JP2009078935A - "konpeito" (pointed sugar candy ball)-like composite silica sol - Google Patents
"konpeito" (pointed sugar candy ball)-like composite silica sol Download PDFInfo
- Publication number
- JP2009078935A JP2009078935A JP2007248289A JP2007248289A JP2009078935A JP 2009078935 A JP2009078935 A JP 2009078935A JP 2007248289 A JP2007248289 A JP 2007248289A JP 2007248289 A JP2007248289 A JP 2007248289A JP 2009078935 A JP2009078935 A JP 2009078935A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- silica sol
- fine particles
- silica fine
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims abstract description 196
- 239000002131 composite material Substances 0.000 title claims abstract description 117
- 235000009508 confectionery Nutrition 0.000 title abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 429
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 202
- 239000002245 particle Substances 0.000 claims abstract description 174
- 239000010419 fine particle Substances 0.000 claims abstract description 141
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 38
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 38
- 238000003703 image analysis method Methods 0.000 claims abstract description 26
- 230000003746 surface roughness Effects 0.000 claims abstract description 23
- 238000004438 BET method Methods 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims abstract description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 49
- 239000010931 gold Substances 0.000 claims description 49
- 229910052737 gold Inorganic materials 0.000 claims description 49
- 238000005498 polishing Methods 0.000 claims description 45
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 25
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 11
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 3
- 238000010191 image analysis Methods 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 126
- 239000000243 solution Substances 0.000 description 56
- 238000000034 method Methods 0.000 description 36
- 239000007864 aqueous solution Substances 0.000 description 31
- 235000012239 silicon dioxide Nutrition 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 25
- 150000004972 metal peroxides Chemical class 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 22
- 238000002296 dynamic light scattering Methods 0.000 description 21
- 239000012702 metal oxide precursor Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- -1 Glycol ethers Chemical class 0.000 description 9
- 239000002612 dispersion medium Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007771 core particle Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 7
- 229910001948 sodium oxide Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XJUNLJFOHNHSAR-UHFFFAOYSA-J zirconium(4+);dicarbonate Chemical compound [Zr+4].[O-]C([O-])=O.[O-]C([O-])=O XJUNLJFOHNHSAR-UHFFFAOYSA-J 0.000 description 5
- 239000003082 abrasive agent Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 150000004715 keto acids Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- FYNPOIYWZJKWMW-UHFFFAOYSA-O [Zr].[N+](=O)([O-])[O-].[NH4+] Chemical compound [Zr].[N+](=O)([O-])[O-].[NH4+] FYNPOIYWZJKWMW-UHFFFAOYSA-O 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 150000003755 zirconium compounds Chemical class 0.000 description 3
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WPPOGHDFAVQKLN-UHFFFAOYSA-N N-Octyl-2-pyrrolidone Chemical compound CCCCCCCCN1CCCC1=O WPPOGHDFAVQKLN-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N barium peroxide Chemical compound [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- VQBIMXHWYSRDLF-UHFFFAOYSA-M sodium;azane;hydrogen carbonate Chemical compound [NH4+].[Na+].[O-]C([O-])=O VQBIMXHWYSRDLF-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Description
本発明は、核となる粒子の表面に複数の疣状突起を有してなる金平糖状のシリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルに関するものであり、更には、該金平糖状複合シリカゾルを含んでなる研磨用組成物に関するものである。 The present invention relates to a gold flat sugar-like composite silica sol in which gold flat sugar-like silica fine particles having a plurality of ridge-like projections on the surface of core particles are dispersed in a solvent, and further, the gold flat sugar-like composite silica sol The present invention relates to a polishing composition comprising
シリカ微粒子が溶媒に分散してなるシリカゾルのうち、シリカ微粒子が球状以外の形状からなるシリカゾルとしては、鎖状、数珠状または長球状のものが知られている。この様なシリカゾルは、例えば、各種研磨剤として使用されている。
シリカ系微粒子の表面に突起状構造を有する例として、特開平3−257010号公報(特許文献1)には、シリカ粒子表面に電子顕微鏡で観察して、0.2〜5μmのサイズの連続的な凹凸状の突起を有し、平均粒子径が5〜100μm、BET法比表面積が20m2/g以下、且つ、細孔容積が、0.1mL/g以下であるシリカ粒子に関する記載がある。また、その用途としては、充填材としての利用が示唆されている。
Among silica sols in which silica fine particles are dispersed in a solvent, as silica sols in which the silica fine particles have a shape other than a spherical shape, those having a chain shape, a bead shape or an oblong shape are known. Such a silica sol is used, for example, as various abrasives.
As an example having a protrusion-like structure on the surface of silica-based fine particles, JP-A-3-257010 (Patent Document 1) discloses a continuous surface having a size of 0.2 to 5 μm as observed on the surface of the silica particles with an electron microscope. There is a description relating to silica particles having irregular projections, an average particle diameter of 5 to 100 μm, a BET specific surface area of 20 m 2 / g or less, and a pore volume of 0.1 mL / g or less. Moreover, the use as a filler is suggested as the use.
特開2002−38049号公報(特許文献2)には、母体粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系微粒子であって、該突起物が化学結合により母体粒子に結着していることを特徴とするシリカ系微粒子について記載がある。更に、(A)特定のアルコキシシラン化合物を加水分解、縮合させてポリオルガノシロキサン粒子を生成させる工程、(B)該ポリオルガノシロキサン粒子を、表面吸着剤により表面処理する工程、および(C)上記(B)工程で表面処理されたポリオルガノシロキサン粒子全面に、該アルコキシシラン化合物を用いて突起を形成させる工程、を含むシリカ系微粒子の製造方法について記載がある。このシリカ系微粒子については、充填材または導電性微粒子としての用途が示唆されている。 Japanese Patent Application Laid-Open No. 2002-38049 (Patent Document 2) discloses silica-based fine particles having substantially spherical and / or hemispherical protrusions on the entire surface of the base particles, and the protrusions are converted into base particles by chemical bonding. There is a description of silica-based fine particles characterized by being bound. Furthermore, (A) a step of hydrolyzing and condensing a specific alkoxysilane compound to produce polyorganosiloxane particles, (B) a step of surface-treating the polyorganosiloxane particles with a surface adsorbent, and (C) the above There is a description of a method for producing silica-based fine particles, including a step of forming protrusions on the entire surface of the polyorganosiloxane particles surface-treated in the step (B) using the alkoxysilane compound. About this silica type fine particle, the use as a filler or electroconductive fine particle is suggested.
特開2002−338232号(特許文献3)には、コロイダルシリカのシリカ粒子の電子線による透過投影像より求めた幾何学的平均粒子径(X1)と、シリカ粒子の表面積より算出した相当粒子径(X2)との比Y(X1/X2)が1.3から2.5の範囲であり、かつその幾何学的平均粒子径が20〜200nmの範囲であることを特徴とする二次凝集コロイダルシリカに関する発明が開示されており、その用途については、シリコンウエハなどの研磨加工等が挙げられている。 Japanese Patent Application Laid-Open No. 2002-338232 (Patent Document 3) discloses a geometric average particle diameter (X1) obtained from a transmission projection image of colloidal silica silica particles by an electron beam and an equivalent particle diameter calculated from the surface area of the silica particles. Secondary aggregation colloid characterized in that the ratio Y (X1 / X2) to (X2) is in the range of 1.3 to 2.5 and the geometric mean particle diameter is in the range of 20 to 200 nm. An invention relating to silica is disclosed, and its use includes polishing of a silicon wafer and the like.
また、特開2004−35293号公報(特許文献4)には、母体粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系粒子であって、該突起物が化学結合により母体粒子に結着しており、かつ母体粒子と突起物における10%圧縮時の圧縮弾性率が、それぞれ異なることを特徴とするシリカ系粒子が開示されている。 Japanese Patent Application Laid-Open No. 2004-35293 (Patent Document 4) discloses silica-based particles having substantially spherical and / or hemispherical protrusions on the entire surface of the base particle, and the protrusion is chemically bonded to the base. Silica-based particles are disclosed that are bound to particles and have different compressive elastic moduli at 10% compression between the base particles and the protrusions.
しかしながら、特開平3−257010号公報(特許文献1)に記載の粒子は平均粒子径が5〜100μmのシリカのみからなる粒子であり、その粒子径分布についても制御されたものではなかった。特開2002−38049号公報(特許文献2)で開示されるシリカ系粒子については、その組成は実質的にシリカのみからなるものであり、その平均粒子径が実質的には0.5〜30μmのみが開示されたものである。このシリカ粒子についても粒子径分布については、制御されたものではない。特開2004−35293号公報(特許文献4)においても、特開2002−38049号公報(特許文献2)の場合と同様なシリカ粒子が開示されている。 However, the particles described in JP-A-3-257010 (Patent Document 1) are particles composed only of silica having an average particle size of 5 to 100 μm, and the particle size distribution was not controlled. About the silica type particle | grains disclosed by Unexamined-Japanese-Patent No. 2002-38049 (patent document 2), the composition consists only of silica substantially, and the average particle diameter is substantially 0.5-30 micrometers. Only have been disclosed. The particle size distribution of these silica particles is not controlled. Japanese Unexamined Patent Application Publication No. 2004-35293 (Patent Document 4) also discloses the same silica particles as in Japanese Unexamined Patent Application Publication No. 2002-38049 (Patent Document 2).
特開2002−338232号(特許文献3)に記載の粒子については、表面が凹凸状のシリカ微粒子であって、研磨材用途などへの適用が示唆されたものであるが、粒子を構成する成分は実質的にシリカのみからなるものであった。
本発明は、シリカ微粒子表面に複数の疣状突起を有する金平糖状シリカ微粒子であって、該疣状突起がシリカ以外の金属酸化物からなる金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルを提供することを課題としている。また、該金平糖状複合シリカゾルを含んでなる研磨用組成物を提供することを課題としている。 The present invention relates to a gold flat sugar-like silica fine particle having a plurality of hook-like protrusions on the surface of the silica fine particle, wherein the gold flat sugar-like composite silica fine particles in which the hook-like protrusions are made of a metal oxide other than silica are dispersed in a solvent. It is an object to provide a composite silica sol. It is another object of the present invention to provide a polishing composition comprising the confetti-like composite silica sol.
本発明の金平糖状複合シリカゾルは、球状シリカ微粒子の表面にシリカ以外の金属酸化物を含む複数の疣状突起を有する複合シリカ微粒子であって、BET法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなるものである。 The gold flat sugar-like composite silica sol of the present invention is a composite silica fine particle having a plurality of hook-like protrusions containing a metal oxide other than silica on the surface of a spherical silica fine particle, and the specific surface area measured by the BET method is (SA1). The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the average particle diameter (D2) measured by the image analysis method is (SA2) is in the range of 1.7 to 5.0. In this case, gold-plated sugar-like composite silica fine particles having an average particle diameter (D2) measured by the image analysis method in the range of 7 to 150 nm are dispersed in a solvent.
前記疣状突起の平均高さ(H)は、前記金平糖状複合シリカ微粒子の平均粒子径(D2)の3〜30%に相当するものであることが好ましい。
前記シリカ以外の金属酸化物が、酸化ジルコニウム、酸化セリウム、酸化タングステンまたは酸化チタニウムから選ばれるものであることが好ましい。
前記金平糖状複合シリカ微粒子の真球度が0.8〜1の範囲にあることが好ましい。
前記金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にあることが好ましい。
It is preferable that the average height (H) of the hook-shaped protrusions corresponds to 3 to 30% of the average particle diameter (D2) of the confetti-like composite silica fine particles.
It is preferable that the metal oxide other than the silica is selected from zirconium oxide, cerium oxide, tungsten oxide, or titanium oxide.
It is preferable that the sphericity of the gold flat sugar-like composite silica fine particles is in the range of 0.8-1.
It is preferable that a particle diameter variation coefficient (CV value) of the gold flat sugar-like composite silica fine particles is in a range of 10 to 50%.
本発明の金平糖状複合シリカゾルは、球状シリカ微粒子の表面にシリカ以外の金属酸化物を含む複数の疣状突起を有する複合シリカ微粒子であって、BET法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルであって、該金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にあることを特徴とするものである。 The gold flat sugar-like composite silica sol of the present invention is a composite silica fine particle having a plurality of hook-like protrusions containing a metal oxide other than silica on the surface of a spherical silica fine particle, and the specific surface area measured by the BET method is (SA1). The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the average particle diameter (D2) measured by the image analysis method is (SA2) is in the range of 1.7 to 5.0. A frigate saccharide-like composite silica sol in which gold candy sugar-like composite silica fine particles having an average particle diameter (D2) measured by the image analysis method in the range of 7 to 150 nm are dispersed in a solvent, wherein The particle diameter variation coefficient (CV value) of the fine particles is in the range of 10 to 50%.
本発明の研磨材は、前記した金平糖状複合シリカゾルからなる。
本発明の研磨用組成物は、前記研磨材を含有することを特徴とする。
本発明の金平糖状複合シリカゾルは、球状シリカ微粒子の表面に、シリカと硬度の異なる金属酸化物を含む疣状突起を有する金平糖状複合シリカ微粒子が溶媒に分散してなることを特徴とするものである。
The abrasive of the present invention is composed of the above-described konpeito-like composite silica sol.
The polishing composition of the present invention contains the abrasive.
The gold flat sugar-like composite silica sol of the present invention is characterized in that the gold flat sugar-like composite silica fine particles having hook-like protrusions containing a metal oxide having a hardness different from that of silica are dispersed in a solvent on the surface of the spherical silica fine particles. is there.
本発明の金平糖状複合シリカゾルは、複数の疣状突起を有した金平糖状複合シリカ微粒子が分散したゾルである。この疣状突起は、シリカ以外の金属酸化物を主成分とするものであり、金属酸化物の種類にもよるが、概ね、シリカより強度の大きいものである。このため、例えば、研磨剤または研磨用組成物の成分として好適に使用できる。特にシリカ微粒子の核粒子がシリカからなり、疣状突起がシリカ以外の金属酸化物からなる構成であるため、シリカに比べて、原料価格の高い金属を有効に利用することができる。
The gold flat sugar-like composite silica sol of the present invention is a sol in which gold flat sugar-like composite silica fine particles having a plurality of hook-shaped protrusions are dispersed. These hook-shaped protrusions are mainly composed of a metal oxide other than silica, and generally have a strength higher than that of silica although it depends on the type of metal oxide. For this reason, for example, it can be conveniently used as a component of an abrasive or a polishing composition. In particular, since the core particle of the silica fine particle is made of silica and the hook-shaped protrusion is made of a metal oxide other than silica, a metal having a higher raw material price than silica can be used effectively.
[金平糖状複合シリカゾル]
本発明に係る金平糖状複合シリカゾルは、球状シリカ微粒子の表面にシリカ以外の金属酸化物を含む複数の疣状突起を有する複合シリカ微粒子であって、BET法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなるものである。
[Konpeira sugar-like composite silica sol]
The gold flat sugar-like composite silica sol according to the present invention is a composite silica fine particle having a plurality of hook-shaped protrusions containing a metal oxide other than silica on the surface of a spherical silica fine particle, and has a specific surface area measured by the BET method (SA1). And the value of the surface roughness (SA1) / (SA2) is 1.7 to 5.0 when the specific surface area converted from the average particle diameter (D2) measured by the image analysis method is (SA2). In the range, the gold flat sugar-like composite silica fine particles having an average particle diameter (D2) measured by the image analysis method in the range of 7 to 150 nm are dispersed in a solvent.
[表面粗度]
前記金平糖状複合シリカ微粒子は、その表面に複数の疣状突起を有する球状の微粒子であり、その構造は概ね金平糖に類似したものである。この様な複数の疣状突起を有する表面については表面粗度によりその範囲が規定される。
本発明において表面粗度とは、BET法により測定される比表面積[単位質量当りの表面積]の値を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算された比表面積の値を(SA2)としたとき、表面粗度=(SA1)/(SA2)として定義される。
[Surface roughness]
The confetti-like composite silica fine particles are spherical fine particles having a plurality of ridge-like projections on the surface thereof, and the structure is generally similar to that of confetti. The surface of such a surface having a plurality of hook-shaped protrusions is defined by the surface roughness.
In the present invention, the surface roughness is a ratio converted from an average particle diameter (D2) measured by an image analysis method, where (SA1) is a specific surface area [surface area per unit mass] measured by the BET method. When the surface area value is (SA2), the surface roughness is defined as (SA1) / (SA2).
ここで、BET法により測定される比表面積(SA1)は、測定対象粒子に液体窒素温度にて、窒素を平衡吸着させ、次に昇温させて吸着した窒素の量を検出するものであり、試料の実際の表面積を反映したものと言える。なお、BET法に代えて、後記するシアーズ法により測定された比表面積を(SA1)として使用しても差し支えない。 Here, the specific surface area (SA1) measured by the BET method is to detect the amount of nitrogen adsorbed by allowing the measurement target particles to equilibrate and adsorb nitrogen at a liquid nitrogen temperature and then raise the temperature. It can be said that it reflects the actual surface area of the sample. In place of the BET method, the specific surface area measured by the Sears method described later may be used as (SA1).
また、画像解析法により測定された平均粒子径(D2)から換算された比表面積(SA2)については、走査型電子顕微鏡により、試料シリカゾルを写真撮影して得られる写真投影図における、任意の50個の粒子について、その最大径(DL)を測定したときの平均値を平均粒子径(D2)とし、次に試料シリカゾルに分散するシリカ微粒子を理想的な球状粒子と仮定して、次式(1)より比表面積(SA2)が算定される。
SA2=6000/(D2×ρ) ・・・ (1)
ただし、式(1)において、ρは試料粒子の密度を表し、シリカでは2.2となる。
Further, regarding the specific surface area (SA2) converted from the average particle diameter (D2) measured by the image analysis method, an arbitrary 50 in a photograph projection view obtained by photographing a sample silica sol with a scanning electron microscope. Assuming that the average value when the maximum diameter (DL) of each particle is measured is the average particle diameter (D2), and then the silica fine particles dispersed in the sample silica sol are ideal spherical particles, The specific surface area (SA2) is calculated from 1).
SA2 = 6000 / (D2 × ρ) (1)
However, in formula (1), ρ represents the density of the sample particles, and is 2.2 for silica.
なお、本発明に係る金平糖状複合シリカ微粒子はシリカとシリカ以外の金属酸化物との複合微粒子であるが、シリカとシリカ以外の金属酸化物の質量比率において、シリカが大幅に多いため、前記試料密度としてシリカの密度のみを使用しても差し支えない。また、本発明に係る金平糖状複合シリカ微粒子は疣状突起を有するものであり、多孔質構造をとるものではない。このため本発明に係る金平糖状複合シリカ微粒子の密度範囲は、シリカの密度である2.2に極めて近いものとなる。 In addition, although the gold flat sugar-like composite silica fine particles according to the present invention are composite fine particles of silica and a metal oxide other than silica, the amount of silica in the mass ratio of the silica and the metal oxide other than silica is greatly increased. Only the density of silica may be used as the density. Moreover, the gold flat sugar-like composite silica fine particles according to the present invention have ridge-like projections and do not have a porous structure. For this reason, the density range of the gold flat sugar-like composite silica fine particles according to the present invention is very close to 2.2 which is the density of silica.
ここで比表面積は単位質量当りの表面積を示すから、表面粗度(SA1)/(SA2)の値については、粒子が球状であって、粒子表面が多くの疣状突起を有する程、(SA1)/(SA2)の値は大きくなり、粒子表面の疣状突起が少なく、平滑であるほど、(SA1)/(SA2)の値は小さくなり、その値は1に近くなる。 Here, since the specific surface area represents the surface area per unit mass, the value of the surface roughness (SA1) / (SA2) is such that the more the particles are spherical and the surface of the particle has more ridge-like projections (SA1 ) / (SA2) value increases, the smaller the number of wrinkles on the particle surface and the smoother, the smaller the value of (SA1) / (SA2), and the value approaches 1.
本発明に係る金平糖状複合シリカ微粒子の表面粗度は1.7〜5.0の範囲にあるものが望ましい。表面粗度が1.7未満の場合、疣状突起の割合が少ないかあるいは、疣状突起自体が複合シリカ微粒子の粒子径に比べて極めて小さくなり、球状微粒子に近くなる。表面粗度の値が5.0を超える場合は、合成が容易ではない。表面粗度の範囲としては、さらに好適には1.8〜4.5の範囲が推奨される。 The surface roughness of the gold flat sugar-like composite silica fine particles according to the present invention is preferably in the range of 1.7 to 5.0. When the surface roughness is less than 1.7, the ratio of the ridge-like protrusions is small, or the ridge-like protrusions themselves are extremely smaller than the particle diameter of the composite silica fine particles, and become close to spherical fine particles. When the surface roughness value exceeds 5.0, synthesis is not easy. As the surface roughness range, a range of 1.8 to 4.5 is more preferable.
[疣状突起の平均高さ]
本発明に係る金平糖状複合シリカ微粒子においては、その疣状突起の平均高さが、前記金平糖状複合シリカ微粒子の平均粒子径の3〜30%に相当するものであることが望ましい。
疣状突起の高さの金平糖状複合シリカ微粒子の平均粒子径に対する割合が、3%未満の場合は、微粒子表面が平滑である場合に極めて近い場合となる。この場合、例えば、研磨材として使用しても、表面が平滑なシリカ微粒子を使用した場合と比べて、効果の違いが見られなくなる。また、30%を超えるものについては、合成することが容易ではない。この範囲については、更に好適には3〜20%の範囲が推奨される。
[Average height of hook-shaped protrusions]
It is desirable that the average height of the ridge-like projections in the confetti-like composite silica fine particles according to the present invention corresponds to 3 to 30% of the average particle diameter of the confetti-like composite silica fine particles.
When the ratio of the height of the ridge-like projections to the average particle diameter of the confetti-like composite silica fine particles is less than 3%, it is very close to the case where the fine particle surface is smooth. In this case, for example, even when used as an abrasive, a difference in effect is not seen as compared with the case where silica fine particles having a smooth surface are used. Moreover, about what exceeds 30%, it is not easy to synthesize | combine. About this range, the range of 3 to 20% is more preferable.
[真球度]
前記金平糖状複合シリカ微粒子は、全体として球状であることが必要であり、棒状、勾玉状、細長い形状、数珠状、卵状など、異形粒子を含まない。本発明の金平糖状複合シリカ微粒子は球状であり、異形の複合シリカ粒子と区別される。本発明において球状とは、真球度が0.8〜1.0の範囲にあるものを言う。ここで真球度とは、透過型電子顕微鏡により写真撮影して得られる写真投影図における任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)の平均値を意味する。真球度が0.8未満の場合は、金平糖状複合シリカ微粒子が球状とは云えず、前記異形粒子に該当する場合が生じる。
[Sphericity]
The gold-plated sugar-like composite silica particles need to be spherical as a whole, and do not include irregular-shaped particles such as rod-shaped, slanted-ball-shaped, elongated, beaded, or egg-shaped. The gold flat sugar-like composite silica particles of the present invention are spherical and are distinguished from irregular shaped composite silica particles. In the present invention, the term “spherical” means that the sphericity is in the range of 0.8 to 1.0. Here, the sphericity is the maximum diameter (DL) and the short diameter (DS) orthogonal to each of any 50 particles in a photographic projection obtained by photographing with a transmission electron microscope. Mean ratio (DS / DL). When the sphericity is less than 0.8, it may not be said that the confetti-like composite silica fine particles are spherical, and may correspond to the irregular shaped particles.
[平均粒子径]
本発明に係る製造方法により得られる金平糖状複合シリカ微粒子については、画像解析法により測定された平均粒子径(D2)の値が7〜150nmの範囲のものが好適に得られる。
後記する本発明の金平糖状複合シリカゾルの製造方法により、金平糖状複合シリカゾルを調製する場合、平均粒子径(D2)が150nm超える場合は、原料のシードシリカ微粒子の大きさにもよるが、一般に疣状突起が形成され難く、むしろ平坦化する傾向が強まる。また、平均粒子径(D2)が7nm未満の場合は、必要な表面粗度をもった金平糖状複合シリカ微粒子を調製することが容易ではない。前記金平糖状複合シリカ微粒子の平均粒子径については、好適には10〜130nmの範囲が推奨され、更に好適には、10〜80nmの範囲が推奨される。
[Average particle size]
With regard to the gold flat sugar-like composite silica particles obtained by the production method according to the present invention, those having an average particle diameter (D2) value measured by an image analysis method in the range of 7 to 150 nm are suitably obtained.
In the case of preparing a confetti-like composite silica sol according to the present invention, which will be described later, when the average particle size (D2) exceeds 150 nm, it generally depends on the size of the seed silica fine particles as a raw material. Protrusions are difficult to form, but rather tend to flatten. In addition, when the average particle diameter (D2) is less than 7 nm, it is not easy to prepare the gold flat sugar-like composite silica fine particles having the necessary surface roughness. About the average particle diameter of the said gold flat sugar-like composite silica fine particle, the range of 10-130 nm is recommended, and the range of 10-80 nm is more preferable.
[粒子径変動係数(CV値)]
本発明に係る金平糖状複合シリカゾルを研磨材または研磨用組成物として適用する場合においては、特に金平糖状複合シリカゾル中の金平糖状複合シリカ微粒子の粒子径分布の均一性が高いことが好ましい。具体的には、粒子径変動係数(CV値)が10〜50%の範囲にあるものが研磨速度に優れ、被研磨基材上での線状痕の発生を抑止するうえでも好適である。ここで粒子径変動係数(CV値)は、次式(2)で定義される。
CV値〔%〕=粒子径の標準偏差(σ)/平均粒子径(Dn)×100 ・・・(2)
(但し、σ=nΣ|Di−Dn|/(n−1)×Dn であり、Diは個々の粒子の粒子径を表す。)
粒子径変動係数(CV値)の範囲として更に好適には10〜40%の範囲が推奨される。
[Particle diameter variation coefficient (CV value)]
In the case of applying the gold flat sugar-like composite silica sol according to the present invention as an abrasive or a polishing composition, it is particularly preferable that the particle size distribution of the gold flat sugar-like composite silica sol in the gold flat sugar-like composite silica sol is high. Specifically, those having a particle diameter variation coefficient (CV value) in the range of 10 to 50% are excellent in the polishing rate, and are also suitable for suppressing the occurrence of linear marks on the substrate to be polished. Here, the particle diameter variation coefficient (CV value) is defined by the following equation (2).
CV value [%] = standard deviation of particle diameter (σ) / average particle diameter (Dn) × 100 (2)
(However, σ = nΣ | Di−Dn | / (n−1) × Dn, where Di represents the particle size of each particle.)
A range of 10 to 40% is more preferable as the range of the particle diameter variation coefficient (CV value).
[金属酸化物]
疣状突起に含まれる金属酸化物については、格別に限定されるものではないが、金平糖状複合シリカゾルの用途を考慮すると、硬度において、シリカと差があるものが好適に選ばれる。この様な例としては、酸化ジルコニウム、酸化セリウム、酸化タングステン、酸化チタニウム、酸化マグネシウム、酸化アルミニウム、酸化鉄等を挙げることができる。
[Metal oxide]
The metal oxide contained in the hook-shaped projections is not particularly limited, but considering the use of the confetti-like composite silica sol, one having a difference in hardness from silica is preferably selected. Examples thereof include zirconium oxide, cerium oxide, tungsten oxide, titanium oxide, magnesium oxide, aluminum oxide, iron oxide and the like.
疣状突起を構成するこれらの金属酸化物の種類を選択することにより、従来の球状シリカ微粒子には見られない特性を金平糖状複合シリカ微粒子に付与することができる。例えば、シリカより硬く、破壊強度も大きい金属酸化物を選択した場合は、シリカより硬い疣状突起を有した金平糖状複合シリカ微粒子となり、例えば、研磨材として有用なものとなる。 By selecting the type of these metal oxides constituting the hook-shaped protrusions, it is possible to impart properties not found in conventional spherical silica fine particles to the confetti-like composite silica fine particles. For example, when a metal oxide that is harder than silica and has a high breaking strength is selected, it becomes gold flat sugar-like composite silica fine particles having hook-like protrusions harder than silica, and is useful as an abrasive, for example.
また、この例に限らず、本発明の金平糖状複合シリカゾルの場合、シリカよりも希少で高価な金属酸化物を、用途に応じて効率的に利用できるので、資源とコストの節減にも資することとなる。なお、後記するように金属過酸化物とともに珪酸液を添加して金平糖状複合シリカゾルを調製した場合は、疣状突起を構成する成分に占める前記金属酸化物の割合が低下し、シリカ成分の占める割合が増大する。このため該シリカ成分の割合を調整することにより、疣状突起の強度を調整することも可能である。 In addition, the present invention is not limited to this example, and in the case of the gold-peeled composite silica sol of the present invention, a metal oxide that is rarer and more expensive than silica can be used efficiently depending on the application, which contributes to resource and cost savings. It becomes. In addition, when a silicic acid solution is added together with a metal peroxide to prepare a gold flat sugar-like composite silica sol as will be described later, the proportion of the metal oxide in the components constituting the hook-shaped protrusions decreases, and the silica component occupies The rate increases. For this reason, it is also possible to adjust the strength of the hook-shaped protrusions by adjusting the ratio of the silica component.
[溶媒]
前記金平糖状シリカ微粒子が分散する分散媒としての溶媒については、水、有機溶媒、またはこれらの混合溶媒のいずれであっても使用することができる。また、有機溶媒としては水溶性の有機溶媒がより好適である。具体的には以下の例を挙げることができる。
[solvent]
As a solvent as a dispersion medium in which the gold flat sugar-like silica fine particles are dispersed, any of water, an organic solvent, and a mixed solvent thereof can be used. As the organic solvent, a water-soluble organic solvent is more preferable. Specifically, the following examples can be given.
純水、超純水、イオン交換水などの水;
メタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;
アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;
ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;
2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;
2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;
Water such as pure water, ultrapure water, ion exchange water;
Alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol;
Ketones such as acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, cyclohexanone;
Amides such as N, N-dimethylformamide and N, N-dimethylacetamide;
Ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran;
Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether;
Glycol ether acetates such as 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate;
酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;
ヘキサン、ヘプタン、iso−オクタン、シクロヘキサンなどの脂肪族炭化水素類;
塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;
ジメチルスルホキシドなどのスルホキシド類;
N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類
などを例示することができる。
Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate;
Aromatic hydrocarbons such as benzene, toluene, xylene;
Aliphatic hydrocarbons such as hexane, heptane, iso-octane, cyclohexane;
Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene;
Sulfoxides such as dimethyl sulfoxide;
Examples include pyrrolidones such as N-methyl-2-pyrrolidone and N-octyl-2-pyrrolidone.
[金平糖状複合シリカゾルの第1の製造方法]
本発明に係る金平糖状複合シリカゾルの第1の製造方法は、シリカ微粒子が溶媒に分散してなるシードシリカゾルのpHおよび温度を所定の範囲に調整し、1)金属酸化物(シリカを除く)の前駆体または2)該金属酸化物の前駆体および珪酸液の所定量を連続的にまたは断続的に添加することにより調製される。
[First production method of gold-peeled composite silica sol]
In the first production method of the gold flat sugar-like composite silica sol according to the present invention, the pH and temperature of a seed silica sol formed by dispersing silica fine particles in a solvent are adjusted within a predetermined range, and 1) of a metal oxide (excluding silica) It is prepared by adding a precursor or a predetermined amount of the precursor of the metal oxide and the silicic acid solution continuously or intermittently.
[シードシリカゾル]
本発明の金平糖状複合シリカゾルの製造方法において、原料の核粒子として使用されるシードシリカゾルの製造方法については、格別限定されるものではなく、市販のシリカゾルまたは公知のシリカゾルを適用することができる。
[Seed silica sol]
In the method for producing the gold flat sugar-like composite silica sol of the present invention, the method for producing the seed silica sol used as the raw material core particles is not particularly limited, and a commercially available silica sol or a known silica sol can be applied.
この様なシリカゾルの製造方法については、例えば、
1)アルカリ金属珪酸塩、第3級アンモニウム珪酸塩、第4級アンモニウム珪酸塩またはグアニジン珪酸塩から選ばれる水溶性珪酸塩を、脱アルカリすることにより得られる珪酸液をアルカリ存在下で加熱することにより珪酸を重合する工程を含むシリカゾルの製造方法、
2)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、加熱することによりシリカヒドロゲルを解膠する工程を含むシリカゾルの製造方法および、
3)加水分解性基を有する珪素化合物を加水分解して、得られた珪酸を重合する工程を含むシリカゾルの製造方法などを挙げることができる。
Regarding the method for producing such a silica sol, for example,
1) Heating a silicic acid solution obtained by dealkalizing a water-soluble silicate selected from alkali metal silicate, tertiary ammonium silicate, quaternary ammonium silicate or guanidine silicate in the presence of alkali. A method for producing a silica sol comprising a step of polymerizing silicic acid by
2) A silica hydrogel obtained by neutralizing a silicate with an acid, washing the silica hydrogel, removing salts, adding an alkali, and then heating the silica hydrogel by heating, and a method for producing a silica sol,
3) A method for producing a silica sol, which includes a step of hydrolyzing a silicon compound having a hydrolyzable group and polymerizing the resulting silicic acid.
シードシリカゾル中のシリカ微粒子の構造は球状であり、シリカ微粒子の平均粒子径については、目的とする金平糖状複合シリカゾルの平均粒子径より小さいものであれば使用することが可能であるが、目的とする金平糖状複合シリカゾルの平均粒子径に対して、94%未満の粒子径が好ましい。この粒子径範囲については、例えば、画像解析法により測定した場合は、平均粒子径(D2)が3〜140nmの範囲が好適といえる。また、好適には平均粒子径(D2)が5〜100nmのものが使用される。平均粒子径(D2)が3nm未満のシリカ微粒子分散ゾルを適用した場合、金平糖状複合シリカ微粒子の生成を確認することができない。平均粒子径(D2)が140nmを越えるシリカ微粒子分散ゾルの場合は、シリカ以外の金属酸化物の被覆を生成した後の粒子成長に多大な時間を要するため実用性に問題がある。
なお、シードシリカゾル中のシリカ微粒子の平均粒子径を動的光散乱法により測定した場合においても、通常は、平均粒子径(D2)が3〜140nmの範囲にあれば、シードシリカゾルとして適用可能である。
The structure of the silica fine particles in the seed silica sol is spherical, and the average particle diameter of the silica fine particles can be used as long as it is smaller than the average particle diameter of the target saccharoform complex silica sol. A particle diameter of less than 94% is preferable with respect to the average particle diameter of the confetti-like composite silica sol. About this particle diameter range, when measuring by the image analysis method, it can be said that the range whose average particle diameter (D2) is 3-140 nm is suitable. Further, those having an average particle diameter (D2) of 5 to 100 nm are preferably used. When a silica fine particle-dispersed sol having an average particle diameter (D2) of less than 3 nm is applied, it is not possible to confirm the formation of confetti-like composite silica fine particles. In the case of a silica fine particle-dispersed sol having an average particle diameter (D2) exceeding 140 nm, there is a problem in practicality because it takes a long time for particle growth after forming a coating of a metal oxide other than silica.
In addition, even when the average particle diameter of the silica fine particles in the seed silica sol is measured by the dynamic light scattering method, it is usually applicable as a seed silica sol if the average particle diameter (D2) is in the range of 3 to 140 nm. is there.
シードシリカゾルのpHは、8〜12の範囲にあるものが好適に使用される。pHが8未満の場合は、シリカゾルの安定性に問題がある。金平糖状複合シリカゾルを調製することは容易ではない。他方、pHが12を越える場合は、溶解度が高すぎて粒子成長に適さない。pHの範囲については、好適にはpH8.5〜10.5が推奨される。 The pH of the seed silica sol is preferably in the range of 8-12. When the pH is less than 8, there is a problem with the stability of the silica sol. It is not easy to prepare a confetti-like composite silica sol. On the other hand, when the pH exceeds 12, the solubility is too high to be suitable for particle growth. About pH range, pH 8.5-10.5 is recommended suitably.
シードシリカゾルのSiO2固形分濃度については、通常は1〜50重量%の範囲のものが使用される。1重量%未満では、効率的にシリカゾルの生産を行えない。他方、50重量%を越えるとシリカゾルの安定性が低下し、凝集し易くなるので望ましくない。
シードシリカゾルとしては、水系溶媒のシリカゾルが好ましい。水系溶媒のシリカゾルはアルカリ性の酸化物であることから、シリカ以外の金属酸化物で被覆する際に好ましい。
Regarding the SiO 2 solid content concentration of the seed silica sol, a concentration in the range of 1 to 50% by weight is usually used. If it is less than 1% by weight, silica sol cannot be produced efficiently. On the other hand, if it exceeds 50% by weight, the stability of the silica sol is lowered and it tends to aggregate, which is not desirable.
The seed silica sol is preferably an aqueous solvent silica sol. Since the silica sol of the aqueous solvent is an alkaline oxide, it is preferable when it is coated with a metal oxide other than silica.
本発明方法においては、この様なシードシリカゾルを必要に応じて、純水で希釈してシリカ固形分濃度を2〜50%に調整することが望ましい。
本発明に係る金平糖状複合シリカゾルを研磨材として使用することを目的とする場合は、シードシリカゾルとして、その粒子径変動係数(CV値)が10〜50%の範囲にある金平糖状複合シリカゾルを使用することが望ましい。本発明に係る製造方法の原料として、粒子径変動係数が10〜50%のシードシリカゾルを使用することにより、最終生成物である金平糖状複合シリカゾルとして、粒子径変動係数が10〜50%のものを得ることができる。
In the method of the present invention, it is desirable that such a seed silica sol is diluted with pure water as necessary to adjust the silica solid content concentration to 2 to 50%.
When it is intended to use the gold flat sugar-like composite silica sol according to the present invention as an abrasive, the gold flat sugar-like composite silica sol having a particle size variation coefficient (CV value) in the range of 10 to 50% is used as the seed silica sol. It is desirable to do. By using a seed silica sol having a particle size variation coefficient of 10 to 50% as a raw material of the production method according to the present invention, the final product, the gold sugar-like composite silica sol, having a particle size variation coefficient of 10 to 50% Can be obtained.
その様なシリカゾルの製造方法については、次の(1)〜(4)に挙げた製造方法に、必要に応じて分級工程を併用してなる製造方法が好適に用いられる。
(1)金属酸化物あるいは金属水酸化物がシードとして分散された水−アルコール系分散液に、このような分散液をアルカリ性に保ちながら金属アルコキシドを添加して加水分解し、分散液中に含まれているシード上に金属アルコキシド分解生成物を付着させて粒子成長を行わせる方法(特開昭62−275005号公報)。
About the manufacturing method of such a silica sol, the manufacturing method which combines a classification process with the manufacturing method quoted in following (1)-(4) suitably is used suitably.
(1) A metal-alkoxide is added to a water-alcohol dispersion in which a metal oxide or a metal hydroxide is dispersed as a seed while keeping the dispersion alkaline, and then hydrolyzed and contained in the dispersion. A method in which a metal alkoxide decomposition product is deposited on a seed so as to perform particle growth (Japanese Patent Laid-Open No. 62-275005).
(2)シード粒子が分散された水−有機溶媒系分散液にテトラエトキシシランを添加して、このテトラエトキシシランを、下記式〔I〕
(CH3 O)n ・(C2 H5 O)4-n ・Si・・・〔I〕 (式中、nは1〜4である。)
で示されるアルコキシシランの共存下で加水分解し、分散液中のシード粒子上にシリカを付着させて粒子成長を行わせる方法(特開平3−218915号)。
(3)金属酸化物あるいは金属水酸化物がシードとして分散された水−アルコール系分散液に、このような分散液をアルカリ性に保ちながらテトラアルコキシシランおよびケイ酸液を添加して、テトラアルコキシランの加水分解生成物およびケイ酸重合物を分散液中に含まれているシード上に付着させて粒子成長を行わせる方法(特開平4−21515号)。
(2) Tetraethoxysilane is added to a water-organic solvent dispersion in which seed particles are dispersed, and this tetraethoxysilane is converted into the following formula [I]:
(CH 3 O) n · ( C 2 H 5 O) 4-n · Si ··· [I] (wherein, n is 1-4.)
A method of causing particle growth by hydrolyzing in the presence of alkoxysilane and attaching silica onto seed particles in a dispersion (Japanese Patent Laid-Open No. 3-218915).
(3) A tetraalkoxysilane and a silicic acid solution are added to a water-alcohol dispersion in which a metal oxide or a metal hydroxide is dispersed as a seed while keeping such a dispersion alkaline. A method of causing particle growth by attaching a hydrolysis product of the above and a silicic acid polymer to a seed contained in a dispersion (Japanese Patent Laid-Open No. 4-21515).
(4)珪酸アルカリ水溶液および/またはアルカリ水溶液と、酸性珪酸液とを混合し、混合液におけるSiO2/M2O(Mはアルカリ金属)のモル比を所定範囲に調整した後、60℃以上で加熱してシード液を調製し、所定の添加速度にて酸性珪酸液を添加してなる方法(特開昭63−45114号、特開平63−45113号または特開昭63−64911号など)を挙げることができる。
粒子径変動係数が10〜50%のシードシリカゾルを使用することにより、最終生成物である金平糖状複合シリカゾルとしても、粒子径変動係数が10〜50%のものを得ることが容易になる。
(4) An alkali silicate aqueous solution and / or an alkali aqueous solution and an acidic silicate solution are mixed, and after adjusting the molar ratio of SiO 2 / M 2 O (M is an alkali metal) in the mixture to a predetermined range, 60 ° C. or more A seed solution is prepared by heating at a predetermined temperature, and an acidic silicic acid solution is added at a predetermined addition rate (JP-A 63-45114, JP-A 63-45113, or JP-A 63-64911, etc.) Can be mentioned.
By using a seed silica sol having a particle size variation coefficient of 10 to 50%, it is easy to obtain a gold flat sugar-like composite silica sol as a final product having a particle size variation coefficient of 10 to 50%.
[疣状突起の形成]
シードシリカゾルを温度60〜200℃、pH9〜12に調整してから金属酸化物前駆体を連続的にまたは断続的に添加する。温度が60℃未満の場合は、シードシリカゾルが凝集し、不安定であり、200℃を超える場合は、生産性が低下したり、スケールが発生し易くなる。pHが9未満の場合はシードシリカゾルが凝集する傾向が強くなり、pHが12を超える場合は、金属酸化物前駆体が凝集する傾向が強くなる。pHが9〜12の範囲に調整することにより、シリカゾルの電位が高まるため、凝集し難くなるので、後の工程で、珪酸液が添加された場合であっても、シードシリカゾルの安定性が保たれる。
[Formation of hook-shaped protrusions]
After adjusting the seed silica sol to a temperature of 60 to 200 ° C. and a pH of 9 to 12, the metal oxide precursor is added continuously or intermittently. When the temperature is less than 60 ° C., the seed silica sol aggregates and is unstable, and when it exceeds 200 ° C., the productivity is lowered and scale is likely to occur. When the pH is less than 9, the tendency of the seed silica sol to aggregate becomes strong, and when the pH exceeds 12, the tendency of the metal oxide precursor to aggregate becomes strong. By adjusting the pH to the range of 9 to 12, the potential of the silica sol increases, and therefore, it becomes difficult to agglomerate. Therefore, the stability of the seed silica sol is maintained even when a silicic acid solution is added in a later step. Be drunk.
なお、前記温度範囲については、金属酸化物前駆体のみを添加する場合は、好適には70〜180℃、金属酸化物前駆体と珪酸液の混合物を添加する場合は、好適には70〜150℃の範囲が推奨される。pHの調整には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ水溶液が使用できる。 In addition, about the said temperature range, when adding only a metal oxide precursor, it is 70-180 degreeC suitably, When adding the mixture of a metal oxide precursor and a silicic acid solution, it is preferably 70-150. A range of ° C is recommended. To adjust the pH, an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used.
[金属酸化物前駆体]
本発明における金属酸化物前駆体とは、前記シリカ微粒子の表面に形成される疣状突起の主成分となるものであり、シードシリカゾルの分散質であるシリカ微粒子表面に反応して金属酸化物を含む疣状突起を形成するものである。この様な金属酸化物前駆体としては金属オキソ酸のアルカリ金属塩、金属オキソ酸のアルカリ土類金属塩、金属オキソ酸のアンモニウム塩または金属オキソ酸の第4級アンモニウム塩から選ばれるものが好適に使用される。
[Metal oxide precursor]
The metal oxide precursor in the present invention is a main component of the ridge-like projections formed on the surface of the silica fine particles, and reacts with the surface of the silica fine particles, which is the dispersoid of the seed silica sol, to form the metal oxide. A hook-shaped protrusion is formed. Such metal oxide precursors are preferably selected from alkali metal salts of metal oxo acids, alkaline earth metal salts of metal oxo acids, ammonium salts of metal oxo acids or quaternary ammonium salts of metal oxo acids. Used for.
前記金属としては、ジルコニウム、セリウム、チタニウムまたはタングステンから選ばれるものが好適に使用される。具体的には、炭酸ジルコニウムアンモニウム、硝酸ジルコニウムアンモニウム、硝酸セリウムアンモニウムなどを挙げることができる。なお、ここで金属酸化物前駆体として、金属過酸化物は含まれない。一般に金属過酸化物とシリカ微粒子との反応速度は、前記金属酸化物前駆体の場合より、著しく遅いため、本発明に係る金平糖状複合シリカゾルの第1の製造方法には、適用が容易ではないためである。 As the metal, a material selected from zirconium, cerium, titanium or tungsten is preferably used. Specific examples include ammonium zirconium carbonate, ammonium zirconium nitrate, and cerium ammonium nitrate. In addition, a metal peroxide is not contained here as a metal oxide precursor. In general, the reaction rate between the metal peroxide and the silica fine particles is remarkably slower than the case of the metal oxide precursor, so that it is not easy to apply to the first production method of the gold flat sugar-like composite silica sol according to the present invention. Because.
金属酸化物前駆体の添加量については、0.001≦m/a≦0.1(ただし、aは前記シードシリカゾル中のSiO2モル数を表し、mは前記金属酸化物前駆体中に含まれる金属のモル数[酸化物換算]を表す。)とすることが必要である。
前記m/aの値が0.1を超える場合は、金属酸化物の量が過剰となるため均一に粒子成長する傾向が強まり、疣状突起の生成が見られない場合がある。m/aの値が0.001未満の場合は、金属酸化物の量が相対的に少ないため、疣状突起の生成が見られなくなる。金属酸化物前駆体については、水で希釈して金属酸化物前駆体の水溶液として使用してもよく、未希釈品を使用しても良い。水希釈品の場合の金属酸化物前駆体の濃度については、格別に制限されるものではないが、例えば、0.1質量%〜30質量%の範囲を挙げることができる。
About the addition amount of a metal oxide precursor, 0.001 ≦ m / a ≦ 0.1 (where a represents the number of moles of SiO 2 in the seed silica sol, and m is included in the metal oxide precursor) The number of moles of metal to be converted (in oxide equivalent).
When the value of m / a exceeds 0.1, the amount of metal oxide becomes excessive, so that the tendency of uniform particle growth increases, and the formation of hook-like protrusions may not be observed. When the value of m / a is less than 0.001, since the amount of the metal oxide is relatively small, generation of hook-like protrusions is not observed. The metal oxide precursor may be diluted with water and used as an aqueous solution of the metal oxide precursor, or an undiluted product may be used. Although it does not restrict | limit especially about the density | concentration of the metal oxide precursor in the case of a water dilution goods, For example, the range of 0.1 mass%-30 mass% can be mentioned.
[珪酸液]
本発明の製造方法では、所望により金属酸化物前駆体とともに珪酸液を添加することも可能である。
珪酸液とは、水溶性珪酸塩を脱アルカリすることにより調製されるものであり、通常は珪酸塩の水溶液を陽イオン交換樹脂で処理するなどの方法で脱アルカリして得られる珪酸の低重合物の水溶液である。この種の珪酸液は、通常、pHは2〜4、SiO2濃度約10質量%以下、好ましくは2〜7質量%のものが、常温でのゲル化が生じ難く、比較的安定であり、実用的な原料として使用される。
[Silica solution]
In the production method of the present invention, a silicic acid solution can be added together with the metal oxide precursor as desired.
Silicic acid liquid is prepared by dealkalizing water-soluble silicate, and usually low polymerization of silicic acid obtained by dealkalization by a method such as treating an aqueous silicate solution with a cation exchange resin. It is an aqueous solution of the product. This type of silicic acid solution has a pH of 2 to 4 and a SiO 2 concentration of about 10% by mass or less, preferably 2 to 7% by mass. Used as a practical raw material.
珪酸液は、0≦c/m≦1(mは前記と同様に定義され、cは該珪酸液中のSiO2モル数である。)の範囲で使用される。c/mが1を超える場合は、疣状突起の成分に占める金属酸化物の割合が低下し、疣状突起の成分がシリカに近くなる。
珪酸液は、金属酸化物前駆体と同時に添加するか、あるいは金属酸化物前駆体と珪酸液の混合物を調製して、シードシリカゾルに添加される。なお、前記金属酸化物前駆体は概ね、アルカリ領域での加水分解が速いため一括して添加すると疣状突起を形成し難く、凝集が生じ易くなるため好ましくない。このためシードシリカゾルへの金属酸化物前駆体の添加については、連続的にまたは断続的に行われる。金属酸化物前駆体の添加速度については、製造規模、pHまたは温度にも依存するため明確に規定することは容易ではないが、実験室スケールでは、金属酸化物前駆体について、例えば、0.001g/分〜5g/分の範囲が好適である。
The silicic acid solution is used in the range of 0 ≦ c / m ≦ 1 (m is defined in the same manner as described above, and c is the number of moles of SiO 2 in the silicic acid solution). When c / m exceeds 1, the ratio of the metal oxide to the component of a hook-shaped protrusion falls, and the component of a hook-shaped protrusion becomes close to a silica.
The silicic acid solution is added simultaneously with the metal oxide precursor, or a mixture of the metal oxide precursor and the silicic acid solution is prepared and added to the seed silica sol. In general, the metal oxide precursor is rapidly hydrolyzed in the alkali region, and therefore, it is not preferable to add them all at once because it is difficult to form hook-like protrusions and aggregation easily occurs. For this reason, the addition of the metal oxide precursor to the seed silica sol is performed continuously or intermittently. The addition rate of the metal oxide precursor is not easy to define clearly because it depends on the production scale, pH, or temperature, but on the laboratory scale, for example, 0.001 g for the metal oxide precursor. A range of from / min to 5 g / min is preferred.
本発明に係る金平糖状複合シリカゾルの第1の製造方法により、シリカ微粒子表面に複数の疣状突起が形成されることについては、該シリカ微粒子表面を均一に被覆できる量より少ない量の金属酸化物前駆体を使用することにより、斑状に金属酸化物が成長し、金平糖状複合シリカ微粒子が形成されるものと推察される。 With respect to the formation of a plurality of hook-shaped protrusions on the surface of the silica fine particles by the first production method of the gold flat sugar-like composite silica sol according to the present invention, the amount of the metal oxide is less than the amount capable of uniformly covering the surface of the silica fine particles. By using the precursor, it is presumed that the metal oxide grows in the shape of spots and the confetti-like composite silica fine particles are formed.
[金平糖状複合シリカゾルの第2の製造方法]
本発明に係る金平糖状複合シリカゾルの第2の製造方法は、シリカ微粒子が溶媒に分散してなるシードシリカゾルのpHおよび温度を所定の範囲に調整し、1)金属過酸化物または2)金属過酸化物および珪酸液の所定量を一時に一括して全量添加することを特徴とする。
[Second Production Method of Konpei Sugar-like Composite Silica Sol]
According to the second method for producing the gold flat sugar-like composite silica sol according to the present invention, the pH and temperature of a seed silica sol formed by dispersing silica fine particles in a solvent are adjusted within a predetermined range, and 1) a metal peroxide or 2) a metal peroxide. A predetermined amount of oxide and silicic acid solution is added all at once at a time.
[シードシリカゾル]
シードシリカゾルについては、前記第1の製造方法にて使用されるシードシリカゾルと同様のシリカゾルが使用可能である。
[Seed silica sol]
As for the seed silica sol, a silica sol similar to the seed silica sol used in the first production method can be used.
[粒子成長]
シードシリカゾルを温度60〜200℃、pH9〜12に調整してから金属過酸化物を添加する。温度が60℃未満の場合は、シードシリカゾルが凝集する傾向があり、不安定となる。200℃を超える場合は、生産性の低下またはスケールの発生が生じ易くなる。pHが9未満の場合はシードシリカゾルが凝集する傾向が強くなる。pHが12を超える場合は、金属化合物酸化物の添加後に、金属過酸化物の凝集が発生し易くなる。pHを9〜12の範囲に調整することにより、シリカゾルの電位が高まるため、凝集が生じ難くなり、金属過酸化物とともに珪酸液が添加された場合であっても、シードシリカゾルの安定性が保たれる。
なお、前記温度範囲については、金属過酸化物のみを添加する場合は、好適には70〜180℃、金属過酸化物とともに珪酸液を添加する場合は、好適には70〜150℃の範囲が推奨される。pHの調整には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ水溶液が使用できる。
[Grain growth]
After adjusting the seed silica sol to a temperature of 60 to 200 ° C. and a pH of 9 to 12, a metal peroxide is added. When the temperature is lower than 60 ° C., the seed silica sol tends to aggregate and becomes unstable. When the temperature exceeds 200 ° C., the productivity is easily reduced or the scale is easily generated. When the pH is less than 9, the tendency of the seed silica sol to aggregate increases. When the pH exceeds 12, aggregation of the metal peroxide tends to occur after the addition of the metal compound oxide. By adjusting the pH to the range of 9 to 12, the potential of the silica sol is increased, so that aggregation is difficult to occur, and the stability of the seed silica sol is maintained even when the silicic acid solution is added together with the metal peroxide. Be drunk.
In addition, about the said temperature range, when adding only a metal peroxide, Preferably it is 70-180 degreeC, When adding a silicic acid liquid with a metal peroxide, the range of 70-150 degreeC is suitable suitably. Recommended. To adjust the pH, an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used.
[金属過酸化物]
金属過酸化物の例としては、ペルオキソチタン酸(TiO3)、過酸化ジルコニウム、過酸化セリウム(CeO3)、過酸化タングステン、過酸化ニッケル(NiO2)、過酸化バリウム(BaO2)などを挙げることができる。
金属過酸化物の添加については、金属過酸化物の全量を一時に一括して添加することにより行う必要がある。金属過酸化物は、一般に反応性が低いため、例えば、逐次添加を行った場合は、反応の進行が不十分となり、目的とするレベルの疣状突起を形成することができないことがある。
ここで金属過酸化物の全量を一時に一括して添加する操作については、製造スケール、pHまたは温度にも依存するが、実験室スケールでは1秒〜30秒程度で全量を添加することが好ましい。
[Metal peroxide]
Examples of metal peroxides include peroxotitanic acid (TiO 3 ), zirconium peroxide, cerium peroxide (CeO 3 ), tungsten peroxide, nickel peroxide (NiO 2 ), barium peroxide (BaO 2 ), etc. Can be mentioned.
It is necessary to add the metal peroxide by adding the entire amount of the metal peroxide all at once. Since metal peroxide generally has low reactivity, for example, when it is sequentially added, the progress of the reaction may be insufficient, and the target level of hook-shaped protrusions may not be formed.
Here, the operation of adding the whole amount of the metal peroxide at once is dependent on the production scale, pH or temperature, but it is preferable to add the whole amount in about 1 to 30 seconds on the laboratory scale. .
金属過酸化物の添加量については、0.001≦n/a≦0.1(ただし、aは前記シードシリカゾル中のSiO2モル数を表し、nは金属過酸化物中に含まれる金属のモル数[酸化物換算]を表す。)とすることが必要である。
前記n/aの値が0.1を超える場合は、生成する金属酸化物の量が過剰となるため均一に粒子成長する傾向が強まり、疣状突起の生成が見られない場合がある。n/aの値が0.001未満の場合は、金属過酸化物の量が相対的に少ないため、疣状突起の生成が見られなくなる。金属過酸化物については、水で希釈して水溶液として使用してもよく、未希釈品を使用しても良い。水希釈品の場合、金属過酸化物の濃度については、格別に制限されるものではないが、例えば、0.1質量%〜30質量%の範囲を挙げることができる。
As for the amount of metal peroxide added, 0.001 ≦ n / a ≦ 0.1 (where a represents the number of moles of SiO 2 in the seed silica sol, and n represents the amount of the metal contained in the metal peroxide. The number of moles (representing oxide) is required.
When the value of n / a exceeds 0.1, the amount of the metal oxide to be generated becomes excessive, so that the tendency for uniform particle growth increases and the formation of hook-shaped protrusions may not be observed. When the value of n / a is less than 0.001, since the amount of metal peroxide is relatively small, the formation of hook-like projections is not observed. The metal peroxide may be diluted with water and used as an aqueous solution, or an undiluted product may be used. In the case of a water-diluted product, the concentration of the metal peroxide is not particularly limited, but examples thereof include a range of 0.1% by mass to 30% by mass.
[珪酸液]
本発明の製造方法では、所望により金属過酸化物とともに珪酸液を添加することも可能である。珪酸液については、前記第1の製造方法において説明した通りである。
珪酸液は、0≦c/n≦1(bは前記と同様に定義され、cは該珪酸液中のSiO2モル数である。)の範囲で使用される。c/nが1を超える場合は、疣状突起の成分に占める金属酸化物の割合が低下し、疣状突起の成分がシリカに近くなる。
[Silica solution]
In the production method of the present invention, a silicic acid solution can be added together with a metal peroxide as desired. The silicic acid solution is as described in the first manufacturing method.
The silicic acid solution is used in the range of 0 ≦ c / n ≦ 1 (b is defined in the same manner as described above, and c is the number of moles of SiO 2 in the silicic acid solution). When c / n exceeds 1, the ratio of the metal oxide to the component of a hook-shaped protrusion falls, and the component of a hook-shaped protrusion becomes close to a silica.
珪酸液は、金属過酸化物と同時に添加するか、あるいは金属過酸化物と珪酸液の混合物を調製して、シードシリカゾルに添加される。なお、金属過酸化物は、アルカリ領域での加水分解が遅いため、逐次添加を行った場合、疣状突起を含めてシリカ微粒子表面に被覆を形成し難くなる。
本発明に係る金平糖状複合シリカゾルの第2の製造方法により、シリカ微粒子表面に複数の疣状突起が形成されることについては、該シリカ微粒子表面を均一に被覆できる量より少ない量の金属過酸化物を使用することにより、斑状に金属酸化物が成長し、金平糖状複合シリカ微粒子が形成されるものと推察される。
The silicic acid solution is added simultaneously with the metal peroxide, or a mixture of the metal peroxide and the silicic acid solution is prepared and added to the seed silica sol. Since the metal peroxide is slowly hydrolyzed in the alkaline region, it is difficult to form a coating on the surface of the silica fine particles including the hook-shaped protrusions when sequentially added.
In the second production method of the confetti-like composite silica sol according to the present invention, a plurality of hook-shaped protrusions are formed on the surface of the silica fine particles. The amount of metal peroxidation is less than the amount capable of uniformly covering the surface of the silica fine particles. By using the product, it is assumed that metal oxide grows in the shape of spots, and confetti-like composite silica fine particles are formed.
[研磨材および研磨用組成物]
本発明の金平糖状複合シリカゾルは、それ自体で研磨材として適用可能なものであり、更には、他の成分(研磨促進剤等)と共に通常の研磨用組成物を構成することも可能である。
[Abrasive and polishing composition]
The fried sugar-like composite silica sol of the present invention can be applied as an abrasive by itself, and can also constitute a normal polishing composition together with other components (such as a polishing accelerator).
本発明の金平糖状複合シリカゾルは、研磨用組成物の成分として配合されて、優れた研磨効果を発揮するものである。本発明の金平糖状複合シリカゾルは、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板、ガラス質材料の鏡面加工などへの研磨用途に適用する研磨用組成物の成分として使用することができる。 The confetti-like composite silica sol of the present invention is blended as a component of the polishing composition and exhibits an excellent polishing effect. The gold plain sugar-like composite silica sol of the present invention includes an aluminum disk (aluminum or a plating layer on a substrate thereof), an aluminum wiring of a semiconductor multilayer wiring board, an optical disk, a glass substrate for a magnetic disk, a glass substrate for a liquid crystal display, and a glass substrate for a photomask. It can be used as a component of a polishing composition applied to polishing applications such as mirror finishing of glassy materials.
研磨用組成物の組成については、本発明の金平糖状複合シリカゾル(水系)を濃縮または、希釈して、更に必要に応じて他の成分を配合し、所望によりスラリー状にすることにより調製される。ここで、研磨用シリカゾルに添加される他の成分としては、研磨促進剤、界面活性剤、緩衝剤、安定剤、水系媒体などが挙げられる。また、本発明の金平糖状複合シリカゾル以外の研磨剤を併用しても良い。 The composition of the polishing composition is prepared by concentrating or diluting the gold flat sugar-like composite silica sol (aqueous system) of the present invention and further blending other components as necessary, and making it into a slurry if desired. . Here, examples of other components added to the polishing silica sol include polishing accelerators, surfactants, buffers, stabilizers, and aqueous media. Moreover, you may use together abrasive | polishing agents other than the gold flat sugar-like composite silica sol of this invention.
本発明の研磨用組成物において、本発明の金平糖状複合シリカゾルとともに使用される他の成分の例を以下に列挙するが、これらに限定されるものではない。
シリコンウエーハ、アルミニウムディスク、ガラスディスクなどを対象とする研磨用組成物の場合、上記他の成分としては、研磨促進剤として、アルカリ系では、水酸化カリウム、水酸化ナトリウムなどの金属水酸化物、炭酸ナトリウム、炭酸アンモニウムなどの金属炭酸塩、アンモニア、モノエタノールアミン、ピペラジンなどのアミン類、テトラメチルアンモニウムなどの第4級アンモニウム水酸化物など、酸化物系では、過酸化水素、塩素化合物などが挙げられる。
In the polishing composition of the present invention, examples of other components used together with the gold flat sugar-like composite silica sol of the present invention are listed below, but are not limited thereto.
In the case of a polishing composition intended for silicon wafers, aluminum disks, glass disks, etc., as the other components, as a polishing accelerator, in the alkaline system, metal hydroxides such as potassium hydroxide and sodium hydroxide, Metal oxides such as sodium carbonate and ammonium carbonate, amines such as ammonia, monoethanolamine and piperazine, quaternary ammonium hydroxides such as tetramethylammonium, etc. In the oxide system, hydrogen peroxide, chlorine compounds, etc. Can be mentioned.
界面活性剤としては、アニオン系、カチオン系、ノニオン系、両性の界面活性剤を使用することができる。
緩衝剤として利用されるイオンとしては、調整するpH範囲にもよるが、陽イオンが第四級アンモニウムイオン及びアルカリ金属イオンの少なくとも1種以上であり、陰イオンが炭酸イオン、炭酸水素イオン、ホウ酸イオン、及びフェノールの少なくとも1種以上であることが好ましい。特に好適なのは炭酸イオンと炭酸水素イオンの混合物、あるいはホウ酸イオンなどを挙げることができる。
As the surfactant, anionic, cationic, nonionic or amphoteric surfactants can be used.
As ions used as a buffering agent, although depending on the pH range to be adjusted, the cation is at least one of quaternary ammonium ion and alkali metal ion, and the anion is carbonate ion, bicarbonate ion, boron. It is preferable that it is at least 1 type or more of an acid ion and phenol. Particularly preferred are a mixture of carbonate ions and bicarbonate ions, borate ions, and the like.
安定剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロースのようなセルロース類、ポリビニルアルコールのような水溶性高分子類、エタノール、エチレングリコール、プロピレングリコール、グリセリンのような水溶性アルコール類、アルキルベンゼンスルホン酸ソーダなどの界面活性剤、ポリアクリル酸塩のような有機系ポリアニオン系物質、塩化マグネシウム、酢酸カリウムのような無機塩等を挙げることができる。
研磨用組成物における、SiO2濃度は、通常は3〜20重量%で使用されるが、必ずしもこの範囲に限定されるものではない。
Examples of the stabilizer include celluloses such as carboxymethyl cellulose and hydroxyethyl cellulose, water-soluble polymers such as polyvinyl alcohol, water-soluble alcohols such as ethanol, ethylene glycol, propylene glycol and glycerin, and sodium alkylbenzene sulfonate. Examples thereof include surfactants, organic polyanionic substances such as polyacrylates, inorganic salts such as magnesium chloride and potassium acetate.
The SiO 2 concentration in the polishing composition is usually 3 to 20% by weight, but is not necessarily limited to this range.
[本発明に係る金平糖状複合シリカゾルの好適な態様]
本発明の好適な態様としては、以下の各態様を挙げることができる。
[1] 球状シリカ微粒子の表面に酸化ジルコニウムを含む複数の疣状突起を有する複合シリカ微粒子であって、窒素吸着法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルであって、前記疣状突起の平均高さ(H)が、前記金平糖状複合シリカ微粒子の平均粒子径(D2)の3〜30%に相当するものであリ、かつ、該金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にあることを特徴とする金平糖状複合シリカゾル。
[Preferred embodiment of the confetti-like composite silica sol according to the present invention]
Preferred embodiments of the present invention include the following embodiments.
[1] A composite silica fine particle having a plurality of ridge-like protrusions containing zirconium oxide on the surface of a spherical silica fine particle, the average surface area measured by an image analysis method with a specific surface area measured by a nitrogen adsorption method as (SA1) The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the particle diameter (D2) is (SA2) is in the range of 1.7 to 5.0 and measured by the image analysis method. An average particle diameter (D2) of an average particle size (D2) of an average particle size (D2) of 7 to 150 nm, an average particle size (H) of the rod-shaped projections, It corresponds to 3-30% of the average particle diameter (D2) of the confetti sugar composite silica fine particles, and the particle diameter variation coefficient (CV value) of the confetti sugar composite silica fine particles is in the range of 10-50%. Features that are A gold-peeled composite silica sol.
[2] 球状シリカ微粒子の表面に酸化セリウムを含む複数の疣状突起を有する複合シリカ微粒子であって、窒素吸着法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルであって、前記疣状突起の平均高さ(H)が、前記金平糖状複合シリカ微粒子の平均粒子径(D2)の3〜30%に相当するものであリ、かつ、該金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にあることを特徴とする金平糖状複合シリカゾル。 [2] A composite silica fine particle having a plurality of ridge-like projections containing cerium oxide on the surface of the spherical silica fine particle, and the average surface area measured by an image analysis method with a specific surface area measured by a nitrogen adsorption method as (SA1) The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the particle diameter (D2) is (SA2) is in the range of 1.7 to 5.0 and measured by the image analysis method. An average particle diameter (D2) of an average particle size (D2) of an average particle size (D2) of 7 to 150 nm, an average particle size (H) of the rod-shaped projections, It corresponds to 3-30% of the average particle diameter (D2) of the confetti sugar composite silica fine particles, and the particle diameter variation coefficient (CV value) of the confetti sugar composite silica fine particles is in the range of 10-50%. It is characterized by being That confetti-like composite silica sol.
[3] 球状シリカ微粒子の表面に酸化ジルコニウムを含む複数の疣状突起を有する複合シリカ微粒子であって、窒素吸着法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルであって、前記疣状突起の平均高さ(H)が、前記金平糖状複合シリカ微粒子の平均粒子径(D2)の3〜30%に相当するものであリ、かつ、該金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にある金平糖状複合シリカゾルからなる研磨材またはそれを含有してなる研磨用組成物。 [3] A composite silica fine particle having a plurality of ridge-like projections containing zirconium oxide on the surface of the spherical silica fine particle, and the average surface area measured by an image analysis method with a specific surface area measured by a nitrogen adsorption method as (SA1) The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the particle diameter (D2) is (SA2) is in the range of 1.7 to 5.0 and measured by the image analysis method. An average particle diameter (D2) of an average particle size (D2) of an average particle size (D2) of 7 to 150 nm, an average particle size (H) of the rod-shaped projections, It corresponds to 3-30% of the average particle diameter (D2) of the confetti sugar composite silica fine particles, and the particle diameter variation coefficient (CV value) of the confetti sugar composite silica fine particles is in the range of 10-50%. A certain kind of confetti Abrasives or polishing composition containing the same consists of coupling the silica sol.
[4] 球状シリカ微粒子の表面に酸化セリウムを含む複数の疣状突起を有する複合シリカ微粒子であって、窒素吸着法により測定される比表面積を(SA1)とし、画像解析法により測定された平均粒子径(D2)から換算した比表面積を(SA2)としたときの表面粗度(SA1)/(SA2)の値が、1.7〜5.0の範囲にあり、前記画像解析法により測定された平均粒子径(D2)が7〜150nmの範囲にある金平糖状複合シリカ微粒子が溶媒に分散してなる金平糖状複合シリカゾルであって、前記疣状突起の平均高さ(H)が、前記金平糖状複合シリカ微粒子の平均粒子径(D2)の3〜30%に相当するものであリ、かつ、該金平糖状複合シリカ微粒子の粒子径変動係数(CV値)が10〜50%の範囲にある金平糖状複合シリカゾルからなる研磨材またはそれを含有してなる研磨用組成物。 [4] A composite silica fine particle having a plurality of ridge-like projections containing cerium oxide on the surface of the spherical silica fine particle, the average surface area measured by an image analysis method with a specific surface area measured by a nitrogen adsorption method as (SA1) The value of the surface roughness (SA1) / (SA2) when the specific surface area converted from the particle diameter (D2) is (SA2) is in the range of 1.7 to 5.0 and measured by the image analysis method. An average particle diameter (D2) of an average particle size (D2) of an average particle size (D2) of 7 to 150 nm, an average particle size (H) of the rod-shaped projections, It corresponds to 3-30% of the average particle diameter (D2) of the confetti sugar composite silica fine particles, and the particle diameter variation coefficient (CV value) of the confetti sugar composite silica fine particles is in the range of 10-50%. A certain kind of confetti Abrasives or polishing composition comprising it consists Rikazoru.
[実施例および比較例で用いた分析方法]
以下に本発明の好適な実施例を述べるが、実施例および比較例における各種特性の測定方法については、特に断りの無い限り、以下に記す通り実施した。また、それらの結果については表1に記した。
[Analysis methods used in Examples and Comparative Examples]
Hereinafter, preferred examples of the present invention will be described. The measurement methods of various characteristics in the examples and comparative examples were carried out as described below unless otherwise specified. The results are shown in Table 1.
[1]BET法による比表面積(SA1)の測定
シリカゾル50mlをHNO3でpH3.5に調整し、1−プロパノール40mlを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、マルチソーブ12)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。
[1] Measurement of specific surface area (SA1) by BET method 50 ml of silica sol was adjusted to pH 3.5 with HNO 3 , 40 ml of 1-propanol was added, and the sample was dried at 110 ° C. for 16 hours. Baked at 500 ° C. for 1 hour to obtain a measurement sample. And the specific surface area was computed by the BET 1-point method from the adsorption amount of nitrogen using the specific surface area measuring apparatus (the product made from Yuasa Ionics, multisorb 12).
具体的には、試料0.5gを測定セルに取り、窒素30体積%/ヘリウム70体積%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、シリカゾルの比表面積(SA1)を算出した。 Specifically, 0.5 g of a sample is taken in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of 30% by volume of nitrogen / 70% by volume of helium, and then the sample is placed in the mixed gas stream. At a liquid nitrogen temperature, and nitrogen is adsorbed on the sample by equilibrium. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area (SA1) of the silica sol was calculated using a calibration curve prepared in advance.
[2]シアーズ法による比表面積(SA1)と平均粒子径(D1)の測定
1)SiO2として1.5gに相当する試料をビーカーに採取してから、25℃の恒温反応槽に移し、純水を加えて液量を90mlにする。以下の操作は、25℃に保持した恒温反応槽中にて行った。
2)pH3.6になるように0.1モル/L塩酸水溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム水溶液を滴下して、pH4.0に調整する。
[2] Measurement of specific surface area (SA1) and average particle diameter (D1) by Sears method 1) A sample corresponding to 1.5 g as SiO 2 was collected in a beaker and transferred to a constant temperature reaction vessel at 25 ° C. Add water to bring the volume to 90 ml. The following operation was performed in a constant temperature reaction tank maintained at 25 ° C.
2) Add 0.1 mol / L hydrochloric acid aqueous solution so that pH becomes 3.6.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L aqueous sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム水溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム水溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)次の式(3)からSiO21.5g当たりのpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム水溶液の消費量V(ml)を求め、下記式(4)から比表面積を算定する。
また、平均粒子径D1(nm)は、式(5)から求める。
5) The sample adjusted to pH 4.0 was titrated with a 0.1 mol / L sodium hydroxide aqueous solution, and the titration amount and pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more. A calibration curve is prepared, where X is the titration amount of 1 mol / L sodium hydroxide aqueous solution and Y is the pH value at that time.
6) Consumption V (ml) of 0.1 mol / L sodium hydroxide aqueous solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 was obtained from the following formula (3), and the following formula (4) ) To calculate the specific surface area.
Moreover, average particle diameter D1 (nm) is calculated | required from Formula (5).
V=(A×f×100×1.5)/(W×C) ・・・ (3)
SA1=29.0V−28 ・・・ (4)
D1=6000/(ρ×SA1) ・・・ (5) (ρ:試料の密度)
但し、上記式(3)における記号の意味は次の通りである。
A:SiO21.5g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)
f :0.1モル/L水酸化ナトリウム溶液の力価
C :試料のSiO2濃度(%)
W :試料採取量(g)
V = (A × f × 100 × 1.5) / (W × C) (3)
SA1 = 29.0V−28 (4)
D1 = 6000 / (ρ × SA1) (5) (ρ: density of sample)
However, the meanings of the symbols in the above formula (3) are as follows.
A: Titration amount of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 (ml)
f: Potency of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration of sample (%)
W: Sampling amount (g)
[3]画像解析による平均粒子径(D2)の測定方法および比表面積(SA2)の算定方法
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、試料シリカゾルを倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、その最大径(DL)を測定し、その平均値を平均粒子径(D2)とした。また、平均粒子径(D2)の値を前記式(1)に代入して、比表面積(SA2)を求めた。
[3] Measurement method of average particle diameter (D2) by image analysis and calculation method of specific surface area (SA2) Photograph of sample silica sol at a magnification of 250,000 with a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.) The maximum diameter (DL) of any 50 particles in a photograph projection view obtained by photographing was measured, and the average value was defined as the average particle diameter (D2). Further, the specific surface area (SA2) was determined by substituting the value of the average particle diameter (D2) into the formula (1).
[4]画像解析による金平糖状複合シリカ微粒子の疣状突起の平均高さ測定
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、試料シリカゾルを倍率25万倍で写真撮影して得られる写真投影図における、任意の金平糖状複合シリカ微粒子50個について、任意の疣状突起の頂点から疣状突起と球状微粒子部分との接点までの距離を3箇所ずつ測定し、その全ての平均値を算出し、疣状突起の平均高さ(H)とした。
次いで、金平糖状複合シリカ微粒子の平均粒子径(D2)を用い、(H/D2)×100(%)を算定した。
[4] Measurement of average height of ridge-like projections of confetti-like complex silica fine particles by image analysis Obtained by photographing a sample silica sol at a magnification of 250,000 with a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.) Measure the distance from the apex of any saddle-shaped protrusion to the contact point between the saddle-shaped protrusion and the spherical fine particle part for each of 50 arbitrary gold-plated sugar-like composite silica particles in the photograph projection figure, and the average value of all of them Was calculated as the average height (H) of the hook-shaped projections.
Next, (H / D2) × 100 (%) was calculated using the average particle diameter (D2) of the confetti-like composite silica fine particles.
[5]真球度の測定方法
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、試料シリカゾルを倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)を測定し、それらの平均値を真球度とした。
[5] Method for measuring sphericity Any 50 of the photographic projections obtained by photographing a sample silica sol at a magnification of 250,000 times with a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.) About each particle | grain, ratio (DS / DL) of the largest diameter (DL) and the short diameter (DS) orthogonal to this was measured, and those average values were made into sphericity.
[6]複合シリカ微粒子分散液の固形分測定
試料(複合シリカ微粒子分散液)2gをルツボにて蒸発乾固し、得られた固形物を1000℃にて1時間焼成後、デシケーターに入れ冷却して秤量する。これらの重量差より複合シリカ微粒子の含有量を求めた。
[6] Measurement of solid content of composite silica fine particle dispersion 2 g of sample (composite silica fine particle dispersion) was evaporated to dryness with a crucible, and the resulting solid was fired at 1000 ° C. for 1 hour, then placed in a desiccator and cooled. Weigh. The content of the composite silica fine particles was determined from these weight differences.
[7]動的光散乱法による平均粒子径測定
シードシリカゾルの平均粒子径は、粒子径分布測定装置(Particle SizingSystems社製:「NICOMP MODEL 380」)を使用して動的光散乱法により測定した。
[7] Average Particle Size Measurement by Dynamic Light Scattering Method The average particle size of the seed silica sol was measured by a dynamic light scattering method using a particle size distribution measuring device (manufactured by Particle Sizing Systems: “NICOMP MODEL 380”). .
[8]密度の測定方法
複合シリカ微粒子の比重については、まず、試料10gをルツボに採取し、110℃で2時間乾燥させる。次いで、デシケーターにて冷却後、25mlピクノメーターに3〜4g入れ、蒸留水を加えて懸濁し、60mmHgにて1時間真空脱気を行った後に、25℃恒温槽にて温度調整する。ピクノメーターの標線まで蒸留水を加えて容量を調整し、ピクノメーターの容量(25ml)と蒸留水の容量(ml)の差から試料の容量(ml)を算出する。加えた試料の重量(g)と算出された容量(ml)から密度を求めた。
[8] Method for Measuring Density Regarding the specific gravity of the composite silica fine particles, first, 10 g of a sample is collected in a crucible and dried at 110 ° C. for 2 hours. Next, after cooling with a desiccator, 3 to 4 g is put into a 25 ml pycnometer, distilled water is added and suspended, vacuum deaeration is performed at 60 mmHg for 1 hour, and the temperature is adjusted in a 25 ° C. constant temperature bath. Distilled water is added to the mark of the pycnometer to adjust the volume, and the sample volume (ml) is calculated from the difference between the pycnometer volume (25 ml) and the distilled water volume (ml). The density was determined from the weight (g) of the added sample and the calculated volume (ml).
[9]アルミニウム基板に対する研磨特性の評価方法
研磨用スラリーの調製
各実施例および各比較例で得たシリカ濃度20質量%の金平糖状シリカゾルに、H2O2、HEDP(1−ヒドロキシエチリデン−1,1−ジスルホン酸)および超純水を加えて、シリカ9重量%、H2O20.5重量%、1−ヒドロキシエチリデン−1,1−ジスルホン酸0.5重量%の研磨用スラリーを調製し、さらに必要に応じてHNO3を加えて、pH2の研磨用スラリーを調製した。
[9] Evaluation method of polishing characteristics for aluminum substrate
Preparation of Slurry for Slurry To the gold flat sugar-like silica sol having a silica concentration of 20% by mass obtained in each Example and each Comparative Example, H 2 O 2 , HEDP (1-hydroxyethylidene-1,1-disulfonic acid) and ultrapure water were added. In addition, a polishing slurry of 9% by weight of silica, 0.5% by weight of H 2 O 2 and 0.5% by weight of 1-hydroxyethylidene-1,1-disulfonic acid was prepared, and if necessary, HNO 3 was added. In addition, a polishing slurry having a pH of 2 was prepared.
被研磨基板
被研磨基板として、アルミニウムデイスク用基板を使用した。このアルミニウムデイスク用基板は、アルミニウム基板にNi−Pを10μmの厚さに無電解メッキ(Ni88%とP12%の組成の硬質Ni−Pメッキ層)をした基板(95mmΦ/25mmΦ−1.27mmt)を使用した。なお、この基板は一次研磨済みで、表面粗さ(Ra)は0.17nmであった。
Polishing substrate An aluminum disk substrate was used as the polishing substrate. This aluminum disk substrate is a substrate (95 mmΦ / 25 mmΦ-1.27 mmt) obtained by electrolessly plating Ni-P to a thickness of 10 μm (a hard Ni-P plating layer having a composition of Ni88% and P12%) on an aluminum substrate. It was used. This substrate was first polished and the surface roughness (Ra) was 0.17 nm.
研磨試験
上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で5分間供給して研磨を行った。
研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。また、研磨レートについては、比較例5のシリカゾルによる研磨速度を1としたときの金平糖状シリカゾルまたはシリカゾルによる各研磨速度の比率とした。
Polishing test The above substrate to be polished is set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) is used and polished at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 5 minutes at a rate of 20 g / min.
The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing. Further, the polishing rate was the ratio of each polishing rate with the confetti sugar silica sol or the silica sol when the polishing rate with the silica sol of Comparative Example 5 was 1.
シリカゾル(シリカ濃度3質量%、動的光散乱法により測定された平均粒子径11nm、比表面積250m2/g、粒子径変動係数(CV値)35%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.0であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)60gを、添加速度1g/分にて、60分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
1000 g of silica sol (silica concentration 3% by mass, average particle size 11 nm measured by dynamic light scattering method, specific surface area 250 m 2 / g, particle size variation coefficient (CV value) 35%) was injected into a reaction vessel equipped with a stirrer, At room temperature, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added, and the pH was measured and found to be 11.0.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 60 g of zirconium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. Over 60 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-45P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径45nm、比表面積61m2/g、粒子径変動係数(CV値)25%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.2であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)15gを、添加速度1g/分にて、15分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, silica concentration 3 mass%, average particle size 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g, particle size variation coefficient (CV value) 25 %) Was poured into a reaction vessel equipped with a stirrer, and at room temperature, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added, and the pH was measured to be 11.2. It was.
The silica sol to which this sodium hydroxide aqueous solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 15 g of zirconium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. , Added over 15 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-80P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径80nm、比表面積34m2/g、粒子径変動係数(CV値)15%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.3であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)9gを、添加速度1g/分にて、9分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-80P, silica concentration 3 mass%, average particle size 80 nm measured by dynamic light scattering method, specific surface area 34 m 2 / g, particle size variation coefficient (CV value) 15 %) Was poured into a reaction vessel equipped with a stirrer, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added at room temperature, and the pH was measured to be 11.3. It was.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 9 g of zirconium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. , Added over 9 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-50、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径25nm、比表面積109m2/g、粒子径変動係数(CV値)30%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.1であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)30gを、添加速度1g/分にて、30分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。金平糖状複合シリカゾルについて研磨試験を行いその結果を表1に記す。
Silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-50, silica concentration 3 mass%, average particle size 25 nm measured by dynamic light scattering method, specific surface area 109 m 2 / g, particle size variation coefficient (CV value) 30 %) Was poured into a reaction vessel equipped with a stirrer, and at room temperature, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added, and the pH was measured to be 11.1. It was.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 30 g of zirconium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. Over 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced. A polishing test was conducted on the confetti-like composite silica sol, and the results are shown in Table 1.
シリカゾル(触媒化成工業株式会社製 カタロイドSI-45P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径45nm、比表面積61m2/g、粒子径変動係数(CV値)25%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.1であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)50gを、添加速度1g/分にて、50分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (catalyst SI-45P manufactured by Catalytic Chemical Industry Co., Ltd., silica concentration 3 mass%, average particle diameter 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g, particle diameter variation coefficient (CV value) 25% ) 1000 g was poured into a reaction vessel equipped with a stirrer, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added at room temperature, and the pH was measured to be 11.1. .
The silica sol to which the aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 50 g of zirconium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. Over 50 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製 カタロイドSI-45P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径45nm、比表面積61m2/g、粒子径変動係数(CV値)25%)1000gを攪拌機付き反応容器に注入し、室温にて、水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.2であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱し、温度80℃を保ちながら、硝酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)5gを、添加速度1g/分にて、5分かけて添加した。
その結果、シリカ微粒子表面に酸化ジルコニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。生成した金平糖状複合シリカゾルについて研磨試験を行いその結果を表1に記す。
Silica sol (catalyst SI-45P manufactured by Catalytic Chemical Industry Co., Ltd., silica concentration 3 mass%, average particle diameter 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g, particle diameter variation coefficient (CV value) 25% ) 1000 g was poured into a reaction vessel equipped with a stirrer, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added at room temperature, and the pH was measured to be 11.2. .
The silica sol to which this sodium hydroxide aqueous solution was added was heated at a temperature of 80 ° C. for 1 hour, and while maintaining the temperature at 80 ° C., 5 g of zirconium nitrate ammonium aqueous solution concentration (5.0 mass%) was added at an addition rate of 1 g / min. Added over 5 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of zirconium oxide on the surface of the silica fine particles were produced. A polishing test was conducted on the produced confetti-like composite silica sol, and the results are shown in Table 1.
シリカゾル(シリカ濃度3質量%、動的光散乱法により測定された平均粒子径11nm、比表面積250m2/g、粒子径変動係数(CV値)35%)1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.0であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱した。加熱終了後、直に硝酸セリウムアンモニウム水溶液(濃度5.0質量%)60gを、添加速度1g/分にて、60分かけて添加した。その結果、シリカ微粒子表面に酸化セリウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
1000 g of silica sol (silica concentration 3% by mass, average particle size 11 nm measured by dynamic light scattering method, specific surface area 250 m 2 / g, particle size variation coefficient (CV value) 35%) was injected into a reaction vessel equipped with a stirrer, Thereto was added 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%), and the pH was measured to be 11.0.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour. Immediately after the heating, 60 g of an aqueous cerium ammonium nitrate solution (concentration: 5.0% by mass) was added over 60 minutes at an addition rate of 1 g / min. As a result, gold-plated sugar-like fine particles in which ridge-like protrusions made of cerium oxide were formed on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製 カタロイドSI-45P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径45nm、比表面積61m2/g、粒子径変動係数(CV値)25%)1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加し、pHを測定したところ11.1であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱した。加熱終了後、直に炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)20gを添加速度10g/分にて、2分かけて添加した。
得られたゾル中のシリカ微粒子の表面はジルコニウム化合物で覆われたが、明確な疣状突起は形成されなかった。
Silica sol (catalyst SI-45P manufactured by Catalytic Chemical Industry Co., Ltd., silica concentration 3 mass%, average particle diameter 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g, particle diameter variation coefficient (CV value) 25% ) 1000 g was poured into a reaction vessel equipped with a stirrer, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added, and the pH was measured to be 11.1.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour. Immediately after the heating, 20 g of zirconium ammonium carbonate aqueous solution concentration (5.0 mass%) was added at an addition rate of 10 g / min over 2 minutes.
The surface of the silica fine particles in the obtained sol was covered with a zirconium compound, but no clear ridge-like projections were formed.
シリカゾル(触媒化成工業株式会社製 カタロイドSI-50、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径25nm、比表面積109m2/g、粒子径変動係数(CV値)30%)1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)50g(0.625モル)を添加し、pHを測定したところ11.1であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱した。加熱終了後、直に炭酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)1000gを添加速度100g/分にて、10分かけて添加した。
得られたゾル中のシリカ微粒子の表面はジルコニウム化合物で覆われたが、明確な疣状突起は形成されなかった。
Silica sol (catalyst SI-50 manufactured by Catalytic Chemical Industry Co., Ltd., silica concentration 3 mass%, average particle diameter 25 nm measured by dynamic light scattering method, specific surface area 109 m 2 / g, particle diameter variation coefficient (CV value) 30% ) 1000 g was poured into a reaction vessel equipped with a stirrer, 50 g (0.625 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added thereto, and the pH was measured to be 11.1.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour. Immediately after the heating, 1000 g of zirconium ammonium carbonate aqueous solution concentration (5.0 mass%) was added over 10 minutes at an addition rate of 100 g / min.
The surface of the silica fine particles in the obtained sol was covered with a zirconium compound, but no clear ridge-like projections were formed.
シリカゾル(カタロイドSI-45P、シリカ濃度3質量%、動的光散乱法により測定された平均粒子径45nm、比表面積61m2/g、粒子径変動係数(CV値)25%)1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10g(0.125モル)を添加して、pHを測定したところ11.1であった。
この水酸化ナトリウム水溶液を添加したシリカゾルを温度80℃にて、1時間加熱した。加熱終了後、直に硝酸ジルコニウムアンモニウム水溶液濃度(5.0質量%)1000gを添加速度100g/分にて、10分かけて添加した。
得られたゾル中のシリカ微粒子の表面はジルコニウム化合物で覆われたが、明確な疣状突起は形成されなかった。
Reaction with 1000 g of silica sol (cataloid SI-45P, silica concentration 3 mass%, average particle diameter 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g, particle diameter variation coefficient (CV value) 25%) with stirrer The solution was poured into a container, 10 g (0.125 mol) of an aqueous sodium hydroxide solution (sodium hydroxide concentration 5 mass%) was added thereto, and the pH was measured to be 11.1.
The silica sol to which this aqueous sodium hydroxide solution was added was heated at a temperature of 80 ° C. for 1 hour. Immediately after the heating, 1000 g of zirconium ammonium nitrate aqueous solution concentration (5.0 mass%) was added at an addition rate of 100 g / min over 10 minutes.
The surface of the silica fine particles in the obtained sol was covered with a zirconium compound, but no clear ridge-like projections were formed.
シリカゾル(動的光散乱法により測定された平均粒子径11nm、BET法により測定された比表面積250m2/g、粒子径変動係数(CV値)35%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)60gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (average particle size 11 nm measured by dynamic light scattering method, specific surface area 250 m 2 / g measured by BET method, particle size variation coefficient (CV value) 35%, silica concentration 20% by mass, dispersion medium: pure Pure water is added to water), and 1000 g of silica sol adjusted to a silica concentration of 3% by mass is poured into a reaction vessel equipped with a stirrer, and 10.0 g of aqueous sodium hydroxide solution (sodium hydroxide concentration of 5% by mass) is added thereto. The pH was then 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 60 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration: 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-45P、 動的光散乱法により測定された平均粒子径45nm、BET法により測定された比表面積61m2/g、粒子径変動係数(CV値)25%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.2とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)15gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, average particle size 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g measured by BET method, particle size variation coefficient (CV value) 25 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.2.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 15 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-80P、動的光散乱法により測定された平均粒子径80nm、BET法により測定された比表面積34m2/g、粒子径変動係数(CV値)15%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.3とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)10gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (manufactured by Catalytic Chemical Industry Co., Ltd., Cataloid SI-80P, average particle size of 80 nm measured by dynamic light scattering method, specific surface area of 34 m 2 / g measured by BET method, particle size variation coefficient (CV value) 15 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.3.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 10 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration: 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-50P、動的光散乱法により測定された平均粒子径25nm、BET法により測定された比表面積109m2/g、粒子径変動係数(CV値)30%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)30gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-50P, average particle size 25 nm measured by dynamic light scattering method, specific surface area 109 m 2 / g measured by BET method, particle size variation coefficient (CV value) 30 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 30 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration of 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-45P、動的光散乱法により測定された平均粒子径45nm、BET法により測定された比表面積61m2/g、粒子径変動係数(CV値)25%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)50gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, average particle size 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g measured by BET method, particle size variation coefficient (CV value) 25 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 50 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-45P、動的光散乱法により測定された平均粒子径45nm、BET法により測定された比表面積61m2/g、粒子径変動係数(CV値)25%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)5gを、一括して一時に全量添加し、攪拌を30分間行った。
その結果、シリカ微粒子の表面に酸化チタニウムからなる疣状突起が形成されてなる金平糖状微粒子が生成した。
Silica sol (Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, average particle size 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g measured by BET method, particle size variation coefficient (CV value) 25 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 5 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration of 5.0% by mass) was added all at once and stirred for 30 minutes.
As a result, gold-plated sugar-like fine particles formed by forming hook-like protrusions made of titanium oxide on the surface of the silica fine particles were produced.
核粒子分散液の調製
シリカゾル(触媒化成工業株式会社製:カタロイドSI-40、画像解析法により測定された平均粒子径21.2nm、SiO2 濃度40.7質量%)24.8gに水を加えて、1010g(SiO2 濃度1質量%)とし、更にシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を80℃に昇温し、30分間80℃に維持して核粒子分散液(A液)とした。
Preparation of core particle dispersion liquid Water was added to 24.8 g of silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-40, average particle diameter 21.2 nm measured by image analysis method, SiO 2 concentration 40.7 mass%). 1010 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
核粒子の成長
水硝子(洞海化学(株)製:JIS3号水硝子、SiO2 濃度24質量%)708gを水2692gで希釈して、珪酸アルカリ水溶液(B液)3400gを調製した。また、電解質としての硫酸アンモニウム(三菱化学株式会社製)120.8gに水2899gを加えて、電解質水溶液3019.8gを調製した。そして、温度を80℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ80℃にて5時間かけて全量添加することにより粒子成長を行った。
ここで、B液のアルカリと電解質の当量比EA /EE は1.0であった。ついで、80℃で1時間熟成を行った後、限外濾過膜によりpHが9.4になるまで洗浄を行った。ついで、濃縮してSiO2 濃度20質量%の金平糖状シリカゾルを得た。
このシリカゾルについての研磨試験結果を表1に記す。
708 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2692 g of water to prepare 3400 g of an aqueous alkali silicate solution (liquid B). Moreover, 2899 g of water was added to 120.8 g of ammonium sulfate (made by Mitsubishi Chemical Corporation) as an electrolyte to prepare 3019.8 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 80 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 80 ° C. over 5 hours. The particle growth was carried out.
Here, the equivalent ratio E A / E E of B solution alkaline and electrolyte was 1.0. Next, after aging at 80 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH reached 9.4. Subsequently, it was concentrated to obtain a confetti-like silica sol having a SiO 2 concentration of 20% by mass.
The results of the polishing test for this silica sol are shown in Table 1.
シリカゾル(触媒化成工業株式会社製:カタロイドSI-80、画像解析法により測定された平均粒子径110nm、SiO2 濃度40.5質量%)に純水を加えてSiO2 濃度20質量%とした。
このシリカゾルについての研磨試験結果を表1に記す。
Pure water was added to silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-80, average particle size 110 nm measured by image analysis method, SiO 2 concentration 40.5% by mass) to make the SiO 2 concentration 20% by mass.
The results of the polishing test for this silica sol are shown in Table 1.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-50P、動的光散乱法により測定された平均粒子径25nm、BET法により測定された比表面積109m2/g、粒子径変動係数(CV値)30%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)1000gを、一括して一時に全量添加し、攪拌を30分間行った。
得られたゾル中のシリカ微粒子の表面はチタニウム化合物で覆われたが、明確な疣状突起は形成されなかった。
Silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-50P, average particle size 25 nm measured by dynamic light scattering method, specific surface area 109 m 2 / g measured by BET method, particle size variation coefficient (CV value) 30 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 1000 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration of 5.0% by mass) was added all at once and stirred for 30 minutes.
The surface of the silica fine particles in the obtained sol was covered with a titanium compound, but no clear ridge-like projections were formed.
シリカゾル(触媒化成工業株式会社製、カタロイドSI-45P、動的光散乱法により測定された平均粒子径45nm、BET法により測定された比表面積61m2/g、粒子径変動係数(CV値)25%、シリカ濃度20質量%、分散媒:純水)に純水を添加し、シリカ濃度3質量%に調整してなるシリカゾル1000gを攪拌機付き反応容器に注入し、そこに水酸化ナトリウム水溶液(水酸化ナトリウム濃度5質量%)10.0gを添加して、pHを11.1とした。
次にこのシリカゾルを攪拌しながら、温度80℃にて、1時間加熱した。加熱終了後、直にペルオキソチタン酸(TiO3)水溶液(TiO3濃度5.0質量%)1000gを、一括して一時に全量添加し、攪拌を30分間行った。
得られたゾル中のシリカ微粒子の表面はチタニウム化合物で覆われたが、疣状突起は形成されなかった。
Silica sol (Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, average particle size 45 nm measured by dynamic light scattering method, specific surface area 61 m 2 / g measured by BET method, particle size variation coefficient (CV value) 25 %, Silica concentration 20% by mass, dispersion medium: pure water), and 1000 g of silica sol prepared by adjusting the silica concentration to 3% by mass is poured into a reaction vessel equipped with a stirrer. 10.0 g of sodium oxide concentration (5% by mass) was added to adjust the pH to 11.1.
Next, this silica sol was heated at a temperature of 80 ° C. for 1 hour with stirring. Immediately after the heating, 1000 g of a peroxotitanic acid (TiO 3 ) aqueous solution (TiO 3 concentration of 5.0% by mass) was added all at once and stirred for 30 minutes.
The surface of the silica fine particles in the obtained sol was covered with a titanium compound, but no hook-shaped protrusions were formed.
本発明の金平糖状複合シリカゾルは、研磨材および研磨用組成物として有用であり、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板、ガラス質材料の鏡面加工などに利用が可能である。また、樹脂成型物やコーテイング被膜の充填剤、化粧料の成分、吸着剤、凝集促進剤、滓下げ剤、増粘剤、土壌硬化剤などとしても利用可能である。 The fried sugar-like composite silica sol of the present invention is useful as an abrasive and a polishing composition, and is an aluminum disk (aluminum or a plating layer on a substrate thereof), an aluminum wiring of a semiconductor multilayer wiring board, a glass substrate for an optical disk or a magnetic disk. It can be used for glass substrates for liquid crystal displays, glass substrates for photomasks, mirror finishing of glassy materials, and the like. It can also be used as a filler for resin moldings and coating films, cosmetic ingredients, adsorbents, coagulation promoters, suspending agents, thickeners, soil hardeners, and the like.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007248289A JP2009078935A (en) | 2007-09-26 | 2007-09-26 | "konpeito" (pointed sugar candy ball)-like composite silica sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007248289A JP2009078935A (en) | 2007-09-26 | 2007-09-26 | "konpeito" (pointed sugar candy ball)-like composite silica sol |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009078935A true JP2009078935A (en) | 2009-04-16 |
Family
ID=40653987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007248289A Pending JP2009078935A (en) | 2007-09-26 | 2007-09-26 | "konpeito" (pointed sugar candy ball)-like composite silica sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009078935A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130009584A (en) | 2011-07-06 | 2013-01-23 | 후지제롯쿠스 가부시끼가이샤 | Silica particles, manufacturing method thereof and resin particles |
JP2013076075A (en) * | 2011-09-15 | 2013-04-25 | Jgc Catalysts & Chemicals Ltd | Al-MODIFIED SPINY FINE PARTICLE, MANUFACTURING METHOD THEREOF, DISPERSION, AND COATING COMPOSITION |
US8735036B2 (en) | 2011-10-26 | 2014-05-27 | Fuji Xerox Co., Ltd. | Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
WO2014104008A1 (en) * | 2012-12-27 | 2014-07-03 | 日揮触媒化成株式会社 | Base material having water-repellant transparent film attached thereto and production method therefor |
US8871344B2 (en) | 2010-06-25 | 2014-10-28 | Fuji Xerox Co., Ltd. | Hydrophobization treatment of silica particles |
JP2014213591A (en) * | 2013-04-30 | 2014-11-17 | 日揮触媒化成株式会社 | Substrate with water-repellent transparent coating film and method for producing the same |
US8962139B2 (en) | 2011-01-20 | 2015-02-24 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US9052622B2 (en) | 2011-03-14 | 2015-06-09 | Fuji Xerox Co., Ltd. | Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus and image forming method |
US9187502B2 (en) | 2010-06-24 | 2015-11-17 | Fuji Xerox Co., Ltd. | Silica particles and method for producing the same |
US9243145B2 (en) | 2013-01-28 | 2016-01-26 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
JP2016084243A (en) * | 2014-10-22 | 2016-05-19 | 日揮触媒化成株式会社 | Method for producing silica-based composite particle dispersion |
US9389581B2 (en) | 2010-12-15 | 2016-07-12 | Fuji Xerox Co., Ltd. | Toner for developing electrostatic image, developer for electrostatic image, toner cartridge, process cartridge, and image forming apparatus |
US9394413B2 (en) | 2011-01-19 | 2016-07-19 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US9416015B2 (en) | 2010-06-23 | 2016-08-16 | Fuji Xerox Co., Ltd. | Method of producing silica particles |
WO2016199672A1 (en) * | 2015-06-09 | 2016-12-15 | テイカ株式会社 | Composition for glass and ceramic polishing |
US9708191B2 (en) | 2011-12-01 | 2017-07-18 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
WO2018088088A1 (en) * | 2016-11-14 | 2018-05-17 | 日揮触媒化成株式会社 | Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion |
JP2023017823A (en) * | 2017-11-10 | 2023-02-07 | 三菱ケミカル株式会社 | Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device |
-
2007
- 2007-09-26 JP JP2007248289A patent/JP2009078935A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9416015B2 (en) | 2010-06-23 | 2016-08-16 | Fuji Xerox Co., Ltd. | Method of producing silica particles |
US9187502B2 (en) | 2010-06-24 | 2015-11-17 | Fuji Xerox Co., Ltd. | Silica particles and method for producing the same |
US8871344B2 (en) | 2010-06-25 | 2014-10-28 | Fuji Xerox Co., Ltd. | Hydrophobization treatment of silica particles |
US9389581B2 (en) | 2010-12-15 | 2016-07-12 | Fuji Xerox Co., Ltd. | Toner for developing electrostatic image, developer for electrostatic image, toner cartridge, process cartridge, and image forming apparatus |
US9394413B2 (en) | 2011-01-19 | 2016-07-19 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US8962139B2 (en) | 2011-01-20 | 2015-02-24 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US9052622B2 (en) | 2011-03-14 | 2015-06-09 | Fuji Xerox Co., Ltd. | Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus and image forming method |
US8431633B2 (en) | 2011-07-06 | 2013-04-30 | Fuji Xerox Co., Ltd. | Silica particles, manufacturing method thereof and resin particles |
KR20130009584A (en) | 2011-07-06 | 2013-01-23 | 후지제롯쿠스 가부시끼가이샤 | Silica particles, manufacturing method thereof and resin particles |
JP2013076075A (en) * | 2011-09-15 | 2013-04-25 | Jgc Catalysts & Chemicals Ltd | Al-MODIFIED SPINY FINE PARTICLE, MANUFACTURING METHOD THEREOF, DISPERSION, AND COATING COMPOSITION |
US8735036B2 (en) | 2011-10-26 | 2014-05-27 | Fuji Xerox Co., Ltd. | Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
US9708191B2 (en) | 2011-12-01 | 2017-07-18 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
WO2014104008A1 (en) * | 2012-12-27 | 2014-07-03 | 日揮触媒化成株式会社 | Base material having water-repellant transparent film attached thereto and production method therefor |
US9856407B2 (en) | 2012-12-27 | 2018-01-02 | Jgc Catalysts And Chemicals Ltd. | Water-repellant transparent coating-substrate assembly and process for producing the same |
CN104870183A (en) * | 2012-12-27 | 2015-08-26 | 日挥触媒化成株式会社 | Base material having water-repellant transparent film attached thereto and production method therefor |
JP2014124913A (en) * | 2012-12-27 | 2014-07-07 | Jgc Catalysts & Chemicals Ltd | Water-repellent transparent coating film-fitted substrate and method for manufacturing the same |
US9243145B2 (en) | 2013-01-28 | 2016-01-26 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
JP2014213591A (en) * | 2013-04-30 | 2014-11-17 | 日揮触媒化成株式会社 | Substrate with water-repellent transparent coating film and method for producing the same |
JP2016084243A (en) * | 2014-10-22 | 2016-05-19 | 日揮触媒化成株式会社 | Method for producing silica-based composite particle dispersion |
WO2016199672A1 (en) * | 2015-06-09 | 2016-12-15 | テイカ株式会社 | Composition for glass and ceramic polishing |
WO2018088088A1 (en) * | 2016-11-14 | 2018-05-17 | 日揮触媒化成株式会社 | Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion |
JP2018123046A (en) * | 2016-11-14 | 2018-08-09 | 日揮触媒化成株式会社 | Ceria-based composite fine particle dispersion, manufacturing method therefor and polishing abrasive dispersion containing the ceria-based composite fine particle dispersion |
US10920120B2 (en) | 2016-11-14 | 2021-02-16 | Jgc Catalysts And Chemicals Ltd. | Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion |
JP2023017823A (en) * | 2017-11-10 | 2023-02-07 | 三菱ケミカル株式会社 | Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device |
JP7552669B2 (en) | 2017-11-10 | 2024-09-18 | 三菱ケミカル株式会社 | Silica sol, polishing composition, method for polishing silicon wafer, method for manufacturing silicon wafer, chemical mechanical polishing composition, and method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009078935A (en) | "konpeito" (pointed sugar candy ball)-like composite silica sol | |
JP5587957B2 (en) | Konpira sugar-like sol | |
JP2009137791A (en) | Non-spherical combined silica sol and method for producing the same | |
JP5602358B2 (en) | Non-spherical silica sol, method for producing the same, and polishing composition | |
JP5188175B2 (en) | Silica sol and method for producing the same | |
US8187351B2 (en) | Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol | |
WO2010052945A1 (en) | Aspherical silica sol, process for producing the same, and composition for polishing | |
JP5334385B2 (en) | Production and use of polysilicate particulate material | |
JP5084670B2 (en) | Silica sol and method for producing the same | |
JP5615529B2 (en) | Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition | |
JP2008273780A (en) | Modified silica-based sol and method for preparing the same | |
JP6358899B2 (en) | Metal oxide particles and method for producing the same | |
JP4963825B2 (en) | Polishing silica sol and polishing composition containing the same | |
JP6207345B2 (en) | Method for producing silica particles | |
JP4636869B2 (en) | Method for producing porous silica-based particles and porous silica-based particles obtained from the method | |
US8808568B2 (en) | Magnetorheological materials, method for making, and applications thereof | |
JP4949209B2 (en) | Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition | |
JP2009078936A (en) | Method for preparing "konpeito" (pointed sugar candy ball)-like composite silica sol | |
JP2010024119A (en) | Method for producing confetti-like silica sol | |
JP5346167B2 (en) | Particle-linked alumina-silica composite sol and method for producing the same | |
JP2013227168A (en) | Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same | |
JP2021054683A (en) | Silica particle dispersion and its manufacturing method | |
JP2009091197A (en) | Warty-surfaced sphere-form inorganic oxide sol, method for producing same, and abrasive containing the sol | |
JP5421006B2 (en) | Particle-linked silica sol and method for producing the same | |
JPH07315832A (en) | Silica-modified alumina sol and its production |