JP2009078299A - Solder alloy, solder ball using it, and soldered part excellent in drop impact resistance - Google Patents
Solder alloy, solder ball using it, and soldered part excellent in drop impact resistance Download PDFInfo
- Publication number
- JP2009078299A JP2009078299A JP2008080909A JP2008080909A JP2009078299A JP 2009078299 A JP2009078299 A JP 2009078299A JP 2008080909 A JP2008080909 A JP 2008080909A JP 2008080909 A JP2008080909 A JP 2008080909A JP 2009078299 A JP2009078299 A JP 2009078299A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- impact resistance
- drop impact
- alloy
- solder alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 109
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 49
- 239000000956 alloy Substances 0.000 title claims abstract description 49
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 230000008018 melting Effects 0.000 abstract description 11
- 238000002844 melting Methods 0.000 abstract description 11
- 230000000052 comparative effect Effects 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- 229910052797 bismuth Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- -1 Ag—Zn compound Chemical class 0.000 description 5
- 229910018100 Ni-Sn Inorganic materials 0.000 description 5
- 229910018532 Ni—Sn Inorganic materials 0.000 description 5
- 229910020816 Sn Pb Inorganic materials 0.000 description 5
- 229910020922 Sn-Pb Inorganic materials 0.000 description 5
- 229910008783 Sn—Pb Inorganic materials 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910020836 Sn-Ag Inorganic materials 0.000 description 4
- 229910020988 Sn—Ag Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- 229910017980 Ag—Sn Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000006023 eutectic alloy Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本発明は、電子部品等のはんだ付けに使用される、耐落下衝撃性に優れたはんだ合金、およびそれを用いたはんだボール、ならびにはんだ接合部に関するものである。 The present invention relates to a solder alloy excellent in drop impact resistance, used for soldering electronic components and the like, a solder ball using the solder alloy, and a solder joint.
EUのRoHS(The restriction of the use of certain hazardous substances)指令に代表される近年の環境問題への取り組みの一つとして、電子部品の接合に用いられるはんだのPbフリー化がある。長年に渡ってSn−Pb共晶合金がはんだとして用いられてきたが、Pbが人体にとって有害であることから、Pbを含有しない新規のはんだ合金が各種検討されている。 One approach to environmental problems in recent years typified by EU's RoHS (the restriction of the use of ceramic hazards) directive is to make Pb-free solder used for joining electronic components. Sn-Pb eutectic alloy has been used as a solder for many years, but since Pb is harmful to the human body, various new solder alloys not containing Pb have been studied.
Sn−Pb共晶合金の代替材料として必要な特性は、融点が十分に低く、はんだ付け時に電子部品を構成する耐熱性の乏しい樹脂材料に熱的損傷を与えないことや、接合材料として十分な機械的強度を有することなどが挙げられる。現在最も広く適用が検討されているPbフリーはんだは、Sn−Ag合金をベースにしたものである。例えば、特許文献1では、Sn−Ag合金に、融点を低下させたり、機械的強度を向上させたりする目的でCuを添加したSn−Ag−Cu系合金が提案されており、中でもSn−3Ag−0.5CuはPbフリーはんだとして主流となっている。
また、特許文献2および特許文献3では、Sn−Ag合金にZnを添加したSn−Ag−Zn系合金が提案されている。Sn−Ag−Cu系合金と同様、機械的強度を向上する目的でZnが使用されている。Sn−Ag−Zn系合金の場合も、特許文献2および3に具体的に開示されるように、Ag含有量は質量%で3%か3.5%のいずれかである。これはSn−Ag二元共晶が3.5%であり、はんだの融点を低くすることができるためである。
Patent Document 2 and Patent Document 3 propose Sn-Ag-Zn-based alloys in which Zn is added to Sn-Ag alloys. Similar to the Sn—Ag—Cu alloy, Zn is used for the purpose of improving the mechanical strength. Also in the case of Sn—Ag—Zn based alloys, as specifically disclosed in Patent Documents 2 and 3, the Ag content is either 3% or 3.5% by mass. This is because the Sn—Ag binary eutectic is 3.5%, and the melting point of the solder can be lowered.
また、携帯電話などのモバイル機器に搭載される電子部品が、Pbフリーはんだによってマザーボードと接合される場合、融点だけでなく、はんだ接合部の耐落下衝撃性が非常に重要となる。これは、モバイル機器を使用したり持ち運んだりしている間に不注意で落としてしまい、機器に衝撃応力が加えられるためである。従来のSn−Pb共晶はんだは非常に延性に富むため、このような衝撃応力をはんだ自身が変形することで吸収することが可能であった。一方、一般にPbフリーはんだはSn−Pb共晶はんだと比較して延性に乏しいことから、衝撃応力が加えられた際に十分に変形できず、接合しているマザーボードや電子部品に物理的損傷を与えたり、はんだ接合部自体が破壊したりすることが問題となっている。特に、BGA(Ball Grid Array)のように、リードフレームを介さず電子部品とマザーボードの電極をはんだによって直接接続する場合、衝撃応力が負荷されたときのはんだ接合信頼性がモバイル機器の落下衝撃に対する寿命を決定するうえで極めて重要となる。 Further, when an electronic component mounted on a mobile device such as a mobile phone is joined to a motherboard by Pb-free solder, not only the melting point but also the drop impact resistance of the solder joint is very important. This is because the mobile device is inadvertently dropped while being used or carried, and impact stress is applied to the device. Since conventional Sn—Pb eutectic solder is very ductile, it was possible to absorb such impact stress by deformation of the solder itself. On the other hand, Pb-free solder generally has poor ductility compared to Sn—Pb eutectic solder, so that it cannot be sufficiently deformed when impact stress is applied, causing physical damage to the bonded motherboard or electronic components. It is a problem that the solder joints themselves are destroyed. In particular, as in BGA (Ball Grid Array), when the electronic component and the electrode of the mother board are directly connected by solder without using a lead frame, the solder joint reliability when the impact stress is applied to the drop impact of the mobile device. This is extremely important in determining the service life.
特許文献2および3に開示されるSn−Ag−Zn系合金は、融点がSn−Pb共晶はんだに比較的近いことに加え、十分な機械的強度を有するといった点で優れるものの、モバイル機器へ適用する際に非常に重要となる耐落下衝撃性についてはこれまで評価されておらず、またモバイル機器への適用の可否についても検討されていなかった。
そこで本発明者は、Sn−Ag−Zn系はんだ合金の耐落下衝撃性について調査した結果、Ag添加量の増加とともに耐落下衝撃性が著しく損なわれ、最も検討されてきた3%程度のAgを含有するはんだでは、モバイル機器へ適用するのに十分な耐落下衝撃性を有していないことがわかった。また、Zn添加量についても同様に調査した結果、Zn添加量の増加とともに耐落下衝撃性が著しく損なわれることを確認した。
The Sn—Ag—Zn alloys disclosed in Patent Documents 2 and 3 are excellent in that they have sufficient mechanical strength in addition to being relatively close to the Sn—Pb eutectic solder, but are suitable for mobile devices. The drop impact resistance, which is very important in application, has not been evaluated so far, and the applicability to mobile devices has not been studied.
Therefore, as a result of investigating the drop impact resistance of the Sn—Ag—Zn solder alloy, the present inventor significantly deteriorated the drop impact resistance as the amount of Ag added increases, and the most studied Ag of about 3% It was found that the solder contained does not have sufficient drop impact resistance to be applied to mobile devices. Moreover, as a result of investigating similarly about Zn addition amount, it confirmed that drop impact resistance was impaired remarkably with the increase in Zn addition amount.
本発明の目的は、融点や機械的強度への要求を満足するだけでなく、耐落下衝撃性に関しても優れたはんだ合金、はんだボール、およびはんだ接合部を提供することにある。 An object of the present invention is to provide a solder alloy, a solder ball, and a solder joint that not only satisfy requirements for melting point and mechanical strength but also have excellent drop impact resistance.
本発明者は、AgおよびZn添加量と耐落下衝撃性との関係について評価を重ねた結果、添加量をそれぞれ厳密に制御することによって、融点や機械的強度をほとんど低下させることなく、耐落下衝撃性の面でも優れたはんだ合金が得られることを見出した。さらに、NiやBiを添加することで、耐落下衝撃性を確保しつつ、機械的強度を大幅に向上できることを見出し本発明に到達した。 As a result of repeated evaluations on the relationship between the addition amount of Ag and Zn and the drop impact resistance, the present inventor has controlled the addition amount strictly to reduce the drop resistance without substantially reducing the melting point and mechanical strength. It has been found that an excellent solder alloy can be obtained in terms of impact. Furthermore, the inventors have found that by adding Ni or Bi, the mechanical strength can be greatly improved while ensuring the drop impact resistance, and the present invention has been achieved.
すなわち本発明は、質量%で、0.1〜2.0%のAgと、0.05〜2.0%のZnを含有し、残部Sn及び不可避的不純物からなる耐落下衝撃性に優れたはんだ合金である。 That is, the present invention contains 0.1 to 2.0% Ag and 0.05 to 2.0% Zn in mass%, and has excellent drop impact resistance composed of the remaining Sn and inevitable impurities. It is a solder alloy.
また、本発明の耐落下衝撃性に優れたはんだ合金は、質量%で、0.1〜1.2%のAgを含有することが好ましい。
また、本発明の耐落下衝撃性に優れたはんだ合金は、質量%で、0.1%以下のNiまたは2.0%以下のBiの何れか一つ以上を含有してもよい。
Moreover, it is preferable that the solder alloy excellent in drop impact resistance of the present invention contains 0.1 to 1.2% Ag in mass%.
Moreover, the solder alloy excellent in drop impact resistance of the present invention may contain at least one of Ni of 0.1% or less or Bi of 2.0% or less in mass%.
また、本発明は、前記はんだ合金が球状化されてなるはんだボールである。
また、本発明は、前記はんだ合金およびはんだボールがNi電極に接合されてなるはんだ接合部である。
The present invention also provides a solder ball in which the solder alloy is spheroidized.
Moreover, this invention is a solder joint part by which the said solder alloy and a solder ball are joined to Ni electrode.
本発明によって、融点や機械的強度への要求を満足するだけでなく、耐落下衝撃性に関しても優れたはんだ合金、はんだボール、およびはんだ接合部が得られ、モバイル機器における耐落下衝撃性の問題も飛躍的に改善することが可能である。 The present invention not only satisfies the requirements for melting point and mechanical strength, but also provides excellent solder alloys, solder balls, and solder joints with respect to drop impact resistance, and the problem of drop impact resistance in mobile devices. Can also be improved dramatically.
上述のように、本発明の重要な特徴は、Sn−Ag−Zn系合金におけるAgおよびZn添加量と耐落下衝撃性との関係を明らかにし、最適な添加量を見出したことにある。
また、本発明のもう一つの重要な特徴は、前記はんだ合金にわずかな量のNiやBiを添加することで、耐落下衝撃性を確保しつつ、機械的特性を大幅に改善することができることを見出したことにある。以下に、詳細について説明する。
As described above, the important feature of the present invention is that the relationship between the addition amount of Ag and Zn and the drop impact resistance in the Sn—Ag—Zn alloy is clarified and the optimum addition amount has been found.
Another important feature of the present invention is that by adding a small amount of Ni or Bi to the solder alloy, the mechanical properties can be greatly improved while ensuring drop impact resistance. It is in having found. Details will be described below.
Agの添加量を質量%で0.1〜2.0%とするのは以下の理由である。
AgをZnとともにSnに添加した場合、金属間化合物であるAg−Sn化合物あるいはAg−Zn化合物を合金中に形成するため、化合物の分散強化により機械的強度を向上することができる。
しかし、その反面、Ag−Sn化合物やAg−Zn化合物の形成は、耐落下衝撃性において重要な特性であるはんだの延性を低下させる。2.0%を超えて添加すると、形成される金属間化合物の量が過多となり、はんだの延性が著しく損なわれる。このため、衝撃応力が負荷されてもはんだが十分に変形することができず、電子部品やマザーボードへ物理的損傷を与えたり、はんだ接合部自体が破壊したりすることになる。
Ag添加量を2.0%以下とすることで、耐落下衝撃性は確保され、特に、1.2%以下の添加量とすることで、金属間化合物の形成量を十分低減することが可能であり、耐落下衝撃性が大幅に改善される。一方、Ag添加量が0.1%未満の場合、延性は良好であるものの、機械的強度が不足し、はんだ合金として適さない。このためAg添加量を0.1%以上とする。
The reason why the addition amount of Ag is 0.1 to 2.0% by mass is as follows.
When Ag is added to Sn together with Zn, an Ag—Sn compound or an Ag—Zn compound, which is an intermetallic compound, is formed in the alloy, so that mechanical strength can be improved by dispersion strengthening of the compound.
However, on the other hand, the formation of an Ag—Sn compound or an Ag—Zn compound reduces the ductility of the solder, which is an important characteristic in drop impact resistance. If it exceeds 2.0%, the amount of intermetallic compound formed becomes excessive, and the ductility of the solder is significantly impaired. For this reason, even if an impact stress is applied, the solder cannot be sufficiently deformed, resulting in physical damage to the electronic component or the mother board or destruction of the solder joint portion itself.
Drop impact resistance is ensured by making the Ag addition amount 2.0% or less, and in particular, by making the addition amount 1.2% or less, it is possible to sufficiently reduce the amount of intermetallic compound formation. The drop impact resistance is greatly improved. On the other hand, when the amount of Ag added is less than 0.1%, the ductility is good, but the mechanical strength is insufficient and it is not suitable as a solder alloy. For this reason, the amount of Ag added is 0.1% or more.
また、Znの添加量を質量%で0.05〜2.0%とするのは以下の理由である。
前述のように、ZnをAgとともにSnに添加した場合、金属間化合物であるAg−Zn化合物を合金中に形成する。これらの化合物によって分散強化されることで合金の機械的強度を向上することができる。また、Zn量がAg量に対して4倍以上多く含む場合、Sn中にはAg−Zn化合物に加えZn単体も形成され、機械的強度が向上する。
しかし、その反面、はんだの延性が著しく損なわれ、耐落下衝撃性が大幅に低下する。Zn単体の形成を抑えるためにはZn添加量を2.0%以下とする。
また、Zn添加量が0.05%未満になると、Zn単体が形成されないばかりか、Ag−Zn化合物もほとんど形成されず、はんだ接合部としての機械的強度が不足する。このため、Zn添加量を0.05%以上とする。
Moreover, the reason why the added amount of Zn is 0.05 to 2.0% by mass is as follows.
As described above, when Zn is added to Sn together with Ag, an Ag—Zn compound that is an intermetallic compound is formed in the alloy. The mechanical strength of the alloy can be improved by dispersion strengthening with these compounds. Moreover, when Zn content contains 4 times or more with respect to Ag amount, in addition to an Ag-Zn compound, Zn single-piece | unit will be formed in Sn, and mechanical strength will improve.
However, on the other hand, the ductility of the solder is remarkably impaired, and the drop impact resistance is greatly reduced. In order to suppress the formation of Zn alone, the amount of Zn added is set to 2.0% or less.
Further, when the Zn addition amount is less than 0.05%, not only a Zn simple substance is formed, but also an Ag—Zn compound is hardly formed, and the mechanical strength as a solder joint is insufficient. For this reason, Zn addition amount shall be 0.05% or more.
また、本発明において、NiやBiを添加することで、耐落下衝撃性を確保しつつ、機械的強度を大幅に向上することが可能である。Niは、はんだ合金中でNi−Sn化合物を形成することから、その分散強化によってはんだ合金の機械的強度が向上される。
本発明において、Ni添加量は、質量%で0.1%以下が好ましい。Ni添加量が0.1%を越えると、機械的強度は向上するものの、Ni−Sn化合物の形成によって融点が上昇するため、Ni添加量は0.1以下が好ましい。一方、Ni添加量が0.01%未満の場合、Ni−Sn化合物の形成量が少なく、その効果がほとんど得られないため、Ni添加量は、0.01%以上が好ましい。
また、Biは、Sn中に固溶することから、固溶強化によって機械的強度を向上させる。本発明において、Bi添加量は、質量%で2.0%以下が好ましい。Bi添加量が2.0%を超えると機械的強度が向上する反面、延性が著しく損なわれ、衝撃応力を十分に吸収することができなくなるため、Bi添加量は、2.0%以下が好ましい。一方、Bi添加量が0.1%未満の場合、固溶強化による機械的強度の向上がほとんど見込めないため、Bi添加量は、0.1%以上が好ましい。
In the present invention, by adding Ni or Bi, it is possible to significantly improve the mechanical strength while ensuring the drop impact resistance. Since Ni forms a Ni—Sn compound in the solder alloy, the mechanical strength of the solder alloy is improved by the dispersion strengthening.
In the present invention, the amount of Ni added is preferably 0.1% or less by mass%. If the Ni addition amount exceeds 0.1%, the mechanical strength is improved, but the melting point increases due to the formation of the Ni-Sn compound, so the Ni addition amount is preferably 0.1 or less. On the other hand, when the amount of Ni added is less than 0.01%, the amount of Ni—Sn compound formed is small and the effect is hardly obtained, so the amount of Ni added is preferably 0.01% or more.
Moreover, since Bi dissolves in Sn, the mechanical strength is improved by solid solution strengthening. In the present invention, the Bi addition amount is preferably 2.0% or less by mass%. If the Bi addition amount exceeds 2.0%, the mechanical strength is improved, but the ductility is remarkably impaired and the impact stress cannot be sufficiently absorbed. Therefore, the Bi addition amount is preferably 2.0% or less. . On the other hand, when the amount of Bi added is less than 0.1%, improvement in mechanical strength due to solid solution strengthening can hardly be expected. Therefore, the amount of Bi added is preferably 0.1% or more.
以上に述べた本発明のはんだ合金は、球状化してはんだボールとして用いる場合に非常に有効である。これは、前述のように、モバイル機器に搭載される電子部品として多く用いられているBGAでは、はんだ接合部の耐落下衝撃性が特に重要であることによる。本発明のはんだ合金からなるはんだボールを用いて電子部品とマザーボードとを接合することで、モバイル機器の落下衝撃に対する寿命を飛躍的に改善することができる。 The solder alloy of the present invention described above is very effective when used as a solder ball after spheroidizing. This is because, as described above, in the BGA that is often used as an electronic component mounted on a mobile device, the drop impact resistance of the solder joint is particularly important. By joining the electronic component and the mother board using the solder ball made of the solder alloy of the present invention, it is possible to drastically improve the life against the drop impact of the mobile device.
また、以上に述べた本発明のはんだ合金およびはんだボールは、Ni電極に接合された場合にさらに有効である。通常、Snを主体とするはんだをNi電極に接合した場合、接合界面にはNi−Sn化合物が形成され、衝撃応力が加えられた際、主にNi−Sn化合物とNi電極との界面で剥離が発生する。
一方、本発明におけるはんだ合金およびはんだボールを用いた場合、Niと相性の良いZnが優先的に反応するため、接合界面にNi−Sn−Zn化合物が形成される。これにより、接合界面の強度が増し、より大きな衝撃応力を吸収することが可能である。この効果は、Ni電極に限定されるものではなく、Niの酸化を抑制し、はんだの濡れ性を改善する目的でAuやPdなどの金属層が形成されている場合にも同様の効果が得られる。
The above-described solder alloy and solder ball of the present invention are more effective when bonded to a Ni electrode. Normally, when a solder composed mainly of Sn is bonded to a Ni electrode, a Ni—Sn compound is formed at the bonding interface, and when impact stress is applied, peeling occurs mainly at the interface between the Ni—Sn compound and the Ni electrode. Will occur.
On the other hand, when the solder alloy and the solder ball in the present invention are used, Zn having a good compatibility with Ni reacts preferentially, so that a Ni—Sn—Zn compound is formed at the bonding interface. This increases the strength of the bonding interface and can absorb a larger impact stress. This effect is not limited to the Ni electrode, and the same effect can be obtained when a metal layer such as Au or Pd is formed for the purpose of suppressing the oxidation of Ni and improving the wettability of the solder. It is done.
表1に示すSn−Ag−Zn合金と、それにNiまたはBiを添加した合金からなるはんだボールを作製した。また、比較材として、Pbフリーはんだとして最も主流となっているSn−3Ag−0.5Cu(質量%)のはんだボールも準備した。はんだボールは、直径300μmおよび430μmの2種類を用意した。 Solder balls made of an Sn—Ag—Zn alloy shown in Table 1 and an alloy with Ni or Bi added thereto were produced. In addition, as a comparative material, a solder ball of Sn-3Ag-0.5Cu (mass%), which is most popular as Pb-free solder, was also prepared. Two types of solder balls having a diameter of 300 μm and 430 μm were prepared.
次に、作製したはんだボールをガラス・エポキシ(FR−4)基板上のNi/Au電極に接合することで、はんだバンプを形成した。接合条件は、Pbフリーはんだの接合として一般的な条件である、最高加熱温度240℃、220℃以上の保持時間60sとし、窒素雰囲気中で行った。
また、はんだボールを接合した電極は、430μmのはんだボールに対しては直径320μm、300μmのはんだボールに対しては直径250μmのものを使用した。
接合したはんだ合金の耐落下衝撃性を評価するため、小型シャルピー衝撃試験機を用いた衝撃試験を実施した。具体的には、はんだバンプに重さ20gの振り子を1m/sの速度で衝突させ、はんだバンプが吸収した衝撃エネルギーの大きさを求めた。
衝撃吸収エネルギーは、はんだバンプを打撃したときの振り子の速度をレーザー速度計により測定し、打撃によって失われる振り子の運動エネルギーとして求めた。また、衝撃吸収エネルギーの測定に加え、試験後の破面観察を実体顕微鏡により行い、接合界面で破壊した割合を界面破壊確率として求めた。なお、実体顕微鏡により観察した結果、いずれのはんだ合金も240℃で接合されていたことから、はんだ合金としての使用に際し、融点に関しては問題がないことを確認できた。
Next, solder bumps were formed by joining the produced solder balls to Ni / Au electrodes on a glass-epoxy (FR-4) substrate. The joining conditions were a general condition for joining Pb-free solder, a maximum heating temperature of 240 ° C., a holding time of 220 ° C. or higher, and a holding time of 60 s, and was performed in a nitrogen atmosphere.
The electrodes to which the solder balls were joined were 320 μm in diameter for 430 μm solder balls and 250 μm in diameter for 300 μm solder balls.
In order to evaluate the drop impact resistance of the joined solder alloy, an impact test using a small Charpy impact tester was performed. Specifically, a 20 g weight pendulum collided with the solder bump at a speed of 1 m / s, and the magnitude of impact energy absorbed by the solder bump was determined.
The impact absorption energy was determined as the kinetic energy of the pendulum lost by the impact by measuring the speed of the pendulum when hitting the solder bump with a laser velocimeter. In addition to the measurement of impact absorption energy, the fracture surface after the test was observed with a stereomicroscope, and the ratio of fracture at the bonded interface was determined as the interface fracture probability. In addition, as a result of observing with a stereomicroscope, since all the solder alloys were joined at 240 degreeC, it has confirmed that there was no problem regarding melting | fusing point at the time of use as a solder alloy.
表2に、430μmのはんだボールに対する衝撃吸収エネルギーと界面破壊確率を、表3に、300μmのはんだボールに対する値を示す。また、現在Pbフリーはんだとして主流となっている比較例3の衝撃吸収エネルギーに対する相対比を表2、3に併記する。
ボール径が430μmの場合、比較例3の衝撃吸収エネルギーは0.2mJであり、90%のはんだバンプが界面破壊を示した。また、比較例1および比較例2に示すAg量やZn量が高いはんだも同レベルの衝撃吸収エネルギーと界面破壊確率を示した。
一方、本発明例1〜3や本発明例6の衝撃吸収エネルギーは、表2の相対比に示すように、比較例3の約2倍以上の高い値を示し、界面破壊も抑制することができた。また、本発明2、3および6と比較例2との比較から、Ag量を低減することで耐落下衝撃性が向上していることを確認できた。同様に、本発明例3と比較例1とを比較すると、Zn量を低いレベルに制御することによっても耐落下衝撃性が改善されている。
以上のように、Ag量とZn量の厳密な制御が、耐落下衝撃性の改善に非常に有効であることが確認できた。
Table 2 shows impact absorption energy and interface fracture probability for 430 μm solder balls, and Table 3 shows values for 300 μm solder balls. Moreover, the relative ratio with respect to the impact absorption energy of the comparative example 3 which is mainstream now as Pb-free solder is written together in Tables 2 and 3.
When the ball diameter was 430 μm, the impact absorption energy of Comparative Example 3 was 0.2 mJ, and 90% of the solder bumps showed interface breakdown. Moreover, the solders with high Ag and Zn contents shown in Comparative Example 1 and Comparative Example 2 also showed the same level of impact absorption energy and interface fracture probability.
On the other hand, as shown in the relative ratios of Table 2, the impact absorption energy of Invention Examples 1 to 3 and Invention Example 6 shows a high value of about twice or more that of Comparative Example 3, and also suppresses interface fracture. did it. Further, from comparison between the present inventions 2, 3 and 6 and Comparative Example 2, it was confirmed that the drop impact resistance was improved by reducing the Ag amount. Similarly, when Example 3 of the present invention and Comparative Example 1 are compared, the drop impact resistance is improved by controlling the Zn content to a low level.
As described above, it has been confirmed that strict control of the Ag content and the Zn content is very effective in improving the drop impact resistance.
ボール径が300μmの場合、比較例3はわずか0.05mJの衝撃吸収エネルギーしかなく、100%の界面破壊確率を示した。また、Zn量の多い比較例1もほぼ同様であった。
これに対し、表3の相対比に示すように、本発明例3では、Zn量を制御することで衝撃吸収エネルギーがおよそ7倍まで向上し、界面破壊確率は10%未満にまで低減することができた。また、本発明例4および5が示すように、NiやBiが添加されたはんだについても比較例1および3と比較して耐落下衝撃性が大幅に改善されていることが確認できた。
このように、Sn−Ag−Zn系はんだ合金において、厳密なAg量とZn量の制御により耐落下衝撃性を飛躍的に向上することができた。
When the ball diameter was 300 μm, Comparative Example 3 had an impact absorption energy of only 0.05 mJ and showed an interface fracture probability of 100%. Further, Comparative Example 1 with a large amount of Zn was almost the same.
On the other hand, as shown in the relative ratio of Table 3, in Example 3 of the present invention, the impact absorption energy is improved to about 7 times by controlling the amount of Zn, and the interface fracture probability is reduced to less than 10%. I was able to. Further, as shown in Invention Examples 4 and 5, it was confirmed that the drop impact resistance of the solder added with Ni or Bi was significantly improved as compared with Comparative Examples 1 and 3.
As described above, in the Sn-Ag-Zn solder alloy, the drop impact resistance can be remarkably improved by strictly controlling the Ag amount and the Zn amount.
モバイル機器における落下衝撃を想定した基板落下試験を実施し、本発明におけるはんだ合金の有効性を評価した。
直径300μmのはんだボールを用いて、345個のNi/Au電極を有するBGAにはんだバンプを形成した後、ガラス・エポキシ(FR−4)基板のCu電極に接合することで、落下試験用試験基板を作製した。電極径の大きさは、BGAのNi/Au電極が250μm、マザーボードのCu電極が280μmである。また、評価に用いたマザーボードの大きさは132×77×1mmである。なお、マザーボード1枚当り4個のBGAが搭載されており、各はんだ組成に対して2つの試験基板、つまり合計8個のBGAを接合した。
A board drop test was conducted assuming a drop impact in a mobile device, and the effectiveness of the solder alloy in the present invention was evaluated.
Using a solder ball with a diameter of 300 μm, after forming solder bumps on a BGA having 345 Ni / Au electrodes, it is bonded to a Cu electrode on a glass-epoxy (FR-4) substrate, so that a test substrate for drop test Was made. The electrode diameter is 250 μm for the BGA Ni / Au electrode and 280 μm for the Cu electrode on the motherboard. The size of the motherboard used for the evaluation is 132 × 77 × 1 mm. In addition, four BGAs are mounted on one motherboard, and two test boards, that is, a total of eight BGAs are bonded to each solder composition.
次に、ドロップテーブルに試験基板を水平に固定した後、水平姿勢を保った状態で50回落下させた。このとき、ドロップテーブルに加えられる落下衝撃は1500G、0.5msの半正弦波となるような高さに設定した。また、試験基板には、導通抵抗測定用の回路が形成されており、バイアス変化を試験中に測定することで導通の有無を確認し、断線したときの落下回数を寿命として求めた。
また、はんだの機械的強度としてはんだのビッカース硬さを測定し、耐落下衝撃性への影響を調査した。ビッカース硬さ試験における負荷荷重は50gとした。
Next, the test substrate was fixed horizontally on the drop table, and then dropped 50 times while maintaining the horizontal posture. At this time, the drop impact applied to the drop table was set to such a height as to be a half sine wave of 1500 G and 0.5 ms. In addition, a circuit for measuring conduction resistance was formed on the test substrate, and the presence or absence of conduction was confirmed by measuring the bias change during the test, and the number of drops when it was disconnected was obtained as the lifetime.
In addition, the Vickers hardness of the solder was measured as the mechanical strength of the solder, and the influence on the drop impact resistance was investigated. The load applied in the Vickers hardness test was 50 g.
表4に、落下試験におけるBGAの平均寿命と、はんだのビッカース硬さを示す。これから明らかなように、本発明におけるはんだ合金を用いて接合されたBGAの平均寿命は30回以上となっており、Zn添加量が最適化されていない比較例1や、Znの添加されていない比較例3と比較して、耐落下衝撃性が飛躍的に改善されている。
また、本発明例2および本発明例3は、それぞれNiまたはBiを添加することにより、耐落下衝撃性を確保しつつ、ビッカース硬さが向上していることから、機械的強度が向上していると推定される。
このように、本発明におけるはんだ合金、はんだボールおよびはんだ接合部は、融点や機械的強度への要求を満足するだけでなく、耐落下衝撃性に関しても優れており、モバイル機器における耐落下衝撃性の問題を飛躍的に改善することが可能であることを確認した。
Table 4 shows the average life of the BGA in the drop test and the Vickers hardness of the solder. As is clear from this, the average life of the BGA bonded by using the solder alloy in the present invention is 30 times or more, and Comparative Example 1 in which the Zn addition amount is not optimized or Zn is not added. Compared to Comparative Example 3, the drop impact resistance is dramatically improved.
Inventive Example 2 and Inventive Example 3 add Ni or Bi, respectively, to ensure the drop impact resistance and improve the Vickers hardness, thereby improving the mechanical strength. It is estimated that
Thus, the solder alloy, solder ball and solder joint in the present invention not only satisfy the requirements for melting point and mechanical strength, but also have excellent drop impact resistance, and drop impact resistance in mobile devices. It was confirmed that it was possible to dramatically improve the problem.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008080909A JP5322469B2 (en) | 2007-09-07 | 2008-03-26 | Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007232877 | 2007-09-07 | ||
JP2007232877 | 2007-09-07 | ||
JP2008080909A JP5322469B2 (en) | 2007-09-07 | 2008-03-26 | Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009078299A true JP2009078299A (en) | 2009-04-16 |
JP5322469B2 JP5322469B2 (en) | 2013-10-23 |
Family
ID=40653450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008080909A Active JP5322469B2 (en) | 2007-09-07 | 2008-03-26 | Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5322469B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035065A (en) * | 2010-02-09 | 2013-02-21 | Nordson Corp | Flux and solder material, and method of making the same |
US9391103B2 (en) | 2013-08-15 | 2016-07-12 | Sony Corporation | Image pickup element and image pickup device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262092A (en) * | 1988-04-14 | 1989-10-18 | Hitachi Ltd | Solder and soldering method for joining Cu-based materials |
JPH06238479A (en) * | 1993-02-22 | 1994-08-30 | American Teleph & Telegr Co <Att> | Lead-free solder material |
JPH10193171A (en) * | 1996-12-27 | 1998-07-28 | Murata Mfg Co Ltd | Soldering article |
JPH10328880A (en) * | 1997-06-04 | 1998-12-15 | Mitsui Mining & Smelting Co Ltd | Tin-silver based lead-free solder |
WO2006011204A1 (en) * | 2004-07-29 | 2006-02-02 | Senju Metal Industry Co., Ltd | Lead-free solder alloy |
-
2008
- 2008-03-26 JP JP2008080909A patent/JP5322469B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262092A (en) * | 1988-04-14 | 1989-10-18 | Hitachi Ltd | Solder and soldering method for joining Cu-based materials |
JPH06238479A (en) * | 1993-02-22 | 1994-08-30 | American Teleph & Telegr Co <Att> | Lead-free solder material |
JPH10193171A (en) * | 1996-12-27 | 1998-07-28 | Murata Mfg Co Ltd | Soldering article |
JPH10328880A (en) * | 1997-06-04 | 1998-12-15 | Mitsui Mining & Smelting Co Ltd | Tin-silver based lead-free solder |
WO2006011204A1 (en) * | 2004-07-29 | 2006-02-02 | Senju Metal Industry Co., Ltd | Lead-free solder alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035065A (en) * | 2010-02-09 | 2013-02-21 | Nordson Corp | Flux and solder material, and method of making the same |
US9919386B2 (en) | 2010-02-09 | 2018-03-20 | Nordson Corporation | Flux and solder material and method of making same |
US9391103B2 (en) | 2013-08-15 | 2016-07-12 | Sony Corporation | Image pickup element and image pickup device |
Also Published As
Publication number | Publication date |
---|---|
JP5322469B2 (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103561903B (en) | Lead-free solder alloy | |
JP4152596B2 (en) | Electronic member having solder alloy, solder ball and solder bump | |
JP4972503B2 (en) | Semiconductor power module | |
US9260768B2 (en) | Lead-free solder alloys and solder joints thereof with improved drop impact resistance | |
JP5590272B1 (en) | Lead-free solder alloy | |
JP2020157349A (en) | Solder alloy, solder ball, solder preform, solder paste and solder joint | |
JP5278616B2 (en) | Bi-Sn high temperature solder alloy | |
US9175368B2 (en) | MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability | |
WO2012131861A1 (en) | Lead-free solder ball | |
JP4836009B2 (en) | Solder alloy, solder ball and solder joint using the same | |
JP2016040051A (en) | Lead-free solder, lead-free solder ball, solder joint using lead-free solder, and semiconductor circuit having solder joint | |
JP5030442B2 (en) | Lead-free solder alloys, solder balls and electronic components | |
JPWO2013132953A1 (en) | Bonding method, electronic device manufacturing method, and electronic component | |
EP2747933B1 (en) | A mn doped sn-base solder alloy and solder joints thereof with superior drop shock reliability | |
JP4831502B2 (en) | Connection terminal balls and connection terminals with excellent drop impact resistance and electronic components | |
Liu et al. | The superior drop test performance of SAC-Ti solders and its mechanism | |
KR102342394B1 (en) | Solder Alloy, Solder Paste, Preform Solder, Solder Ball, Wire Solder, Resin Flux Cored Solder, Solder Joint, Electronic Circuit Board and Multilayer Electronic Circuit Board | |
JP5322469B2 (en) | Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints | |
JP2008221330A (en) | Solder alloy | |
JP2008142721A (en) | Lead-free solder alloy | |
US9741676B1 (en) | Tin-indium based low temperature solder alloy | |
JP2019076946A (en) | Lead-free solder alloy and electronic circuit board | |
JP5167068B2 (en) | Electronic member having solder balls and solder bumps | |
JP2001113387A (en) | Solder alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110221 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110311 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5322469 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |