[go: up one dir, main page]

JP2009085484A - Outdoor unit for air conditioner - Google Patents

Outdoor unit for air conditioner Download PDF

Info

Publication number
JP2009085484A
JP2009085484A JP2007254423A JP2007254423A JP2009085484A JP 2009085484 A JP2009085484 A JP 2009085484A JP 2007254423 A JP2007254423 A JP 2007254423A JP 2007254423 A JP2007254423 A JP 2007254423A JP 2009085484 A JP2009085484 A JP 2009085484A
Authority
JP
Japan
Prior art keywords
heat exchanger
air
refrigerant
outdoor unit
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007254423A
Other languages
Japanese (ja)
Inventor
Noriyuki Okuda
則之 奥田
Takahiro Yamaguchi
貴弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007254423A priority Critical patent/JP2009085484A/en
Publication of JP2009085484A publication Critical patent/JP2009085484A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】空気調和機の暖房運転時に冷凍サイクル自体を逆転させることなく、ノンストップでの暖房運転を実現することができるようにする。
【解決手段】本願発明は、そのために、暖房時に蒸発器となる室外熱交換器を冷媒分流パスを基準として複数の熱交換器部分に分け、それらの各々に対応して圧縮機からの吐出ガスをバイパスさせるバイパス回路とバイパス状態を制御する電磁開閉弁を設け、空気調和機の暖房運転時に冷凍サイクル自体を逆転させることなく上記各熱交換器部毎に交互にデフロスト運転を行うことにより、ノンストップでの暖房運転を実現することができるようにした。
【選択図】 図3
Non-stop heating operation can be realized without reversing the refrigeration cycle itself during heating operation of an air conditioner.
For this purpose, the present invention divides an outdoor heat exchanger, which becomes an evaporator during heating, into a plurality of heat exchanger parts based on a refrigerant diversion path, and discharge gas from a compressor corresponding to each of them. By providing a bypass circuit for bypassing and an electromagnetic on-off valve for controlling the bypass state, by performing defrost operation alternately for each heat exchanger section without reversing the refrigeration cycle itself during heating operation of the air conditioner, It was made possible to realize heating operation at the stop.
[Selection] Figure 3

Description

本願発明は、空気調和機用室外機の熱交換器部分の構成に関するものである。   The present invention relates to a configuration of a heat exchanger part of an outdoor unit for an air conditioner.

暖房運転時における空気調和機用室外機の蒸発器は、その伝熱面が零度以下になると、伝熱面に空気中の水分が凝縮・氷結して霜が生じる。このような霜は、厚みが増すことにより空気から冷媒への伝熱を阻害する。また、空気の流路が狭くなり風量が低下して霜の成長をさらに促進させる。霜の放置は熱交換量の減少、蒸発圧力の異常な低下、さらには圧縮機への冷媒液の戻りを引き起こし、冷凍機の性能低下や故障の原因となる。   When an evaporator of an outdoor unit for an air conditioner during heating operation has a heat transfer surface of zero degrees or less, moisture in the air condenses and freezes on the heat transfer surface, resulting in frost. Such frost hinders heat transfer from the air to the refrigerant by increasing the thickness. In addition, the air flow path becomes narrower and the air volume is reduced, further promoting the growth of frost. If the frost is left, the amount of heat exchange decreases, the evaporation pressure drops abnormally, and the refrigerant liquid returns to the compressor.

そこで、一般に蒸発圧力の低下の検出やタイムスイッチなどにより、ある程度霜が成長したところで、例えば冷媒サイクルを逆にするなどの方法で除霜運転を行なっている(例えば冷媒サイクルを可逆構成にした従来例として、特許文献1を参照)。   Therefore, in general, when frost grows to some extent by detecting a decrease in evaporation pressure, a time switch, etc., a defrosting operation is performed, for example, by reversing the refrigerant cycle (for example, a conventional reversible refrigerant cycle configuration). As an example, see Patent Document 1).

そのような構成の空気調和機用室外機の構成およびその冷凍回路部分の構成の一例を、図7〜図11に示す。   An example of the configuration of the outdoor unit for an air conditioner having such a configuration and the configuration of the refrigeration circuit portion is shown in FIGS.

先ず図7〜図9中、符号1は室外機であり、該室外機1は、上下2つの位置に分割され、それぞれ個別にグリル構造のファンガードによりカバーされた第1,第2の空気吹出口13a,13bを有する前面板1a、上下方向に延びた空気吸込口3を有する背面板1b、背面板1bの一部と共に圧縮機8等が設けられた機械室Bを覆う断面鉤状の右側面板1c、上下方向に延びた空気吸込口3を有する左側面板1d、天板部を構成する上面板1e、床面部を構成する底面板1f、送風通路A側と機械室B側とを仕切る仕切板1g、送風通路A側と第1,第2の空気吹出口13a,13b側とを仕切ると共に第1,第2の空気吹出口13a,13bに対応した位置に送風機設置用のベルマウス6a,6bを形成している仕切板16等よりなる本体ケーシングを備えている。この本体ケーシングは、全体として例えば前後方向に薄く、左右方向の幅よりも上下方向の長さが長い箱型形状のものに構成されている。   7 to 9, reference numeral 1 denotes an outdoor unit. The outdoor unit 1 is divided into two upper and lower positions, which are individually covered by a fan guard having a grill structure. Front side plate 1a having outlets 13a, 13b, rear side plate 1b having an air suction port 3 extending in the vertical direction, right side having a bowl-like cross section covering machine room B in which compressor 8 and the like are provided together with a part of back plate 1b Face plate 1c, left side plate 1d having an air suction port 3 extending in the vertical direction, top plate 1e constituting the top plate, bottom plate 1f constituting the floor, partition for separating the air passage A side and the machine room B side The bell mouth 6a for installing the blower at the position corresponding to the first and second air outlets 13a and 13b while partitioning the plate 1g, the air passage A side and the first and second air outlets 13a and 13b side Main body comprising partition plate 16 and the like forming 6b And it includes a pacing. The main body casing as a whole is configured, for example, in a box shape that is thin in the front-rear direction and longer in the vertical direction than in the left-right direction.

そして、その背面板1bおよび左側面板1dには、上述のように上記左右の側面板1c,1d間を上記仕切板1eによって画成された機械室B部分を除くパネル面の上端側から下端側に亘って上下方向に延びて空気吸込口3が設けられ、該空気吸込口3の内側に形成された上記送風通路Aの最上流部には、上下方向に長い平面視鉤状の室外熱交換器4が、当該空気吸込口3の開口面に対面するように設けられている。   The back plate 1b and the left side plate 1d are arranged from the upper end side to the lower end side of the panel surface excluding the machine room B portion defined by the partition plate 1e between the left and right side plates 1c and 1d as described above. An air suction port 3 is provided extending in the vertical direction, and an outdoor heat exchange having a bowl shape in plan view that is long in the vertical direction is provided in the uppermost stream portion of the air passage A formed inside the air suction port 3. The container 4 is provided so as to face the opening surface of the air suction port 3.

上記送風通路Aと第1,第2の空気吹出口13a,13bとを仕切る仕切板16は、上記空気吸込口3および上記室外熱交換器4の下流側に位置し、かつ上記第1,第2の空気吹出口13a,13bを有する前面板1aに隣接する状態で設けられており、その第1,第2の空気吹出口13a,13bに対応する上下各部分に位置して第1,第2の送風機(例えばプロペラファンよりなる)5a,5bを設けるため上記第1,第2のベルマウス6a,6bが設けられており、該第1,第2のベルマウス6a,6b内に遊嵌される形で上記第1,第2の送風機5a,5bの羽根車が第1,第2のファンモータ7a,7bによって回転駆動されるように設けられている。   A partition plate 16 that partitions the air passage A from the first and second air outlets 13a and 13b is located downstream of the air inlet 3 and the outdoor heat exchanger 4, and the first and first air outlets 13a and 13b. Is provided adjacent to the front plate 1a having two air outlets 13a and 13b, and is located at the upper and lower portions corresponding to the first and second air outlets 13a and 13b. The first and second bell mouths 6a and 6b are provided to provide two blowers (for example, propeller fans) 5a and 5b, and are loosely fitted in the first and second bell mouths 6a and 6b. In this manner, the impellers of the first and second blowers 5a and 5b are provided so as to be rotationally driven by the first and second fan motors 7a and 7b.

そして、第1,第2の送風機5a,5bが回転すると、上記背面板1bおよび左側面板1dにそれぞれ形成されている空気吸込口3,3から吸込んだ空気を上記室外熱交換器4を介して第1,第2の空気吹出口13a,13bから吹出し、室外熱交換器4と空気との間での熱交換を行わせる。   When the first and second blowers 5a and 5b are rotated, the air sucked from the air suction ports 3 and 3 respectively formed in the back plate 1b and the left side plate 1d is passed through the outdoor heat exchanger 4. It blows out from the 1st, 2nd air blower outlets 13a and 13b, and performs heat exchange between the outdoor heat exchanger 4 and air.

次に図10は、同空気調和機用室外機1の逆サイクルによるデフロスト運転を行う冷凍回路の構成を示している。   Next, FIG. 10 has shown the structure of the freezing circuit which performs the defrost driving | operation by the reverse cycle of the outdoor unit 1 for the air conditioner.

すなわち、この空気調和機用室外機1は、例えばインバータ制御装置により能力制御が可能な圧縮機15、気液分離のためのアキュームレータ16、油成分離用の油分離器17、少なくとも上下2つの冷媒分流パス(分流回路)を備えたクロスフィン熱交換器よりなる上述の室外熱交換器4を備え、これらを4方切替弁18を介して冷媒配管11a,11b,11cで図10のように室内機2側の室内熱交換器14と可逆的に接続することによって、室内熱交換器14による室内の冷房および暖房が可能な冷凍回路(冷凍サイクル)を構成している。   That is, the outdoor unit 1 for an air conditioner includes, for example, a compressor 15 whose capacity can be controlled by an inverter control device, an accumulator 16 for gas-liquid separation, an oil separator 17 for oil synthesis separation, and at least two upper and lower refrigerants. The above-described outdoor heat exchanger 4 composed of a cross fin heat exchanger having a diversion path (diversion circuit) is provided, and these are connected to the inside of the refrigerant pipes 11a, 11b, and 11c via the four-way switching valve 18 as shown in FIG. By reversibly connecting to the indoor heat exchanger 14 on the side of the machine 2, a refrigeration circuit (refrigeration cycle) capable of cooling and heating the room by the indoor heat exchanger 14 is configured.

この実施の形態の場合、上述した室外熱交換器4は、さらに詳しく説明すると、例えば図11に示すように、上下方向に長い2パス構造のクロスフィンコイル型熱交換器よりなり、冷房運転時、上記圧縮機15から冷媒配管11bを介して供給される圧縮冷媒を2パス構造の冷媒分配ヘッダ41を介して第1,第2の上下各パス部分に流して各パス部分に対応して設けられた上述の第1,第2の送風機5a,5bにより供給される外部空気と熱交換(放熱)させた後、対応する第1,第2の冷媒分流管42a,42bを介して冷媒配管11cに合流され、絞り装置である1つの電子膨張弁EVを通して室内機2側室内熱交換器(蒸発器)14に供給されて蒸発せしめられ、さらに4方切替弁18、アキュムレータ16を介して圧縮機15に戻されるようになっている。   In the case of this embodiment, the outdoor heat exchanger 4 described above will be described in more detail. For example, as shown in FIG. 11, the outdoor heat exchanger 4 is composed of a cross-fin coil heat exchanger having a two-pass structure that is long in the vertical direction. The compressed refrigerant supplied from the compressor 15 via the refrigerant pipe 11b flows through the first and second upper and lower path portions via the two-pass structure refrigerant distribution header 41 and is provided corresponding to each path portion. After exchanging heat (dissipating heat) with the external air supplied by the above-described first and second blowers 5a and 5b, the refrigerant pipe 11c via the corresponding first and second refrigerant distribution pipes 42a and 42b. And is supplied to the indoor unit 2 side indoor heat exchanger (evaporator) 14 through one electronic expansion valve EV which is a throttle device to be evaporated, and further through the four-way switching valve 18 and the accumulator 16, the compressor. Return to 15 It has become as to be.

そして、同構成の場合、圧縮機15は、その時の負荷状態に応じて、その能力がインバータ制御されるようになっているとともに、上記室外熱交換器4のパス中間部およびパス出口側に各々温度センサT4,T5が設けられており、空調負荷の変動に対して的確な制御を達成できるように、当該各部分の冷媒温度を検出し、冷媒圧力を電子膨張弁EVの開度を細かく制御して、適切に冷媒圧力を減圧調節するようになっている。 In the case of the same configuration, the compressor 15 is configured such that its capacity is inverter-controlled according to the load state at that time, and at the intermediate part of the path and the path outlet side of the outdoor heat exchanger 4 respectively. Temperature sensors T 4 and T 5 are provided, so that accurate control can be achieved with respect to fluctuations in the air conditioning load, the refrigerant temperature of each part is detected, and the refrigerant pressure is adjusted to the degree of opening of the electronic expansion valve EV. The refrigerant pressure is appropriately adjusted to be reduced by fine control.

そして、今例えば上記4方切替弁18が図示実践の状態で暖房運転が行われており、室外熱交換器4に着霜が生じたとすると、同4方切替弁18を図示破線の状態に切り替える。すると、蒸発器として機能としていた室外熱交換器4には圧縮機15からの高温の吐出ガスが供給され、それによって除霜が行われる。   And now, for example, if the four-way switching valve 18 is in the state of practice shown in the figure and the outdoor heat exchanger 4 is frosted, the four-way switching valve 18 is switched to the state of the broken line in the figure. . Then, the high-temperature discharge gas from the compressor 15 is supplied to the outdoor heat exchanger 4 functioning as an evaporator, and defrosting is thereby performed.

なお、図10中の符号T1は圧縮機15の吸入冷媒の温度検出用センサ、T2は圧縮機15からの吐出冷媒の温度検出用センサ、T3は外気温検出センサである。 In FIG. 10, reference numeral T 1 is a sensor for detecting the temperature of the refrigerant sucked by the compressor 15, T 2 is a sensor for detecting the temperature of the refrigerant discharged from the compressor 15, and T 3 is an outside air temperature detecting sensor.

特開平6−341741号公報(明細書3〜4頁の説明および図1の記載)Japanese Patent Application Laid-Open No. 6-341741 (Descriptions on pages 3 and 4 and description of FIG. 1)

しかし、このような単一の熱交換器14に対する冷媒回路のサイクル方向変更による従来のデフロスト方式では、その除霜運転時間の間は暖房性能および室内の快適性が失われる欠点があり、また一定時間経過すると再び着霜するので定期的な除霜運転が必要となり、そのつど暖房性能および室内の快適性が失われる。   However, in the conventional defrost method by changing the cycle direction of the refrigerant circuit with respect to such a single heat exchanger 14, there is a disadvantage that the heating performance and the indoor comfort are lost during the defrosting operation time. When the time elapses, the frost forms again, so that a regular defrosting operation is required, and the heating performance and the indoor comfort are lost each time.

本願発明は、このような問題を解決するためになされたもので、暖房時に蒸発器となる室外熱交換器を冷媒分流パスを基準として複数の熱交換器部分に分け、それらの各々に対応して圧縮機からの吐出ガスをバイパスさせるバイパス回路とバイパス状態を制御する電磁開閉弁を設け、空気調和機の暖房運転時に冷凍サイクル自体を逆転させることなく、上記各熱交換器部毎に交互にデフロスト運転を行うことにより、ノンストップでの暖房運転を実現することができるようにした空気調和機を提供することを目的とするものである。   The present invention has been made to solve such a problem, and an outdoor heat exchanger that becomes an evaporator during heating is divided into a plurality of heat exchanger parts based on a refrigerant diversion path, and each of them corresponds to each of them. By providing a bypass circuit that bypasses the discharge gas from the compressor and an electromagnetic on-off valve that controls the bypass state, the air conditioner is operated alternately for each heat exchanger section without reversing the refrigeration cycle itself during heating operation. An object of the present invention is to provide an air conditioner capable of realizing non-stop heating operation by performing defrost operation.

本願発明は、上記の目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention is configured with the following problem solving means.

(1) 請求項1の発明
この発明は、本体ケーシングと、該本体ケーシングの一端に設けられた空気吸込口と、上記本体ケーシングの他端に設けられた空気吹出口と、上記本体ケーシング内の上記空気吸込口と上記空気吹出口との間に位置して設けられた送風通路と、上記送風通路の上記空気吸込口側に位置して設けられた蒸発用熱交換器と、上記蒸発用熱交換器と上記空気吹出口との間に位置して設けられた送風機と、上記蒸発用熱交換器を含む冷凍回路に冷媒を流す圧縮機とを備えてなる冷凍装置において、上記蒸発用熱交換器を冷媒分流用のパスを基準として少なくとも2つの熱交換器部分に分割し、それらの各々に対応して圧縮機からの吐出ガスをバイパスさせるバイパス回路と該バイパス回路のバイパス状態を制御する電磁開閉弁を設け、上記冷凍回路の冷凍サイクルを逆転させることなく上記分割された各熱交換器部分毎に交互にデフロスト運転を行うようにしたことを特徴としている。
(1) The invention of claim 1 The present invention relates to a main body casing, an air suction port provided at one end of the main body casing, an air outlet provided at the other end of the main body casing, An air passage provided between the air inlet and the air outlet; an evaporation heat exchanger provided on the air inlet side of the air passage; and the evaporation heat In the refrigerating apparatus comprising: a blower provided between the exchanger and the air outlet; and a compressor for flowing a refrigerant through the refrigerating circuit including the evaporating heat exchanger, the evaporating heat exchange A bypass circuit that divides the compressor into at least two heat exchanger parts based on the refrigerant distribution path and bypasses the discharge gas from the compressor corresponding to each of them, and an electromagnetic that controls the bypass state of the bypass circuit On-off valve Provided, it is characterized in that to perform the defrosting operation alternately for each heat exchanger section which is the divided without reversing the refrigeration cycle of the refrigeration circuit.

このような構成によると、蒸発用熱交換器全体の冷凍サイクルを逆転させる場合と異なって、分割された各熱交換器部毎に交互にデフロスト運転を行ない、デフロスト側熱交換器に対応した送風機のみを停止させることにより、一方側熱交換器部がデフロスト状態でも、他方側の熱交換器部分で冷凍機能を維持させることができるので、結局ノンストップでの室内機暖房運転を実現することができる。   According to such a configuration, unlike the case of reversing the refrigeration cycle of the entire evaporation heat exchanger, the defrost operation is performed alternately for each divided heat exchanger section, and the blower corresponding to the defrost side heat exchanger By stopping only the one side, even if the one side heat exchanger part is in the defrosted state, the refrigeration function can be maintained in the other side heat exchanger part, so that it is possible to realize non-stop indoor unit heating operation after all it can.

そのため、デフロスト時にも、空気調和機の室内機の暖房機能を維持することが可能となる。   Therefore, the heating function of the indoor unit of the air conditioner can be maintained even during defrosting.

(2) 請求項2の発明
この発明は、上記請求項1の発明の構成において、上記送風通路は、上記分割された各熱交換器の各々に対応して相互に仕切板で仕切られていることを特徴としている。
(2) Invention of Claim 2 This invention is the structure of the invention of said Claim 1, The said ventilation path is mutually partitioned off with the partition plate corresponding to each of each said divided | segmented heat exchanger. It is characterized by that.

このような構成によると、上記デフロスト時に、他方側運転状態にある熱交換器部側の送風機が当該デフロスト側熱交換器を通した空気を吸引するのを確実に回避することができ、吸気気流の全てを冷房運転状態にある熱交換器部分を通したものとすることができる。   According to such a configuration, it is possible to reliably prevent the air blower on the heat exchanger section side in the other side operation state from sucking the air that has passed through the defrost side heat exchanger at the time of the defrosting. All through the heat exchanger part in the cooling operation state.

その結果、同熱交換器部分の蒸発効率が向上し、冷凍性能が向上する。   As a result, the evaporation efficiency of the heat exchanger portion is improved and the refrigeration performance is improved.

(3) 請求項3の発明
この発明は、上記請求項1又は2の発明の構成において、上記蒸発用熱交換器が上下に長く形成され、上記分割された熱交換器の上部側熱交換器の下部にはドレンパンが設けられていることを特徴としている。
(3) Invention of Claim 3 This invention is the structure of the invention of the said Claim 1 or 2, The said heat exchanger for evaporation is long formed up and down, The upper side heat exchanger of the said divided | segmented heat exchanger It is characterized in that a drain pan is provided at the lower part of.

このような構成によると、上部側熱交換器部分がデフロスト状態となった時の融解水がドレンパンで回収され、下部側熱交換器部分に流れ落ちることが回避され、下部側熱交換器部分の空気との良好な熱交換性能が維持される。   According to such a configuration, the molten water when the upper side heat exchanger part becomes defrosted is recovered by the drain pan, and is prevented from flowing down to the lower side heat exchanger part, and the air in the lower side heat exchanger part is avoided. And good heat exchange performance is maintained.

(4) 請求項4の発明
この発明は、上記請求項1,2又は3の発明の構成において、上記送風機は上記分割された各熱交換器に対応して複数台設置され、該複数台の各送風機は、それぞれ個別に回転数が可変制御されるようになっていることを特徴としている。
(4) Invention of Claim 4 This invention is the structure of the invention of Claim 1, 2 or 3, wherein a plurality of the blowers are installed corresponding to each of the divided heat exchangers. Each blower is characterized in that the rotational speed is individually variably controlled.

このような構成によると、デフロスト時、デフロスト状態にない熱交換器部側の送風機の回転数をアップさせて蒸発能力をアップさせるなど、個別に熱交換性能を向上させることができる。   According to such a configuration, at the time of defrosting, the heat exchange performance can be individually improved, for example, by increasing the rotation speed of the blower on the side of the heat exchanger that is not in the defrost state to increase the evaporation capacity.

以上の結果、本願発明によると、室内機側の暖房機能を停止させることなく、効率良くデフロスト運転を可能にすることができる。   As a result, according to the present invention, it is possible to efficiently perform the defrost operation without stopping the heating function on the indoor unit side.

(最良の実施の形態1)
図1〜図4は、本願発明の最良の実施の形態1に係る空気調和機用室外機の構成を示している。
(Best Embodiment 1)
1 to 4 show the configuration of an air conditioner outdoor unit according to the first embodiment of the present invention.

先ず図1および図2中、符号1は室外機であり、該室外機1は、上下2つの位置に分割され、それぞれ個別にグリル構造のファンガードによりカバーされた第1,第2の空気吹出口13a,13bを有する前面板1a、上下2つの位置に分割された第1,第2の空気吸込口3a,3bを有する背面板1b、背面板1bの一部と共に圧縮機8等が設けられた機械室Bを覆う断面鉤状の右側面板1c、上下2つの位置に分割された第1,第2の空気吸込口3a,3bを有する左側面板1d、天板部を構成する上面板1e、床面部を構成する底面板1f、送風通路A側と機械室B側とを仕切る仕切板1g、送風通路A側と第1,第2の空気吹出口13a,13b側とを仕切ると共に第1,第2の空気吹出口13a,13bに対応した位置に送風機設置用のベルマウス6a,6bを形成している仕切板16等よりなる本体ケーシングを備えている。この本体ケーシングは、全体として例えば前後方向に薄く、左右方向の幅よりも上下方向の長さが長い箱型形状のものに構成されている。   First, in FIG. 1 and FIG. 2, reference numeral 1 denotes an outdoor unit. The outdoor unit 1 is divided into two upper and lower positions, and each is individually covered by a fan guard having a grill structure. A front plate 1a having outlets 13a and 13b, a rear plate 1b having first and second air suction ports 3a and 3b divided into two upper and lower positions, a compressor 8 and the like are provided together with a part of the rear plate 1b. A right side plate 1c having a bowl-shaped cross-section covering the machine room B, a left side plate 1d having first and second air suction ports 3a and 3b divided into two upper and lower positions, an upper surface plate 1e constituting a top plate part, The bottom plate 1f constituting the floor portion, the partition plate 1g that partitions the air passage A side and the machine room B side, the air passage A side and the first and second air outlets 13a, 13b side and the first and A blower is installed at a position corresponding to the second air outlets 13a and 13b. Bell mouth 6a of use, and includes a main body casing formed of the partition plate 16, etc. forming the 6b. The main body casing as a whole is configured, for example, in a box shape that is thin in the front-rear direction and longer in the vertical direction than in the left-right direction.

そして、その背面板1bおよび左側面板1dには、上述のように上記左右の側面板1c,1d間を上記仕切板1eによって画成された機械室B部分を除くパネル面の上端側から下端側に亘って上下方向に延びて第1,第2の空気吸込口a,3bが設けられ、該第1,第2の空気吸込口3a,3bの内側に形成された上記送風通路Aの最上流部には、上下方向に長い熱交換器を上下2段の熱交換器部4a,4bに分割した平面視鉤状の室外熱交換器4が、当該第1,第2の空気吸込口3a,3bの各開口面に対面するように設けられている。   The back plate 1b and the left side plate 1d are arranged from the upper end side to the lower end side of the panel surface excluding the machine room B portion defined by the partition plate 1e between the left and right side plates 1c and 1d as described above. The first and second air suction ports a and 3b are provided extending in the vertical direction, and the uppermost stream of the air passage A formed inside the first and second air suction ports 3a and 3b. The section includes an outdoor heat exchanger 4 in a plan view obtained by dividing a heat exchanger that is long in the vertical direction into two upper and lower heat exchanger sections 4a and 4b, and the first and second air suction ports 3a, It is provided so as to face each opening surface of 3b.

上記送風通路Aと第1,第2の空気吹出口13a,13bとを仕切る仕切板16は、上記空気吸込口3および上記室外熱交換器4の下流側に位置し、かつ上記第1,第2の空気吹出口13a,13bを有する前面板1aに隣接する状態で設けられており、その第1,第2の空気吹出口13a,13bに対応する上下各部分に位置して第1,第2の送風機(例えばプロペラファンよりなる)5a,5bを設けるための上記第1,第2のベルマウス6a,6bが設けられており、該第1,第2のベルマウス6a,6b内に遊嵌される形で上記第1,第2の送風機5a,5bの羽根車が第1,第2のファンモータ7a,7bによって回転駆動されるように設けられている。   A partition plate 16 that partitions the air passage A from the first and second air outlets 13a and 13b is located downstream of the air inlet 3 and the outdoor heat exchanger 4, and the first and first air outlets 13a and 13b. Is provided adjacent to the front plate 1a having two air outlets 13a and 13b, and is located at the upper and lower portions corresponding to the first and second air outlets 13a and 13b. The first and second bell mouths 6a and 6b for providing two blowers (for example, propeller fans) 5a and 5b are provided, and the first and second bell mouths 6a and 6b are idled. The impellers of the first and second blowers 5a and 5b are provided so as to be rotationally driven by the first and second fan motors 7a and 7b.

そして、第1,第2の送風機5a,5bが回転すると、上記背面板1bおよび左側面板1dにそれぞれ形成されている第1,第2の空気吸込口3a,3bから吸込んだ空気を上記室外熱交換器4を介して第1,第2の空気吹出口13a,13bから吹出し、室外熱交換器4の上下各熱交換器部4a,4bと空気との間での熱交換を行わせる。   When the first and second blowers 5a and 5b rotate, the air sucked from the first and second air suction ports 3a and 3b respectively formed on the back plate 1b and the left side plate 1d is heated to the outdoor heat. It blows out from the 1st, 2nd air blower outlet 13a, 13b via the exchanger 4, and performs heat exchange between each heat exchanger part 4a, 4b of the outdoor heat exchanger 4 and air.

次に図3は、同空気調和機用室外機1の冷房運転時の冷凍回路の構成を示している。   Next, FIG. 3 shows the configuration of the refrigeration circuit during the cooling operation of the outdoor unit 1 for the air conditioner.

すなわち、この空気調和機用室外機1は、図3に示すように、前述の従来例のものと同様に、例えばインバータ制御装置により圧縮能力(容量)制御が可能な圧縮機15、気液分離のためのアキュームレータ16、油成分離用の油分離器17、少なくとも2つの冷媒パスを備えたクロスフィン熱交換器よりなる室外熱交換器4等を備え、これらを4方切替弁18を介して冷媒配管11a,11b,11cで図示のように室内機2側室内熱交換器14と可逆的に接続することによって、室内熱交換器14による室内の冷房および暖房が可能な冷凍回路(冷凍サイクル)を構成している。   That is, as shown in FIG. 3, the outdoor unit 1 for an air conditioner is similar to the conventional example described above, for example, a compressor 15 capable of controlling compression capacity (capacity) by an inverter control device, a gas-liquid separation, and the like. An accumulator 16 for oil separation, an oil separator 17 for oil separation, an outdoor heat exchanger 4 including a cross-fin heat exchanger having at least two refrigerant paths, and the like via a four-way switching valve 18 A refrigerating circuit (refrigeration cycle) capable of cooling and heating the room by the indoor heat exchanger 14 by reversibly connecting to the indoor unit 2 side indoor heat exchanger 14 as illustrated by the refrigerant pipes 11a, 11b, and 11c. Is configured.

そして、この実施の形態の場合、上記室外熱交換器4は、例えば図4に示すように、上下方向に長い2パス構造のクロスフィンコイル型熱交換器よりなり、圧縮機15から冷媒配管11bを介して供給される冷媒を上下2パス構造の分配ヘッダ41を介して上下第1,第2の各パスに流して各パスに対応して設けられた送風機5a,5bにより供給される外部空気と熱交換させた後、それぞれ絞り装置としての電子膨張弁EV1,EV2を備えた対応する第1,第2の分流管42a,42bを介して冷媒配管11cに合流されるようになっている。 In the case of this embodiment, the outdoor heat exchanger 4 is a cross-fin coil type heat exchanger having a two-pass structure that is long in the vertical direction, as shown in FIG. 4, for example, from the compressor 15 to the refrigerant pipe 11b. External air supplied by blowers 5a and 5b provided corresponding to the respective paths by flowing the refrigerant supplied through the upper and lower first and second paths through the distribution header 41 having an upper and lower two-pass structure. After the heat exchange with the refrigerant pipe 11c, the refrigerant pipe 11c is joined via the corresponding first and second branch pipes 42a and 42b having the electronic expansion valves EV 1 and EV 2 as the expansion devices, respectively. Yes.

このような上下2段のパス構造の熱交換器4の場合、冷房サイクルでの運転時、負荷の大きい定格状態では流れる冷媒の循環量も多いので、第1,第2の冷媒分流管42a,42bを流れる冷媒の圧損がそれぞれ均一に近く、熱交換器出口側の冷媒の状態(過冷却度)が均一であるが、負荷が小さくなる中負荷時(中間期)には、冷媒の循環量が少なく、第1,第2の分流管42a,42bを流れる冷媒の圧損が少なくなり、熱交換器の高さ方向のヘッドの影響をう受けやすくなる。   In the case of such a heat exchanger 4 having a two-stage upper and lower path structure, during operation in the cooling cycle, since the circulation amount of the refrigerant flowing in the rated state with a large load is large, the first and second refrigerant distribution pipes 42a, The pressure loss of the refrigerant flowing through 42b is almost uniform, and the state of the refrigerant at the outlet side of the heat exchanger (supercooling degree) is uniform, but at the medium load (intermediate period) when the load is small, the circulation amount of the refrigerant Therefore, the pressure loss of the refrigerant flowing through the first and second branch pipes 42a and 42b is reduced, and it is easily affected by the head in the height direction of the heat exchanger.

その結果、熱交換器の下部側に過冷却が付きやすい状態となり、熱交換器の下部側に冷媒が寝込むようになって、熱交換性能の低下を招く問題がある。   As a result, the lower side of the heat exchanger is likely to be supercooled, and the refrigerant stagnates on the lower side of the heat exchanger, resulting in a problem that the heat exchange performance is degraded.

そこで、この実施の形態では、上記のように当該室外熱交換器4を、上記上下2段のパスを基準として少なくとも冷媒が寝込まない上段側熱交換器部4aと寝込む下段側熱交換器部4bとの2つの熱交換器部に分割し、それぞれの第1,第2の冷媒分流管42a,42b部分に第1,第2の電子膨張弁EV1,EV2と温度センサT4,T5、T6,T7を設置し、制御ユニット19の制御信号C1,C2により個別に冷媒圧力を調節することによって、圧損および過冷却度を均一にし、中負荷時(中間期)における熱交換性能の低下を防止するとともに、送風機5a,5bの回転数を可変することにより(制御信号C3,C4)、送風機5a,5bへの駆動入力をも含めたトータルの入力量を低減して可及的に省エネ性能(APF:期間消費効率)の向上を促進するようにしている。 Therefore, in this embodiment, as described above, the outdoor heat exchanger 4 is divided into at least the upper heat exchanger portion 4a where the refrigerant does not sleep with reference to the upper and lower two-stage paths, and the lower heat exchanger portion that sleeps. 4b is divided into two heat exchanger sections, and first and second electronic expansion valves EV 1 and EV 2 and temperature sensors T 4 and T are respectively provided in the first and second refrigerant distribution pipes 42a and 42b. 5 , T 6 , T 7 are installed, and the refrigerant pressure is individually adjusted by the control signals C 1 and C 2 of the control unit 19 to make the pressure loss and the degree of supercooling uniform, and at the time of intermediate load (intermediate period) While reducing the heat exchange performance, the total input amount including the drive input to the fans 5a and 5b is reduced by changing the rotation speed of the fans 5a and 5b (control signals C 3 and C 4 ). Energy saving performance (APF: period consumption) So that to promote the improvement of the rate).

すなわち、同構成の場合、インバータ制御装置によって上記圧縮機15の能力(容量)を制御(圧縮機駆動モータの電源周波数を変えることにより、回転数を制御)するようになっており、冷凍負荷が減少して圧縮機の能力が過大になる夏季・冬季以外の中間期には圧縮機5の容量を小さくして蒸発圧力の低下を防止し、所望の条件下での装置の経済的な運転を可能としている。   That is, in the case of the same configuration, the capacity (capacity) of the compressor 15 is controlled by the inverter control device (the rotational speed is controlled by changing the power supply frequency of the compressor drive motor), and the refrigeration load is In the interim period other than summer and winter when the capacity of the compressor decreases and becomes excessive, the capacity of the compressor 5 is reduced to prevent the evaporation pressure from decreasing, and the operation of the apparatus under the desired conditions is economical. It is possible.

また、同時に上記室外熱交換器4の上下各送風機5a,5bの回転数をも上記負荷量の変動に応じて制御し、可能な限り、ファンモータ7a,7bの駆動入力が小さくて済むようにし、年間を通した電力エネルギーの消費効率(APF)が高くなるようにしている。   At the same time, the rotational speeds of the upper and lower fans 5a and 5b of the outdoor heat exchanger 4 are also controlled in accordance with the fluctuations in the load so that the drive input of the fan motors 7a and 7b can be as small as possible. The energy consumption efficiency (APF) of electric power throughout the year is increased.

しかし、上述のように、冷房運転時に室外熱交換器4の下部側熱交換器部4bのパス部分を流れる冷媒が寝込み、上部側熱交換器部4a部分を流れる冷媒が少なくなって過冷却度が低下し、熱交換に寄与しなくなると、結局室外熱交換器4全体の熱交換効率が低下し、上記年間を通した電力エネルギーの消費効率(APF)も低下する。   However, as described above, during the cooling operation, the refrigerant flowing through the path portion of the lower heat exchanger section 4b of the outdoor heat exchanger 4 stagnates, and the refrigerant flowing through the upper heat exchanger section 4a decreases to reduce the degree of supercooling. Decreases and does not contribute to heat exchange, the heat exchange efficiency of the outdoor heat exchanger 4 as a whole is lowered, and the consumption efficiency (APF) of electric power energy throughout the year is also lowered.

ところが、この場合に、同室外熱交換器4の上部側および下部側各熱交換器部4a,4bの各々に冷媒の温度を見る冷媒温度センサT5,T7、凝縮温度を見る凝縮センサT4,T6が設けられていて、上記上下各パスの冷媒の温度および凝縮開始状態を検出し、その検出結果に応じて下部側熱交換器部4b部分の過冷却度が大きくなってくると、上段側第1のパスの第1の冷媒分流管42a部分の第1の電子膨張弁EV1を閉じる方向に制御する一方、下段側第2のパスの第2の冷媒分流管42b部分の第2の電子膨張弁EV2の開度を大きくして冷媒の流れを促進させるようにすると、それぞれの圧損および過冷却度が均一化されるとともに、下部側熱交換器部4bの熱交換効率が向上し(改善され)、結局室外熱交換器4自体の熱交換効率が向上し、年間を通した電力エネルギーの消費効率(APF)も向上する。 However, in this case, refrigerant temperature sensors T 5 and T 7 for monitoring the temperature of the refrigerant in each of the upper and lower heat exchanger units 4a and 4b of the outdoor heat exchanger 4 and a condensation sensor T for detecting the condensation temperature. 4 and T 6 are provided to detect the temperature and the condensation start state of the refrigerant in each of the upper and lower passes, and the degree of supercooling in the lower heat exchanger section 4b increases according to the detection result. , while controlling the upper side a first direction of closing the electronic expansion valve EV 1 of the first refrigerant distribution pipe 42a portion of the first path, the second refrigerant distribution pipe 42b portion of the lower side second pass the If the opening degree of the electronic expansion valve EV 2 of 2 is increased to promote the flow of the refrigerant, the pressure loss and the degree of supercooling are made uniform, and the heat exchange efficiency of the lower heat exchanger section 4b is increased. Improved (improved), eventually the heat exchange effect of the outdoor heat exchanger 4 itself There was improvement is also improved consumption efficiency of power energy throughout the year (APF).

この時、例えば下部側熱交換器部4bに対応した送風機5bの回転数を低下させて高圧を高める一方、上部側熱交換器部4aに対応した送風機5aの回転数を上げて高圧を下げるようにすると、さらに有効となる。   At this time, for example, the rotation speed of the blower 5b corresponding to the lower heat exchanger section 4b is decreased to increase the high pressure, while the rotation speed of the blower 5a corresponding to the upper heat exchanger section 4a is increased to decrease the high pressure. If it becomes, it becomes more effective.

なお、図3中の符号T1は圧縮機15の吸入冷媒の温度検出用センサ、T2は圧縮機15からの吐出冷媒の温度検出用センサ、T3は外気温検出センサである。 In FIG. 3, reference numeral T 1 is a sensor for detecting the temperature of refrigerant sucked in the compressor 15, T 2 is a sensor for detecting the temperature of refrigerant discharged from the compressor 15, and T 3 is an outside air temperature detecting sensor.

このように、室外熱交換器4をパスを基準として少なくとも冷媒が寝込まない上部側熱交換器部4aと冷媒が寝込む下部側熱交換器部4bとの2つに分割し、それぞれに電子膨張弁EV1,EV2と熱交センサT4,T5,T6,T7(熱交サーモと中間サーモ)を設置し、各熱交換器4a,4b個別に膨張弁EV1,EV2の開度を制御することになって中間期(冬季・夏季以外)における熱交換性能の低下を防止する一方、送風機5a,5bの回転数をも可変するようにすると、送風機5a,5bの入力をも含めたトータルの入力量を低減して可及的に省エネ性能の向上(APF性能向上)を図ることができる。 In this way, the outdoor heat exchanger 4 is divided into two parts, that is, an upper side heat exchanger part 4a in which at least the refrigerant does not sleep and a lower side heat exchanger part 4b in which the refrigerant sleeps, based on the path, and each of them is electronically expanded. Valves EV 1 and EV 2 and heat exchange sensors T 4 , T 5 , T 6 and T 7 (heat exchange thermo and intermediate thermo) are installed, and the expansion valves EV 1 and EV 2 are individually connected to the heat exchangers 4a and 4b. When the opening degree is controlled to prevent the heat exchange performance from being lowered during the intermediate period (other than winter and summer), the rotational speed of the blowers 5a and 5b is also made variable so that the input of the blowers 5a and 5b is changed. The total amount of input including the power can be reduced to improve the energy saving performance (APF performance improvement) as much as possible.

一方、このようなタイプの室外熱交換器4の場合にも、上記4方切替弁18が図3の実線の状態から破線の状態に切り替えられている冬季の暖房運転時などには、上記室外交換器4は以上とは逆に蒸発用熱交換器となって着霜が生じるので、必要に応じて従来のような逆サイクルでのデフロスト運転が必要となる。   On the other hand, in the case of this type of outdoor heat exchanger 4, the outdoor switch is also used in the winter heating operation in which the four-way switching valve 18 is switched from the solid line state to the broken line state in FIG. Contrary to the above, the exchanger 4 becomes a heat exchanger for evaporation, and frost formation occurs. Therefore, if necessary, defrost operation in a reverse cycle as in the prior art is required.

しかし、単に逆サイクルでのデフロスト運転を行ったのでは、その間上記室外熱交換器4(4a,4b)全体が凝縮器(室内機側が蒸発器→デフロスト中はファン停止)となるので、室内機2側の暖房機能が停止してしまい寒冷地などでの影響が大きい。   However, if the defrost operation is simply performed in the reverse cycle, the entire outdoor heat exchanger 4 (4a, 4b) is a condenser (the indoor unit side is the evaporator → the fan is stopped during the defrosting). The heating function on the 2nd side is stopped and the influence in cold regions is great.

そこでこの実施の形態では、図3に示すように、上述の構成に加えて、上記上下に分割された第1,第2の各熱交換器部4a,4bに対して圧縮機吐出ガス(ホットガス)をバイパスするバイパス回路(バイパス配管)11d,11eとそれに対応する電磁開閉弁EV3,EV4とを設け、必要に応じて電磁開閉弁EV3,EV4を開くことにより(制御信号C5,C6参照)、装置の暖房運転時に冷凍サイクル自体を逆転させることなく(4方切替弁18はそのままで)上記第1,第2の熱交換器部4a,4b毎に(つまり上下半分づつ)交互にデフロスト運転を行い、ノンストップでの暖房運転を実現するようにしている。これらの電磁開閉弁EV3,EV4の開閉制御も制御ユニット19により行われる。 Therefore, in this embodiment, as shown in FIG. 3, in addition to the above-described configuration, the compressor discharge gas (hot) is supplied to the first and second heat exchanger sections 4a and 4b divided above and below. By providing bypass circuits (bypass piping) 11d, 11e for bypassing gas) and corresponding electromagnetic on-off valves EV 3 , EV 4 and opening the on-off valves EV 3 , EV 4 as necessary (control signal C 5, reference C 6), without reversing the refrigeration cycle itself during the heating operation of the apparatus (4-way valve 18 as it) the first, second heat exchanger section 4a, for each 4b (i.e. vertical half Step by step, defrosting operation is performed alternately to realize non-stop heating operation. The control unit 19 also performs opening / closing control of these electromagnetic opening / closing valves EV 3 , EV 4 .

この場合、ツイン送風機5a,5b構造を採用し、デフロスト側の送風機を個別に停止させることができるようにしている。   In this case, a twin blower 5a, 5b structure is employed so that the defroster blower can be individually stopped.

(最良の実施の形態2)
上述の最良の実施の形態1の構成では、上記室外熱交換器4の上下2つに分割された第1,第2の熱交換器部分4a,4bの出口側第1,第2の冷媒分流管42a,42bの各々に電子膨張弁EV1,EV2を配設し、その時の目標とする過冷却度に応じて、それら電子膨張弁EV1,EV2の開度とともに対応する第1,第2の送風機5a,5bの回転数を可変コントロールするようにしたが、同構成は、例えば最良の実施の形態2として、上記第1,第2の電子膨張弁EV1,EV2を配設することなく、目標とする過冷却度に応じて、該目標過冷却度よりも低い熱交換器部側の送風機の回転数を上げて過冷却度を上昇させる一方、目標過冷却度よりも高い熱交換器部側の送風機の回転数を下げて過冷却度を小さくするようにするだけの構成とすることもできる。
(Best Mode 2)
In the configuration of the above-described best embodiment 1, the outlet side first and second refrigerant branch flows of the first and second heat exchanger parts 4a and 4b divided into the upper and lower parts of the outdoor heat exchanger 4 are described. The electronic expansion valves EV 1 and EV 2 are disposed in the pipes 42a and 42b, respectively, and the corresponding first and second opening degrees of the electronic expansion valves EV 1 and EV 2 according to the target degree of supercooling at that time. The rotational speeds of the second blowers 5a and 5b are variably controlled. In the same configuration, for example, as the second preferred embodiment, the first and second electronic expansion valves EV 1 and EV 2 are arranged. Without increasing the degree of supercooling, the rotational speed of the blower on the side of the heat exchanger lower than the target supercooling degree is increased according to the target subcooling degree, while the supercooling degree is increased. A structure that only reduces the supercooling degree by lowering the rotational speed of the blower on the heat exchanger side. It can also be a.

このようなシンプルな構成によっても、室外熱交換器4の上下第1,第2の熱交換器部4a,4bの冷媒流通状態に応じた適切かつ効率の良い送風機駆動制御が可能となり、有効に省エネ性能を向上させることができる。   Even with such a simple configuration, appropriate and efficient blower drive control according to the refrigerant flow state of the upper and lower first and second heat exchanger sections 4a and 4b of the outdoor heat exchanger 4 is possible and effective. Energy saving performance can be improved.

(最良の実施の形態3)
次に、図5は本願発明の最良の実施の形態3に係る空気調和機用室外機を示している。
(Best Mode 3)
Next, FIG. 5 shows an outdoor unit for an air conditioner according to the third preferred embodiment of the present invention.

この実施の形態の場合、上述した最良の実施の形態1の室外熱交換器4の構成(上下2つの熱交換器部4a,4bに分割した構成)において、さらに上下各熱交換器部4a,4bを別体構造のものに分離し、その上で上部側第1の熱交換器部4aの下部に専用のドレンパン9を設けたことを特徴とするものであり、それ以外の構成は全て上述の最良の実施の形態1の室外機1の構成と同様である。   In the case of this embodiment, in the configuration of the outdoor heat exchanger 4 of the best embodiment 1 described above (configuration divided into two upper and lower heat exchanger portions 4a and 4b), the upper and lower heat exchanger portions 4a, 4b is separated into a separate structure, and a dedicated drain pan 9 is provided on the lower portion of the upper first heat exchanger section 4a. This is the same as the configuration of the outdoor unit 1 according to the first embodiment.

上述のように、最良の実施の形態1の室外機1では、第1,第2の熱交換器部4a,4bに対して、圧縮機15からの吐出ガスをバイパスする吐出ガスバイパス回路11d,11eを設けるとともに電磁開閉弁EV3,EV4を設けて、冷凍サイクルを逆転することなく個別にホットガスバイパスによるデフロスト運転を可能としている。 As described above, in the outdoor unit 1 of the best embodiment 1, the discharge gas bypass circuit 11d that bypasses the discharge gas from the compressor 15 with respect to the first and second heat exchanger units 4a and 4b. 11e provided solenoid valve EV 3, EV 4 provided with a, thereby enabling the defrost operation by individually hot gas bypass without reversing the refrigeration cycle.

この場合、上部側第1の熱交換器部4aが通常の暖房運転を行ない、下部側第2の熱交換器部4bがデフロスト運転される場合には問題がないが、それとは逆の場合、すなわち上部側第1の熱交換器部4aがデフロスト運転されると、融解した水が下部側第2の熱交換器部4b側を介して下方に流れ落ちる可能性がある。   In this case, there is no problem when the upper side first heat exchanger part 4a performs normal heating operation and the lower side second heat exchanger part 4b is defrosted, but in the opposite case, That is, when the upper first heat exchanger section 4a is defrosted, the melted water may flow down through the lower second heat exchanger section 4b.

そこで、これを上記ドレンパン9で受けて直接下方には流さないようにしている。その結果、下部側第2の熱交換器部4bの、熱交換効率、熱交換性能を低下させなくて済むようになる。   Therefore, this is received by the drain pan 9 so as not to flow directly downward. As a result, it is not necessary to lower the heat exchange efficiency and heat exchange performance of the lower second heat exchanger section 4b.

(最良の実施の形態4)
次に、図6は本願発明の最良の実施の形態4に係る空気調和機用室外機の構成を示している。
(Fourth Embodiment)
Next, FIG. 6 shows a configuration of an outdoor unit for an air conditioner according to the fourth embodiment of the present invention.

この実施の形態の場合、上述した最良の実施の形態3の室外熱交換器4の構成において、上部側第1の熱交換器部4aの下部に設けたドレンパン9の底板部分を前面側仕切板16部分まで水平状態で延設することによって、上記第1,第2の送風機5a,5bの第1,第2の送風通路A1,A2間を画成したことを特徴とするものである。 In the case of this embodiment, in the configuration of the outdoor heat exchanger 4 of the best embodiment 3 described above, the bottom plate portion of the drain pan 9 provided at the lower portion of the upper first heat exchanger section 4a is used as the front side partition plate. By extending horizontally up to 16 parts, the first and second blower passages A 1 and A 2 of the first and second blowers 5a and 5b are defined. .

上述のように室外熱交換器4を上部側第1の熱交換器部4aと下部側第2の熱交換器部4bとの2つの熱交換器部分に分け、個別に独立してデフロスト運転を行えるようにした場合、当然にデフロスト側の送風機は停止されるが、他方側送風機の吸引力の作用によりデフロスト側熱交換器部を通した風が室外に吹き出されては困る。   As described above, the outdoor heat exchanger 4 is divided into two heat exchanger parts, that is, an upper side first heat exchanger part 4a and a lower side second heat exchanger part 4b, and the defrosting operation is independently performed. In the case where it is possible to do so, the blower on the defrost side is naturally stopped, but it is not necessary that the air passing through the defrost side heat exchanger is blown out by the action of the suction force of the other blower.

そこで、この実施の形態では、上述のようにして仕切板20を設けることによって、上下第1,第2の熱交換器部4a,4bおよび上下第1,第2の送風機5a,5b、上下第1,第2の空気吹出口13a,13b各々の送風通路A1,A2間を完全に仕切るようにし、そのような問題が生じないようにした。 Therefore, in this embodiment, by providing the partition plate 20 as described above, the upper and lower first and second heat exchanger sections 4a and 4b, the upper and lower first and second blowers 5a and 5b, The air passages A 1 and A 2 of the first and second air outlets 13a and 13b are completely partitioned so that such a problem does not occur.

この場合、上記仕切板20は、もちろんドレンパン9と全く別個に形成してもよいことは言うまでもない。   In this case, it goes without saying that the partition plate 20 may be formed completely separately from the drain pan 9.

その他の構成は、全て最良の実施の形態3のものと同様であり、同様に作用する。   The other configurations are all the same as those in the best embodiment 3, and operate in the same manner.

本願発明の最良の実施の形態1に係る空気調和機用室外機の構成を示す正面図である。It is a front view which shows the structure of the outdoor unit for air conditioners which concerns on the best Embodiment 1 of this invention. 同室外機の中央部を上下および前後方向に切断して左側から見た断面図である。It is sectional drawing which cut | disconnected the center part of the outdoor unit up and down and the front-back direction, and was seen from the left side. 同室外機の冷凍回路の構成を示す図である。It is a figure which shows the structure of the freezing circuit of the outdoor unit. 同室外機の要部である熱交換器分流回路部分の構成を示す側面図である。It is a side view which shows the structure of the heat exchanger shunt circuit part which is the principal part of the outdoor unit. 本願発明の最良の実施の形態2に係る空気調和機用室外機の構成を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows the structure of the outdoor unit for air conditioners which concerns on best Embodiment 2 of this invention. 本願発明の最良の実施の形態3に係る空気調和機用室外機の構成を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows the structure of the outdoor unit for air conditioners which concerns on best Embodiment 3 of this invention. 従来例に係る空気調和機用室外機の構成を示す正面図である。It is a front view which shows the structure of the outdoor unit for air conditioners which concerns on a prior art example. 同室外機の構成を示す平面図である。It is a top view which shows the structure of the outdoor unit. 同室外機の中央部を上下および前後方向に切断して左側から見た断面図である。It is sectional drawing which cut | disconnected the center part of the outdoor unit up and down and the front-back direction, and was seen from the left side. 同室外機の冷凍回路の構成を示す図である。It is a figure which shows the structure of the freezing circuit of the outdoor unit. 同室外機の要部である熱交換器分流回路部分の構成を示す側面図である。It is a side view which shows the structure of the heat exchanger shunt circuit part which is the principal part of the outdoor unit.

符号の説明Explanation of symbols

1は室外機、2は室内機、3a,3bは第1,第2の空気吸込口、4は室外熱交換器、4a,4bは第1,第2の熱交換器部、5a,5bは第1,第2の送風機、6a,6bは第1,第2のベルマウス、7a,7bは第1,第2のファンモータ、11a,11b,11cは冷媒配管、11d,11eはホットガスバイパス配管、19は制御ユニット、42a,42bは第1,第2の冷媒分流管、EV1,EV2は第1,第2の電子膨張弁、EV3,EV4は電磁開閉弁である。 1 is an outdoor unit, 2 is an indoor unit, 3a and 3b are first and second air inlets, 4 is an outdoor heat exchanger, 4a and 4b are first and second heat exchanger units, and 5a and 5b are First and second blowers, 6a and 6b are first and second bell mouths, 7a and 7b are first and second fan motors, 11a, 11b and 11c are refrigerant pipes, and 11d and 11e are hot gas bypasses. piping, the control unit 19, 42a, 42b are first, second refrigerant distribution pipe, the EV 1, EV 2 first, second electronic expansion valve, EV 3, EV 4 is a solenoid valve.

Claims (4)

本体ケーシングと、該本体ケーシングの一端に設けられた空気吸込口と、上記本体ケーシングの他端に設けられた空気吹出口と、上記本体ケーシング内の上記空気吸込口と上記空気吹出口との間に位置して設けられた送風通路と、上記送風通路の上記空気吸込口側に位置して設けられた蒸発用熱交換器と、上記蒸発用熱交換器と上記空気吹出口との間に位置して設けられた送風機と、上記蒸発用熱交換器を含む冷凍回路に冷媒を流す圧縮機とを備えてなる冷凍装置において、上記蒸発用熱交換器を冷媒分流用のパスを基準として少なくとも2つの熱交換器部分に分割し、それらの各々に対応して圧縮機からの吐出ガスをバイパスさせるバイパス回路と該バイパス回路のバイパス状態を制御する電磁開閉弁を設け、上記冷凍回路の冷凍サイクルを逆転させることなく上記分割された各熱交換器部分毎に交互にデフロスト運転を行うようにしたことを特徴とする空気調和機用室外機。   A main casing, an air inlet provided at one end of the main casing, an air outlet provided at the other end of the main casing, and between the air inlet and the air outlet in the main casing. A ventilation passage located in the air passage, an evaporation heat exchanger located on the air inlet side of the ventilation passage, and between the evaporation heat exchanger and the air outlet. A refrigeration apparatus comprising: a blower provided as a compressor; and a compressor for flowing a refrigerant through a refrigeration circuit including the evaporating heat exchanger, wherein the evaporating heat exchanger is at least 2 with respect to a refrigerant diversion path. A refrigeration cycle of the above refrigeration circuit is provided with a bypass circuit that divides the heat exchanger into two heat exchanger parts and bypasses the discharge gas from the compressor corresponding to each of them, and an electromagnetic on-off valve that controls the bypass state of the bypass circuit. Air conditioning apparatus outdoor unit, characterized in that to perform the defrosting operation alternately for each of the divided each heat exchanger section was without reversing. 送風通路は、上記分割された各熱交換器の各々に対応して相互に仕切板で仕切られていることを特徴とする請求項1記載の空気調和機用室外機。   The air conditioner outdoor unit according to claim 1, wherein the air passage is partitioned by a partition plate corresponding to each of the divided heat exchangers. 蒸発用熱交換器が上下に長く形成され、上記分割された熱交換器の上部側熱交換器の下部にはドレンパンが設けられていることを特徴とする請求項1又は2記載の空気調和機用室外機。   The air conditioner according to claim 1 or 2, wherein an evaporating heat exchanger is formed long vertically, and a drain pan is provided at a lower portion of the upper heat exchanger of the divided heat exchanger. Outdoor unit. 送風機は、分割された各熱交換器に対応して複数台設置され、該複数台の各送風機は、それぞれ個別に回転数が可変制御されるようになっていることを特徴とする請求項1,2又は3記載の空気調和機用室外機。   2. A plurality of blowers are installed corresponding to each of the divided heat exchangers, and the rotation speed of each of the plurality of blowers is individually variably controlled. , 2 or 3 outdoor unit for air conditioner.
JP2007254423A 2007-09-28 2007-09-28 Outdoor unit for air conditioner Pending JP2009085484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254423A JP2009085484A (en) 2007-09-28 2007-09-28 Outdoor unit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254423A JP2009085484A (en) 2007-09-28 2007-09-28 Outdoor unit for air conditioner

Publications (1)

Publication Number Publication Date
JP2009085484A true JP2009085484A (en) 2009-04-23

Family

ID=40659139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254423A Pending JP2009085484A (en) 2007-09-28 2007-09-28 Outdoor unit for air conditioner

Country Status (1)

Country Link
JP (1) JP2009085484A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208812A (en) * 2010-03-26 2011-10-20 Osaka Gas Co Ltd Heat pump device
WO2011135912A1 (en) 2010-04-28 2011-11-03 ダイキン工業株式会社 Outdoor unit and bell mouth of air conditioner
WO2012014345A1 (en) 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
JP2012021740A (en) * 2010-07-16 2012-02-02 Fuji Koki Corp Cooling device
CN103148543A (en) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
WO2013111177A1 (en) 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit
WO2014020651A1 (en) 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device
CN103597291A (en) * 2011-06-08 2014-02-19 三菱电机株式会社 Refrigeration air-conditioning device
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device
WO2014083867A1 (en) 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
JP2014519006A (en) * 2011-05-24 2014-08-07 寧波奥克斯電気有限公司 Heat pump type screw compression multi-central air conditioner
WO2014192140A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
WO2015059945A1 (en) 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
WO2015076644A1 (en) 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
WO2016046927A1 (en) * 2014-09-25 2016-03-31 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
WO2016199946A1 (en) * 2015-06-08 2016-12-15 삼성전자주식회사 Air conditioner and control method therefor
JP2017062049A (en) * 2015-09-24 2017-03-30 株式会社富士通ゼネラル Air conditioner
JP2017133714A (en) * 2016-01-26 2017-08-03 株式会社富士通ゼネラル Air conditioner
WO2018051408A1 (en) 2016-09-13 2018-03-22 三菱電機株式会社 Air conditioner
JP2018096578A (en) * 2016-12-09 2018-06-21 ダイキン工業株式会社 Cooler
CN108644922A (en) * 2018-07-10 2018-10-12 珠海格力电器股份有限公司 Outdoor unit and air conditioner with same
DE112018008199T5 (en) 2018-12-11 2021-08-19 Mitsubishi Electric Corporation air conditioning
JPWO2021255916A1 (en) * 2020-06-19 2021-12-23
WO2022059155A1 (en) * 2020-09-17 2022-03-24 東芝キヤリア株式会社 Air conditioner
WO2025120731A1 (en) * 2023-12-05 2025-06-12 三菱電機株式会社 Air conditioning unit and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441782A (en) * 1987-08-07 1989-02-14 Toshiba Corp Heat pump type air conditioner
JPH05248663A (en) * 1992-03-09 1993-09-24 Hitachi Ltd Multi-room air conditioner
JPH06341741A (en) * 1993-06-01 1994-12-13 Daikin Ind Ltd Defrosting controller for refrigerating device
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441782A (en) * 1987-08-07 1989-02-14 Toshiba Corp Heat pump type air conditioner
JPH05248663A (en) * 1992-03-09 1993-09-24 Hitachi Ltd Multi-room air conditioner
JPH06341741A (en) * 1993-06-01 1994-12-13 Daikin Ind Ltd Defrosting controller for refrigerating device
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208812A (en) * 2010-03-26 2011-10-20 Osaka Gas Co Ltd Heat pump device
WO2011135912A1 (en) 2010-04-28 2011-11-03 ダイキン工業株式会社 Outdoor unit and bell mouth of air conditioner
JP2012021740A (en) * 2010-07-16 2012-02-02 Fuji Koki Corp Cooling device
WO2012014345A1 (en) 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
US9279608B2 (en) 2010-07-29 2016-03-08 Mitsubishi Electric Corporation Heat pump
JP2014519006A (en) * 2011-05-24 2014-08-07 寧波奥克斯電気有限公司 Heat pump type screw compression multi-central air conditioner
CN103597291B (en) * 2011-06-08 2017-03-01 三菱电机株式会社 refrigerating air conditioning device
CN103597291A (en) * 2011-06-08 2014-02-19 三菱电机株式会社 Refrigeration air-conditioning device
CN103148543A (en) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
CN103148543B (en) * 2011-12-07 2015-08-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013111177A1 (en) 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit
US10036562B2 (en) 2012-08-03 2018-07-31 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014020651A1 (en) 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device
US10001317B2 (en) 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
WO2014083867A1 (en) 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device
JPWO2014083650A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner
EP2927623A4 (en) * 2012-11-29 2016-07-27 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
WO2014192140A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
US10465968B2 (en) 2013-05-31 2019-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus having first and second defrosting pipes
US10775060B2 (en) 2013-10-24 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015059945A1 (en) 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
WO2015076644A1 (en) 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
WO2016046927A1 (en) * 2014-09-25 2016-03-31 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
GB2545112A (en) * 2014-09-25 2017-06-07 Mitsubishi Electric Corp Refrigeration cycle device and air-conditioning device
GB2545112B (en) * 2014-09-25 2020-05-20 Mitsubishi Electric Corp Refrigeration cycle apparatus and air-conditioning apparatus
WO2016199946A1 (en) * 2015-06-08 2016-12-15 삼성전자주식회사 Air conditioner and control method therefor
US10544957B2 (en) 2015-06-08 2020-01-28 Samsung Electronics Co., Ltd. Air conditioner and control method therefor
JP2017062049A (en) * 2015-09-24 2017-03-30 株式会社富士通ゼネラル Air conditioner
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
JP2017133714A (en) * 2016-01-26 2017-08-03 株式会社富士通ゼネラル Air conditioner
EP3514462A4 (en) * 2016-09-13 2020-01-15 Mitsubishi Electric Corporation AIR CONDITIONING
WO2018051408A1 (en) 2016-09-13 2018-03-22 三菱電機株式会社 Air conditioner
US10830502B2 (en) 2016-09-13 2020-11-10 Mitsubishi Electric Corporation Air conditioner
JP2018096578A (en) * 2016-12-09 2018-06-21 ダイキン工業株式会社 Cooler
CN108644922A (en) * 2018-07-10 2018-10-12 珠海格力电器股份有限公司 Outdoor unit and air conditioner with same
DE112018008199B4 (en) 2018-12-11 2024-05-16 Mitsubishi Electric Corporation air conditioner
US11885518B2 (en) 2018-12-11 2024-01-30 Mitsubishi Electric Corporation Air-conditioning apparatus
DE112018008199T5 (en) 2018-12-11 2021-08-19 Mitsubishi Electric Corporation air conditioning
US12209761B2 (en) 2018-12-11 2025-01-28 Mitsubishi Electric Corporation Air-conditioning apparatus with defrost bypass circuit
JPWO2021255916A1 (en) * 2020-06-19 2021-12-23
JP7403651B2 (en) 2020-06-19 2023-12-22 三菱電機株式会社 Air conditioner indoor unit
WO2022059155A1 (en) * 2020-09-17 2022-03-24 東芝キヤリア株式会社 Air conditioner
US12345426B2 (en) 2020-09-17 2025-07-01 Carrier Japan Corporation Air conditioner that defrosts outdoor heat exchanger based on refrigerant residue amount of outdoor heat exchanger
WO2025120731A1 (en) * 2023-12-05 2025-06-12 三菱電機株式会社 Air conditioning unit and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2009085484A (en) Outdoor unit for air conditioner
JP2009085481A (en) Refrigeration equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
CN102062492B (en) Air conditioner
WO2013001976A1 (en) Air conditioner
WO2014067129A1 (en) Multi-coupled heat pump air-conditioning system and method of controlling multi-coupled heat pump air-conditioning system
CN102639954A (en) Heat exchanger and indoor unit including the same
US20130312436A1 (en) Heat pump with improved defrost cycle and method of defrosting a heat exchanger
WO2021053820A1 (en) Air conditioner
US20080053118A1 (en) Water-cooled air conditioner and method of controlling the same
CN111306832B (en) Air conditioner
US20070277539A1 (en) Continuously Operating Type Showcase
WO2006003860A1 (en) Multi-type air conditioner
WO2020115812A1 (en) Air conditioner
CN109579152A (en) A kind of electric cabinet and air-conditioner set
JPH0868568A (en) Air conditioner
EP2057425B1 (en) Water-cooled air conditioner
KR200375780Y1 (en) Separated type ventilation withdrawal rate adjustment waste heat withdrawal combined cold and heat air conditioner
KR20000012499A (en) An air conditioning system
JP3484420B2 (en) Air conditioner
KR20130087842A (en) Heat-pump
KR101031337B1 (en) Hybrid Air Conditioner
CN1427233A (en) Refrigerator capable of continuously cooling
JP2004271062A (en) Air conditioner
JP3976561B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911