[go: up one dir, main page]

JP2009096441A - Missile having muon-catalyzed fusion reactor as power source - Google Patents

Missile having muon-catalyzed fusion reactor as power source Download PDF

Info

Publication number
JP2009096441A
JP2009096441A JP2007292567A JP2007292567A JP2009096441A JP 2009096441 A JP2009096441 A JP 2009096441A JP 2007292567 A JP2007292567 A JP 2007292567A JP 2007292567 A JP2007292567 A JP 2007292567A JP 2009096441 A JP2009096441 A JP 2009096441A
Authority
JP
Japan
Prior art keywords
muon
flying object
fusion
fission
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292567A
Other languages
Japanese (ja)
Inventor
Motohiko Inai
基彦 稲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007292567A priority Critical patent/JP2009096441A/en
Publication of JP2009096441A publication Critical patent/JP2009096441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power supply method required for an electric propulsion engine having capability of launching into an orbit outperforming a chemical fuel rocket used for carrying a person and goods into the earth satellite orbit. <P>SOLUTION: A muon beam generator is provided on the earth surface and satellite orbit, and a deuterium and tritium muon catalyzed fusion reaction is brought about by utilizing the muon supplied therefrom. A fast neutron generated by the fusion reaction is absorbed with a fusion reaction blanket so as to amplify the quantity of heating. Electric power is generated from the heat generated by fusion and nuclear fission. An injection medium is heated by converting electricity into heat, or heated by radiation, or heated by radiation or being made into plasma, and also accelerated to a high speed and injected by magneto-hydro dynamic acceleration following it so that a missile gets propulsion force. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地表および衛星軌道上にミューオンビーム発生装置を設け、そこから供給されるミューオンを用いて、重水素と三重水素のミューオン触媒核融合反応を起こし、核融合反応で生じる高速中性子を核分裂ブランケットで吸収し、発熱量を増幅し、核融合および核分裂反応で生じた熱から発電を行い、電気熱変換による加熱、または放電による加熱、または放電による加熱、プラズマ化とそれに続いた電磁流体加速によって噴射媒体を高速に加速、噴射することによって推進力を得る飛翔体に関する。  The present invention provides a muon beam generator on the earth's surface and satellite orbit, and uses the muon supplied from it to cause muon catalyzed fusion reaction of deuterium and tritium, and fission of fast neutrons generated in the fusion reaction Absorbed by a blanket, heat generation is amplified, power is generated from heat generated by nuclear fusion and fission reactions, heating by electrothermal conversion, heating by discharge, heating by discharge, plasmatization and subsequent acceleration of magnetohydrodynamics It is related with the flying body which obtains a driving force by accelerating and injecting an injection medium at high speed.

現在、宇宙空間に人、物資を輸送するには、液体を使用するか、固体を使用するかの違いが有っても、基本的に酸化剤と還元剤を混合して化学反応させる化学燃料ロケットが用いられる。化学反応を利用するため噴射媒体の速度は4〜5km/s程度にとどまる。そのため衛星軌道に達するために必要な速度〜8km/sを得るために、化学燃料ロケットの初期質量のほとんどは燃料である酸化剤と還元剤が占めることになる。このため衛星軌道上に投入できるペイロードの質量は化学燃料ロケットの初期質量の10%に満たない。
”宇宙工学概論”斎藤 利生著 地人書館
Currently, there is a difference between using liquids and solids to transport people and goods to outer space. A rocket is used. Since the chemical reaction is used, the speed of the jetting medium is only about 4 to 5 km / s. Therefore, most of the initial mass of the chemical fuel rocket is occupied by the oxidizer and the reductant, which are fuels, in order to obtain the speed required to reach the satellite orbit, ˜8 km / s. For this reason, the mass of the payload that can be put into the satellite orbit is less than 10% of the initial mass of the chemical fuel rocket.
“Introduction to Space Engineering” by Toshio Saito

高い排気速度を得るために核分裂反応により発生する熱を用いて噴射媒体を加熱するアイデアも考案されているが、原子炉の質量が大きくなるなど種々の問題があり、実現はしていない。また、電気熱変換を用いて噴射媒体を加熱し排気速度〜10km/sに達するレジストジェットエンジンが考案され試験的に作成されたが、適切な電源が得られないため、地表からのロケット打ち上げには利用されていない。
”Physics of Electric Propulsion” R.G.Jahn Dover
The idea of heating the injection medium using heat generated by the fission reaction in order to obtain a high pumping speed has been devised, but it has not been realized due to various problems such as an increase in the mass of the reactor. In addition, a resist jet engine that uses electrothermal conversion to heat the injection medium and reach an exhaust speed of 10 km / s has been devised and created on a trial basis. Is not used.
“Physics of Electric Propulsion” G. Jahn Dover

噴射媒体の排気速度が〜10km/sに達する電気熱変換を用いたレジストジェットエンジン、あるいは放電による加熱をもちいたアークジェットエンジン、あるいは放電による加熱、プラズマ化とそれに続いた電磁流体加速によって噴射媒体を高遠に加速、噴射する電磁流体加速プラズマエンジンを用いて、地表からの宇宙船の打ち上げに必要な推力を発生させるに足る電力を供給する方法を提供することに有る。  Resist jet engine using electrothermal conversion in which the ejection speed of the ejection medium reaches 10 km / s, or an arc jet engine using heating by discharge, or ejection medium by heating by heating, plasmatization and subsequent acceleration of electromagnetic fluid The object of the present invention is to provide a method for supplying electric power sufficient to generate thrust necessary for launching a spacecraft from the ground surface using a magneto-hydraulic acceleration plasma engine that accelerates and injects the air at a high distance.

大気を外部から取り込み噴射媒体とするか,または飛翔体内部に貯蔵された噴射媒体を用いるか、あるいはその双方を噴射媒体とて利用し、それら噴射媒体を電気熱変換による加熱、または放電による加熱、または放電による加熱、プラズマ化とそれに続いた電磁流体加速を行って高速に加速、噴射し推進力とする飛翔体において、発電のための熱源として、重水素と三重水素のミューオン触媒核融合反応装置を備え、さらにミューオン触媒核融合反応装置は、重水素と三重水素の核融合反応によって発生する高速中性子を吸収し、核分裂反応によりエネルギー増幅するため、高速中性子によって核分裂をおこす核分裂物質からなるブランケットを備え、さらに核融合反応と核分裂反応で生じた熱を電気エネルギーに変換する発電装置を備え、さらに飛翔体の外部、地表あるいは衛星軌道上のミューオンビーム発生装置から供給されるミューオンビームを飛翔体内部のミューオン触媒核融合装置に導く磁気トラップを備え、さらに飛翔体が負に帯電することを防止するために電子、または負のイオンを放出する帯電防止装置を備えたことを特徴とした飛翔体を作成する。  Either the atmosphere is taken in from the outside as an ejection medium, or the ejection medium stored inside the flying object is used, or both are utilized as the ejection medium, and the ejection medium is heated by electrothermal conversion or heating by discharge. Or a muon-catalyzed fusion reaction of deuterium and tritium as a heat source for power generation in a flying object that accelerates and injects and propells at high speed by heating, plasmatizing and subsequent magnetohydrodynamic acceleration In addition, the muon catalyzed nuclear fusion reactor absorbs fast neutrons generated by deuterium and tritium fusion reactions and amplifies the energy by fission reaction, so that it is a blanket made of fission material that causes fission by fast neutrons. And a power generator that converts the heat generated by the fusion reaction and fission reaction into electrical energy In addition, it has a magnetic trap that guides the muon beam supplied from the muon beam generator outside the flying object, on the ground surface or satellite orbit to the muon catalytic fusion device inside the flying object, and prevents the flying object from being negatively charged. In order to achieve this, a flying object characterized by including an antistatic device that emits electrons or negative ions is produced.

本発明では、ミューオン触媒核融合反応に用いられるミューオンは、地表および衛星軌道上のミューオンビーム発生装置から供給される、したがって、飛翔体にはミューオンを発生させるための加速器、ターゲットなどの設備が必要とされない。そのため、飛翔体のペイロード以外の質量を大幅に削減できる。ミューオンビームはミューオンの運動エネルギーを適切に選ぶことにより、地表から10〜20kmは届く。また標高5000m程度にミューオンビーム発射ポイントを設けることにより、地表の1/2の大気密度を利用すれば30km以上の大気を透過する。地表から20〜30km以上では大気密度は十分低いので衛星軌道上のミューオンビーム発生装置でミューオンを供給することができる。  In the present invention, the muon used for the muon-catalyzed fusion reaction is supplied from the muon beam generator on the ground surface and satellite orbit. Therefore, the flying object requires facilities such as an accelerator and a target for generating the muon. And not. Therefore, mass other than the payload of the flying object can be greatly reduced. The muon beam can reach 10-20 km from the surface of the earth by appropriately selecting the kinetic energy of the muon. In addition, by providing a muon beam launch point at an altitude of about 5000 m, the atmosphere of 30 km or more can be transmitted if an air density of 1/2 of the ground surface is used. At 20-30 km or more from the ground surface, the air density is sufficiently low, so muons can be supplied by the muon beam generator on the satellite orbit.

ミューオン触媒核融合反応においては、ミューオン1個あたり150回程度の核融合触媒反応が観察されている。核融合反応の燃料として重水素と三重水素を用い、核融合反応によって発生する高速中性子を核分裂物質によって吸収し、核分裂反応によって発熱エネルギーを増幅し、その増幅率は40倍程度が容易に得られる。
物理学最前線19 ミュオン触媒核融合 永嶺謙忠著 共立出版 公開特許公報 昭58−129395
In muon catalyzed fusion reactions, about 150 fusion catalyzed reactions per muon have been observed. Using deuterium and tritium as fuel for the fusion reaction, fast neutrons generated by the fusion reaction are absorbed by the fission material, and the exothermic energy is amplified by the fission reaction, and the amplification factor can easily be obtained about 40 times. .
The Forefront of Physics 19 Muon Catalyzed Fusion Published Patent Publication Sho 58-129395

地表付近では噴射媒体として大気を採り入れ、電気熱変換によって加熱し、噴射することによって、飛翔体が内部に貯蔵すべき噴射媒体質量を大きく削減することができる。  In the vicinity of the ground surface, the mass of the spray medium that the flying object should store inside can be greatly reduced by taking the atmosphere as the spray medium, heating it by electrothermal conversion, and spraying it.

地表から十分はなれた時点で、水素、アンモニア、ヒドラジンなどを噴射媒体として選び、電気熱変換によって3000K程度まで加熱することにより、排気速度〜10km/sと通常の化学燃料ロケットの排気速度の2倍以上の値が得られる。これによって衛星軌道投入に必要な噴射媒体の質量を大きく削減することができる。結果として、初期質量の約50%のペイロード(構造重量を含めて)を地球衛星軌道に投入できる。  When it is sufficiently far from the ground surface, hydrogen, ammonia, hydrazine, etc. are selected as the injection medium and heated to about 3000K by electrothermal conversion, resulting in an exhaust rate of 10km / s, twice the exhaust rate of ordinary chemical fuel rockets. The above values are obtained. As a result, the mass of the ejection medium required for launching the satellite orbit can be greatly reduced. As a result, a payload (including the structural weight) of about 50% of the initial mass can be put into the earth satellite orbit.

衛星軌道からさらに月軌道以遠に達すためには、アークジェット、電磁流体加速式のプラズマエンジンが利用できる。これらは必要な推力、噴射媒体の質量を勘案して利用される。核分裂ブランケットをそなえたミューオン触媒核融合炉の電気出力は非常に大きくできるので、短時間に加速を終了することができる。  In order to reach beyond the moon orbit from the satellite orbit, an arc jet or electromagnetic fluid acceleration type plasma engine can be used. These are used in consideration of the necessary thrust and the mass of the injection medium. The electrical output of a muon catalyzed fusion reactor with a fission blanket can be greatly increased, so that acceleration can be completed in a short time.

大気を外部から取り込み噴射媒体とするか,または飛翔体内部に貯蔵された噴射媒体を用いるか、あるいはその双方を噴射媒体とて利用し、それら噴射媒体を電気熱変換による加熱、または放電による加熱、または放電による加熱、プラズマ化とそれに続いた電磁流体加速を行って高速に加速、噴射し推進力とする飛翔体において、発電のための熱源として、重水素と三重水素のミューオン触媒核融合反応装置を備え、さらにミューオン触媒核融合反応装置は、重水素と三重水素の核融合反応によって発生する高速中性子を吸収し、核分裂反応によりエネルギー増幅するため、高速中性子によって核分裂をおこす核分裂物質からなるブランケットを備え、さらに核融合反応と核分裂反応で生じた熱を電気エネルギーに変換する発電装置を備え、さらに飛翔体の外部、地表あるいは衛星軌道上のミューオンビーム発生装置から供給されるミューオンビームを飛翔体内部のミューオン触媒核融合装置に導く磁気トラップを備え、さらに飛翔体が負に帯電することを防止するために電子、または負のイオンを放出する帯電防止装置を備えたことを特徴とした飛翔体を作成する。  Either the atmosphere is taken in from the outside as an ejection medium, or the ejection medium stored inside the flying object is used, or both are utilized as the ejection medium, and the ejection medium is heated by electrothermal conversion or heating by discharge. Or a muon-catalyzed fusion reaction of deuterium and tritium as a heat source for power generation in a flying object that accelerates and injects and propells at high speed by heating, plasmatizing and subsequent magnetohydrodynamic acceleration In addition, the muon catalyzed nuclear fusion reactor absorbs fast neutrons generated by deuterium and tritium fusion reactions and amplifies the energy by fission reaction, so that it is a blanket made of fission material that causes fission by fast neutrons. And a power generator that converts the heat generated by the fusion reaction and fission reaction into electrical energy In addition, it has a magnetic trap that guides the muon beam supplied from the muon beam generator outside the flying object, on the ground surface or satellite orbit to the muon catalytic fusion device inside the flying object, and prevents the flying object from being negatively charged. In order to achieve this, a flying object characterized by including an antistatic device that emits electrons or negative ions is produced.

地上および衛星軌道上にミューオンビーム発生装置が設けられる。ミューオンビーム発生装置は、陽子を数百MeVからGeV級に加速し、重水素、炭素などの軽元素からなるターゲットに照射し、発生する負のπ中間子の崩壊によって負のミューオンを得る。得られた負のミューオンは磁気レンズなどでコリメートされ、飛翔体の位置によってミューオンの運動エネルギーが調整される。通常は負のミューオンの運動エネルギーは100MeVから数GeV程度の間で調整される。  Muon beam generators are provided on the ground and in satellite orbit. The muon beam generator accelerates protons from several hundred MeV to GeV class, irradiates a target made of light elements such as deuterium and carbon, and obtains negative muons by decay of the generated negative pions. The obtained negative muon is collimated by a magnetic lens or the like, and the kinetic energy of the muon is adjusted according to the position of the flying object. Normally, the kinetic energy of negative muons is adjusted between 100 MeV and several GeV.

以下、図を用いて実施例を説明する。飛翔体には、重水素と三重水素の同一モル分率からなる混合物が高圧で充填されたミューオン触媒核融合炉の炉心となる高圧容器11が設置される。高圧容器11の周囲にウラン238を主成分としウラン235、またはプルトニウム239を数%添加した、高速中性子による発熱エネルギー増幅率40倍程度とした核分裂ブランケット12が設置される。核分裂ブランケット12はヘリウムで冷却される。核分裂ブランケットを出た高温のヘリウムは、発電装置13で熱エネルギーが電力に変換され、冷却されたヘリウムは核分裂ブランケット12の冷却に使われ、発電装置13と核分裂ブランケットの間でヘリウムが循環する。発電装置13には冷却装置14が接続される。核分裂ブランケット12と発電装置13の間の矢印はヘリウムの循環を、発電装置13と冷却装置14の間の矢印は冷却剤の循環を表す。発電装置13はスターリングエンジン式、ガスタービン式などが用いられる。  Embodiments will be described below with reference to the drawings. The flying object is provided with a high-pressure vessel 11 serving as a core of a muon catalytic fusion reactor filled with a mixture having the same molar fraction of deuterium and tritium at high pressure. Around the high-pressure vessel 11, a fission blanket 12 having uranium 238 as a main component and uranium 235 or plutonium 239 added thereto and having a heating energy amplification factor of about 40 times by fast neutrons is installed. The fission blanket 12 is cooled with helium. The high-temperature helium that has exited the fission blanket is converted into electric power by the power generation device 13, and the cooled helium is used to cool the fission blanket 12. The helium circulates between the power generation device 13 and the fission blanket. A cooling device 14 is connected to the power generation device 13. An arrow between the fission blanket 12 and the power generation device 13 indicates helium circulation, and an arrow between the power generation device 13 and the cooling device 14 indicates coolant circulation. As the power generation device 13, a Stirling engine type, a gas turbine type, or the like is used.

液体ヘリウムによって冷却された超電導磁石からなるミラー型磁気トラップ15が設置される。この磁気トラップによって外部のミューオンビーム21をミューオン触媒核融合炉の炉心となる高圧容器11に導く。  A mirror type magnetic trap 15 made of a superconducting magnet cooled by liquid helium is installed. By this magnetic trap, the external muon beam 21 is guided to the high-pressure vessel 11 serving as the core of the muon catalytic fusion reactor.

地表近くの大気密度が高い領域では、吸気口32からコンプレッサー31を用いて大気を採り入れ、電気熱変換装置を備えたレジストジェットエンジン33に送り込み、大気を噴射媒体として推力を得る。これによって飛翔体を速度1km/s程度まで加速する。発電装置13とレジストジェットエンジン33の間の線は電力の供給を意味する。  In an area where the atmospheric density is high near the ground surface, the atmosphere is taken in from the air inlet 32 using the compressor 31 and sent to a resist jet engine 33 equipped with an electrothermal converter, and thrust is obtained using the atmosphere as an injection medium. As a result, the flying object is accelerated to a speed of about 1 km / s. A line between the power generation device 13 and the resist jet engine 33 means supply of electric power.

外部の大気密度が薄くなり、十分な噴射媒体量が得られなくなった時点で、飛翔体内部の貯蔵容器34に蓄えられているアンモニアをポンプ35を用いて噴射媒体としてレジストジェットエンジン33に送り込む。3000K程度まで加熱することによりアンモニアおよびアンモニアの分解生成物の排気速度〜10km/sが得られる。これによって速度〜8km/sまで加速する。  When the external air density becomes thin and a sufficient amount of the injection medium cannot be obtained, ammonia stored in the storage container 34 inside the flying object is sent to the resist jet engine 33 as an injection medium using the pump 35. By heating to about 3000 K, the exhaust speed of ammonia and ammonia decomposition products can be 10 to 10 km / s. This accelerates to a speed of ~ 8 km / s.

このとき噴射終了後の最終質量は構造重量を含めて初期質量の約50%になる。現在用いられている化学燃料式ロケットを遥かに上回る衛星軌道投入力を得ることができる。    At this time, the final mass after completion of the injection is about 50% of the initial mass including the structural weight. Satellite orbital inputs far exceeding the currently used chemical fuel rockets can be obtained.

負のミューオンは崩壊して電子とニュートリノに変換するので、飛翔体の帯電を防ぐために帯電防止装置41が設置され、電子または負のイオンを放出することによって、飛翔体の電荷的中性を保つ。高圧容器11と帯電防止装置41の間の矢印は電子の流れを表し、帯電防止装置41から出る矢印は電子、または負イオンの放出を表す。  Since the negative muon decays and converts to electrons and neutrinos, an antistatic device 41 is installed to prevent the flying object from being charged, and the charge neutrality of the flying object is maintained by emitting electrons or negative ions. . The arrow between the high-pressure vessel 11 and the antistatic device 41 represents the flow of electrons, and the arrow exiting from the antistatic device 41 represents the emission of electrons or negative ions.

本発明の概念図である。  It is a conceptual diagram of this invention.

符号の説明Explanation of symbols

11 ミューオン触媒核融合の炉心となる高圧容器
12 核分裂ブランケット
13 発電装置
14 冷却装置
15 ミラー型磁気トラップ
21 ミューオンビーム
31 コンプレッサー
32 吸気口
33 レジストジェットエンジン
34 アンモニア貯蔵容器
35 ポンプ
41 帯電防止装置
DESCRIPTION OF SYMBOLS 11 High pressure vessel used as the core of muon catalyzed fusion 12 Nuclear fission blanket 13 Power generation device 14 Cooling device 15 Mirror type magnetic trap 21 Muon beam 31 Compressor 32 Inlet port 33 Resist jet engine 34 Ammonia storage vessel 35 Pump 41 Antistatic device

Claims (1)

大気を外部から取り込み噴射媒体とするか,または飛翔体内部に貯蔵された噴射媒体を用いるか、あるいはその双方を噴射媒体とて利用し、それら噴射媒体を電気熱変換による加熱、または放電による加熱、または放電による加熱、プラズマ化とそれに続いた電磁流体加速を行って高速に加速、噴射し推進力とする飛翔体において、発電のための熱源として、重水素と三重水素のミューオン触媒核融合反応装置を備え、さらにミューオン触媒核融合反応装置は、重水素と三重水素の核融合反応によって発生する高速中性子を吸収し、核分裂反応によりエネルギー増幅するため、高速中性子によって核分裂をおこす核分裂物質からなるブランケットを備え、さらに核融合反応と核分裂反応で生じた熱を電気エネルギーに変換する発電装置を備え、さらに飛翔体の外部、地表あるいは衛星軌道上のミューオンビーム発生装置から供給されるミューオンビームを飛翔体内部のミューオン触媒核融合装置に導く磁気トラップを備え、さらに飛翔体が負に帯電することを防止するために電子、または負のイオンを放出する帯電防止装置を備えたことを特徴とした飛翔体。  Either the atmosphere is taken in from the outside as an ejection medium, or the ejection medium stored inside the flying object is used, or both are utilized as the ejection medium, and the ejection medium is heated by electrothermal conversion or heating by discharge. Or a muon-catalyzed fusion reaction of deuterium and tritium as a heat source for power generation in a flying object that accelerates and injects and propells at high speed by heating, plasmatizing and subsequent magnetohydrodynamic acceleration In addition, the muon catalyzed nuclear fusion reactor absorbs fast neutrons generated by deuterium and tritium fusion reactions and amplifies the energy by fission reaction, so that it is a blanket made of fission material that causes fission by fast neutrons. And a power generator that converts the heat generated by the fusion reaction and fission reaction into electrical energy In addition, it has a magnetic trap that guides the muon beam supplied from the muon beam generator outside the flying object, on the ground surface or satellite orbit to the muon catalytic fusion device inside the flying object, and prevents the flying object from being negatively charged. A flying object comprising an antistatic device that emits electrons or negative ions in order to achieve this.
JP2007292567A 2007-10-15 2007-10-15 Missile having muon-catalyzed fusion reactor as power source Pending JP2009096441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292567A JP2009096441A (en) 2007-10-15 2007-10-15 Missile having muon-catalyzed fusion reactor as power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292567A JP2009096441A (en) 2007-10-15 2007-10-15 Missile having muon-catalyzed fusion reactor as power source

Publications (1)

Publication Number Publication Date
JP2009096441A true JP2009096441A (en) 2009-05-07

Family

ID=40699831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292567A Pending JP2009096441A (en) 2007-10-15 2007-10-15 Missile having muon-catalyzed fusion reactor as power source

Country Status (1)

Country Link
JP (1) JP2009096441A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054190A3 (en) * 2011-10-11 2013-06-06 Arion Technologia Brasil-Gestao De Ativos S/A Apparatus and method for generation of electricity from muons and muonic electromagnetic generator
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
CN104952491A (en) * 2015-06-24 2015-09-30 广州同合能源科技有限公司 Cold fusion reaction tube
JP2016516172A (en) * 2013-03-15 2016-06-02 パルマー ラボ,エルエルシー Launch transportation means and system and its economical and efficient launch method
WO2016093324A1 (en) * 2014-12-11 2016-06-16 学校法人日本大学 Muon-plasmoid compound nuclear fusion reactor
WO2019112872A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid redirection facilitated by cosmic ray and muon-catalyzed fusion
WO2019112874A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid mining systems facilitated by cosmic ray and muon-catalyzed fusion
WO2019112873A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid redirection and soft landing facilitated by cosmic ray and muon-catalyzed fusion
US10669046B2 (en) 2017-03-02 2020-06-02 8 Rivers Capital, Llc Systems and methods for improving efficiency of electroantimagnetic launchers
US11667405B2 (en) 2016-12-13 2023-06-06 8 Rivers Capital, Llc Vehicle launch system and method
WO2023162286A1 (en) * 2022-02-26 2023-08-31 学校法人中部大学 Power generation system and power generation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054190A3 (en) * 2011-10-11 2013-06-06 Arion Technologia Brasil-Gestao De Ativos S/A Apparatus and method for generation of electricity from muons and muonic electromagnetic generator
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
US10562648B2 (en) 2013-03-15 2020-02-18 8 Rivers Capital, Llc Launch vehicle and system and method for economically efficient launch thereof
JP2016516172A (en) * 2013-03-15 2016-06-02 パルマー ラボ,エルエルシー Launch transportation means and system and its economical and efficient launch method
US10202209B2 (en) 2013-03-15 2019-02-12 8 Rivers Capital, Llc Launch vehicle and system and method for economically efficient launch thereof
WO2016093324A1 (en) * 2014-12-11 2016-06-16 学校法人日本大学 Muon-plasmoid compound nuclear fusion reactor
CN104952491A (en) * 2015-06-24 2015-09-30 广州同合能源科技有限公司 Cold fusion reaction tube
US11667405B2 (en) 2016-12-13 2023-06-06 8 Rivers Capital, Llc Vehicle launch system and method
US12168528B2 (en) 2016-12-13 2024-12-17 8 Rivers Capital, Llc Vehicle launch system and method
US10669046B2 (en) 2017-03-02 2020-06-02 8 Rivers Capital, Llc Systems and methods for improving efficiency of electroantimagnetic launchers
WO2019112872A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid redirection facilitated by cosmic ray and muon-catalyzed fusion
WO2019112874A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid mining systems facilitated by cosmic ray and muon-catalyzed fusion
WO2019112873A1 (en) * 2017-12-05 2019-06-13 Jerome Drexler Asteroid redirection and soft landing facilitated by cosmic ray and muon-catalyzed fusion
WO2023162286A1 (en) * 2022-02-26 2023-08-31 学校法人中部大学 Power generation system and power generation method

Similar Documents

Publication Publication Date Title
JP2009096441A (en) Missile having muon-catalyzed fusion reactor as power source
US9822769B2 (en) Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine
Cassibry et al. Case and development path for fusion propulsion
US9346565B1 (en) Nuclear thermal propulsion rocket engine
US9180985B1 (en) Nuclear thermal propulsion rocket engine
Razin et al. A direct fusion drive for rocket propulsion
Paluszek et al. Direct fusion drive for a human Mars orbital mission
CN119811705A (en) A laser fusion target pellet and fusion power generation and propulsion system based on deuterium-helium fuel
US10414520B1 (en) Fuel retention reactor for nuclear rocket engine
Niu et al. Proposal of power plant by light ion beam fusion
Turchi Fusion Propulsion: Field of the Future
US20190315498A1 (en) Nuclear thermal propulsion rocket engine
Semyonov Relativistic rocket: Dream and reality
US20180106219A1 (en) Propulsion system
US10414521B1 (en) Nuclear rocket engine with pebble fuel source
WO2023164149A1 (en) Radioisotope power system for vehicle
Deutsch et al. Fusion reactions and matter–antimatter annihilation for space propulsion
Smith et al. Multimegawatt NEP with vapor core reactor MHD
RU2113617C1 (en) Nuclear rocket engine
Pancotti et al. Mission design architecture for the fusion driven rocket
RU2140014C1 (en) Aviaspace engines for space aircraft
Swanson et al. Lunar cargo tug using direct fusion drive
La Luna et al. Nuclear propulsion technology for satellite applications: historical overview and current developments
Chapman Advanced fusion reactors for space propulsion and power systems
Genta Propulsion for Interplanetary Journeys