   In the present invention, since the light emitted on the optical axis is emitted from the light control member without being bent on the light incident surface and the light emission surface of the light control member, the illuminance unevenness becomes dark on the optical axis. Can be suppressed.

また、本発明に係る発光装置は、前記光制御部材は屈折率が1.45以上1.65以下である透光性材料からなることを特徴とする。   In the light emitting device according to the present invention, the light control member is made of a translucent material having a refractive index of 1.45 or more and 1.65 or less.

本発明にあっては、屈折率が1.45以上1.65以下である透光性材料として、アクリル、ポリカーボネート等の樹脂を用いることにより、光制御部材の形状を容易に形成することができ、またコストを低減することが可能となる。   In the present invention, the shape of the light control member can be easily formed by using a resin such as acrylic or polycarbonate as the translucent material having a refractive index of 1.45 to 1.65. In addition, the cost can be reduced.

また、本発明に係る発光装置は、発光素子と、該発光素子から出射された光が入射する光入射面及び該光入射面に入射した光が出射される光出射面を有する光制御部材とを備える発光装置において、前記光制御部材から光の出射側に離隔して前記発光素子の光軸と直交する平面内において、Aが以下の条件式(2)   The light emitting device according to the present invention includes a light emitting element, a light incident surface on which light emitted from the light emitting element is incident, and a light control member having a light emitting surface from which light incident on the light incident surface is emitted. In a light emitting device comprising: A in a plane that is spaced apart from the light control member toward the light emission side and orthogonal to the optical axis of the light emitting element, A is the following conditional expression (2):

Figure 2009099604
Figure 2009099604

で求まる値であり、
但し、
φ1 ;前記発光素子から出射された光と前記光軸とのなす角度
P(φ1 );前記発光素子の配光特性
以下の条件式(3)
Is the value obtained by
However,
φ 1 ; angle P (φ 1 ) between the light emitted from the light emitting element and the optical axis; conditional expression (3) below the light distribution characteristic of the light emitting element

Figure 2009099604
Figure 2009099604

を満たすように構成してあることを特徴とする。
但し、
r;前記平面内における前記光軸からの距離
C;r=0のときφ1 =0を満たすように定まる定数
σ;集光性を表す定数(小さいほど集光性が高い)
It is comprised so that it may satisfy | fill.
However,
r; distance C from the optical axis in the plane; constant σ determined so as to satisfy φ 1 = 0 when r = 0;

本発明にあっては、発光装置が条件式(2)及び(3)を満たすように構成してあるから、光制御部材から光の出射側に離隔して発光素子の光軸と直交する平面内において、例えば、発光装置が天井に設置された場合の床面上において、発光素子から出射された光の分布をガウス分布に近付けることができる。このため、前記光が前記平面上に生じさせる照度ムラを抑制することができる。   In the present invention, since the light-emitting device is configured to satisfy the conditional expressions (2) and (3), the plane is separated from the light control member toward the light emission side and orthogonal to the optical axis of the light-emitting element. For example, the distribution of light emitted from the light emitting element can be made close to a Gaussian distribution on the floor surface when the light emitting device is installed on the ceiling. For this reason, the illumination nonuniformity which the said light produces on the said plane can be suppressed.

また、本発明に係る発光装置は、前記平面内において、前記発光素子の配光特性P(φ1 )がランバート分布であるとき、以下の条件式(4) In the light emitting device according to the present invention, when the light distribution characteristic P (φ 1 ) of the light emitting element is Lambert distribution in the plane, the following conditional expression (4):

Figure 2009099604
Figure 2009099604

を満たすように構成してあることを特徴とする。 It is comprised so that it may satisfy | fill.

本発明にあっては、発光装置が条件式(4)を満たすように構成してあるから、発光素子からランバート分布で出射された光を前記平面内においてガウス分布に変換することができる。これにより、一般的な発光素子を用いて滑らかな照度分布が得られる発光装置を提供することができる。   In the present invention, since the light emitting device is configured to satisfy the conditional expression (4), the light emitted from the light emitting element in the Lambertian distribution can be converted into the Gaussian distribution in the plane. Thereby, the light-emitting device which can obtain smooth illuminance distribution using a general light-emitting element can be provided.

また、本発明に係る発光装置は、前記光制御部材は、屈折率が1.65以下であり、前記φ1 からφ2 を減算した値Δφが13π/90以下であるとき、以下の条件式(5)
1/88.5≦θ1 /θ2 ≦88.5 ・・・ (5)
を満たすように構成してあることを特徴とする。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
In the light emitting device according to the present invention, when the light control member has a refractive index of 1.65 or less and a value Δφ obtained by subtracting φ 2 from φ 1 is 13π / 90 or less, the following conditional expression: (5)
1 / 88.5 ≦ θ 1 / θ 2 ≦ 88.5 (5)
It is comprised so that it may satisfy | fill.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis

また、本発明に係る発光装置は、前記光制御部材は、屈折率が1.65以下であり、前記φ1 からφ2 を減算した値Δφがπ/6以下であるとき、以下の条件式(6)
1/4.7≦θ1 /θ2 ≦4.7 ・・・ (6)
を満たすように構成してあることを特徴とする。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
In the light emitting device according to the present invention, when the light control member has a refractive index of 1.65 or less and a value Δφ obtained by subtracting φ 2 from φ 1 is π / 6 or less, the following conditional expression: (6)
1 / 4.7 ≦ θ 1 / θ 2 ≦ 4.7 (6)
It is comprised so that it may satisfy | fill.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis

また、本発明に係る発光装置は、前記光制御部材は、屈折率が1.65以下であり、前記φ1 からφ2 を減算した値Δφが7π/36以下であるとき、以下の条件式(7)
1/2.2≦θ1 /θ2 ≦2.2 ・・・ (7)
を満たすように構成してあることを特徴とする。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
Further, in the light emitting device according to the present invention, when the light control member has a refractive index of 1.65 or less and a value Δφ obtained by subtracting φ 2 from φ 1 is 7π / 36 or less, the following conditional expression: (7)
1 / 2.2 ≦ θ 1 / θ 2 ≦ 2.2 (7)
It is comprised so that it may satisfy | fill.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis

また、本発明に係る発光装置は、前記光制御部材は、屈折率が1.65以下であり、前記φ1 からφ2 を減算した値Δφが2π/9以下であるとき、以下の条件式(8)
1/1.4≦θ1 /θ2 ≦1.4 ・・・ (8)
を満たすように構成してあることを特徴とする。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
In the light emitting device according to the present invention, when the light control member has a refractive index of 1.65 or less and a value Δφ obtained by subtracting φ 2 from φ 1 is 2π / 9 or less, the following conditional expression: (8)
1 / 1.4 ≦ θ 1 / θ 2 ≦ 1.4 (8)
It is comprised so that it may satisfy | fill.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis

また、本発明に係る発光装置は、前記光制御部材は、屈折率が1.65以下であり、前記φ1 からφ2 を減算した値Δφが43π/180以下であるとき、以下の条件式(9)
1/1.1≦θ1 /θ2 ≦1.1 ・・・ (9)
を満たすように構成してあることを特徴とする。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
In the light emitting device according to the present invention, when the light control member has a refractive index of 1.65 or less and a value Δφ obtained by subtracting φ 2 from φ 1 is 43π / 180 or less, the following conditional expression: (9)
1 / 1.1 ≦ θ 1 / θ 2 ≦ 1.1 (9)
It is comprised so that it may satisfy | fill.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis

本発明にあっては、発光装置が、以上のうち何れか一つの条件を満たすように構成してあるから、発光素子から出射される光の反射率を15%以下にすることができ、さらに光利用効率を向上することが可能となる。   In the present invention, since the light-emitting device is configured to satisfy any one of the above conditions, the reflectance of light emitted from the light-emitting element can be reduced to 15% or less. Light utilization efficiency can be improved.

また、本発明に係る照明装置は、第1発明から第11発明の何れか一つに記載の発光装置を備えることを特徴とする。   Moreover, the illuminating device which concerns on this invention is equipped with the light-emitting device as described in any one of 1st invention from 11th invention, It is characterized by the above-mentioned.

本発明にあっては、フレネル反射による反射率を低減させ、集光性が向上された照明装置を提供することができる。   According to the present invention, it is possible to provide an illumination device that has reduced reflectivity due to Fresnel reflection and improved condensing performance.

本発明に係る光制御部材は、発光素子から出射された光を制御する光制御部材であって、前記発光素子から出射された光が光制御部材に入射する光入射面と、上記光入射面に入射した光が光制御部材から出射される光出射面とを備え、前記光入射面は、前記発光素子の基準光軸に対し軸対称な凹の曲面部分を有し、前記基準光軸と前記発光素子の発光面との交点を基準点としたとき、前記光入射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα1 、前記光入射面上の任意の点と前記基準点との距離をR1 として、少なくともα1 <π/3の範囲においては、α1 の増加に従いR1 は単調増加し、前記光出射面は、前記基準光軸に対し軸対称な凸の曲面部分を有する形状であり、前記光出射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα2 、前記光出射面上の任意の点と前記基準点との距離をR2 として、少なくともα2 <π/3の範囲においては、α2 の増加に従いR2 は単調減少し、前記出射面において全反射を抑制し、照射面における照度ムラを低減したことを特徴とする。 A light control member according to the present invention is a light control member that controls light emitted from a light emitting element, and a light incident surface on which light emitted from the light emitting element enters the light control member; and the light incident surface A light exit surface from which light incident on the light control member is emitted, and the light entrance surface has a concave curved surface portion that is axisymmetric with respect to a reference optical axis of the light emitting element, and the reference optical axis When an intersection point with the light emitting surface of the light emitting element is used as a reference point, an angle formed between a straight line connecting an arbitrary point on the light incident surface and the reference point and the reference optical axis is α 1 , When the distance between an arbitrary point on the surface and the reference point is R 1 , at least in the range of α 1 <π / 3, R 1 monotonously increases as α 1 increases. It is a shape having a convex curved surface portion that is axisymmetric with respect to the optical axis, and an arbitrary point on the light exit surface and the reference point A straight line connecting two an angle between the reference optical axis alpha, a distance between the reference point and an arbitrary point on the light exit surface as R 2, at least in alpha 2 <[pi / 3 range, alpha As R 2 increases, R 2 decreases monotonously, suppressing total reflection on the exit surface, and reducing illuminance unevenness on the irradiated surface.

本発明にあっては、光入射面上の点と基準点とを結ぶ直線と、基準光軸とのなす角の増加に応じて、光入射面上の点と基準点との間の距離が単調増加しているため、光が光入射面に入射した場合、該光は、光入射面にて基準光軸に近付く方向に屈折され、さらに光出射面の点と基準点とを結ぶ直線と、基準光軸とのなす角の増加に応じて、光出射面上の点と基準点との間の距離が単調減少しているため、さらに光入射面にて光が基準光軸に近付く方向に屈折されることになる。光入射面及び光出射面と基準点との間の距離が、一般的な発光素子から出射した光束の3/4程度が含まれる、基準光軸からπ/3の角度範囲に亘って夫々単調増加又は単調減少するように光入射面及び光出射面を形成しているから、照度分布に急激な変化を発生させることなく、光を滑らかに集光させることが可能となる。また、光出射面を適切に形成することにより、光出射面における全反射が抑制される。このため、光出射面の一部領域から光が出射しない等の照度ムラの原因の抑制が可能になる。   In the present invention, the distance between the point on the light incident surface and the reference point is increased according to an increase in the angle formed between the straight line connecting the point on the light incident surface and the reference point and the reference optical axis. Since the light monotonously increases, when light is incident on the light incident surface, the light is refracted in a direction approaching the reference optical axis at the light incident surface, and a straight line connecting the point of the light emitting surface and the reference point As the distance between the point on the light exit surface and the reference point decreases monotonically with the increase in the angle formed with the reference optical axis, the direction in which the light approaches the reference optical axis further on the light incident surface Will be refracted. The distance between the light incident surface and the light emitting surface and the reference point is monotonous over an angular range of π / 3 from the reference optical axis, including about 3/4 of the light beam emitted from a general light emitting element. Since the light incident surface and the light output surface are formed so as to increase or monotonously decrease, it is possible to collect light smoothly without causing a sudden change in the illuminance distribution. Further, by appropriately forming the light emitting surface, total reflection on the light emitting surface is suppressed. For this reason, it becomes possible to suppress the cause of uneven illuminance such as light not being emitted from a partial region of the light emitting surface.

本発明に係る光束制御部材は、第13発明に記載の光制御部材を複数個連続して設けてなることを特徴とする。   A light flux controlling member according to the present invention is characterized in that a plurality of light controlling members according to the thirteenth invention are provided continuously.

本発明にあっては、光制御部材を複数個連続して設けており、例えば、複数の発光素子を光源として用いる照明装置のように複数個の光制御部材が必要とされる場合に、発光素子の配置に合わせて適切に光束制御部材を形成することにより、個々に位置決めをして取付ける作業が不要となり、照明装置の組立作業を効率的に行うことが可能となる。   In the present invention, a plurality of light control members are continuously provided. For example, when a plurality of light control members are required as in a lighting device using a plurality of light emitting elements as light sources, light emission is performed. By appropriately forming the light flux controlling member in accordance with the arrangement of the elements, it is not necessary to perform positioning and mounting individually, and it is possible to efficiently assemble the lighting device.

本発明によれば、十分な光利用効率を得つつ、発光素子から出射された光を滑らかに集光することが可能である。また、照射面における照度ムラを低減することが可能である。   According to the present invention, it is possible to smoothly collect light emitted from a light emitting element while obtaining sufficient light use efficiency. In addition, it is possible to reduce illuminance unevenness on the irradiated surface.

以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は、本実施の形態に係る発光装置10の模式的断面図である。発光装置10は、発光素子1と、該発光素子1から出射された光を集光する光制御部材2とを備えてなる。光軸(基準光軸)Zの方向は、発光素子1から出射される光の立体的な出射光束の中心における光の進行方向をいう。同図においては、便宜上、発光素子1から鉛直上向きの方向を光軸(基準光軸)Zとする。   Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof. FIG. 1 is a schematic cross-sectional view of a light emitting device 10 according to the present embodiment. The light-emitting device 10 includes a light-emitting element 1 and a light control member 2 that collects light emitted from the light-emitting element 1. The direction of the optical axis (reference optical axis) Z refers to the traveling direction of light at the center of the three-dimensional outgoing light flux of the light emitted from the light emitting element 1. In the figure, for the sake of convenience, the direction vertically upward from the light emitting element 1 is defined as an optical axis (reference optical axis) Z.

図中、矩形にて示している発光素子1は、光軸Zを中心に周囲に光を出射する部材であり、光軸Zを中心とした回転対称の形状を有している。なお、発光素子1の形状は、光軸Zを中心とした回転対称の形状である必要はなく、直方体、多面体等の形状でもよい。発光素子1としては、例えば公知のLEDチップを用いることができ、特に限定されるものではない。   In the drawing, the light emitting element 1 indicated by a rectangle is a member that emits light around the optical axis Z, and has a rotationally symmetric shape around the optical axis Z. The shape of the light emitting element 1 does not have to be a rotationally symmetric shape about the optical axis Z, and may be a rectangular parallelepiped, a polyhedron, or the like. As the light emitting element 1, a well-known LED chip can be used, for example, and it is not specifically limited.

発光素子1の発光面側には、光制御部材2が設けてある。光制御部材2は、発光素子1から出射された光Lの方向を変化させるための部材であり、光Lを光軸Zに対し平行に近い方向に曲げることにより、光Lを集光させる。光制御部材2は、光軸Zに対し軸対称な曲面部分を有し、発光素子1から出射された光Lが入射する光入射面2aと、光軸Zに対し軸対称な曲面部分を有し、光入射面2aに入射した光Lが出射される光出射面2bと、光入射面2a及び光出射面2bの端縁を結ぶ光制御部材の支持面としての作用も有する底面2cとを有している。発光素子1は、光入射面2aの端縁を含む平面又は該平面より光制御部材2の側に発光素子1の発光面が位置するように配置してある。   A light control member 2 is provided on the light emitting surface side of the light emitting element 1. The light control member 2 is a member for changing the direction of the light L emitted from the light emitting element 1, and condenses the light L by bending the light L in a direction nearly parallel to the optical axis Z. The light control member 2 has a curved portion that is axisymmetric with respect to the optical axis Z, a light incident surface 2 a on which the light L emitted from the light emitting element 1 is incident, and a curved portion that is axially symmetric with respect to the optical axis Z. The light emitting surface 2b from which the light L incident on the light incident surface 2a is emitted, and the bottom surface 2c that also serves as a support surface for the light control member that connects the edges of the light incident surface 2a and the light emitting surface 2b. Have. The light emitting element 1 is arranged such that the light emitting surface of the light emitting element 1 is positioned on the plane including the edge of the light incident surface 2a or on the light control member 2 side from the plane.

光制御部材2の光入射面2aの断面形状は、同図に示すように、光軸Z上では光軸Zと略垂直に交わり、光軸Z付近から輪郭線の傾きが徐々に変化していく、放物面に近い形状を有している。一方、光制御部材2の光出射面2bの断面形状は、光軸Z付近では輪郭線の傾きが光軸Zと略垂直で傾き変化が徐々に大きく、その後、光軸Zと垂直方向に近付くにしたがって輪郭線の傾きの変化が小さくなり、次第に光軸Zと平行な方向に変化する形状を有している。   As shown in the figure, the cross-sectional shape of the light incident surface 2a of the light control member 2 intersects the optical axis Z substantially perpendicularly on the optical axis Z, and the inclination of the contour line gradually changes from the vicinity of the optical axis Z. It has a shape close to a paraboloid. On the other hand, the cross-sectional shape of the light exit surface 2b of the light control member 2 is such that the inclination of the contour line is substantially perpendicular to the optical axis Z in the vicinity of the optical axis Z and the inclination change is gradually large, and thereafter approaches the vertical direction to the optical axis Z. Accordingly, the change in the inclination of the contour line becomes smaller and gradually changes in a direction parallel to the optical axis Z.

なお、本実施の形態で用いられる光制御部材2は、例えば、片面が凸面で、反対面が凹面のレンズから構成される、メニスカスレンズと呼ばれるレンズ(集光部材)である。   The light control member 2 used in the present embodiment is, for example, a lens called a meniscus lens (light condensing member) configured from a lens having a convex surface on one side and a concave surface on the other side.

光制御部材2は、透明樹脂やガラス等、特に限定されるものではないが、好ましくは、屈折率が1.45以上1.65以下である透明樹脂を用いることができる。具体的には、屈折率が1.49であるポリメタクリル酸メチル(PMMA)、屈折率が1.59であるポリカーボネート(PC)、エポキシ樹脂(EP)等の透明樹脂材料である。これら透明樹脂材料は射出成型が可能であり、製作が容易であり、コストの低減を図ることができる。   The light control member 2 is not particularly limited, such as a transparent resin or glass, but a transparent resin having a refractive index of 1.45 or more and 1.65 or less can be preferably used. Specifically, it is a transparent resin material such as polymethyl methacrylate (PMMA) having a refractive index of 1.49, polycarbonate (PC) having a refractive index of 1.59, and epoxy resin (EP). These transparent resin materials can be injection-molded, can be easily manufactured, and can reduce costs.

次に、図2に基づいて、光制御部材2の光出射面2bにおける光Lの方向を変化させる構成について説明する。同図は図1で示す発光装置10の一部を拡大した部分断面図である。   Next, a configuration for changing the direction of the light L on the light exit surface 2b of the light control member 2 will be described with reference to FIG. 1 is an enlarged partial sectional view of a part of the light emitting device 10 shown in FIG.

同図において、光入射面2aは、光軸Zと発光素子1の発光面との交点を基準点Oとしたとき、光入射面2a上の任意の点P1 と基準点Oとを結ぶ直線と、光軸Zとのなす角がα1 、光入射面2a上の点P1 と基準点Oとの間の距離がR1 であるとき、少なくともα1 <π/3の範囲において、α1 の増加に従いR1 が単調増加するような凹面に形成してある。発光素子1の発光特性が一般的な発光素子の配光特性であるランバート分布である場合、発光素子1から出射する光束の3/4程度の光束がα1 <π/3の範囲に含まれることになる。なお、本明細書では特に断らない限り角度表記にはラジアンを用いる。 In the figure, the light incident surface 2a is a straight line connecting an arbitrary point P1 on the light incident surface 2a and the reference point O, where the intersection of the optical axis Z and the light emitting surface of the light emitting element 1 is the reference point O. And the optical axis Z is α 1 , and the distance between the point P 1 on the light incident surface 2a and the reference point O is R 1 , at least in the range of α 1 <π / 3. The concave surface is formed such that R 1 monotonously increases as 1 increases. When the light emitting characteristics of the light emitting element 1 are a Lambert distribution which is a light distribution characteristic of a general light emitting element, about 3/4 of the light emitted from the light emitting element 1 is included in the range of α 1 <π / 3. It will be. In this specification, unless otherwise specified, radians are used for angle notation.

次に、光出射面2bは、光出射面2b上の任意の点P2 と基準点Oとを結ぶ直線と、光軸Zとのなす角がα2 、光出射面2b上の点P2 と基準点Oとの間の距離がR2 であるとき、少なくともα2 <π/3の範囲においては、α2 の増加に従いR2 は単調減少するような凸面に形成してある。 Next, the light exit surface 2b has an angle formed between a straight line connecting an arbitrary point P 2 on the light exit surface 2b and the reference point O and the optical axis Z, α 2 , and the point P 2 on the light exit surface 2b. When the distance between the reference point O and the reference point O is R 2 , at least in the range of α 2 <π / 3, R 2 is formed as a convex surface that monotonously decreases as α 2 increases.

このように形成された光制御部材2において、光入射面2aに入射した光Lは、光軸Z側に屈折し、光出射面2bから出射するときにさらに光軸Z側に屈折させられる。以下にその原理を示す。仮に光入射面2aの形状が、α1 が増加してもR1 が変化しない(同図の断面図でα1 の増分Δα1 に対するR1 の増分ΔR1 が0である)形状、すなわち基準点Oを中心とする半径R1 の球面である場合、光は光入射面に垂直に入射するため、方向を変えずに伝播することになる。 In the light control member 2 formed in this way, the light L incident on the light incident surface 2a is refracted toward the optical axis Z and further refracted toward the optical axis Z when emitted from the light exit surface 2b. The principle is shown below. If the shape of the light incident surface 2a is, alpha 1 is R 1 is not changed even increased (increment [Delta] R 1 in R 1 in the sectional view of FIG relative increment [Delta] [alpha] 1 of the alpha 1 is 0) shape, or reference In the case of a spherical surface having a radius R 1 centered on the point O, light is incident on the light incident surface perpendicularly, and thus propagates without changing its direction.

一方、光入射面2aの形状がα1 の増加に従いR1 が増加する形状である場合、すなわち、同図の断面図でα1 の増分Δα1 に対するR1 の増分ΔR1 がΔR1 >0である場合、光入射面2a上の点P1 における接線は、基準点Oを中心とした半径R1 の円の接線より光軸Zと垂直な方向に近付いた角度となり、このとき基準点Oから出射し、任意の点P1 に入射した光Lは光軸Zに近付く方向に曲げられて、光制御部材2内を伝播することになる。このとき、ΔR1 /R1 Δα1 =A1 とすると、A1 はA1 >0となる。 On the other hand, when the shape of the light-incoming surface 2a has a shape in which R 1 increases with increasing alpha 1, i.e., increment [Delta] R 1 of R 1 for increment [Delta] [alpha] 1 of alpha 1 in a cross-sectional view of the figure [Delta] R 1> 0 In this case, the tangent line at the point P 1 on the light incident surface 2a becomes an angle closer to the direction perpendicular to the optical axis Z than the tangent line of the circle having the radius R 1 with the reference point O as the center. The light L emitted from the light and incident at an arbitrary point P 1 is bent in a direction approaching the optical axis Z and propagates in the light control member 2. At this time, when ΔR 1 / R 1 Δα 1 = A 1, A 1 is the A 1> 0.

次に、光出射面2bでは逆にα2 の増加にしたがいR2 が減少するため、光出射面2b上の点P2 における接線は、基準点Oを中心とした半径R2 の円の接線より光軸Zと平行な角度に近付いた角度となり、基準点Oと点P2 とを結ぶ直線の方向から点P2 に入射した光はさらに光軸Zに近付く方向に曲げられる。実際には光入射面2aがあるため、同図に示すように基準点Oと点P2 とを結ぶ直線と点P2 における法線とのなす角よりも、実際に点P2 に入射する光Lと点P2 における法線とのなす角の方が大きく、さらに光軸Zに近付く方向へと曲げられる。このように、以上の特性を有する光入射面2aと光出射面2bとを有することにより、集光性を向上させた発光装置を得ることができる。 Next, R 2 decreases on the light exit surface 2b as α 2 increases, so that the tangent at the point P 2 on the light exit surface 2b is a tangent of a circle with a radius R 2 centered on the reference point O. The angle becomes closer to an angle parallel to the optical axis Z, and the light incident on the point P 2 from the direction of the straight line connecting the reference point O and the point P 2 is further bent in a direction closer to the optical axis Z. Actually, since there is the light incident surface 2a, as shown in the figure, the light actually enters the point P 2 rather than the angle formed by the straight line connecting the reference point O and the point P 2 and the normal at the point P 2 . The angle formed by the light L and the normal line at the point P 2 is larger, and the light L is bent in a direction approaching the optical axis Z. Thus, by having the light incident surface 2a and the light emitting surface 2b having the above characteristics, a light emitting device with improved light collecting properties can be obtained.

次に、図2を参照して光出射面2bから光を出射させるための条件について述べる。まず、基準点Oと光出射面2b上の点P2 とを結ぶ直線の方向から点P2 へ入射した光(図において破線にて示す)について考える。 Next, conditions for emitting light from the light emitting surface 2b will be described with reference to FIG. First, consider the light (indicated by a broken line in the figure) incident on the point P 2 from the direction of the straight line connecting the reference point O and the point P 2 on the light exit surface 2b.

点P2 における法線と基準点Oと点P2 を結ぶ直線とのなす角をβ、α2 が微小量Δα2 だけ変化したときのR2 の変化量をΔR2 とすると、
tanβ=−ΔR2 /R2 Δα2 となる。次に光制御部材2の屈折率がnであるとき、点P2 へ入射した光が光出射面2bから出射するためには、nsinβ≦1の条件式を満足する必要がある。−ΔR2/R2 Δα2 =A2 として、以上の式を整理すると
The angle between the line connecting the normal and the reference point O and the point P 2 at point P 2 beta, the amount of change in R 2 when alpha 2 is changed by a small amount [Delta] [alpha] 2 When [Delta] R 2,
tan β = −ΔR 2 / R 2 Δα 2 Next, when the refractive index of the light control member 2 is n, in order for the light incident on the point P 2 to be emitted from the light emitting surface 2b, it is necessary to satisfy the conditional expression of n sin β ≦ 1. -ΔR 2 / R 2 Δα 2 = A 2

Figure 2009099604
Figure 2009099604

となり、これが、基準点Oと光出射面2b上の点P2 を結ぶ直線の方向から点P2 へ入射した光が光出射面2bから出射するための条件となる。以上は、基準点Oから出射した光が光入射面2aで曲がらずに光出射面2bに到達した場合に成り立つ条件であるが、実際には光入射面2aで屈折されるため、光出射面2b上の点P2 へ到達する光Lの入射角はβより大きくなる。そのため、 This is a condition for the light incident on the point P 2 from the direction of the straight line connecting the reference point O and the point P 2 on the light emission surface 2 b to be emitted from the light emission surface 2 b. The above is a condition that holds when the light emitted from the reference point O reaches the light exit surface 2b without being bent at the light entrance surface 2a, but is actually refracted at the light entrance surface 2a. The incident angle of the light L reaching the point P 2 on 2b is larger than β. for that reason,

Figure 2009099604
Figure 2009099604

の条件下では必ず全反射が生じてしまう。よって、少なくともA2 が以下の条件式(1) Total reflection will always occur under the above conditions. Therefore, at least A 2 is the following conditional expression (1)

Figure 2009099604
Figure 2009099604

を満たすように光出射面2bを形成する必要がある。 It is necessary to form the light emitting surface 2b so as to satisfy the above.

以上では、α1 =0、及びα2 =0以外の部分について述べたが、α1 =0、α2 =0のときは、発光素子1から光軸Z方向に出射された光Lをそのまま光軸Z方向に出射する必要があるため、A1 及びA2 が0になるように光制御部材2を構成する必要がある。 In the above, portions other than α 1 = 0 and α 2 = 0 have been described. When α 1 = 0 and α 2 = 0, the light L emitted from the light emitting element 1 in the optical axis Z direction is used as it is. Since it is necessary to emit light in the optical axis Z direction, it is necessary to configure the light control member 2 so that A 1 and A 2 are zero.

次に、図3に基づいて、発光素子1から出射された光Lが光制御部材2から光の出射側に離隔して光軸Zと直交する平面内において照度ムラを抑制する構成について説明する。同図は図1で示す発光装置10の一部を拡大した部分断面図である。   Next, based on FIG. 3, a configuration in which the light L emitted from the light emitting element 1 is separated from the light control member 2 toward the light emission side and suppresses uneven illuminance in a plane orthogonal to the optical axis Z will be described. . 1 is an enlarged partial sectional view of a part of the light emitting device 10 shown in FIG.

図3において、発光素子1から出射され、光入射面2aに到達する光Lと光軸Zとのなす角をφ1 とする。さらに、光入射面2aに入射し、光出射面2bに到達し、光出射面2bから出射した光Lと、光Lが光出射面2bにおいて到達する出射点P4 を通り光軸Zと平行な線とのなす角度をφ2 とする。 In FIG. 3, an angle formed between the light L emitted from the light emitting element 1 and reaching the light incident surface 2a and the optical axis Z is φ 1 . Further parallel, incident on the light incident surface 2a, and reaching the light-outgoing surface 2b, the light L emitted from the light-outgoing surface 2b, the light L is a street light axis Z and emitted point P 4 that reaches the light-outgoing surface 2b An angle formed with a straight line is φ 2 .

また、同図において、発光素子1から出射された光Lが光入射面2aに入射した点を光入射点P3 とし、光入射点P3 から入射した光Lと光入射点P3 における法線とのなす角度がθ1 として表されている。また、光制御部材2の中を透過し、光出射面2bに入射した光Lの出射面における点を光出射点P4 とし、光出射点P4 に到達した光Lと光出射点P4 における法線とのなす角度がθ2 として表されている。 Further, in the figure, the point at which light L emitted from the light-emitting element 1 enters the light-incoming surface 2a and light incident point P 3, the law in the light L and the light incident point P 3 which is incident from the light incident point P 3 The angle made with the line is expressed as θ 1 . Further, transmitted through the light control member 2, a point on the exit surface of the light L incident on the light-outgoing surface 2b and the light emitting point P 4, the light L and the light emitting point P 4 which reaches the light emitting point P 4 The angle formed with the normal to is represented as θ 2 .

同図に示すように、発光素子1から出射された光Lは、光入射面2aに入射し、光制御部材2の内部を伝播した後、光出射面2bから外部(例えば、空気中)にスネルの法則にしたがって出射されることになる。この際、本発明に係る光制御部材2から出射される発光素子1からの光束は、光軸Zに近付くように屈折して出射される。   As shown in the figure, the light L emitted from the light emitting element 1 enters the light incident surface 2a, propagates through the inside of the light control member 2, and then externally (for example, in the air) from the light emitting surface 2b. The light is emitted according to Snell's law. At this time, the light beam from the light emitting element 1 emitted from the light control member 2 according to the present invention is refracted and emitted so as to approach the optical axis Z.

前記の発光装置10において、さらに集光性を向上させ、発光装置10を複数マトリクス状に配列したときの照度ムラを抑制するためには、発光素子1から出射された光Lを照射面上においてガウス分布のような、発光装置10の光軸Z上が明るく、光軸Z上から離れるにしたがって暗くなる分布にすることが好ましいと考えられる。そこで、発明者は鋭意検討を行った結果、配光特性がP(φ1 )である発光素子1から出射された光Lについて以下の条件とすることを見出した。 In the light emitting device 10 described above, in order to further improve the light condensing property and suppress the uneven illuminance when the light emitting devices 10 are arranged in a plurality of matrices, the light L emitted from the light emitting element 1 is irradiated on the irradiation surface. It is considered preferable to have a distribution such as a Gaussian distribution that is bright on the optical axis Z of the light-emitting device 10 and darkens as the distance from the optical axis Z increases. Therefore, as a result of intensive studies, the inventors have found that the light L emitted from the light-emitting element 1 having a light distribution characteristic of P (φ 1 ) has the following conditions.

すなわち、光制御部材2から光の出射側に離隔して光軸Zと直交する平面内において、光軸Zからの距離がr、発光素子1から出射した光Lと光軸Zとのなす角度がφ1 であり、Aが前述した式(2)により求まる値、Cがr=0のときφ1 =0を満たすように定まる定数、σが集光性を表す定数とした場合に、前述した条件式(3)を満たす場合に、配光特性がP(φ1 )である発光素子1からの光Lを平面上、例えば、床面上でガウス分布にすることができることを見出した。 That is, the distance from the optical axis Z is r and the angle between the light L emitted from the light emitting element 1 and the optical axis Z in a plane that is separated from the light control member 2 on the light emission side and orthogonal to the optical axis Z. Is φ 1 , A is a value obtained by the above-described equation (2), C is a constant that satisfies φ 1 = 0 when r = 0, and σ is a constant that represents light condensing property. It has been found that when the conditional expression (3) is satisfied, the light L from the light emitting element 1 whose light distribution characteristic is P (φ 1 ) can be made Gaussian on a plane, for example, on the floor.

このように、発光装置10が前記の条件を満たすように構成されることにより、光Lを床面上においてガウス分布にすることができる。これにより、発光装置10を複数マトリクス状に配列したとき、発光素子1から出射される光Lの照度ムラを抑制することができる。   In this manner, the light emitting device 10 is configured to satisfy the above-described conditions, whereby the light L can be made Gaussian distribution on the floor surface. Thereby, when the light-emitting devices 10 are arranged in a plurality of matrices, unevenness in illuminance of the light L emitted from the light-emitting element 1 can be suppressed.

特に、一般的なLEDの配光特性であるP(φ1 )=P0 cosφ1 (P0 は定数)で表されるランバート分布は重要であり、前述した条件式(4)を満たすことにより、ランバート分布を前記平面上(床面上)でガウス分布に変換することができる。これにより、発光装置10を複数マトリクス状に配列したときの発光素子1から出射される光Lの照度ムラをさらに抑制することができる。 In particular, a Lambertian distribution represented by P (φ 1 ) = P 0 cos φ 1 (P 0 is a constant), which is a light distribution characteristic of a general LED, is important, and satisfies the conditional expression (4) described above. The Lambertian distribution can be converted into a Gaussian distribution on the plane (on the floor surface). Thereby, the illuminance unevenness of the light L emitted from the light emitting element 1 when the light emitting devices 10 are arranged in a plurality of matrices can be further suppressed.

図4は、発光装置10におけるθ1 /θ2 と反射率との関係を示すグラフである。同図において、縦軸は反射率を示し、横軸はθ1 /θ2 を対数表示にて示している。計算に用いた屈折率は、屈折率1.45〜1.65の範囲で最も反射率が高くなる屈折率1.65である。反射率は、光入射面2aおよび光出射面2bの両面での反射を含んだ反射率が表されている。Δφ=φ1 −φ2 を一定とした場合、反射率が最小となるのはθ1 /θ2 =1のとき、すなわちθ1 =θ2 のときであり、Δφが大きくなるほど反射率が大きくなることが分かる。 FIG. 4 is a graph showing the relationship between θ 1 / θ 2 and the reflectance in the light emitting device 10. In the figure, the vertical axis represents the reflectance, and the horizontal axis represents θ 1 / θ 2 in logarithmic display. The refractive index used for the calculation is a refractive index of 1.65 that gives the highest reflectance in the range of the refractive index of 1.45 to 1.65. The reflectance includes the reflectance including reflection on both the light incident surface 2a and the light emitting surface 2b. When Δφ = φ 1 −φ 2 is constant, the reflectivity is minimized when θ 1 / θ 2 = 1, that is, when θ 1 = θ 2. The greater the Δφ, the greater the reflectivity. I understand that

一方、光制御部材2により光Lの集光性を向上させるためには、発光素子1から出射された光をできるだけ光軸Zと垂直な方向に近付ける必要があるため、Δφを大きくする必要がある。   On the other hand, in order to improve the light condensing property of the light L by the light control member 2, it is necessary to make the light emitted from the light emitting element 1 as close as possible to the direction perpendicular to the optical axis Z. Therefore, it is necessary to increase Δφ. is there.

図5は、屈折率1.65の材料から空気中に出射する光の透過率と出射面への入射角度の関係を示すグラフである。同図において、縦軸は透過率を示し、横軸は入射角を示している。図に示すように、フレネル反射による透過率が85%を下回る入射角度では微小な入射角の変化に対して透過率が急激に変動している。このため、透過率が85%を下回る入射角度においては集光特性がばらつくという問題が発生するため、透過率は85%以上、すなわち反射率は15%以下にすることが望ましい。   FIG. 5 is a graph showing the relationship between the transmittance of light emitted into the air from a material having a refractive index of 1.65 and the angle of incidence on the exit surface. In the figure, the vertical axis indicates the transmittance, and the horizontal axis indicates the incident angle. As shown in the figure, at an incident angle at which the transmittance due to Fresnel reflection is less than 85%, the transmittance rapidly fluctuates with respect to a minute change in the incident angle. For this reason, there arises a problem that the condensing characteristic varies at an incident angle where the transmittance is less than 85%. Therefore, it is desirable that the transmittance is 85% or more, that is, the reflectance is 15% or less.

反射率を15%以下にする条件は、図4に示すグラフを考察し、以下の条件式(10)〜(15)で表される。
Δφ≦5π/36において、0≦θ1 /θ2 ≦∞ ・・・ (10)
Δφ=13π/90において、1/88.5≦θ1 /θ2 ≦88.5 ・・・ (11)
Δφ=π/6において、1/4.7≦θ1 /θ2 ≦4.7 ・・・ (12)
Δφ=7π/36において、1/2.2≦θ1 /θ2 ≦2.2 ・・・ (13)
Δφ=2π/9において、1/1.4≦θ1 /θ2 ≦1.4 ・・・ (14)
Δφ=43π/180において、1/1.1≦θ1 /θ2 ≦1.1 ・・・ (15)
The condition for setting the reflectance to 15% or less is expressed by the following conditional expressions (10) to (15), considering the graph shown in FIG.
In Δφ ≦ 5π / 36, 0 ≦ θ 1 / θ 2 ≦ ∞ (10)
At Δφ = 13π / 90, 1 / 88.5 ≦ θ 1 / θ 2 ≦ 88.5 (11)
At Δφ = π / 6, 1 / 4.7 ≦ θ 1 / θ 2 ≦ 4.7 (12)
At Δφ = 7π / 36, 1 / 2.2 ≦ θ 1 / θ 2 ≦ 2.2 (13)
At Δφ = 2π / 9, 1 / 1.4 ≦ θ 1 / θ 2 ≦ 1.4 (14)
At Δφ = 43π / 180, 1 / 1.1 ≦ θ 1 / θ 2 ≦ 1.1 (15)

また、Δφ≧11π/45では反射率を15%以下にはできない。これらを勘案すると、以下の条件式(5)〜(9)
Δφ≦13π/90において、1/88.5≦θ1 /θ2 ≦88.5 ・・・ (5)
Δφ≦π/6において、1/4.7≦θ1 /θ2 ≦4.7 ・・・ (6)
Δφ≦7π/36において、1/2.2≦θ1 /θ2 ≦2.2 ・・・ (7)
Δφ≦2π/9において、1/1.4≦θ1 /θ2 ≦1.4 ・・・ (8)
Δφ≦43π/180において、1/1.1≦θ1 /θ2 ≦1.1 ・・・ (9)
の何れかを満たすことにより、反射率を15%以下に抑制することが可能となり、従来技術に係る発光装置100よりも光Lの利用効率を向上することが可能となる。
Further, when Δφ ≧ 11π / 45, the reflectance cannot be made 15% or less. Taking these into account, the following conditional expressions (5) to (9)
In Δφ ≦ 13π / 90, 1 / 88.5 ≦ θ 1 / θ 2 ≦ 88.5 (5)
In Δφ ≦ π / 6, 1 / 4.7 ≦ θ 1 / θ 2 ≦ 4.7 (6)
In Δφ ≦ 7π / 36, 1 / 2.2 ≦ θ 1 / θ 2 ≦ 2.2 (7)
In Δφ ≦ 2π / 9, 1 / 1.4 ≦ θ 1 / θ 2 ≦ 1.4 (8)
In Δφ ≦ 43π / 180, 1 / 1.1 ≦ θ 1 / θ 2 ≦ 1.1 (9)
By satisfying any of the above, the reflectance can be suppressed to 15% or less, and the utilization efficiency of the light L can be improved as compared with the light emitting device 100 according to the related art.

なお、本実施の形態において、光制御部材2の屈折率が1.65以下である場合に、反射率を15%以下に抑制し、光Lの利用効率を向上することができる条件について述べたが、これらの条件は光制御部材2に使用される材料の選定に応じて、同様の手順にて適宜設定される。   In the present embodiment, when the refractive index of the light control member 2 is 1.65 or less, the conditions for suppressing the reflectance to 15% or less and improving the utilization efficiency of the light L are described. However, these conditions are appropriately set in the same procedure according to the selection of the material used for the light control member 2.

本実施の形態に係る発光装置を備える照明装置の一例を図6に示す。図6は、本実施の形態に係る発光装置を備える照明装置20の外観斜視図であり、図7は、図6の VII−VII 線による照明装置20の部分断面図である。   An example of a lighting device including the light-emitting device according to this embodiment is illustrated in FIG. FIG. 6 is an external perspective view of the illumination device 20 including the light emitting device according to the present embodiment, and FIG. 7 is a partial cross-sectional view of the illumination device 20 taken along line VII-VII in FIG.

図において12は、樹脂製または金属製のカバーであり、カバー12は、矩形窓を有する矩形枠部12aと、該矩形枠部12aの端縁から略直交して一方向に延びる矩形状の4側壁12b,12b…とを備えている。このカバー12には、金属製のフレーム13が内嵌してあり、カバー12及びフレーム13により照明装置20の筺体を構成している。   In the figure, reference numeral 12 denotes a resin or metal cover. The cover 12 has a rectangular frame portion 12a having a rectangular window, and a rectangular shape 4 extending in one direction substantially orthogonally from the edge of the rectangular frame portion 12a. Side walls 12b, 12b ... are provided. A metal frame 13 is fitted in the cover 12, and the cover 12 and the frame 13 constitute a casing of the lighting device 20.

フレーム13には、図7に示すように、基板14が設けてあり、該基板14には、前述した発光素子1,1…が複数実装されている。これら発光素子1,1…の発光面側には、複数の光制御部材2,2…が一体的に形成された集光シート(光束制御部材)11が、光制御部材2,2…の光軸と発光素子1,1…の発光面の中心とが夫々一致するように設けてある。   As shown in FIG. 7, the frame 13 is provided with a substrate 14, on which a plurality of the light-emitting elements 1, 1. On the light emitting surface side of these light emitting elements 1, 1..., A light collecting sheet (light flux controlling member) 11 integrally formed with a plurality of light control members 2, 2. The axis and the center of the light emitting surface of the light emitting elements 1, 1.

集光シート11の光制御部材2,2…の底面には、複数の突出部2d,2d…が等配をなして形成してある。これら集光シート11及び発光素子1,1…が実装された基板14は、ネジ15,15…によりフレーム13に固定してある。突出部2d,2d…にて基板14がフレーム13に押し付けられ、基板14がフレーム13に略全面にて当接するから、発光素子1,1…にて発生した熱を効率よく放熱することができる。なお、突出部2d,2d…がない場合であっても、光制御部材の底面(図1参照)を光制御部材の支持面とすることも可能である。   A plurality of protruding portions 2d, 2d,... Are formed on the bottom surface of the light control members 2, 2,. The substrate 14 on which the light collecting sheet 11 and the light emitting elements 1, 1... Are mounted is fixed to the frame 13 with screws 15, 15. The substrate 14 is pressed against the frame 13 by the protrusions 2d, 2d... And the substrate 14 abuts almost the entire surface of the frame 13, so that the heat generated by the light emitting elements 1, 1. . In addition, even when there is no protrusion part 2d, 2d ..., it is also possible to use the bottom face (refer FIG. 1) of a light control member as a support surface of a light control member.

このように構成された照明装置20は、本実施の形態に係る発光装置10を備えるため、フレネル反射による反射率を低減させることができ、光利用効率を向上することができる。照明装置の具体例としては、室内照明に用いられるベースライト、ダウンライト等の一般照明用の照明装置を挙げることができる。   Since the illuminating device 20 configured as described above includes the light emitting device 10 according to the present embodiment, the reflectance due to Fresnel reflection can be reduced, and the light utilization efficiency can be improved. Specific examples of the lighting device include lighting devices for general lighting such as base lights and downlights used for room lighting.

また、光制御部材及び当該光制御部材を有する発光装置は、光制御部材内での反射を抑えて光利用効率を確保しつつ、滑らかに集光できるということから、用途は一般照明用に限定されず、他の用途にも有効である。例えば、液晶表示装置のバックライト用にも好適に適用することができる。   In addition, the light control member and the light emitting device having the light control member can smoothly collect light while suppressing light reflection in the light control member and ensuring light use efficiency, and therefore, the use is limited to general illumination. It is also effective for other uses. For example, it can be suitably applied to a backlight for a liquid crystal display device.

なお、本発明は、前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

本実施の形態に係る発光装置の模式的断面図である。It is typical sectional drawing of the light-emitting device which concerns on this Embodiment. 図1で示す発光装置の一部を拡大した部分断面図である。It is the fragmentary sectional view which expanded a part of light-emitting device shown in FIG. 図1で示す発光装置の一部を拡大した部分断面図である。It is the fragmentary sectional view which expanded a part of light-emitting device shown in FIG. 本実施の形態に係る発光装置におけるθ1 /θ2 と反射率との関係を示すグラフである。It is a graph which shows the relationship between (theta) 1 / (theta) 2 and the reflectance in the light-emitting device concerning this Embodiment. 屈折率1.65の材料から空気中に出射する光の透過率と出射面への入射角度の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability of the light radiate | emitted in the air from the material of refractive index 1.65, and the incident angle to an output surface. 本実施の形態に係る発光装置を備える照明装置の外観斜視図である。It is an external appearance perspective view of an illuminating device provided with the light-emitting device which concerns on this Embodiment. 図6の VII−VII 線による照明装置の部分断面図である。It is a fragmentary sectional view of the illuminating device by the VII-VII line of FIG. 従来の発光装置の模式的断面図である。It is typical sectional drawing of the conventional light-emitting device. 従来の発光装置の模式的断面図である。It is typical sectional drawing of the conventional light-emitting device.

符号の説明Explanation of symbols

1 発光素子
2 光制御部材
2a 光入射面
2b 光出射面
10 発光装置
11 集光シート(光束制御部材)
α 角度
α 角度
Δα 角度
Δα 角度
O 基準点(交点)
距離
距離
入射点
出射点
Z 光軸
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light control member 2a Light incident surface 2b Light output surface 10 Light-emitting device 11 Condensing sheet | seat (light beam control member)
α 1 angle α 2 angle Δα 1 angle Δα 2 angle O Reference point (intersection)
R 1 distance R 2 distance P 1 entrance point P 2 exit point Z optical axis

Claims (14)

発光素子と、該発光素子から出射された光を制御する光制御部材とを備える発光装置において、
前記光制御部材は、前記発光素子から出射された光が光制御部材に入射する光入射面と、該光入射面に入射した光が光制御部材から出射される光出射面とを備え、
前記光入射面は、前記発光素子の基準光軸に対し軸対称な凹の曲面部分を有し、
前記基準光軸と前記発光素子の発光面との交点を基準点としたとき、前記光入射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα1 、前記光入射面上の任意の点と前記基準点との距離をR1 として、少なくともα1 <π/3の範囲においては、α1 の増加に従いR1 は単調増加し、
前記光出射面は、前記基準光軸に対し軸対称な凸の曲面部分を有する形状であり、
前記光出射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα2 、前記光出射面上の任意の点と前記基準点との距離をR2 として、少なくともα2 <π/3の範囲においては、α2 の増加に従いR2 は単調減少し、
前記光制御部材の前記出射面において全反射を抑制し、照射面における照度ムラを抑制したことを特徴とする発光装置。
In a light emitting device including a light emitting element and a light control member that controls light emitted from the light emitting element,
The light control member includes a light incident surface on which light emitted from the light emitting element enters the light control member, and a light emission surface from which light incident on the light incident surface is emitted from the light control member,
The light incident surface has a concave curved surface portion that is axisymmetric with respect to a reference optical axis of the light emitting element,
When an intersection point of the reference optical axis and the light emitting surface of the light emitting element is used as a reference point, an angle formed between a straight line connecting the arbitrary point on the light incident surface and the reference point and the reference optical axis is α 1 , where R 1 is a distance between an arbitrary point on the light incident surface and the reference point, at least in the range of α 1 <π / 3, R 1 monotonously increases as α 1 increases,
The light exit surface is a shape having a convex curved surface portion that is axisymmetric with respect to the reference optical axis,
An angle between a straight line connecting an arbitrary point on the light exit surface and the reference point and the reference optical axis is α 2 , and a distance between the arbitrary point on the light exit surface and the reference point is R 2. At least in the range of α 2 <π / 3, R 2 decreases monotonically as α 2 increases,
A light emitting device characterized in that total reflection is suppressed on the emission surface of the light control member, and uneven illuminance on the irradiation surface is suppressed.
発光素子と、該発光素子から出射された光が入射する光入射面及び該光入射面に入射した光が出射される光出射面を有する光制御部材とを備える発光装置において、
前記光制御部材は、前記光入射面及び光出射面が、前記発光素子の光軸に関して軸対称の曲面部分を夫々有するように形成してあり、
前記光入射面は、少なくともα1 <π/3の範囲において、α1 の増加に従いR1 が単調増加するように形成してあり、
但し、

α1 ;前記発光素子の発光面及び前記光軸の交点と前記光入射面上の点とを結ぶ直線並びに前記光軸のなす角、
1 ;前記交点と前記光入射面上の点との間の距離

前記光出射面は、少なくともα2 <π/3の範囲において、α2 の増加に従いR2 が単調減少し、以下の条件式(1)
Figure 2009099604
を満たすように形成してあることを特徴とする発光装置。
但し、
α2 ;前記発光素子の発光面及び前記光軸の交点と前記光出射面上の点とを結ぶ直線並びに前記光軸のなす角、
2;前記交点と前記光出射面上の点との間の距離、
n;前記光制御部材を構成する材料の屈折率、
2;前記α2 の増分Δα2 に対するR2 の増分ΔR2 をR2 で除算して、−1を乗じた値−ΔR2 /(R2 Δα2
In a light emitting device comprising: a light emitting element; and a light control surface having a light incident surface on which light emitted from the light emitting element is incident and a light emitting surface from which light incident on the light incident surface is emitted.
The light control member is formed such that the light incident surface and the light exit surface have curved portions that are axially symmetric with respect to the optical axis of the light emitting element, respectively.
The light incident surface is formed so that R 1 monotonously increases as α 1 increases in a range of at least α 1 <π / 3,
However,

α 1 ; a light-emitting surface of the light-emitting element, a straight line connecting an intersection of the optical axes and a point on the light incident surface, and an angle formed by the optical axis,
R 1 : distance between the intersection and a point on the light incident surface

In the light exit surface, at least in the range of α 2 <π / 3, R 2 monotonously decreases as α 2 increases, and the following conditional expression (1)
Figure 2009099604
A light-emitting device formed so as to satisfy the above.
However,
α 2 ; a straight line connecting a light emitting surface of the light emitting element and an intersection of the optical axes and a point on the light emitting surface, and an angle formed by the optical axes,
R 2 : distance between the intersection and a point on the light exit surface;
n: the refractive index of the material constituting the light control member,
A 2; the increment [Delta] R 2 of R 2 with respect to increment [Delta] [alpha] 2 of the alpha 2 is divided by R 2, a value multiplied by -1 -ΔR 2 / (R 2 Δα 2)
前記光制御部材は、前記光入射面において、α1 が0のとき、A1 が0であり、

但し、
1 ;前記α1 の増分Δα1 に対するR1 の増分ΔR1 をR1 で除算した値ΔR1 /(R1 Δα1

前記光出射面において、α2 が0のとき、A2 が0であるように構成してあることを特徴とする請求項1または2に記載の発光装置。
The light control member has an A 1 of 0 when α 1 is 0 on the light incident surface,

However,
A 1; the alpha 1 increment [Delta] [alpha] 1 value increment [Delta] R 1 of R 1 divided by R 1 for ΔR 1 / (R 1 Δα 1 )

3. The light emitting device according to claim 1, wherein the light emitting surface is configured such that when α 2 is 0, A 2 is 0. 4.
前記光制御部材は屈折率が1.45以上1.65以下である透光性材料からなることを特徴とする請求項1から3の何れか一つに記載の発光装置。   The light-emitting device according to claim 1, wherein the light control member is made of a translucent material having a refractive index of 1.45 or more and 1.65 or less. 発光素子と、該発光素子から出射された光が入射する光入射面及び該光入射面に入射した光が出射される光出射面を有する光制御部材とを備える発光装置において、
前記光制御部材から光の出射側に離隔して前記発光素子の光軸と直交する平面内において、Aが以下の条件式(2)
Figure 2009099604
で求まる値であり、

但し、
φ1 ;前記発光素子から出射された光と前記光軸とのなす角度
P(φ1 );前記発光素子の配光特性

以下の条件式(3)
Figure 2009099604
を満たすように構成してあることを特徴とする発光装置。
但し、
r;前記平面内における前記光軸からの距離
C;r=0のときφ1 =0を満たすように定まる定数
σ;集光性を表す定数
In a light emitting device comprising: a light emitting element; and a light control surface having a light incident surface on which light emitted from the light emitting element is incident and a light emitting surface from which light incident on the light incident surface is emitted.
In a plane that is separated from the light control member to the light emission side and is orthogonal to the optical axis of the light emitting element, A is the following conditional expression (2):
Figure 2009099604
Is the value obtained by

However,
φ 1 ; angle P (φ 1 ) between the light emitted from the light emitting element and the optical axis; light distribution characteristics of the light emitting element

The following conditional expression (3)
Figure 2009099604
A light-emitting device configured to satisfy the above.
However,
r; distance C from the optical axis in the plane; constant σ determined to satisfy φ 1 = 0 when r = 0;
前記平面内において、
前記発光素子の配光特性P(φ1 )がランバート分布であるとき、以下の条件式(4)
Figure 2009099604
を満たすように構成してあることを特徴とする請求項5に記載の発光装置。
In the plane,
When the light distribution characteristic P (φ 1 ) of the light emitting element is Lambert distribution, the following conditional expression (4)
Figure 2009099604
The light emitting device according to claim 5, wherein the light emitting device is configured to satisfy
前記光制御部材は、屈折率が1.65以下であり、
前記φ1 からφ2 を減算した値Δφが13π/90以下であるとき、以下の条件式(5)
1/88.5≦θ1 /θ2 ≦88.5 ・・・ (5)
を満たすように構成してあることを特徴とする請求項5または6に記載の発光装置。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
The light control member has a refractive index of 1.65 or less,
When the value Δφ obtained by subtracting φ 2 from φ 1 is 13π / 90 or less, the following conditional expression (5)
1 / 88.5 ≦ θ 1 / θ 2 ≦ 88.5 (5)
The light-emitting device according to claim 5, wherein the light-emitting device is configured to satisfy the above.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis
前記光制御部材は、屈折率が1.65以下であり、
前記φ1 からφ2 を減算した値Δφがπ/6以下であるとき、以下の条件式(6)
1/4.7≦θ1 /θ2 ≦4.7 ・・・ (6)
を満たすように構成してあることを特徴とする請求項5または6に記載の発光装置。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
The light control member has a refractive index of 1.65 or less,
When the value Δφ obtained by subtracting φ 2 from φ 1 is π / 6 or less, the following conditional expression (6)
1 / 4.7 ≦ θ 1 / θ 2 ≦ 4.7 (6)
The light-emitting device according to claim 5, wherein the light-emitting device is configured to satisfy the above.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis
前記光制御部材は、屈折率が1.65以下であり、
前記φ1 からφ2 を減算した値Δφが7π/36以下であるとき、以下の条件式(7)
1/2.2≦θ1 /θ2 ≦2.2 ・・・ (7)
を満たすように構成してあることを特徴とする請求項5または6に記載の発光装置。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
The light control member has a refractive index of 1.65 or less,
When the value Δφ obtained by subtracting φ 2 from φ 1 is 7π / 36 or less, the following conditional expression (7)
1 / 2.2 ≦ θ 1 / θ 2 ≦ 2.2 (7)
The light-emitting device according to claim 5, wherein the light-emitting device is configured to satisfy the above.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis
前記光制御部材は、屈折率が1.65以下であり、
前記φ1 からφ2 を減算した値Δφが2π/9以下であるとき、以下の条件式(8)
1/1.4≦θ1 /θ2 ≦1.4 ・・・ (8)
を満たすように構成してあることを特徴とする請求項5または6に記載の発光装置。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
The light control member has a refractive index of 1.65 or less,
When the value Δφ obtained by subtracting φ 2 from φ 1 is 2π / 9 or less, the following conditional expression (8)
1 / 1.4 ≦ θ 1 / θ 2 ≦ 1.4 (8)
The light-emitting device according to claim 5, wherein the light-emitting device is configured to satisfy the above.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis
前記光制御部材は、屈折率が1.65以下であり、
前記φ1 からφ2 を減算した値Δφが43π/180以下であるとき、以下の条件式(9)
1/1.1≦θ1 /θ2 ≦1.1 ・・・ (9)
を満たすように構成してあることを特徴とする請求項5または6に記載の発光装置。
但し、
θ1 ;前記発光素子からの光が入射する前記光入射面上の光入射点から、外部に光が出射される前記光出射面上の光出射点に到達する光と、前記光入射点における前記光入射面の垂線とのなす角
θ2 ;前記光入射点から、前記光出射点に到達する光と、前記光出射点における前記光出射面の垂線とのなす角
φ2 ;前記光出射点から出射された光と前記光軸とのなす角
The light control member has a refractive index of 1.65 or less,
When a value Δφ obtained by subtracting φ 2 from φ 1 is 43π / 180 or less, the following conditional expression (9)
1 / 1.1 ≦ θ 1 / θ 2 ≦ 1.1 (9)
The light-emitting device according to claim 5, wherein the light-emitting device is configured to satisfy the above.
However,
θ 1 ; light reaching the light exit point on the light exit surface from which light is emitted from the light entrance point on the light entrance surface where the light from the light emitting element is incident, and at the light entrance point An angle θ 2 formed with a perpendicular to the light incident surface; an angle φ 2 formed between light reaching the light emitting point from the light incident point and a perpendicular to the light emitting surface at the light emitting point; Angle between light emitted from a point and the optical axis
請求項1から11の何れか一つに記載の発光装置を備えることを特徴とする照明装置。   An illumination device comprising the light-emitting device according to claim 1. 発光素子から出射された光を制御する光制御部材であって、
前記発光素子から出射された光が光制御部材に入射する光入射面と、上記光入射面に入射した光が光制御部材から出射される光出射面とを備え、
前記光入射面は、前記発光素子の基準光軸に対し軸対称な凹の曲面部分を有し、
前記基準光軸と前記発光素子の発光面との交点を基準点としたとき、前記光入射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα1 、前記光入射面上の任意の点と前記基準点との距離をR1 として、少なくともα1 <π/3の範囲においては、α1 の増加に従いR1 は単調増加し、
前記光出射面は、前記基準光軸に対し軸対称な凸の曲面部分を有する形状であり、
前記光出射面上の任意の点と前記基準点とを結ぶ直線と、前記基準光軸とのなす角をα2 、前記光出射面上の任意の点と前記基準点との距離をR2 として、少なくともα2 <π/3の範囲においては、α2 の増加に従いR2 は単調減少し、
前記出射面において全反射を抑制し、照射面における照度ムラを低減したことを特徴とする光制御部材。
A light control member for controlling light emitted from the light emitting element,
A light incident surface on which light emitted from the light emitting element is incident on a light control member, and a light emission surface on which light incident on the light incident surface is emitted from the light control member,
The light incident surface has a concave curved surface portion that is axisymmetric with respect to a reference optical axis of the light emitting element,
When an intersection point of the reference optical axis and the light emitting surface of the light emitting element is used as a reference point, an angle formed between a straight line connecting the arbitrary point on the light incident surface and the reference point and the reference optical axis is α 1 , where R 1 is a distance between an arbitrary point on the light incident surface and the reference point, at least in the range of α 1 <π / 3, R 1 monotonously increases as α 1 increases,
The light exit surface is a shape having a convex curved surface portion that is axisymmetric with respect to the reference optical axis,
An angle between a straight line connecting an arbitrary point on the light exit surface and the reference point and the reference optical axis is α 2 , and a distance between the arbitrary point on the light exit surface and the reference point is R 2. At least in the range of α 2 <π / 3, R 2 decreases monotonically as α 2 increases,
A light control member characterized by suppressing total reflection on the exit surface and reducing unevenness in illuminance on the irradiated surface.
請求項13に記載の光制御部材を複数個連続して設けてなる光束制御部材。   A light beam control member comprising a plurality of the light control members according to claim 13 provided continuously.
JP2007266903A 2007-10-12 2007-10-12 Light control member, light flux control member, light emitting device, and illumination device Pending JP2009099604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266903A JP2009099604A (en) 2007-10-12 2007-10-12 Light control member, light flux control member, light emitting device, and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266903A JP2009099604A (en) 2007-10-12 2007-10-12 Light control member, light flux control member, light emitting device, and illumination device

Publications (1)

Publication Number Publication Date
JP2009099604A true JP2009099604A (en) 2009-05-07

Family

ID=40702370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266903A Pending JP2009099604A (en) 2007-10-12 2007-10-12 Light control member, light flux control member, light emitting device, and illumination device

Country Status (1)

Country Link
JP (1) JP2009099604A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146903A1 (en) * 2009-06-15 2010-12-23 シャープ株式会社 Light-emitting module, illumination device, display device, and television receiver
JP2011027928A (en) * 2009-07-23 2011-02-10 Stanley Electric Co Ltd Shape calculation method of lens for lighting, lens for lighting, and lighting system
JP2011060798A (en) * 2009-09-07 2011-03-24 Nakakyu:Kk Ultraviolet irradiation device
WO2012073398A1 (en) * 2010-12-01 2012-06-07 ナルックス株式会社 Optical element
JP2013506251A (en) * 2009-09-25 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor lighting device
JP2013073847A (en) * 2011-09-28 2013-04-22 Sharp Corp Lens and lighting system
WO2013094599A1 (en) * 2011-12-20 2013-06-27 ナルックス株式会社 Optical element, illumination device including optical element and illumination module using illumination device
JP2014007317A (en) * 2012-06-26 2014-01-16 Toyoda Gosei Co Ltd Light-emitting module
JP2015069949A (en) * 2013-09-30 2015-04-13 コイズミ照明株式会社 Lighting device
JP2015135832A (en) * 2010-03-03 2015-07-27 コーニンクレッカ フィリップス エヌ ヴェ Electric lamp having reflector for transferring heat from light source
JP2016024326A (en) * 2014-07-18 2016-02-08 岩崎電気株式会社 Illumination lens and illumination device
WO2017131185A1 (en) * 2016-01-27 2017-08-03 京セラ株式会社 Head-up display device for vehicle
JP2023507684A (en) * 2020-11-30 2023-02-27 エイチジーシーアイ・インコーポレイテッド Lens cover with lens elements
JP2023515815A (en) * 2020-02-24 2023-04-14 シグニファイ ホールディング ビー ヴィ Light-emitting device for use in light-emitting panels

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146903A1 (en) * 2009-06-15 2010-12-23 シャープ株式会社 Light-emitting module, illumination device, display device, and television receiver
CN102498327A (en) * 2009-06-15 2012-06-13 夏普株式会社 Light-emitting module, illumination device, display device, and television receiver
US8493516B2 (en) 2009-06-15 2013-07-23 Sharp Kabushiki Kaisha Light-emitting module, illumination device, display device, and television receiver
JP2011027928A (en) * 2009-07-23 2011-02-10 Stanley Electric Co Ltd Shape calculation method of lens for lighting, lens for lighting, and lighting system
JP2011060798A (en) * 2009-09-07 2011-03-24 Nakakyu:Kk Ultraviolet irradiation device
JP2013506251A (en) * 2009-09-25 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor lighting device
JP2015135832A (en) * 2010-03-03 2015-07-27 コーニンクレッカ フィリップス エヌ ヴェ Electric lamp having reflector for transferring heat from light source
US9383081B2 (en) 2010-03-03 2016-07-05 Koninklijke Philips N.V. Electric lamp having reflector for transferring heat from light source
WO2012073398A1 (en) * 2010-12-01 2012-06-07 ナルックス株式会社 Optical element
JP5028569B2 (en) * 2010-12-01 2012-09-19 ナルックス株式会社 Optical element
CN102844618A (en) * 2010-12-01 2012-12-26 纳卢克斯株式会社 Optical element
US9200777B2 (en) 2010-12-01 2015-12-01 Nalux Co., Ltd. Optical element and illumination device using the same
JP2013073847A (en) * 2011-09-28 2013-04-22 Sharp Corp Lens and lighting system
WO2013094599A1 (en) * 2011-12-20 2013-06-27 ナルックス株式会社 Optical element, illumination device including optical element and illumination module using illumination device
JPWO2013094599A1 (en) * 2011-12-20 2015-04-27 ナルックス株式会社 Optical element, illumination device including the optical element, and illumination module using the illumination device
US9857051B2 (en) 2011-12-20 2018-01-02 Nalux Co., Ltd. Optical element, illumination device including the optical element, and illumination module including the illumination device
JP2014007317A (en) * 2012-06-26 2014-01-16 Toyoda Gosei Co Ltd Light-emitting module
JP2015069949A (en) * 2013-09-30 2015-04-13 コイズミ照明株式会社 Lighting device
JP2016024326A (en) * 2014-07-18 2016-02-08 岩崎電気株式会社 Illumination lens and illumination device
WO2017131185A1 (en) * 2016-01-27 2017-08-03 京セラ株式会社 Head-up display device for vehicle
JPWO2017131185A1 (en) * 2016-01-27 2018-10-25 京セラ株式会社 Head-up display device for vehicle
JP2023515815A (en) * 2020-02-24 2023-04-14 シグニファイ ホールディング ビー ヴィ Light-emitting device for use in light-emitting panels
JP2023507684A (en) * 2020-11-30 2023-02-27 エイチジーシーアイ・インコーポレイテッド Lens cover with lens elements
US12298000B2 (en) 2020-11-30 2025-05-13 Hgci, Inc. Lens cover having lens element

Similar Documents

Publication Publication Date Title
JP2009099604A (en) Light control member, light flux control member, light emitting device, and illumination device
RU2427754C1 (en) Light-emitting device and illumination apparatus having said device
US9863614B2 (en) Beam-control member and illumination device
KR100977336B1 (en) Light emitting device and lighting device having the same
CN103443664B (en) Lighting device
JP4546579B1 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
JP4976218B2 (en) Light emitting unit
EP1739946B1 (en) Light transmissive element
EP2476945A1 (en) Surface illumination method using point light source, linear light source device, and surface illumination device using linear light source device
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP6310285B2 (en) Light emitting device, surface light source device, and display device
JP2011044336A (en) Light source device
WO2013069238A1 (en) Lighting device
JP5944801B2 (en) Lighting device
US20060202218A1 (en) Light-emitting diode for decoration
KR20150116607A (en) Complex aspherical lens
CN110291327B (en) Surface light source device and display device
JP7024399B2 (en) Light source unit and lighting equipment
KR20140060625A (en) Light emitting device and lighting device having the same
CN107524988A (en) Lighting device
US9388957B2 (en) Secondary optical element and light source module
US8390470B2 (en) Display device
TWI500884B (en) Lighting device and cove lighting module using the same
JP2008300298A (en) Plane lighting light source device and plane lighting device
KR101355815B1 (en) Light emitting device and lighting device having the same