[go: up one dir, main page]

JP2009085077A - Heat recovery device for internal combustion engine - Google Patents

Heat recovery device for internal combustion engine Download PDF

Info

Publication number
JP2009085077A
JP2009085077A JP2007255099A JP2007255099A JP2009085077A JP 2009085077 A JP2009085077 A JP 2009085077A JP 2007255099 A JP2007255099 A JP 2007255099A JP 2007255099 A JP2007255099 A JP 2007255099A JP 2009085077 A JP2009085077 A JP 2009085077A
Authority
JP
Japan
Prior art keywords
refrigerant
internal combustion
combustion engine
chamber
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007255099A
Other languages
Japanese (ja)
Inventor
Keigo Kin
慶午 金
Tatsuo Kobayashi
辰夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007255099A priority Critical patent/JP2009085077A/en
Priority to PCT/JP2008/065784 priority patent/WO2009041224A1/en
Publication of JP2009085077A publication Critical patent/JP2009085077A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

【課題】本発明の目的は、排気損失以外から回収した熱により良好に吸気加熱を実現することができる内燃機関の熱回収利用装置を提供する。
【解決手段】隔壁を介して燃焼室2に隣接する冷媒室9、10、11を具備し、冷媒室内の冷媒の少なくとも一部は、膨張行程中に液相から気相へ相変化し、吸気行程中に気相から液相へ相変化する。
【選択図】図1
An object of the present invention is to provide a heat recovery and utilization device for an internal combustion engine that can achieve good intake air heating by heat recovered from other than exhaust loss.
Refrigerant chambers 9, 10, 11 are provided adjacent to a combustion chamber 2 via a partition wall, and at least a part of the refrigerant in the refrigerant chamber undergoes a phase change from a liquid phase to a gas phase during an expansion stroke, and intake air During the process, the phase changes from the gas phase to the liquid phase.
[Selection] Figure 1

Description

本発明は、内燃機関の熱回収利用装置に関する。   The present invention relates to a heat recovery and utilization device for an internal combustion engine.

内燃機関においては、発生させた燃焼エネルギから様々な損失が発生する。これら損失のうちの排気損失の熱を吸気加熱に利用することが提案されている(例えば、特許文献1参照)。   In an internal combustion engine, various losses are generated from the generated combustion energy. Among these losses, it has been proposed to use the heat of exhaust loss for intake air heating (see, for example, Patent Document 1).

特開2005−133609JP-A-2005-133609

しかしながら、排気ガスの熱は、一般的に、機関排気系の触媒装置を暖機して触媒活性化温度に維持するのに使用されており、排気ガスの熱を吸気加熱に利用すると、触媒装置の暖機及び触媒装置の触媒活性化温度への維持が不十分となってしまう。   However, the heat of the exhaust gas is generally used to warm up the catalyst device of the engine exhaust system and maintain it at the catalyst activation temperature. When the heat of the exhaust gas is used for intake air heating, the catalyst device The warming up of the catalyst and the maintenance of the catalyst device at the catalyst activation temperature become insufficient.

従って、本発明の目的は、排気損失以外から回収した熱により良好に吸気加熱を実現することができる内燃機関の熱回収利用装置を提供することである。   Accordingly, an object of the present invention is to provide a heat recovery and utilization device for an internal combustion engine that can realize intake air heating with heat recovered from other than exhaust loss.

本発明による請求項1に記載の内燃機関の熱回収利用装置は、隔壁を介して燃焼室に隣接する冷媒室を具備し、前記冷媒室内の冷媒の少なくとも一部は、膨張行程中に液相から気相へ相変化し、吸気行程中に気相から液相へ相変化することを特徴とする。   According to a first aspect of the present invention, there is provided an internal combustion engine heat recovery and utilization device comprising a refrigerant chamber adjacent to a combustion chamber via a partition wall, wherein at least a part of the refrigerant in the refrigerant chamber is in a liquid phase during an expansion stroke. Phase change from gas phase to gas phase and phase change from gas phase to liquid phase during the intake stroke.

本発明による請求項2に記載の内燃機関の熱回収利用装置は、請求項1に記載の内燃機関の熱回収利用装置において、前記内燃機関は多気筒内燃機関であり、前記多気筒内燃機関の気筒毎に独立して前記冷媒室が設けられていることを特徴とする。   According to a second aspect of the present invention, there is provided the heat recovery and utilization device for an internal combustion engine according to the first aspect, wherein the internal combustion engine is a multi-cylinder internal combustion engine, The refrigerant chamber is provided independently for each cylinder.

本発明による請求項3に記載の内燃機関の熱回収利用装置は、請求項2に記載の内燃機関の熱回収利用装置において、気筒毎の前記冷媒室には、独立して気相冷媒の圧力調整装置が設けられていることを特徴とする。   According to a third aspect of the present invention, there is provided the internal combustion engine heat recovery and utilization apparatus according to the second aspect, wherein the refrigerant chamber for each cylinder is independently provided with a gas-phase refrigerant pressure. An adjusting device is provided.

本発明による請求項4に記載の内燃機関の熱回収利用装置は、請求項3に記載の内燃機関の熱回収利用装置において、低負荷時には高負荷時に比較して、前記圧力調整装置によって少なくとも一つの気筒の前記冷媒室の気相冷媒の圧力を高めることを特徴とする。   According to a fourth aspect of the present invention, there is provided a heat recovery and utilization device for an internal combustion engine according to the third aspect of the present invention. The pressure of the gas-phase refrigerant in the refrigerant chamber of one cylinder is increased.

本発明による請求項5に記載の内燃機関の熱回収利用装置は、請求項3又は4に記載の内燃機関の熱回収利用装置において、ノッキングが発生した気筒の前記冷媒室の気相冷媒の圧力を、ノッキングが発生していない気筒の前記冷媒室の気相冷媒の圧力に比較して、前記圧力調整装置によって低下させることを特徴とする。   The internal combustion engine heat recovery and utilization device according to claim 5 of the present invention is the internal combustion engine heat recovery and utilization device according to claim 3 or 4, wherein the pressure of the gas phase refrigerant in the refrigerant chamber of the cylinder in which knocking has occurred. Is reduced by the pressure adjusting device as compared with the pressure of the gas-phase refrigerant in the refrigerant chamber of the cylinder in which knocking has not occurred.

本発明による請求項6に記載の内燃機関の熱回収利用装置は、請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置において、前記内燃機関は圧縮自着火エンジンであることを特徴とする。   An internal combustion engine heat recovery and utilization device according to a sixth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to fifth aspects, wherein the internal combustion engine is a compression auto-ignition engine. It is characterized by that.

本発明による請求項7に記載の内燃機関の熱回収利用装置は、請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置において、前記内燃機関の燃料は、少なくともメタノール又はアルコールを含んでいることを特徴とする。   An internal combustion engine heat recovery and utilization device according to a seventh aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to fifth aspects, wherein the fuel of the internal combustion engine is at least methanol or It contains alcohol.

本発明による請求項8に記載の内燃機関の熱回収利用装置は、請求項1から7のいずれか一項に記載の内燃機関の熱回収利用装置において、前記冷媒室は大気中への放熱を抑制するための断熱層を有していることを特徴とする。   An internal combustion engine heat recovery and utilization device according to an eighth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to seventh aspects, wherein the refrigerant chamber radiates heat to the atmosphere. It has the heat insulation layer for suppressing, It is characterized by the above-mentioned.

本発明による請求項9に記載の内燃機関の熱回収利用装置は、請求項1から8のいずれか一項に記載の内燃機関の熱回収利用装置において、燃焼室上部の単位面積当たりに隣接する前記冷媒室の容積は、燃焼室下部の前記単位面積当たりに隣接する前記冷媒室の容積より大きいことを特徴とする。   An internal combustion engine heat recovery and utilization device according to a ninth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to eighth aspects, wherein the internal combustion engine heat recovery and utilization device is adjacent to an upper unit area of the combustion chamber. The volume of the refrigerant chamber is larger than the volume of the refrigerant chamber adjacent to the unit area below the combustion chamber.

本発明による請求項10に記載の内燃機関の熱回収利用装置は、請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置において、前記隔壁には前記冷媒室内へ突出する熱交換フィンが形成されていることを特徴とする。   An internal combustion engine heat recovery and utilization device according to a tenth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to ninth aspects, wherein the partition protrudes into the refrigerant chamber. A heat exchange fin is formed.

本発明による請求項11に記載の内燃機関の熱回収利用装置は、請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置において、前記隔壁には前記冷媒室内へ突出する補強リブが形成されていることを特徴とする。   An internal combustion engine heat recovery and utilization device according to an eleventh aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to ninth aspects, wherein the partition protrudes into the refrigerant chamber. Reinforcing ribs are formed.

本発明による請求項12に記載の内燃機関の熱回収利用装置は、請求項1から11のいずれか一項に記載の内燃機関の熱回収利用装置において、前記冷媒室内には燃焼室上下方向に延在する熱伝達部材が設けられていることを特徴とする。   An internal combustion engine heat recovery and utilization apparatus according to a twelfth aspect of the present invention is the internal combustion engine heat recovery and utilization apparatus according to any one of the first to eleventh aspects, wherein the refrigerant chamber has a combustion chamber in a vertical direction. An extended heat transfer member is provided.

本発明による請求項1に記載の内燃機関の熱回収利用装置によれば、隔壁を介して燃焼室に隣接する冷媒室内の冷媒の少なくとも一部が、燃焼熱の一部を奪って膨張行程中に液相から気相へ相変化し、膨張行程において隔壁温度が過剰に高まることを防止する。こうして、冷媒の気化潜熱により蓄えられた熱は、吸気行程中に気相から液相へ相変化する際に、燃焼室へ放出され、良好な吸気加熱が実現される。   According to the heat recovery and utilization device for an internal combustion engine according to claim 1 of the present invention, at least a part of the refrigerant in the refrigerant chamber adjacent to the combustion chamber via the partition wall takes part of the combustion heat and is in the expansion stroke. Thus, the phase change from the liquid phase to the gas phase prevents the partition wall temperature from excessively increasing during the expansion stroke. Thus, the heat stored by the latent heat of vaporization of the refrigerant is released into the combustion chamber when the phase changes from the gas phase to the liquid phase during the intake stroke, and good intake air heating is realized.

本発明による請求項2に記載の内燃機関の熱回収利用装置によれば、請求項1に記載の内燃機関の熱回収利用装置において、内燃機関は多気筒内燃機関であり、多気筒内燃機関の気筒毎に冷媒室が設けられているために、気筒毎に膨張行程で蓄えられた熱を吸気行程で吸気加熱に使用することができる。   According to the heat recovery and utilization device for an internal combustion engine according to claim 2 of the present invention, in the heat recovery and utilization device for internal combustion engine according to claim 1, the internal combustion engine is a multi-cylinder internal combustion engine, and Since the refrigerant chamber is provided for each cylinder, the heat stored in the expansion stroke for each cylinder can be used for intake air heating in the intake stroke.

本発明による請求項3に記載の内燃機関の熱回収利用装置によれば、請求項2に記載の内燃機関の熱回収利用装置において、気筒毎の冷媒室には、独立して気相冷媒の圧力調整装置が設けられているために、気筒毎に冷媒室の気相冷媒の圧力調整が可能となり、気筒毎に膨張行程において冷媒の気化潜熱により蓄えられる熱量を調整することができる。   According to a heat recovery and utilization device for an internal combustion engine according to a third aspect of the present invention, in the heat recovery and utilization device for an internal combustion engine according to the second aspect, the refrigerant chamber of each cylinder is independently provided with a gas-phase refrigerant. Since the pressure adjusting device is provided, the pressure of the gas-phase refrigerant in the refrigerant chamber can be adjusted for each cylinder, and the amount of heat stored by the latent heat of vaporization of the refrigerant in the expansion stroke can be adjusted for each cylinder.

本発明による請求項4に記載の内燃機関の熱回収利用装置によれば、請求項3に記載の内燃機関の熱回収利用装置において、低負荷時には高負荷時に比較して、圧力調整装置によって少なくとも一つの気筒の冷媒室の気相冷媒の圧力を高めるようになっている。それにより、低負荷時において少なくとも一つの気筒では、膨張行程中に気化潜熱により冷媒が蓄える熱量を少なくして燃焼時の冷却損失を小さくすることができ、高負荷時において膨張行程中に気化潜熱により冷媒が蓄える熱量を多くして燃焼時のノッキングの発生を抑制することができる。   According to the heat recovery and utilization device for an internal combustion engine according to claim 4 of the present invention, in the heat recovery and utilization device for an internal combustion engine according to claim 3, at least by the pressure adjustment device at the time of low load compared to at the time of high load. The pressure of the gas-phase refrigerant in the refrigerant chamber of one cylinder is increased. Thereby, in at least one cylinder at low load, the amount of heat stored in the refrigerant by the vaporization latent heat during the expansion stroke can be reduced to reduce the cooling loss during combustion, and the latent heat of vaporization during the expansion stroke at high load Thus, the amount of heat stored in the refrigerant can be increased, and knocking during combustion can be suppressed.

本発明による請求項5に記載の内燃機関の熱回収利用装置によれば、請求項3又は4に記載の内燃機関の熱回収利用装置において、ノッキングが発生した気筒の冷媒室の気相冷媒の圧力を、ノッキングが発生していない気筒の冷媒室の気相冷媒の圧力に比較して、圧力調整装置によって低下させるようになっている。それにより、ノッキングが発生した気筒では、膨張行程中に気化潜熱により冷媒が蓄える熱量を確実に多くして燃焼時のノッキングの発生を防止することができる。   According to the internal combustion engine heat recovery and utilization apparatus of claim 5 according to the present invention, in the internal combustion engine heat recovery and utilization apparatus of claim 3 or 4, the gas phase refrigerant in the refrigerant chamber of the cylinder in which knocking has occurred. The pressure is reduced by a pressure adjusting device as compared with the pressure of the gas-phase refrigerant in the refrigerant chamber of the cylinder in which knocking has not occurred. Accordingly, in the cylinder where knocking has occurred, the amount of heat stored in the refrigerant by the vaporization latent heat during the expansion stroke can be reliably increased to prevent knocking during combustion.

本発明による請求項6に記載の内燃機関の熱回収利用装置は、請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置において、内燃機関は圧縮自着火エンジンである。圧縮自着火エンジンにおいて、圧縮自着火を確実なものとするためには、吸気温度を高めることが有効であり、本熱回収利用装置によれば、膨張行程中に気化潜熱により冷媒が蓄える熱は、吸気行程中に気相から液相へ相変化する際に、燃焼室へ放出され、良好な吸気加熱を実現することができる。   According to a sixth aspect of the present invention, there is provided the heat recovery and utilization device for an internal combustion engine according to any one of the first to fifth aspects, wherein the internal combustion engine is a compression auto-ignition engine. In a compression auto-ignition engine, it is effective to increase the intake air temperature in order to ensure compression auto-ignition. According to this heat recovery and utilization device, the heat stored in the refrigerant by the latent heat of vaporization during the expansion stroke is When the phase changes from the gas phase to the liquid phase during the intake stroke, it is discharged into the combustion chamber, and good intake air heating can be realized.

本発明による請求項7に記載の内燃機関の熱回収利用装置は、請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置において、内燃機関の燃料は、少なくともメタノール又はアルコールを含んでいる。メタノール及びアルコールは、多量の気化潜熱を必要とし、本熱回収利用装置によれば、膨張行程中に気化潜熱により冷媒が蓄える熱は、吸気行程中に気相から液相へ相変化する際に、燃焼室へ放出され、良好な吸気加熱を実現するために、少なくともメタノール又はアルコールを含む燃料を良好に気化させることができる。   An internal combustion engine heat recovery and utilization device according to a seventh aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to fifth aspects, wherein the fuel of the internal combustion engine is at least methanol or alcohol. Is included. Methanol and alcohol require a large amount of latent heat of vaporization, and according to this heat recovery and utilization device, the heat stored in the refrigerant by the latent heat of vaporization during the expansion stroke is changed when the phase changes from the gas phase to the liquid phase during the intake stroke. The fuel containing at least methanol or alcohol can be vaporized well in order to be released into the combustion chamber and achieve good intake air heating.

本発明による請求項8に記載の内燃機関の熱回収利用装置によれば、請求項1から7のいずれか一項に記載の内燃機関の熱回収利用装置において、冷媒室は大気中への放熱を抑制するための断熱層を有している。それにより、断熱層によって膨張行程中に冷媒が蓄えた熱の大気中への放熱が抑制され、吸気行程中の良好な吸気加熱を実現することができる。   According to the internal combustion engine heat recovery and utilization apparatus as set forth in claim 8 of the present invention, in the internal combustion engine heat recovery and utilization apparatus according to any one of claims 1 to 7, the refrigerant chamber radiates heat to the atmosphere. It has a heat insulation layer for suppressing. As a result, heat release from the heat stored in the refrigerant during the expansion stroke to the atmosphere is suppressed by the heat insulating layer, and good intake air heating during the intake stroke can be realized.

本発明による請求項9に記載の内燃機関の熱回収利用装置は、請求項1から8のいずれか一項に記載の内燃機関の熱回収利用装置において、燃焼室上部の単位面積当たりに隣接する冷媒室の容積は、燃焼室下部の単位面積当たりに隣接する冷媒室の容積より大きくなっている。膨張行程において、燃焼室上部の単位面積当たりの受熱量は、燃焼室下部の単位面積当たりの受熱量より多く、燃焼室上部では燃焼室下部に比較して冷媒蒸気の泡が多く発生する。冷媒蒸気の泡が一塊となって隔壁近傍に位置するようになると、燃焼室から殆ど熱を奪うことができなくなるために、本熱回収利用装置では、燃焼室上部の単位面積当たりに隣接する冷媒室の容積を、燃焼室下部の単位面積当たりに隣接する冷媒室の容積より大きくし、冷媒蒸気の泡が多く発生する燃焼室上部では、冷媒蒸気の泡が塊となり難くしている。   An internal combustion engine heat recovery and utilization device according to a ninth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to eighth aspects, wherein the internal combustion engine heat recovery and utilization device is adjacent to an upper unit area of the combustion chamber. The volume of the refrigerant chamber is larger than the volume of the adjacent refrigerant chamber per unit area under the combustion chamber. In the expansion stroke, the amount of heat received per unit area in the upper portion of the combustion chamber is larger than the amount of heat received per unit area in the lower portion of the combustion chamber, and more bubbles of refrigerant vapor are generated in the upper portion of the combustion chamber than in the lower portion of the combustion chamber. When the bubbles of the refrigerant vapor come together and are located near the partition wall, it is impossible to take heat from the combustion chamber. Therefore, in the heat recovery and utilization apparatus, the refrigerant adjacent to the unit area of the upper part of the combustion chamber is used. The volume of the chamber is made larger than the volume of the adjacent refrigerant chamber per unit area at the lower portion of the combustion chamber, and the bubbles of the refrigerant vapor are less likely to be agglomerated in the upper portion of the combustion chamber where a large amount of refrigerant vapor bubbles are generated.

本発明による請求項10に記載の内燃機関の熱回収利用装置によれば、請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置において、隔壁には冷媒室内へ突出する熱交換フィンが形成されているために、冷媒室内の冷媒は、膨張行程において燃焼室から良好に受熱し、吸気行程において燃焼室へ良好に放熱することができる。   According to the internal combustion engine heat recovery and utilization apparatus as set forth in claim 10 of the present invention, in the internal combustion engine heat recovery and utilization apparatus according to any one of claims 1 to 9, the partition wall protrudes into the refrigerant chamber. Since the heat exchange fins are formed, the refrigerant in the refrigerant chamber can receive heat well from the combustion chamber in the expansion stroke and can radiate heat well to the combustion chamber in the intake stroke.

本発明による請求項11に記載の内燃機関の熱回収利用装置によれば、請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置において、隔壁には冷媒室内へ突出する補強リブが形成されているために、隔壁の厚さを薄くすることができ、冷媒室内の冷媒は、膨張行程において燃焼室から良好に受熱し、吸気行程において燃焼室へ良好に放熱することができる。   According to the internal combustion engine heat recovery and utilization apparatus as set forth in claim 11 of the present invention, in the internal combustion engine heat recovery and utilization apparatus according to any one of claims 1 to 9, the partition wall protrudes into the refrigerant chamber. Since the reinforcing rib is formed, the thickness of the partition wall can be reduced, and the refrigerant in the refrigerant chamber can receive heat well from the combustion chamber in the expansion stroke and can radiate heat well to the combustion chamber in the intake stroke. it can.

本発明による請求項12に記載の内燃機関の熱回収利用装置は、請求項1から11のいずれか一項に記載の内燃機関の熱回収利用装置において、冷媒室内には燃焼室上下方向に延在する熱伝達部材が設けられている。膨張行程において、燃焼室上部の単位面積当たりの受熱量は、燃焼室下部の単位面積当たりの受熱量より多くなる。それにより、本熱回収利用装置によれば、熱伝達部材が燃焼室上部の受熱量の一部を燃焼室下部へ熱伝達するために、燃焼室下部の冷媒蒸気の発生を多くして、冷媒全体が気化潜熱によって蓄える熱量を多くすることができる。   An internal combustion engine heat recovery and utilization device according to a twelfth aspect of the present invention is the internal combustion engine heat recovery and utilization device according to any one of the first to eleventh aspects, wherein the refrigerant chamber extends vertically. An existing heat transfer member is provided. In the expansion stroke, the amount of heat received per unit area in the upper part of the combustion chamber is greater than the amount of heat received per unit area in the lower part of the combustion chamber. Thereby, according to this heat recovery and utilization device, in order for the heat transfer member to transfer a part of the amount of heat received in the upper part of the combustion chamber to the lower part of the combustion chamber, the generation of refrigerant vapor in the lower part of the combustion chamber is increased. The amount of heat stored as a whole by latent heat of vaporization can be increased.

図1は本発明による熱回収利用装置が取り付けられた内燃機関の概略図である。同図において、1は点火プラグであり、2は燃焼室である。3は吸気弁4を介して燃焼室2へ通じる吸気ポートであり、5は排気弁6を介して燃焼室2へ通じる排気ポートである。吸気ポート2には燃料噴射弁7が配置されている。8はピストンである。   FIG. 1 is a schematic view of an internal combustion engine equipped with a heat recovery utilization apparatus according to the present invention. In the figure, 1 is a spark plug and 2 is a combustion chamber. 3 is an intake port that leads to the combustion chamber 2 via the intake valve 4, and 5 is an exhaust port that leads to the combustion chamber 2 via the exhaust valve 6. A fuel injection valve 7 is disposed in the intake port 2. 8 is a piston.

本内燃機関は、ウォータジャケット及びラジエータを有する水冷式ではなく、熱回収利用装置として、シリンダヘッド、シリンダブロック、及び、ピストン8には、隔壁を介して燃焼室2に隣接する冷媒室が設けられている。シリンダヘッドに設けられた第一冷媒室9は、点火プラグ1回りにおいて、二つの吸気ポート3の間と、二つの排気ポート5の間と、吸気ポート3と排気ポートとの間(二箇所)とに延在する四つの閉鎖空間を有している。シリンダブロックに設けられた第二冷媒室10は環状に燃焼室2を取り囲む閉鎖空間を有している。また、ピストン8に設けられた第三冷媒室11は、ピストンの図1のA−A断面である図2に示すように、中心の円形断面の閉鎖空間と、これを取り囲む三つの環状断面の閉鎖空間とを有している。   This internal combustion engine is not a water-cooled type having a water jacket and a radiator, but as a heat recovery and utilization device, the cylinder head, the cylinder block, and the piston 8 are provided with a refrigerant chamber adjacent to the combustion chamber 2 via a partition wall. ing. The first refrigerant chamber 9 provided in the cylinder head is provided between the two intake ports 3, between the two exhaust ports 5, and between the intake port 3 and the exhaust port (two locations) around the spark plug 1. And four closed spaces. The second refrigerant chamber 10 provided in the cylinder block has a closed space surrounding the combustion chamber 2 in an annular shape. Moreover, as shown in FIG. 2 which is AA cross section of FIG. 1 of the piston, the third refrigerant chamber 11 provided in the piston 8 has a closed space with a central circular cross section and three annular cross sections surrounding it. And a closed space.

各冷媒室9、10、及び、11内の冷媒として、メタノール、ブタン、アンモニア、フロン、エタノール、又は、二酸化炭素等が使用可能である。各冷媒室9、10、及び、11は、閉鎖空間毎に同一物質の液相冷媒及び気相冷媒により満たされる。特に、シリンダブロックに設けられた第二冷媒室10は、環状の閉鎖空間に連通する気相室10aを有している。   As the refrigerant in each of the refrigerant chambers 9, 10, and 11, methanol, butane, ammonia, chlorofluorocarbon, ethanol, carbon dioxide, or the like can be used. Each of the refrigerant chambers 9, 10, and 11 is filled with a liquid phase refrigerant and a gas phase refrigerant of the same substance for each closed space. In particular, the second refrigerant chamber 10 provided in the cylinder block has a gas phase chamber 10a communicating with the annular closed space.

このように構成された本発明による熱回収利用装置によれば、隔壁を介して燃焼室2に隣接する冷媒室9、10、及び、11内の液相冷媒の少なくとも一部が、燃焼熱の一部を奪って膨張行程中に液相から気相へ相変化し、膨張行程において燃焼熱により隔壁温度が過剰に高まることを防止する。こうして、冷媒の気化潜熱により蓄えられた熱は、吸気行程中に気相から液相へ相変化する際に、燃焼室へ放出され、良好な吸気加熱を実現することができる。   According to the heat recovery and utilization device according to the present invention configured as described above, at least a part of the liquid phase refrigerant in the refrigerant chambers 9, 10 and 11 adjacent to the combustion chamber 2 through the partition wall is free of combustion heat. A part is taken away to change the phase from the liquid phase to the gas phase during the expansion stroke, and the partition wall temperature is prevented from being excessively increased by the heat of combustion during the expansion stroke. Thus, the heat stored by the latent heat of vaporization of the refrigerant is released to the combustion chamber when the phase changes from the gas phase to the liquid phase during the intake stroke, and good intake air heating can be realized.

通常の水冷式又は空冷式では、燃焼熱の一部は最終的に大気中へ放出され、全く回収することができない。また、排気ガスの熱を吸気加熱に利用することが考えられるが、これでは、機関排気系に配置された触媒装置の触媒活性化温度への早期暖機及び触媒活性化温度の維持が難しくなる。   In the normal water cooling type or air cooling type, a part of the combustion heat is finally released into the atmosphere and cannot be recovered at all. In addition, it is conceivable to use the heat of the exhaust gas for intake air heating. However, this makes it difficult to quickly warm up the catalyst device to the catalyst activation temperature and maintain the catalyst activation temperature in the engine exhaust system. .

本熱回収利用装置は、内燃機関が多気筒内燃機関の場合には、気筒毎に各冷媒室9、10、及び、11が設けられているために、気筒毎に膨張行程で蓄えられた熱を吸気行程で吸気加熱に使用することができる。   In the case where the internal combustion engine is a multi-cylinder internal combustion engine, the heat recovery and utilization apparatus is provided with the refrigerant chambers 9, 10, and 11 for each cylinder, and therefore the heat stored in the expansion stroke for each cylinder. Can be used for intake air heating in the intake stroke.

図3は、第二冷媒室10の気相室10a’をシリンダブロックの外側に配置して、気相室10a’に、気相室10a’内の圧力を調整するための圧力調整装置として、上下動するピストン12を設けた場合を示している。こうして、気筒毎の第二冷媒室10に、独立して気相冷媒の圧力調整装置12を設ければ、気筒毎に第二冷媒室の気相冷媒の圧力調整が可能となり、気筒毎に膨張行程において冷媒の気化潜熱により蓄えられる熱量を調整することができる。   FIG. 3 shows a gas pressure chamber 10a ′ of the second refrigerant chamber 10 arranged outside the cylinder block as a pressure adjusting device for adjusting the pressure in the gas phase chamber 10a ′ to the gas phase chamber 10a ′. The case where the piston 12 which moves up and down is provided is shown. Thus, if the gas refrigerant pressure adjusting device 12 is independently provided in the second refrigerant chamber 10 for each cylinder, the pressure adjustment of the gas phase refrigerant in the second refrigerant chamber can be performed for each cylinder, and expansion is performed for each cylinder. In the process, the amount of heat stored by the latent heat of vaporization of the refrigerant can be adjusted.

すなわち、ピストン12によって気相室の容積を減少させて、気相室内の気相冷媒の圧力を高くすれば、膨張行程において気化する冷媒の量が少なくなり(気相冷媒の圧力が高いと、少量の冷媒が気化した時に、気相冷媒温度、液相冷媒温度、及び、燃焼室内の温度が等しくなって、これ以上は冷媒が気化しなくなる。)、気化潜熱により蓄えられる熱量を少なくすることができる。また、ピストン12によって気相室の容積を増大させて、気相室内の気相冷媒の圧力を低くすれば、膨張行程において気化する冷媒の量が多くなり、気化潜熱により蓄えられる熱量を多くすることができる。   That is, if the volume of the gas phase chamber is reduced by the piston 12 and the pressure of the gas phase refrigerant in the gas phase chamber is increased, the amount of refrigerant vaporized in the expansion stroke is reduced (if the pressure of the gas phase refrigerant is high, When a small amount of refrigerant is vaporized, the gas-phase refrigerant temperature, the liquid-phase refrigerant temperature, and the temperature in the combustion chamber become equal, and the refrigerant no longer vaporizes.) Reduce the amount of heat stored by the latent heat of vaporization Can do. Further, if the volume of the gas phase chamber is increased by the piston 12 to lower the pressure of the gas phase refrigerant in the gas phase chamber, the amount of refrigerant vaporized in the expansion stroke increases, and the amount of heat stored by the vaporization latent heat increases. be able to.

例えば、低負荷時には高負荷時に比較して、全ての圧力調整装置12によって全ての気筒の第二冷媒室10の気相冷媒の圧力を高めるようにすれば、低負荷時において膨張行程中に気化潜熱により冷媒が蓄える熱量が少なくなって燃焼時の冷却損失を小さくすることができ、高負荷時において膨張行程中に気化潜熱により冷媒が蓄える熱量が多くなって燃焼時のノッキングの発生を抑制することができる。   For example, if the pressure of the gas-phase refrigerant in the second refrigerant chambers 10 of all the cylinders is increased by all the pressure adjusting devices 12 when the load is low, vaporization occurs during the expansion stroke at the low load. The amount of heat stored by the refrigerant is reduced by latent heat, reducing the cooling loss during combustion, and the amount of heat stored by the refrigerant is increased by latent heat of vaporization during the expansion stroke at high loads, suppressing the occurrence of knocking during combustion. be able to.

また、ノッキングが発生した気筒の第二冷媒室10の気相冷媒の圧力を、ノッキングが発生していない気筒の第二冷媒室10の気相冷媒の圧力に比較して、圧力調整装置12によって低下させるようにすれば、ノッキングが発生した気筒において、膨張行程中に気化潜熱により冷媒が蓄える熱量を確実に多くして燃焼時のノッキングの発生を防止することができる。   Further, the pressure adjusting device 12 compares the pressure of the gas phase refrigerant in the second refrigerant chamber 10 of the cylinder where knocking has occurred with the pressure of the gas phase refrigerant in the second refrigerant chamber 10 of the cylinder where knocking has not occurred. By reducing the amount of heat generated in the cylinder in which knocking has occurred, the amount of heat stored in the refrigerant by the latent heat of vaporization during the expansion stroke can be reliably increased to prevent knocking during combustion.

本熱回収利用装置は、いずれの内燃機関に適用されても前述の効果を得ることができる。特に、圧縮自着火エンジンに適用されれば、圧縮自着火エンジンにおいて、圧縮自着火を確実なものとするためには、吸気温度を高めることが有効であるために、膨張行程中に気化潜熱により冷媒が蓄える熱を効果的に吸気行程の吸気加熱に利用することができる。   The present heat recovery and utilization device can obtain the above-described effects regardless of which internal combustion engine is applied. In particular, when applied to a compression ignition engine, in a compression ignition engine, in order to ensure compression ignition, it is effective to increase the intake air temperature. The heat stored in the refrigerant can be effectively used for intake air heating in the intake stroke.

また、本熱回収利用装置が適用される内燃機関の燃料が、少なくともメタノール又はアルコールを含んでいる場合には、メタノール及びアルコールは、多量の気化潜熱を必要とするために、膨張行程中に気化潜熱により冷媒が蓄える熱を効果的に吸気行程の吸気加熱に利用して、少なくともメタノール又はアルコールを含む燃料を良好に気化させることができる。   In addition, when the fuel of the internal combustion engine to which the present heat recovery and utilization apparatus is applied contains at least methanol or alcohol, the methanol and alcohol require a large amount of latent heat of vaporization, and therefore vaporize during the expansion stroke. The heat stored in the refrigerant by the latent heat can be effectively used for intake air heating in the intake stroke, and fuel containing at least methanol or alcohol can be vaporized well.

また、図1において、各冷媒室9、10、及び、11の燃焼室2とは反対側には、セラミック等の断熱層91、101、及び111が設けられている。それにより、これら断熱層によって膨張行程中に冷媒が蓄えた熱の大気中への放熱が抑制され、吸気行程中の良好な吸気加熱を実現することができる。   In FIG. 1, heat insulating layers 91, 101, and 111 made of ceramic or the like are provided on the opposite sides of the refrigerant chambers 9, 10, and 11 from the combustion chamber 2. As a result, the heat release from the heat stored in the refrigerant during the expansion stroke to the atmosphere is suppressed by these heat insulating layers, and good intake air heating during the intake stroke can be realized.

図4は図1に示す第二冷媒室10の変形例を示す概略図である。図4において、シリンダヘッド及びピストン8’には冷媒室は設けられていない。シリンダブロックに設けられた冷媒室20は、燃焼室2とは反対側に断熱層201を有し、一様厚さの隔壁を介して、燃焼室上部の単位面積当たりに隣接する容積が、燃焼室下部の単位面積当たりに隣接する容積より径方向に大きくなっている。本変形例においては、冷媒室20の外側面を切頭円錐形状として、燃焼室上部から燃焼室下部へ単位面積当たりに隣接する冷媒室の容積を徐々に小さくしている。しかしながら、冷媒室20の外側面に段部を設けて、燃焼室上部の単位面積当たりに隣接する冷媒室の容積を、燃焼室下部の単位面積あたりに隣接する冷媒室の容積より径方向に大きくするようにしても良い。   FIG. 4 is a schematic view showing a modification of the second refrigerant chamber 10 shown in FIG. In FIG. 4, the cylinder head and the piston 8 'are not provided with a refrigerant chamber. The refrigerant chamber 20 provided in the cylinder block has a heat insulating layer 201 on the side opposite to the combustion chamber 2, and the volume adjacent to the unit area of the upper portion of the combustion chamber is combusted via a uniform thickness partition wall. It is larger in the radial direction than the adjacent volume per unit area of the lower part of the room. In this modification, the outer surface of the refrigerant chamber 20 has a truncated conical shape, and the volume of the refrigerant chamber adjacent per unit area from the upper portion of the combustion chamber to the lower portion of the combustion chamber is gradually reduced. However, a step is provided on the outer surface of the refrigerant chamber 20 so that the volume of the refrigerant chamber adjacent to the unit area of the upper portion of the combustion chamber is larger in the radial direction than the volume of the refrigerant chamber adjacent to the unit area of the lower portion of the combustion chamber. You may make it do.

膨張行程において、燃焼室上部の単位面積当たりの受熱量は、燃焼室下部の単位面積当たりの受熱量より多く、燃焼室上部では燃焼室下部に比較して冷媒蒸気の泡が多く発生する。冷媒蒸気の泡が一塊となって隔壁近傍に位置するようになると、燃焼室から殆ど熱を奪うことができなくなる。それにより、本変形例によれば、燃焼室上部の単位面積当たりに隣接する冷媒室の容積が、燃焼室下部の単位面積当たりに隣接する冷媒室の容積より大きくされ、冷媒蒸気の泡が多く発生する燃焼室上部では、冷媒蒸気の泡が塊となり難くしている。   In the expansion stroke, the amount of heat received per unit area in the upper portion of the combustion chamber is larger than the amount of heat received per unit area in the lower portion of the combustion chamber, and more bubbles of refrigerant vapor are generated in the upper portion of the combustion chamber than in the lower portion of the combustion chamber. When the bubbles of the refrigerant vapor become a lump and are located in the vicinity of the partition wall, almost no heat can be taken from the combustion chamber. Thereby, according to this modification, the volume of the refrigerant chamber adjacent per unit area of the upper part of the combustion chamber is made larger than the volume of the refrigerant chamber adjacent per unit area of the lower part of the combustion chamber, and there are many bubbles of refrigerant vapor. In the upper part of the generated combustion chamber, the bubbles of the refrigerant vapor are less likely to become lumps.

図5は、図1のA−A断面の第二冷媒室10又は図4のB−B断面の第二冷媒室20を示す断面図である。図5に示す変形例では、燃焼室2との間の隔壁に、第二冷媒室10又は20内へ突出する熱交換フィン13が形成されている。それにより、第二冷媒室内の冷媒は、膨張行程において燃焼室から良好に受熱し、吸気行程において燃焼室へ良好に放熱することができる。   5 is a cross-sectional view showing the second refrigerant chamber 10 taken along the line AA of FIG. 1 or the second refrigerant chamber 20 taken along the line BB of FIG. In the modification shown in FIG. 5, heat exchange fins 13 protruding into the second refrigerant chamber 10 or 20 are formed in the partition wall between the combustion chamber 2. Thereby, the refrigerant in the second refrigerant chamber can receive heat from the combustion chamber well in the expansion stroke, and can be radiated well to the combustion chamber in the intake stroke.

図6は図5に相当する断面図であり、図6に示す変形例の第二冷媒室は、燃焼室の上下方向に延在する複数の円形断面の縦穴30から構成される。複数の縦穴30は、円形断面でなくても任意の断面としても良い。また、複数の縦穴30は、互いに独立として、それぞれに気相領域を有しても良いが、特定の高さ位置において互いに連通されて図1のような共通の気相室を有するようにしても良い。複数の縦穴30の外側には図1及び4と同様な断熱層301が設けられている。   FIG. 6 is a cross-sectional view corresponding to FIG. 5, and the second refrigerant chamber of the modified example shown in FIG. 6 includes a plurality of circular cross-section vertical holes 30 extending in the vertical direction of the combustion chamber. The plurality of vertical holes 30 may have an arbitrary cross section instead of a circular cross section. Further, the plurality of vertical holes 30 may have a gas phase region independently of each other, but are connected to each other at a specific height position so as to have a common gas phase chamber as shown in FIG. Also good. A heat insulating layer 301 similar to that shown in FIGS. 1 and 4 is provided outside the plurality of vertical holes 30.

このように、第二冷媒室が複数の縦穴30から形成されると、各縦穴30の間の隔壁30’は、燃焼室2との間の隔壁31から環状断面冷媒室(図1及び4の第二冷媒室のような)へ突出する補強リブと考えることができ、すなわち、環状断面の冷媒室が補強リブによって複数の縦穴冷媒室に分割されたと考えることができる。これら複数の補強リブによって燃焼室との間の隔壁31の厚さを薄くすることができるために、各縦穴状の冷媒室30内の冷媒は、膨張行程において燃焼室から良好に受熱し、吸気行程において燃焼室へ良好に放熱することができる。また、図2のピストン8の第三冷媒室11において、円形断面の閉鎖空間と、三つの環状断面の閉鎖空間とを仕切る隔壁11aも、補強リブと考えることができ、同様な効果を得ることができる。   Thus, when the second refrigerant chamber is formed from the plurality of vertical holes 30, the partition wall 30 'between the vertical holes 30 is separated from the partition wall 31 between the combustion chamber 2 and the annular cross-section refrigerant chamber (of FIGS. 1 and 4). It can be considered that the reinforcing rib protrudes into the second refrigerant chamber (such as the second refrigerant chamber), that is, it can be considered that the refrigerant chamber having an annular cross section is divided into a plurality of vertical hole refrigerant chambers by the reinforcing rib. Since the thickness of the partition wall 31 between the plurality of reinforcing ribs and the combustion chamber can be reduced, the refrigerant in each vertical hole-shaped refrigerant chamber 30 is well received from the combustion chamber during the expansion stroke, It is possible to dissipate heat to the combustion chamber well during the stroke. Further, in the third refrigerant chamber 11 of the piston 8 of FIG. 2, the partition wall 11a that partitions the closed space having the circular cross section and the closed space having the three annular cross sections can be considered as the reinforcing rib, and the same effect can be obtained. Can do.

図1において、第二冷媒室10内には燃焼室上下方向に延在する熱伝達部材14が設けられている。熱伝達部材14は、銀、アルミニウム、又は、銅等の金属メッシュや金属綿とすることができる。前述したように、膨張行程において、燃焼室上部の単位面積当たりの受熱量は、燃焼室下部の単位面積当たりの受熱量より多くなる。それにより、熱伝達部材14が燃焼室上部の受熱量の一部を燃焼室下部へ熱伝達し、燃焼室下部の冷媒蒸気の発生を多くして、冷媒全体が気化潜熱によって蓄える熱量を多くすることができる。   In FIG. 1, a heat transfer member 14 extending in the vertical direction of the combustion chamber is provided in the second refrigerant chamber 10. The heat transfer member 14 may be a metal mesh such as silver, aluminum, or copper, or metal cotton. As described above, in the expansion stroke, the amount of heat received per unit area in the upper portion of the combustion chamber is larger than the amount of heat received per unit area in the lower portion of the combustion chamber. As a result, the heat transfer member 14 transfers a part of the amount of heat received in the upper part of the combustion chamber to the lower part of the combustion chamber, thereby increasing the generation of refrigerant vapor in the lower part of the combustion chamber and increasing the amount of heat stored in the entire refrigerant by the latent heat of vaporization. be able to.

本発明による熱回収利用装置が取り付けられた内燃機関の概略図である。It is the schematic of the internal combustion engine with which the heat recovery utilization apparatus by this invention was attached. ピストンの図1のA−A断面図である。It is AA sectional drawing of FIG. 1 of a piston. 図1の気相室の変形例を示す図である。It is a figure which shows the modification of the gaseous-phase chamber of FIG. 第二冷媒室の変形例を示す図である。It is a figure which shows the modification of a 2nd refrigerant | coolant chamber. 第二冷媒室のもう一つの変形例を示す図1のA−A断面図又は図4のB−B断面図である。FIG. 5 is a cross-sectional view taken along the line AA in FIG. 1 or a cross-sectional view taken along the line BB in FIG. 4 showing another modification of the second refrigerant chamber. 第二冷媒室のさらにもう一つの変形例を示す図5に相当する断面図である。FIG. 6 is a cross-sectional view corresponding to FIG. 5 showing still another modification of the second refrigerant chamber.

符号の説明Explanation of symbols

9 第一冷媒室
10 第二冷媒室
10a,10a’ 気相室
11 第三冷媒室
12 圧力調整装置
13 熱交換フィン
30’ 補強リブ
DESCRIPTION OF SYMBOLS 9 1st refrigerant | coolant chamber 10 2nd refrigerant | coolant chamber 10a, 10a 'Gas phase chamber 11 Third refrigerant chamber 12 Pressure regulator 13 Heat exchange fin 30' Reinforcement rib

Claims (12)

隔壁を介して燃焼室に隣接する冷媒室を具備し、前記冷媒室内の冷媒の少なくとも一部は、膨張行程中に液相から気相へ相変化し、吸気行程中に気相から液相へ相変化することを特徴とする内燃機関の熱回収利用装置。   A refrigerant chamber is provided adjacent to the combustion chamber via a partition wall, and at least a part of the refrigerant in the refrigerant chamber undergoes a phase change from the liquid phase to the gas phase during the expansion stroke, and changes from the gas phase to the liquid phase during the intake stroke. A heat recovery and utilization device for an internal combustion engine, characterized in that the phase changes. 前記内燃機関は多気筒内燃機関であり、前記多気筒内燃機関の気筒毎に独立して前記冷媒室が設けられていることを特徴とする請求項1に記載の内燃機関の熱回収利用装置。   2. The heat recovery and utilization device for an internal combustion engine according to claim 1, wherein the internal combustion engine is a multi-cylinder internal combustion engine, and the refrigerant chamber is provided independently for each cylinder of the multi-cylinder internal combustion engine. 気筒毎の前記冷媒室には、独立して気相冷媒の圧力調整装置が設けられていることを特徴とする請求項2に記載の内燃機関の熱回収利用装置。   The internal combustion engine heat recovery and utilization device according to claim 2, wherein a gas pressure refrigerant pressure adjusting device is independently provided in the refrigerant chamber for each cylinder. 低負荷時には高負荷時に比較して、前記圧力調整装置によって少なくとも一つの気筒の前記冷媒室の気相冷媒の圧力を高めることを特徴とする請求項3に記載の内燃機関の熱回収利用装置。   4. The heat recovery and utilization device for an internal combustion engine according to claim 3, wherein the pressure of the gas phase refrigerant in the refrigerant chamber of at least one cylinder is increased by the pressure adjusting device when the load is low as compared with when the load is high. ノッキングが発生した気筒の前記冷媒室の気相冷媒の圧力を、ノッキングが発生していない気筒の前記冷媒室の気相冷媒の圧力に比較して、前記圧力調整装置によって低下させることを特徴とする請求項3又は4に記載の内燃機関の熱回収利用装置。   A pressure of the gas phase refrigerant in the refrigerant chamber of the cylinder in which knocking has occurred is reduced by the pressure adjusting device as compared with a pressure of the gas phase refrigerant in the refrigerant chamber of the cylinder in which knocking has not occurred. The heat recovery utilization apparatus of the internal combustion engine according to claim 3 or 4. 前記内燃機関は圧縮自着火エンジンであることを特徴とする請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置。   6. The heat recovery and utilization device for an internal combustion engine according to claim 1, wherein the internal combustion engine is a compression auto-ignition engine. 前記内燃機関の燃料は、少なくともメタノール又はアルコールを含んでいることを特徴とする請求項1から5のいずれか一項に記載の内燃機関の熱回収利用装置。   The heat recovery utilization apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein the fuel for the internal combustion engine contains at least methanol or alcohol. 前記冷媒室は大気中への放熱を抑制するための断熱層を有していることを特徴とする請求項1から7のいずれか一項に記載の内燃機関の熱回収利用装置。   The heat recovery and utilization device for an internal combustion engine according to any one of claims 1 to 7, wherein the refrigerant chamber has a heat insulating layer for suppressing heat radiation to the atmosphere. 燃焼室上部の単位面積当たりに隣接する前記冷媒室の容積は、燃焼室下部の前記単位面積当たりに隣接する前記冷媒室の容積より大きいことを特徴とする請求項1から8のいずれか一項に記載の内燃機関の熱回収利用装置。   The volume of the refrigerant chamber adjacent per unit area of the upper combustion chamber is larger than the volume of the refrigerant chamber adjacent per unit area of the lower combustion chamber. The heat recovery utilization apparatus of the internal combustion engine described in 1. 前記隔壁には前記冷媒室内へ突出する熱交換フィンが形成されていることを特徴とする請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置。   The heat recovery and utilization device for an internal combustion engine according to any one of claims 1 to 9, wherein a heat exchange fin protruding into the refrigerant chamber is formed on the partition wall. 前記隔壁には前記冷媒室内へ突出する補強リブが形成されていることを特徴とする請求項1から9のいずれか一項に記載の内燃機関の熱回収利用装置。   The heat recovery utilization apparatus for an internal combustion engine according to any one of claims 1 to 9, wherein a reinforcing rib protruding into the refrigerant chamber is formed in the partition wall. 前記冷媒室内には燃焼室上下方向に延在する熱伝達部材が設けられていることを特徴とする請求項1から11のいずれか一項に記載の内燃機関の熱回収利用装置。   The heat recovery utilization apparatus for an internal combustion engine according to any one of claims 1 to 11, wherein a heat transfer member extending in a vertical direction of the combustion chamber is provided in the refrigerant chamber.
JP2007255099A 2007-09-28 2007-09-28 Heat recovery device for internal combustion engine Withdrawn JP2009085077A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007255099A JP2009085077A (en) 2007-09-28 2007-09-28 Heat recovery device for internal combustion engine
PCT/JP2008/065784 WO2009041224A1 (en) 2007-09-28 2008-08-27 A heat recovery and utilization system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255099A JP2009085077A (en) 2007-09-28 2007-09-28 Heat recovery device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009085077A true JP2009085077A (en) 2009-04-23

Family

ID=40101156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255099A Withdrawn JP2009085077A (en) 2007-09-28 2007-09-28 Heat recovery device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009085077A (en)
WO (1) WO2009041224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064142A (en) * 2009-09-17 2011-03-31 Toyoda Gosei Co Ltd Water jacket structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191201750A (en) * 1912-01-22 1913-02-24 William Joseph Still Improvements in and connected with Internal Combustion Engines.
JPS5632071A (en) * 1979-08-23 1981-04-01 Nissan Motor Co Ltd Intake air heating system for internal combustion engine
GB2064001A (en) * 1979-11-28 1981-06-10 Ford P Internal Combustion Engine with Cylinder Steam Supply During Expansion
DE3150919A1 (en) * 1980-12-30 1982-10-07 Chevron Research Co., 94105 San Francisco, Calif. INTAKE VALVE
JPS62223439A (en) * 1986-03-22 1987-10-01 Nissan Motor Co Ltd Knocking controller for evaporative cooling type internal combustion engine
RU2154172C2 (en) * 1997-11-05 2000-08-10 Волков Александр Гарольдович Internal combustion engine temperature control device
US6182643B1 (en) * 2000-01-31 2001-02-06 Caterpillar Inc. Internal combustion engine with cooling circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064142A (en) * 2009-09-17 2011-03-31 Toyoda Gosei Co Ltd Water jacket structure

Also Published As

Publication number Publication date
WO2009041224A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US20120266827A1 (en) Engine cooling device
US10132273B2 (en) Control system of engine
JP6412564B2 (en) Heat exchanger for a thermal management system supplying fuel in an internal combustion engine
JP2008014139A (en) Internal combustion engine
US20130192546A1 (en) Coolant Jacket for a Liquid-Cooled Cylinder Head
JP5617785B2 (en) Internal combustion engine
EP3027873A1 (en) Vehicle water jacket
JP5338916B2 (en) Engine cooling system
JP2009085077A (en) Heat recovery device for internal combustion engine
US10309293B2 (en) Internal combustion engine
JP5018514B2 (en) Heat recovery device for internal combustion engine
JP2017089553A (en) Engine system
JP2007138909A (en) Pre-combustion chamber type internal-combustion engine
WO2018198786A1 (en) Internal-combustion engine piston, and method for controlling cooling of internal-combustion engine piston
JP2013164028A (en) Piston
JP2017187012A (en) Internal combustion engine
JP2018035764A (en) Exhaust heat recovery device for engine
JP2021173214A (en) Combustion chamber structure of engine
JP2009299657A (en) Cooling device for internal combustion engine
US11286850B2 (en) Combustion chamber structure for engine
JP2007212014A (en) Latent heat storage device and engine
JP5224182B2 (en) Internal combustion engine
JP6051888B2 (en) engine
JP2011202580A (en) Engine cooling device
JP2008196461A (en) Cylinder block

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322