[go: up one dir, main page]

JP2009078202A - Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same - Google Patents

Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same Download PDF

Info

Publication number
JP2009078202A
JP2009078202A JP2007247628A JP2007247628A JP2009078202A JP 2009078202 A JP2009078202 A JP 2009078202A JP 2007247628 A JP2007247628 A JP 2007247628A JP 2007247628 A JP2007247628 A JP 2007247628A JP 2009078202 A JP2009078202 A JP 2009078202A
Authority
JP
Japan
Prior art keywords
supported
oxygen storage
storage material
catalyst
catalyst metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247628A
Other languages
Japanese (ja)
Inventor
Koji Minoshima
浩二 蓑島
Seiji Miyoshi
誠治 三好
Hideji Iwakuni
秀治 岩国
Akihide Takami
明秀 高見
Hirosuke Sumita
弘祐 住田
Osamu Takayama
修 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007247628A priority Critical patent/JP2009078202A/en
Publication of JP2009078202A publication Critical patent/JP2009078202A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen storage material in which Pd is deposited on a Ce-Zr composite oxide and which has excellent oxygen releasability and high catalytic activity even after exposed to high-temperature gas though the deposited amount of Pd is vary small. <P>SOLUTION: A most of Pd particles 2 are deposited in recessed parts 4 on the surface of a primary particle 3 of a Ce-Zr compound oxide particle 1 or among primary particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、触媒金属担持酸素吸蔵材、同材の製造方法、並びに同材を用いたエンジン排ガス浄化用触媒及び燃料電池用CO選択酸化触媒に関する。     The present invention relates to a catalyst metal-supported oxygen storage material, a method for producing the same, an engine exhaust gas purification catalyst using the same material, and a fuel cell CO selective oxidation catalyst.

エンジン排ガス浄化用触媒や燃料電池用CO選択酸化触媒として、Ceを含有する酸素吸蔵材にPtやPdを担持させた触媒を採用することは知られている。排ガス浄化用触媒の場合は、酸素吸蔵材に触媒金属を担持させることにより、その触媒金属が排気ガス中の酸素の酸素吸蔵材への吸蔵・放出を促進し、また、この酸素の吸蔵・放出を媒介することによって触媒金属がHC及びCOの酸化に適した酸化状態となり、さらにこのHC及びCOの酸化に伴ってNOxの還元浄化が進み易くなる。燃料電池用CO選択酸化触媒(COシフト触媒を含む。)の場合も、酸素吸蔵材の存在によって触媒金属が改質ガス中のCOの酸化に適した酸化状態になり、改質ガスのCO濃度低減に有利になる。     It is known to employ a catalyst in which Pt or Pd is supported on an oxygen storage material containing Ce as an engine exhaust gas purification catalyst or a fuel cell CO selective oxidation catalyst. In the case of an exhaust gas purification catalyst, a catalyst metal is supported on an oxygen storage material, so that the catalyst metal promotes the storage and release of oxygen in the exhaust gas into the oxygen storage material, and this oxygen storage and release. Thus, the catalytic metal becomes in an oxidation state suitable for the oxidation of HC and CO, and further, the reduction and purification of NOx easily proceeds along with the oxidation of HC and CO. In the case of a fuel cell CO selective oxidation catalyst (including a CO shift catalyst), the presence of the oxygen storage material makes the catalyst metal in an oxidation state suitable for the oxidation of CO in the reformed gas, and the CO concentration in the reformed gas. It becomes advantageous for reduction.

ところで、PtやPdは希少金属であることから、その使用量を低減することが求められ、そのような触媒の開発が進められている。     By the way, since Pt and Pd are rare metals, it is required to reduce their use amount, and development of such a catalyst is being promoted.

例えば、特許文献1には、Zr、Ce及び貴金属(Pt、Pd又はRh)からなる排ガス浄化触媒用の貴金属含有複合酸化物に関し、1050℃で24時間焼成後の全気孔容量を0.25cc/g以上とし、貴金属含有量を0.001〜1%とすることが記載されている。また、これに先立ち、本出願人は、金属成分がCe、Zr、Nd及びRhからなる排ガス浄化用複合酸化物を開発している(特許文献2参照)。     For example, Patent Document 1 discloses a noble metal-containing composite oxide for an exhaust gas purification catalyst composed of Zr, Ce, and a noble metal (Pt, Pd, or Rh). It is described that it is g or more and the noble metal content is 0.001 to 1%. Prior to this, the present applicant has developed a composite oxide for purifying exhaust gas whose metal components are Ce, Zr, Nd and Rh (see Patent Document 2).

このような触媒金属を含有する複合酸化物は、金属成分の混合溶液に塩基性溶液を添加混合することにより、金属成分を水酸化物として共沈させ、得られた沈殿物を脱水、乾燥及び焼成することにより得られている。この場合、複合酸化物に含まれる微量の貴金属が、その酸素吸蔵・放出能を改善し、触媒性能を高める。     The composite oxide containing such a catalytic metal is obtained by coprecipitation of the metal component as a hydroxide by adding and mixing a basic solution to the mixed solution of the metal component, and dehydrating, drying and drying the resulting precipitate. It is obtained by firing. In this case, a small amount of noble metal contained in the composite oxide improves its oxygen storage / release ability and enhances the catalyst performance.

また、特許文献3には、CeZr複合酸化物に酸化鉄及び貴金属(Pt、Pd又はRh)を担持させてなる触媒に関し、貴金属担持量を0.0004〜1質量%とし、さらに酸化鉄100質量部に対して貴金属量を0.005〜15質量部とすることが記載されている。これは、貴金属担持量を少なくする代わりに酸化鉄を比較的多量に担持させることにより、触媒性能の向上を図るものと認められる。
特開2006−247635号公報 特開2004−174490号公報 特開2005−246177号公報
Further, Patent Document 3 relates to a catalyst in which iron oxide and a noble metal (Pt, Pd or Rh) are supported on a CeZr composite oxide, the amount of noble metal supported is 0.0004 to 1% by mass, and iron oxide is 100% by mass. It is described that the amount of noble metal is 0.005 to 15 parts by mass with respect to parts. This is recognized to improve the catalyst performance by loading a relatively large amount of iron oxide instead of reducing the amount of noble metal supported.
JP 2006-247635 A JP 2004-174490 A JP 2005-246177 A

しかし、貴金属含有複合酸化物の場合、貴金属が結晶内に含まれることによって、その酸素吸蔵・放出能は高まるものの、貴金属は主として複合酸化物粒子内にあるため、当該複合酸化物粒子表面での排気ガスと貴金属との接触については多くを期待することができず、高い触媒活性を望むことはできない。     However, in the case of the noble metal-containing composite oxide, the noble metal is contained in the crystal, so that the oxygen storage / release ability is increased, but the noble metal is mainly in the composite oxide particle, so that the noble metal on the surface of the composite oxide particle. Much cannot be expected about the contact between the exhaust gas and the noble metal, and high catalytic activity cannot be expected.

また、酸化鉄と貴金属とを併用する触媒の場合、複合酸化物に比較的多量に担持された酸化鉄のシンタリングによる活性低下の問題があり、そのシンタリングに貴金属が巻き込まれて活性が大きく低下することが懸念される。     In the case of a catalyst using both iron oxide and noble metal, there is a problem of a decrease in activity due to sintering of iron oxide supported in a relatively large amount on the composite oxide, and the noble metal is involved in the sintering and the activity is large. There is concern about the decline.

そこで、本発明は、CeZr系複合酸化物に触媒金属としてPdが担持されている酸素吸蔵材に関し、Pd担持量を微量としながら、優れた酸素吸蔵・放出能及び高い触媒活性を得ること、そして、高温ガスに晒された後も、優れた酸素吸蔵・放出能及び高い触媒活性が維持されるようにすることを課題とする。     Therefore, the present invention relates to an oxygen storage material in which Pd is supported as a catalytic metal on a CeZr-based composite oxide, obtaining an excellent oxygen storage / release ability and high catalytic activity while keeping the amount of Pd supported in a trace amount, and An object is to maintain excellent oxygen storage / release ability and high catalytic activity even after being exposed to a high-temperature gas.

本発明者は、このような課題に対して、上記PdをCeZr系複合酸化物の一次粒子表面の凹陥部や一次粒子間に担持させるようにすれば、微量であっても、優れた酸素吸蔵・放出能及び高い触媒活性が得られ、且つ耐熱性が高くなることを見出し、本発明を完成した。     In order to solve such problems, the present inventor can achieve excellent oxygen occlusion even if the amount of Pd is supported between the concave portion of the primary particle surface of the CeZr-based composite oxide or between the primary particles. -The present invention was completed by finding that the release ability and high catalytic activity were obtained and the heat resistance increased.

請求項1に係る発明は、CeZr系複合酸化物粒子に触媒金属としてPdが担持されている触媒金属担持酸素吸蔵材であって、
上記Pdの大半が、上記CeZr系複合酸化物粒子を構成する一次粒子表面の凹陥部に、又はその一次粒子間に配置されていることを特徴とする。
The invention according to claim 1 is a catalyst metal-supported oxygen storage material in which Pd is supported as a catalyst metal on CeZr-based composite oxide particles,
Most of the Pd is arranged in the concave portion of the surface of the primary particles constituting the CeZr-based composite oxide particles or between the primary particles.

ここに、「一次粒子間に配置されている」とは、Pdが一次粒子間に挟まれていること、或いはPdが一次粒子間の空隙である細孔に配置されていることを意味する。     Here, “disposed between primary particles” means that Pd is sandwiched between primary particles or that Pd is disposed in pores that are voids between primary particles.

上記一次粒子の表面には多数の凹陥部があるわけではなく、また、該凹陥部や一次粒子間に担持されるPd粒子はその粒径が極微小のものに限られる。すなわち、本発明において、Pdの大半(半分以上)がそのような一次粒子表面の凹陥部又はその一次粒子間に配置されているということは、当該触媒金属担持酸素吸蔵材のPd量自体は少ないが、そのPdは極微小の粒子となってCeZr系複合酸化物粒子に高分散状態に担持されていることを意味する。そして、個々のPd粒子径が小さいということは、PdがCeZr系複合酸化物と相俟って酸素の吸蔵・放出及び排ガス浄化等の触媒反応に効率良く働くことを意味する。     The surface of the primary particles does not have many concave portions, and the Pd particles supported between the concave portions and the primary particles are limited to those having a very small particle size. That is, in the present invention, the fact that most (half or more) of Pd is disposed in the depressions on the surface of such primary particles or between the primary particles means that the amount of Pd of the catalyst metal-supported oxygen storage material itself is small. However, it means that the Pd is extremely fine particles and is supported in a highly dispersed state on the CeZr-based composite oxide particles. The small Pd particle size means that Pd works effectively with catalytic reactions such as oxygen storage / release and exhaust gas purification in combination with CeZr-based composite oxides.

また、上記一次粒子表面の凹陥部や一次粒子間では、CeZr系複合酸化物粒子(上記一次粒子が凝集してなる二次粒子)の他の部位、例えば一次粒子表面の凹陥していない部位に比べて、Pdの担持状態が安定になり易い。すなわち、Pdが移動凝集してシンタリング(粒成長)を生ずることが少なくなる。このため、当該触媒金属担持酸素吸蔵材が高温の排ガスに晒されたときの、酸素吸蔵・放出能及び触媒活性の低下が少ない。     In addition, in the recesses on the surface of the primary particles or between the primary particles, other parts of the CeZr-based composite oxide particles (secondary particles formed by agglomeration of the primary particles), for example, parts that are not recessed on the surface of the primary particles. In comparison, the loaded state of Pd tends to be stable. That is, Pd is less likely to move and aggregate to cause sintering (grain growth). For this reason, when the said catalyst metal carrying | support oxygen storage material is exposed to high temperature exhaust gas, there is little fall of oxygen storage / release capability and catalyst activity.

このように、本発明によれば、少ないPd担持量で優れた酸素吸蔵・放出能及び高い触媒活性が得られ、しかも、耐熱性が高いという効果が得られる。     As described above, according to the present invention, an excellent oxygen storage / release capability and high catalytic activity can be obtained with a small amount of Pd supported, and the effect of high heat resistance can be obtained.

触媒金属担持酸素吸蔵材のPd担持量は、0.05質量%以下(請求項2)、さらには0.01質量%以下(請求項4)とすることができる。     The amount of Pd supported on the catalyst metal-supported oxygen storage material can be 0.05% by mass or less (Claim 2), and further 0.01% by mass or less (Claim 4).

請求項3に係る発明は、Pdが触媒金属として担持されてなるCeZr系複合酸化物の一次粒子が凝集して二次粒子を形成してなり、
上記Pdの担持量が0.05質量%以下であることを特徴とする触媒金属担持酸素吸蔵材である。
The invention according to claim 3 is formed by agglomerating primary particles of CeZr-based composite oxide in which Pd is supported as a catalyst metal to form secondary particles,
The catalyst metal-supported oxygen storage material, wherein the supported amount of Pd is 0.05% by mass or less.

Pdを担持した一次粒子が凝集して二次粒子を形成しているということは、Pdの多くはCeZr系複合酸化物の一次粒子間に配置されている、すなわち、一次粒子間の空隙である細孔に配置されている、又は一次粒子間に挟まれていることを意味する。     The fact that primary particles supporting Pd are aggregated to form secondary particles means that most of Pd is arranged between primary particles of CeZr-based composite oxide, that is, voids between primary particles. It means that it is arranged in pores or sandwiched between primary particles.

従って、上述の請求項1に係る発明の説明から明らかなように、本発明によれば、少ないPd担持量で優れた酸素吸蔵・放出能及び高い触媒活性が得られ、しかも、耐熱性が高いという効果が得られる。     Therefore, as is clear from the description of the invention according to claim 1 described above, according to the present invention, excellent oxygen storage / release ability and high catalytic activity can be obtained with a small amount of Pd supported, and heat resistance is high. The effect is obtained.

上記Pd担持量は0.01質量%以下とすることができる(請求項4)。     The amount of Pd supported can be 0.01% by mass or less.

以上の各発明に係る触媒金属担持酸素吸蔵材は、後述するアンモニア共沈法によって得ることができるが、大気雰囲気において1000℃の温度に24時間保持した後の細孔径分布を調べたところ、そのピークは50nm以上70nm以下の範囲にあり、ピーク細孔径でのlog微分細孔容積が0.15cm/g以上であった(請求項5)。一方、CeZr系複合酸化物粒子にPdを公知の蒸発乾固法によって微量担持させたところ、細孔径分布のピーク位置は本発明に係る酸素吸蔵材と略同じであったが、ピーク細孔径でのlog微分細孔容積は0.10cm/g程度であり、本発明に係る酸素吸蔵材の方が細孔容積が大きかった。 The catalyst metal-supported oxygen storage material according to each of the above inventions can be obtained by an ammonia coprecipitation method, which will be described later. When the pore size distribution after holding at 1000 ° C. for 24 hours in an air atmosphere was examined, The peak was in the range of 50 nm to 70 nm, and the log differential pore volume at the peak pore diameter was 0.15 cm 3 / g or more (Claim 5). On the other hand, when a small amount of Pd was supported on the CeZr-based composite oxide particles by a known evaporation and drying method, the peak position of the pore size distribution was substantially the same as that of the oxygen storage material according to the present invention. Log differential pore volume was about 0.10 cm 3 / g, and the oxygen storage material according to the present invention had a larger pore volume.

この細孔径分布のピーク特性が、酸素放出能、触媒活性及び耐熱性に対してどのように影響するのかは定かではないが、本発明では、孔径50nm以上70nm以下程度の微小細孔が多く、かかる微小細孔の内面に担持される触媒金属が多くなっていると認められる。そのため、触媒金属の分散性が良いことと、処理すべきガスの拡散性が良いことにより、触媒活性が高くなり、また、触媒金属のシンタリングも生じ難くなっている、ということができる。     Although it is not certain how the peak characteristics of the pore size distribution affect the oxygen releasing ability, catalytic activity, and heat resistance, in the present invention, there are many micropores having a pore size of about 50 nm to 70 nm, It is recognized that the catalytic metal supported on the inner surface of such fine pores is increasing. For this reason, it can be said that the catalytic activity is high due to the good dispersibility of the catalyst metal and the diffusibility of the gas to be treated, and the sintering of the catalyst metal is less likely to occur.

また、以上に述べた触媒金属担持酸素吸蔵材では、100℃以上200℃未満での酸素放出量が酸素原子として2.0×10μmol/g以上であった(請求項6)。このことが、触媒の活性を高めることに寄与していると考えられる。 Further, in the catalyst metal-supported oxygen storage material described above, the oxygen release amount at 100 ° C. or more and less than 200 ° C. was 2.0 × 10 4 μmol / g or more as oxygen atoms (Claim 6). This is considered to contribute to enhancing the activity of the catalyst.

請求項7に係る発明は、CeZr系複合酸化物粒子に触媒金属としてPdが担持されている触媒金属担持酸素吸蔵材の製造方法であって、
Ceイオン、Zrイオン及びPdイオンを含む酸性溶液にアンモニア水を添加混合する工程と、
得られた沈殿物の脱水処理を行なう工程と、
得られた脱水物を焼成することにより、触媒金属担持酸素吸蔵材を得る工程とを備え、
上記脱水工程において、上記触媒金属担持酸素吸蔵材のPd担持量が0.05質量%以下となるように、上記Pdイオンに係る成分の一部を上澄み液と共に除去することを特徴とする。
The invention according to claim 7 is a method for producing a catalyst metal-supported oxygen storage material in which Pd is supported as a catalyst metal on CeZr-based composite oxide particles,
Adding and mixing aqueous ammonia to an acidic solution containing Ce ions, Zr ions and Pd ions;
A step of dehydrating the obtained precipitate;
A step of obtaining the catalyst metal-supported oxygen storage material by calcining the obtained dehydrated product,
In the dehydration step, a part of the component relating to the Pd ions is removed together with the supernatant so that the amount of Pd supported on the catalyst metal-supported oxygen storage material is 0.05% by mass or less.

この製法によれば、上記アンモニア水の添加によってCeイオン及びZrイオンはCe及びZrの複合水酸化物粒子となり、それらが数個ないしは数十個という単位で凝集して沈殿するが、Pdは水酸化物としては沈殿しない。Pdは例えばアンミン錯体のような安定化合物を形成すると考えられる。そして、このようなPd化合物は上記CeZrの複合水酸化物粒子に付着して沈殿物側へ移行することになる。     According to this production method, Ce ions and Zr ions become Ce and Zr composite hydroxide particles by the addition of the ammonia water, and they aggregate and precipitate in units of several to several tens, but Pd is water. It does not precipitate as an oxide. Pd is considered to form a stable compound such as an ammine complex. Such Pd compounds adhere to the CeZr composite hydroxide particles and migrate to the precipitate side.

この場合、上記Pdイオンに係る成分の大部分(仕込まれたPdの大部分)は、上記脱水処理によって上澄み液と共に除去されるから、上記脱水物に残るPd成分の大半は、上記CeZr複合水酸化物粒子表面の窪んだ部分や該複合水酸化物粒子間のような上記脱水処理の影響を受けにくい部位に存在していると考えられる。そして、Ce及びZrの複合水酸化物粒子はその後の焼成により、CeZr系複合酸化物一次粒子となり、さらにこれが凝集して二次粒子となる。また、個々の複合水酸化物粒子表面の窪んだ部分は、CeZr系複合酸化物一次粒子の表面凹陥部となる。従って、上記脱水物の焼成により、PdはCeZr系複合酸化物一次粒子の表面凹陥部や、その一次粒子間(細孔を含む)に配置された状態になる。     In this case, most of the components related to the Pd ions (most of the charged Pd) are removed together with the supernatant liquid by the dehydration treatment, so that most of the Pd components remaining in the dehydrated product are the CeZr composite water. It is thought that it exists in the site | part which is hard to receive the influence of the said dehydration process like the recessed part of the oxide particle surface or between this composite hydroxide particle. The Ce and Zr composite hydroxide particles become CeZr-based composite oxide primary particles by subsequent firing, and further aggregate to form secondary particles. Moreover, the recessed part of the surface of each composite hydroxide particle turns into the surface recessed part of CeZr type complex oxide primary particle. Therefore, by firing the dehydrated product, Pd is in a state of being arranged in the surface recesses of the CeZr-based composite oxide primary particles and between the primary particles (including pores).

このような触媒金属担持酸素吸蔵材では、Pdを担持した一次粒子が凝集して二次粒子を形成したものであるから、Pdの分散度が極めて高く、優れた酸素吸蔵・放出能と高い触媒活性が得られる。しかも、Pdは、上記一次粒子表面の凹陥部や、一次粒子間の空隙である細孔に担持され、或いは該一次粒子間に挟まれて存在するから、高温のガスに晒されても、シンタリングを生じ難い。すなわち、耐熱性が高いという効果が得られる。     In such a catalyst metal-supported oxygen storage material, primary particles supporting Pd are aggregated to form secondary particles. Therefore, the degree of dispersion of Pd is extremely high, and an excellent oxygen storage / release capability and a high catalyst. Activity is obtained. Moreover, since Pd is supported in the recesses on the surface of the primary particles or in the pores that are voids between the primary particles, or is sandwiched between the primary particles, the Pd is not affected by exposure to high-temperature gas. It is hard to produce a ring. That is, the effect that heat resistance is high is acquired.

従って、本発明に係る製造方法により、Pdの大半が、CeZr系複合酸化物粒子を構成する一次粒子表面の凹陥部又はその一次粒子間に配置され、そのPd担持量が0.05質量%以下である触媒金属担持酸素吸蔵材が得られ、或いはPdが担持されてなるCeZr系複合酸化物の一次粒子が二次粒子を形成するように凝集してなり、Pd担持量が0.05質量%以下である触媒金属担持酸素吸蔵材が得られる。     Therefore, by the production method according to the present invention, most of Pd is disposed between the concave portions on the surface of the primary particles constituting the CeZr-based composite oxide particles or between the primary particles, and the amount of Pd supported is 0.05% by mass or less. Is obtained, or the primary particles of CeZr-based composite oxide on which Pd is supported are aggregated so as to form secondary particles, and the supported amount of Pd is 0.05% by mass. The following catalyst metal-supported oxygen storage material is obtained.

上記脱水工程では、得られた沈殿物を遠心分離器にかけて上澄み液を除いた後、これにイオン交換水を加えて攪拌し再び遠心分離器にかけるというように、水洗・脱水操作を必要回数繰り返すことができる。この水洗・脱水操作により、余剰アンモニア水が除去されるとともに、沈殿物に含まれるPdの一部が洗い流される。この場合、上記一次粒子の前駆体であるCeZr複合水酸化物粒子表面の窪んだ部分や該複合水酸化物粒子間は水洗力を受けにくいから、当該部位にPdが残っていくことになる。     In the dehydration step, the resulting precipitate is centrifuged to remove the supernatant, the ion-exchanged water is added to the resulting mixture, and the mixture is stirred and re-centrifuged. be able to. By this water washing / dehydration operation, excess ammonia water is removed and a part of Pd contained in the precipitate is washed away. In this case, Pd remains in the portion where the surface of the CeZr composite hydroxide particles, which are the precursors of the primary particles, is not easily subjected to the washing power between the concave portions and the composite hydroxide particles.

上記脱水工程においては、上記触媒金属担持酸素吸蔵材の触媒金属量が0.01質量%以下となるようにすることができる(請求項8)。     In the dehydration step, the amount of catalyst metal of the catalyst metal-supported oxygen storage material can be 0.01% by mass or less (claim 8).

また、以上に述べた触媒金属担持酸素吸蔵材は、エンジン排ガス浄化用触媒又は燃料電池用CO選択酸化触媒に利用することができる(請求項9,10)。     Further, the catalytic metal-supported oxygen storage material described above can be used as an engine exhaust gas purification catalyst or a fuel cell CO selective oxidation catalyst (claims 9 and 10).

以上のように、本発明によれば、Pdの大半が、CeZr系複合酸化物粒子を構成する一次粒子表面の凹陥部に、又はその一次粒子間に配置されているから、或いはPdが担持されてなるCeZr系複合酸化物の一次粒子が凝集して二次粒子を形成してなり、そのPd担持量が0.05質量%以下であるから、少ないPd担持量で優れた酸素吸蔵・放出能及び高い触媒活性が得られ、しかも、耐熱性が高いという効果が得られる。     As described above, according to the present invention, most of Pd is disposed in or between the primary particles of the primary particle surface constituting the CeZr-based composite oxide particles, or Pd is supported. The primary particles of the CeZr-based composite oxide are aggregated to form secondary particles, and the amount of supported Pd is 0.05% by mass or less, so that the oxygen storage / release ability is excellent with a small amount of supported Pd. In addition, a high catalytic activity can be obtained, and the heat resistance is high.

また、大気雰囲気において1000℃の温度に24時間保持した後の細孔径分布のピークが50nm以上70nm以下の範囲にあり、ピーク細孔径でのlog微分細孔容積が0.15cm/g以上である触媒金属担持酸素吸蔵材によれば、触媒金属の分散性が良いことと、処理すべきガスの拡散性が良いことにより、少ないPd量で高い触媒活性が得られ、しかも、耐熱性が高いという効果が得られる。 Further, the peak of the pore size distribution after being kept at a temperature of 1000 ° C. for 24 hours in the air atmosphere is in the range of 50 nm to 70 nm, and the log differential pore volume at the peak pore size is 0.15 cm 3 / g or more. According to a certain catalyst metal-supported oxygen storage material, high catalytic activity can be obtained with a small amount of Pd and high heat resistance due to good dispersibility of the catalyst metal and good diffusibility of the gas to be treated. The effect is obtained.

また、100℃以上200℃未満での酸素放出量が酸素原子として2.0×10μmol/g以上である触媒金属担持酸素吸蔵材によれば、少ないPd量で高い触媒活性を得る上で有利になる。 Moreover, according to the catalyst metal-supported oxygen storage material in which the oxygen release amount at 100 ° C. or more and less than 200 ° C. is 2.0 × 10 4 μmol / g or more as oxygen atoms, high catalytic activity is obtained with a small amount of Pd. Become advantageous.

また、本発明に係る製造方法によれば、Ce、Zr及びPdのイオンを含む溶液にアンモニア水を添加混合し、得られた沈殿物を脱水し、焼成することにより、Pd担持量が0.05質量%以下の触媒金属担持酸素吸蔵材を得るようにしたから、少ないPd担持量で優れた酸素吸蔵・放出能及び高い触媒活性が得られ、しかも、耐熱性が高いという効果が得られる。     In addition, according to the production method of the present invention, ammonia water is added to and mixed with a solution containing Ce, Zr and Pd ions, and the resulting precipitate is dehydrated and calcined. Since the catalyst metal-supported oxygen storage material of 05% by mass or less is obtained, excellent oxygen storage / release ability and high catalytic activity can be obtained with a small amount of Pd supported, and the effect of high heat resistance can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

<触媒金属担持酸素吸蔵材の構成>
図1は本発明に係る触媒金属担持酸素吸蔵材を模式的に示す図である。同図において、1はCeZr系複合酸化物粒子、2はPd粒子である。CeZr系複合酸化物粒子1は、多数の一次粒子3が凝集してなる二次粒子である。大半のPd粒子2は、一次粒子3の表面凹陥部4及び一次粒子間に配置(担持)され、その他の部位(一次粒子3の表面の凹陥していない部位等)に少量のPd粒子2が担持されている。上記一次粒子3の平均粒径は10nm以上30nm以下程度である。
<Configuration of catalyst metal-supported oxygen storage material>
FIG. 1 is a view schematically showing a catalytic metal-supported oxygen storage material according to the present invention. In the figure, 1 is a CeZr-based composite oxide particle, and 2 is a Pd particle. The CeZr-based composite oxide particle 1 is a secondary particle obtained by aggregating a large number of primary particles 3. Most of the Pd particles 2 are arranged (supported) between the surface recesses 4 of the primary particles 3 and the primary particles, and a small amount of Pd particles 2 are present in other parts (parts where the surface of the primary particles 3 are not recessed). It is supported. The average particle size of the primary particles 3 is about 10 nm to 30 nm.

同図では、一次粒子3の表面凹陥部4に担持されているPd粒子2は交差斜線を付した丸で表し、一次粒子間に担持されているPd粒子2は片側斜線を付した丸で表し、一次粒子3の表面の凹陥していない部位に担持されているPd粒子2を黒丸で表している。上記一次粒子間に担持されているPd粒子2としては、図示の如く、一次粒子間に挟まれているPd粒子の他に、一次粒子間の空隙である細孔内面に担持されているPd粒子を含むが、後者については図示を省略している。     In the figure, the Pd particles 2 carried on the surface recesses 4 of the primary particles 3 are represented by circles with crossed oblique lines, and the Pd particles 2 carried between the primary particles are represented by circles with one side oblique lines. The Pd particles 2 carried on the surface of the primary particles 3 that are not recessed are represented by black circles. As the Pd particles 2 supported between the primary particles, as shown in the figure, in addition to the Pd particles sandwiched between the primary particles, the Pd particles supported on the inner surfaces of the pores that are voids between the primary particles. The latter is not shown in the figure.

<触媒金属担持酸素吸蔵材の調製方法>
本発明に係る触媒金属担持酸素吸蔵材は、アルカリ溶液としてアンモニア水を用いる共沈法を利用して得ることができる。
<Method for preparing catalyst metal-supported oxygen storage material>
The catalytic metal-supported oxygen storage material according to the present invention can be obtained by using a coprecipitation method using ammonia water as an alkaline solution.

−原料溶液の調製−
Ceイオン、Zrイオン及びPdイオンを含む酸性溶液を調製する。Ce源としては硝酸セリウム(III)六水和物を、Zr源としてはオキシ硝酸ジルコニウム二水和物を、Pd源としては硝酸パラジウム溶液を、それぞれ採用することができる。これらCe源、Zr源及びPd源各々の所定量と水とを混合して原料溶液とする。
-Preparation of raw material solution-
An acidic solution containing Ce ions, Zr ions and Pd ions is prepared. As the Ce source, cerium (III) nitrate hexahydrate can be used, as the Zr source, zirconium oxynitrate dihydrate, and as the Pd source, a palladium nitrate solution can be used. A predetermined amount of each of these Ce source, Zr source, and Pd source and water are mixed to obtain a raw material solution.

−沈殿の生成−
上記原料溶液にアンモニア水を添加混合して沈殿物を生成する。すなわち、原料溶液を室温で約1時間攪拌した後、80℃程度にまで温度を上げ、これにアンモニア水(例えば濃度7%程度のもの)を添加すればよい。
-Formation of precipitate-
Ammonia water is added to and mixed with the raw material solution to form a precipitate. That is, after stirring the raw material solution at room temperature for about 1 hour, the temperature is raised to about 80 ° C., and ammonia water (for example, having a concentration of about 7%) may be added thereto.

−脱水−
得られた沈殿物を遠心分離器にかけて上澄み液を除去し、脱水ケーキ(脱水物)とする。上澄み液の除去後、これにイオン交換水を加えて攪拌し再び遠心分離器にかける(脱水する)、という水洗・脱水操作(以下、単に「水洗」という。)を必要回数繰り返すことができる。当該脱水工程により、余剰アンモニア水が除去されるとともに、沈殿物に含まれるPdの一部が除去される。
-Dehydration-
The resulting precipitate is centrifuged to remove the supernatant liquid to obtain a dehydrated cake (dehydrated product). After removing the supernatant, water washing / dehydration operation (hereinafter simply referred to as “water washing”) in which ion-exchanged water is added and stirred and then centrifuged again (dehydrated) can be repeated as many times as necessary. By the dehydration step, excess ammonia water is removed, and part of Pd contained in the precipitate is removed.

この脱水工程においては、次の焼成工程を経て得られる触媒金属担持酸素吸蔵材において触媒金属量が0.05質量%以下となるように、上記Pdの一部を除去する。     In this dehydration step, part of the Pd is removed so that the amount of catalyst metal in the catalyst metal-supported oxygen storage material obtained through the subsequent firing step is 0.05% by mass or less.

−乾燥・焼成−
得られた脱水ケーキを乾燥させた後、焼成することにより、CeZr系複合酸化物粒子にPdが担持されてなる触媒金属担持酸素吸蔵材を得る。乾燥は、ケーキを100℃〜250℃程度の温度に所定時間保持することによって行ない、焼成は、400℃〜600℃程度の温度に数時間保持することによって行なうことができる。
-Drying and firing-
The obtained dehydrated cake is dried and then baked to obtain a catalyst metal-supported oxygen storage material in which Pd is supported on CeZr-based composite oxide particles. Drying can be performed by holding the cake at a temperature of about 100 ° C. to 250 ° C. for a predetermined time, and baking can be performed by holding the cake at a temperature of about 400 ° C. to 600 ° C. for several hours.

<Pd担持位置の検討>
本発明に係る触媒金属担持酸素吸蔵材に関し、PdがCeZr系複合酸化物粒子のどこに担持されているかを検討した。
<Examination of Pd carrying position>
Regarding the catalytic metal-supported oxygen storage material according to the present invention, it was examined where Pd was supported on CeZr-based composite oxide particles.

−沈殿物の検討−
先に述べた触媒金属担持酸素吸蔵材の調製法では、アンモニア水を添加したときに沈殿物を生ずる。この場合、Ceイオン及びZrイオンが複合水酸化物粒子(CeZr複合酸化物一次粒子の前駆体)となって沈殿することは周知である。これに対して、Pdイオンは、アンモニア水を添加しても水酸化物となって沈殿することはない。すなわち、Ce、Zr及びPdのイオンを含む溶液にアンモニア水を添加して沈殿物を生成し、その上澄み液を分析すると、Pdが検出された。従って、Pdイオンはアンミン錯体のような安定なPd化合物を生成し、該Pd化合物が溶液に溶解していると考えられる。
-Examination of precipitate-
In the method for preparing the catalyst metal-supported oxygen storage material described above, a precipitate is formed when ammonia water is added. In this case, it is well known that Ce ions and Zr ions are precipitated as composite hydroxide particles (precursor of CeZr composite oxide primary particles). On the other hand, Pd ions do not precipitate as hydroxide even when ammonia water is added. That is, when aqueous ammonia was added to a solution containing Ce, Zr and Pd ions to produce a precipitate, and the supernatant was analyzed, Pd was detected. Therefore, it is considered that the Pd ion generates a stable Pd compound such as an ammine complex, and the Pd compound is dissolved in the solution.

また、上記沈殿物から分離した上澄み液中には、Pdが仕込み量の80%以上含まれていた。従って、上記Pd化合物の一部がCe及びZrの複合水酸化物粒子に付着していると考えられる。     Moreover, 80% or more of the charged amount was contained in the supernatant liquid separated from the precipitate. Therefore, it is considered that a part of the Pd compound is attached to the composite hydroxide particles of Ce and Zr.

さらに、上記調製法において、上記水洗を繰り返したとき、各水洗廃液中にPdが検出された。従って、この数回の水洗後の沈殿物側に残っているPd化合物の大半は当該沈殿物上の洗い流されにくい部位において上記複合水酸化物粒子に付着していると考えられる。     Further, in the above preparation method, when the above washing was repeated, Pd was detected in each washing waste liquid. Therefore, it is considered that most of the Pd compound remaining on the precipitate side after the several water washings adheres to the composite hydroxide particles at a site on the precipitate that is difficult to be washed away.

その流されにくい部位として第一に考えられる箇所はCe及びZrの複合水酸化物粒子間である。この複合水酸化物粒子は数個〜数十個の単位で凝集して沈殿粒子となるが、そのような複合水酸化物粒子間に存在するPd化合物は、水洗によっては沈殿粒子から脱落し難いと考えられる。     The place considered first as the site | part to which it is hard to flow is between the composite hydroxide particle | grains of Ce and Zr. The composite hydroxide particles are aggregated into several to several tens of units to form precipitated particles, but the Pd compound existing between such composite hydroxide particles is difficult to fall off from the precipitated particles by washing with water. it is conceivable that.

次に考えられる箇所について検討するに、図2は上記調製法で得られたPd担持CeZr系複合酸化物粒子のTEM(透過型電子顕微鏡)写真である。同写真において、上部に写っている大きな塊から下方へ突出している小さな塊は一次粒子である。その一次粒子表面に白っぽく写った直径数nm程度の斑点が4カ所見られるが、これは凹陥部である。このような表面凹陥部は、上記複合水酸化物粒子表面の窪んだ部分から生じたものと考えられる。そうして、このような複合水酸化物粒子の窪んだ部分に付着しているPd化合物は、水洗によっては脱落し難いと考えられる。     Next, the possible locations will be examined. FIG. 2 is a TEM (transmission electron microscope) photograph of the Pd-supported CeZr-based composite oxide particles obtained by the above preparation method. In the photograph, the small mass protruding downward from the large mass shown in the upper part is the primary particle. Four spots with a diameter of about several nanometers appear whitish on the primary particle surface, which are concave portions. Such a surface depression is considered to have originated from a depressed portion on the surface of the composite hydroxide particle. Thus, it is considered that the Pd compound adhering to the recessed portion of such composite hydroxide particles is difficult to fall off by washing with water.

−アンモニア水添加による生成物のTPO試験−
上記Ce及びZrの複合水酸化物粒子にPd化合物が付着してなる沈殿物を乾燥・焼成したときに、Pdが得られるCeZr系複合酸化物の結晶中に組み込まれるか否かをTPO(昇温酸化)試験により調べた。以下、その説明をする。
-TPO test of product by adding ammonia water-
Whether or not the precipitate formed by adhering the Pd compound to the Ce and Zr composite hydroxide particles is dried and fired, whether or not Pd is incorporated into the crystal of the CeZr-based composite oxide to obtain TPO (increase). It was examined by a (warm oxidation) test. This will be described below.

活性アルミナ粉末に硝酸パラジウム溶液を加えて混合し、これにアンモニア水を添加して攪拌した後、加熱して液分を蒸発させた(蒸発乾固)。得られた乾固物を120℃の温度に10時間保持することにより乾燥させ、これを粉砕し整粒して第1供試材とした。以下、これを「Pd−アンモニア乾固/アルミナ」と呼ぶ。     A palladium nitrate solution was added to and mixed with the activated alumina powder, and ammonia water was added thereto and stirred, followed by heating to evaporate the liquid (evaporation to dryness). The obtained dried product was dried by maintaining at a temperature of 120 ° C. for 10 hours, and pulverized and sized to obtain a first test material. Hereinafter, this is referred to as “Pd-ammonia dry / alumina”.

活性アルミナ粉末に硝酸パラジウム溶液を添加せずに、他は上記「Pd−アンモニア乾固/アルミナ」と同じ操作を行なって第2供試材とした。以下、これを「アンモニア乾固/アルミナ」と呼ぶ。     A second test material was prepared by performing the same operation as in the above “Pd-ammonia dry / alumina” except that the palladium nitrate solution was not added to the activated alumina powder. Hereinafter, this is referred to as “ammonia dry / alumina”.

硝酸セリウム(III)六水和物の水溶液にアンモニア水を添加して攪拌し、得られた沈殿物を遠心分離器にかけて上澄み液を除いた後、これにイオン交換水を加えて攪拌し再び遠心分離器にかける、という水洗操作を3回繰り返した。得られたケーキを120℃の温度に10時間保持することにより乾燥させ、これを粉砕し整粒して第3供試材とした。以下、これを「Ce−アンモニア沈殿」と呼ぶ。     Aqueous ammonia is added to an aqueous solution of cerium (III) nitrate hexahydrate and stirred. The resulting precipitate is centrifuged to remove the supernatant, and then ion-exchanged water is added to this and stirred and centrifuged again. The washing operation of applying to a separator was repeated three times. The obtained cake was dried by keeping it at a temperature of 120 ° C. for 10 hours, and this was pulverized and sized to obtain a third test material. Hereinafter, this is referred to as “Ce-ammonia precipitation”.

硝酸セリウム(III)六水和物に代えて、オキシ硝酸ジルコニウム二水和物を採用し、他は「Ce−アンモニア沈殿」と同じ操作を行なって第4供試材とした。以下、これを「Zr−アンモニア沈殿」と呼ぶ。     Instead of cerium (III) nitrate hexahydrate, zirconium oxynitrate dihydrate was employed, and the other operations were performed in the same manner as “Ce-ammonia precipitation” to obtain a fourth specimen. Hereinafter, this is referred to as “Zr-ammonia precipitation”.

上記4種類の供試材各々について、OとHeとの混合ガス(O;20%)を100cm/分の流量で供給しながら、30℃〜600℃まで20℃/分の速度で昇温させていき、発生するHO量を測定(TPO質量分析計にて質量数18(HO)を測定)した。結果を図3に示す。 For each of the above four types of test materials, while supplying a mixed gas of O 2 and He (O 2 ; 20%) at a flow rate of 100 cm 3 / min, from 30 ° C. to 600 ° C. at a rate of 20 ° C./min. The temperature was raised and the amount of generated H 2 O was measured (mass number 18 (H 2 O) was measured with a TPO mass spectrometer). The results are shown in FIG.

同図によれば、「Ce−アンモニア沈殿」で生成するCe水酸化物、並びに「Zr−アンモニア沈殿」で生成するZr水酸化物は、100℃付近から分解が始まってHOを発生していることがわかる。 According to the figure, Ce hydroxide produced by “Ce-ammonia precipitation” and Zr hydroxide produced by “Zr-ammonia precipitation” started to decompose around 100 ° C. to generate H 2 O. You can see that

これに対して、Pd溶液にアンモニア水を添加して生成するPd化合物の分解温度は、「Pd−アンモニア乾固/アルミナ」と「アンモニア乾固/アルミナ」との比較から知ることができる。この場合、「アンモニア乾固/アルミナ」は当該Pd化合物の分解温度をみるためのブランクテストである。この比較から、当該Pd化合物の分解温度は150℃〜350℃であり、150℃以上にならないと分解が始まらないことがわかる。     On the other hand, the decomposition temperature of the Pd compound produced by adding ammonia water to the Pd solution can be known from comparison between “Pd-ammonia dry / alumina” and “ammonia dry / alumina”. In this case, “ammonia dry / alumina” is a blank test for determining the decomposition temperature of the Pd compound. From this comparison, it can be seen that the decomposition temperature of the Pd compound is 150 ° C. to 350 ° C., and the decomposition does not start unless it is 150 ° C. or higher.

上記試験結果から、Ce及びZrの複合水酸化物粒子にPd化合物が付着してなる沈殿物を乾燥・焼成したとき、Ce及びZrの複合水酸化物が先に熱分解してCeZr系複合酸化物を生成し始め、しかる後にPd化合物が熱分解していくこと、従って、PdはCeZr系複合酸化物の結晶格子には取り込まれない、ということができる。     From the above test results, when the precipitate formed by adhering the Pd compound to the Ce and Zr composite hydroxide particles was dried and fired, the Ce and Zr composite hydroxide was first thermally decomposed and CeZr-based composite oxidation. It can be said that the Pd compound is thermally decomposed after starting to form a product, and thus Pd is not taken into the crystal lattice of the CeZr-based composite oxide.

−まとめ−
よって、Ce及びZrの複合水酸化物粒子にPd化合物が付着してなる沈殿物を乾燥・焼成したときは、そのPd化合物は、CeZr系複合酸化物粒子にPd酸化物となって担持されることになる。そうして、先に説明したように、Pd化合物の大半は、複合水酸化物粒子間及び該粒子表面の窪んだ部分に存在する考えられる。
-Summary-
Therefore, when a precipitate formed by adhering a Pd compound to Ce and Zr composite hydroxide particles is dried and fired, the Pd compound is supported as a Pd oxide on CeZr composite oxide particles. It will be. Thus, as described above, it is considered that most of the Pd compound exists between the composite hydroxide particles and in the recessed portions of the particle surface.

この場合、Ce及びZrの複合水酸化物粒子はCeZr系複合酸化物粒子の一次粒子となり、上記複合水酸化物粒子表面の窪んだ部分は当該一次粒子の表面凹陥部となり、複合水酸化物粒子間はその複合酸化物粒子の細孔に発展する。     In this case, the composite hydroxide particles of Ce and Zr become primary particles of CeZr-based composite oxide particles, and the recessed portion of the surface of the composite hydroxide particles becomes a surface recess of the primary particles, and the composite hydroxide particles The space develops into pores of the composite oxide particles.

従って、得られた触媒金属担持酸素吸蔵材は、微小なPd粒子が担持されてなるCeZr系複合酸化物一次粒子が凝集してなる二次粒子であり、Pdの大半はCeZr系複合酸化物粒子を構成する一次粒子表面の凹陥部や、その一次粒子間に配置された状態になるということができる。     Therefore, the obtained catalyst metal-supported oxygen storage material is a secondary particle formed by agglomerating primary particles of CeZr-based composite oxide in which fine Pd particles are supported, and most of Pd is CeZr-based composite oxide particles. It can be said that it is in a state of being arranged between the primary particles and the concave portions on the surface of the primary particles constituting the.

<触媒金属担持酸素吸蔵材の細孔特性>
−供試材の調製−
上述の調製法により、水洗回数(0回〜4回)が異なる5種類の共沈型供試材(触媒金属担持酸素吸蔵材)を調製した。
<Pore properties of catalyst metal-supported oxygen storage material>
-Preparation of test material-
Five types of coprecipitation type test materials (catalyst metal-supported oxygen storage materials) having different numbers of water washing (0 to 4 times) were prepared by the above-described preparation method.

すなわち、硝酸セリウム(III)六水和物、オキシ硝酸ジルコニウム二水和物及び硝酸パラジウム溶液各々の所定量と水とを混合して合計400mLとし、これを室温で約1時間攪拌した後、80℃まで昇温させ、7%アンモニア水1200mLを添加して混合した。得られた沈殿物を遠心分離器にかけて上澄み液を除いた後、これにイオン交換水を加えて攪拌し再び遠心分離器にかける、という水洗操作を必要回数(0回〜4回)繰り返し、得られたケーキの乾燥(200℃の温度に10時間保持)及び焼成(500℃の温度に10時間保持)を行なうことにより、5種類の供試材を得た。     That is, a predetermined amount of each of cerium (III) nitrate hexahydrate, zirconium oxynitrate dihydrate and palladium nitrate solution was mixed with water to make a total of 400 mL, and this was stirred at room temperature for about 1 hour, then 80 The temperature was raised to 0 ° C., and 1200 mL of 7% aqueous ammonia was added and mixed. The resulting precipitate was centrifuged to remove the supernatant, and then the water washing operation of adding ion-exchanged water to this, stirring, and re-centrifuged was repeated the required number of times (0 to 4 times) to obtain The resulting cake was dried (held at a temperature of 200 ° C. for 10 hours) and fired (held at a temperature of 500 ° C. for 10 hours) to obtain five types of test materials.

硝酸セリウム(III)六水和物及びオキシ硝酸ジルコニウム二水和物の仕込み量は、CeO:ZrO=75:25(質量比)となるようにし、硝酸パラジウムの仕込み量は、仮に仕込んだPdの全量がCeZr系複合酸化物粒子に担持されたときには、Pd担持量が酸素吸蔵材の0.5質量%となる量とした。5種類の供試材のPd量の実測値(分析値)は表1の通りである。ここに、水洗回数0回の供試材は、上記沈殿物を遠心分離器にかけて上澄み液を除いただけのものであるが、そのPd量の実測値が0.05質量%であるから、仕込量の90質量%のPdが上澄み液と共に沈殿物から分離除去されたことになる。 The charged amount of cerium (III) nitrate hexahydrate and zirconium oxynitrate dihydrate was set to be CeO 2 : ZrO 2 = 75: 25 (mass ratio), and the charged amount of palladium nitrate was temporarily charged. When the total amount of Pd was supported on the CeZr-based composite oxide particles, the amount of Pd supported was set to an amount that would be 0.5% by mass of the oxygen storage material. The measured values (analyzed values) of the Pd amounts of the five types of test materials are as shown in Table 1. Here, the test material with the number of times of washing with water of 0 was only the supernatant was removed by centrifuging the precipitate, but the measured value of the Pd amount was 0.05% by mass. 90% by mass of Pd was separated and removed from the precipitate together with the supernatant.

上記5種類の供試材各々のフレッシュ品(調製後に熱処理をしていないもの)と熱処理品(調製後に大気雰囲気において1000℃の温度に24時間保持)とについて、その細孔分布を島津製作所社製の細孔分布測定装置を用いて調べた。フレッシュ品の結果を図4に示し、熱処理品の結果を図5に示す。この両図、並びに後に説明する図6において、縦軸はlog微分細孔容積を示す。     The pore distribution of each of the above five types of specimens (fresh product that had not been heat-treated after preparation) and heat-treated product (maintained at a temperature of 1000 ° C. for 24 hours in the air after preparation) was determined by Shimadzu Corporation. It investigated using the manufactured pore distribution measuring apparatus. The result of the fresh product is shown in FIG. 4, and the result of the heat-treated product is shown in FIG. In both figures and in FIG. 6 described later, the vertical axis indicates the log differential pore volume.

図4(フレッシュ品)をみると、細孔径分布のピークが8nm以上10nm以下の範囲にあり、水洗回数が多くなると、ピーク細孔径での細孔容積が大きくなる傾向が認められる。そのlog微分細孔容積は水洗回数1回以上では0.2cm/g以上である。但し、水洗回数が3回以上では、細孔容積の増大が見られない。 Looking at FIG. 4 (fresh product), the peak of the pore size distribution is in the range of 8 nm or more and 10 nm or less, and as the number of water washing increases, the pore volume at the peak pore size tends to increase. The log differential pore volume is 0.2 cm 3 / g or more when the number of washings is one or more. However, when the number of washings is 3 or more, the pore volume is not increased.

図5(熱処理品)をみると、細孔径分布のピークは50nm以上70nm以下の範囲にシフトしており、フレッシュ品と同じく、水洗回数が多くなるに従って、ピーク細孔径での細孔容積が大きくなっているが、水洗回数が3回以上では、細孔容積の増大が見られない。そのlog微分細孔容積は水洗回数2回以上では0.15cm/g以上である。 Looking at FIG. 5 (heat-treated product), the peak of the pore size distribution is shifted to a range of 50 nm to 70 nm, and as with the fresh product, the pore volume at the peak pore size increases as the number of water washing increases. However, when the number of washings is 3 or more, the pore volume is not increased. The log differential pore volume is 0.15 cm 3 / g or more when the number of washings is twice or more.

また、CeZr複合酸化物(CeO:ZrO=75:25(質量比))に硝酸パラジウム溶液を用いた蒸発乾固によりPdを0.01質量%担持させた比較例供試材を調製し、上記熱処理後の細孔分布を調べた。その結果を上記水洗回数3回の供試材の結果と共に図6に示す。蒸発乾固法を採用した場合、細孔径分布のピークは共沈法による場合と同じく、50nm以上70nm以下の範囲にあるが、ピーク細孔径でのlog微分細孔容積は0.1cm/g程度であって小さい。 In addition, a comparative sample material in which 0.01 mass% of Pd was supported on a CeZr composite oxide (CeO 2 : ZrO 2 = 75: 25 (mass ratio)) by evaporation to dryness using a palladium nitrate solution was prepared. The pore distribution after the heat treatment was examined. The result is shown in FIG. 6 together with the result of the test material with the number of times of washing three times. When the evaporation to dryness method is employed, the peak of the pore size distribution is in the range of 50 nm to 70 nm as in the coprecipitation method, but the log differential pore volume at the peak pore size is 0.1 cm 3 / g. It is small and small.

フレッシュ品及び熱処理品各々における細孔径10nm以下及び100nm以下の全細孔容積(積算細孔容積)は表2,3に示す通りである。     Tables 2 and 3 show the total pore volumes (cumulative pore volumes) having pore diameters of 10 nm or less and 100 nm or less in the fresh product and the heat-treated product, respectively.

表2,3によれば、細孔径10nm以下及び100nm以下のいずれにおいても、水洗回数が多くなるに従って、細孔容積が増大する傾向が認められる(但し、熱処理品の場合、水洗回数4回では3回よりも細孔容積が小さくなっている。)。この増大傾向は、当該水洗処理が細孔の形成を促した結果である、ということができる。     According to Tables 2 and 3, a tendency that the pore volume increases as the number of times of water washing increases in any of pore diameters of 10 nm or less and 100 nm or less (however, in the case of heat-treated products, the number of times of water washing is 4 times. The pore volume is smaller than 3 times.) This increasing tendency can be said to be a result of the water washing process promoting the formation of pores.

しかし、熱処理品の場合、水洗回数1回以上において、比較例よりも細孔容積が大きくなっており(細孔径10nm以下では全細孔容積が0.08cm/g以上,100nm以下では全細孔容積が1.00cm/g以上)、また、フレッシュ品→熱処理品の劣化率も実施例の方が比較例よりも小さい。 However, in the case of the heat-treated product, the pore volume is larger than that of the comparative example when the number of washings is one or more times (when the pore diameter is 10 nm or less, the total pore volume is 0.08 cm 3 / g or more, and when the pore size is 100 nm or less, The pore volume is 1.00 cm 3 / g or more), and the deterioration rate of the fresh product → heat-treated product is smaller in the example than in the comparative example.

<触媒金属担持酸素吸蔵材の酸素放出能>
表1の各実施例供試材、上記比較例供試材(蒸発乾固によるPd担持量;0.01質量%担持)、並びに比較例供試材(CeZr複合酸化物(CeO:ZrO=75:25(質量比)),Pd無担持)の計7種類の供試材について、熱処理(大気雰囲気において1000℃の温度に24時間保持)後の酸素放出能を、COを用いた昇温還元法(CO−TPR)により調べた。
<Oxygen releasing ability of catalytic metal-supported oxygen storage material>
Each example test material in Table 1, the above comparative sample material (Pd loading by evaporation to dryness; 0.01% by mass), and a comparative sample material (CeZr composite oxide (CeO 2 : ZrO 2) = 75: 25 (mass ratio)), Pd unsupported) for a total of 7 kinds of test materials, the oxygen release capacity after heat treatment (maintained at a temperature of 1000 ° C. for 24 hours in an air atmosphere) was increased using CO. It investigated by the temperature reduction method (CO-TPR).

すなわち、各供試材0.10gに、OとNとの混合ガス(O;20%)を100mL/分の流速で供給しながら、昇温させて600℃の温度に20分間保持した後、室温まで冷却する前処理(酸素吸蔵処理)を行なった。しかる後、2%COガス(残;N)を100mL/分の流速で供給しながら、20℃/分の速度で昇温してゆき、CO放出の温度による変化を計測した。そのCO放出量は供試材の酸素放出量に対応する。 That is, while supplying a mixed gas of O 2 and N 2 (O 2 ; 20%) to each sample material 0.10 g at a flow rate of 100 mL / min, the temperature was raised and held at a temperature of 600 ° C. for 20 minutes. Then, a pretreatment (oxygen occlusion treatment) for cooling to room temperature was performed. Thereafter, while supplying 2% CO gas (remaining; N 2 ) at a flow rate of 100 mL / min, the temperature was increased at a rate of 20 ° C./min, and changes due to the temperature of CO 2 release were measured. The CO 2 release amount corresponds to the oxygen release amount of the test material.

結果を図7に示す。Pdを担持した実施例及び比較例(蒸発乾固)の供試材は、Pd無担持の比較例供試材よりも、酸素放出量が多くなっている。このことは、Pdを担持した供試材の低温域での酸素放出にPdが関与していることを示す。     The results are shown in FIG. The test materials of Examples and Comparative Examples (evaporation to dryness) supporting Pd have a larger oxygen release amount than the Comparative Samples without Pd. This indicates that Pd is involved in oxygen release in the low temperature region of the test material supporting Pd.

また、実施例供試材はいずれも、特に、Pd担持量が0.01質量%よりも少ない4種の実施例においても、低温域(220℃以下)での酸素放出量が比較例供試材(Pd担持量0.01質量%)よりも多くなっている。これから、本発明のように、アンモニア共沈法によってPdをCeZr系複合酸化物に微量担持すると、低温での酸素放出能が高くなることがわかる。     In addition, all of the test materials in the examples, particularly in the four examples in which the amount of Pd supported is less than 0.01% by mass, the oxygen release amount in the low temperature range (220 ° C. or less) is the comparative test sample. It is more than the material (Pd loading 0.01% by mass). From this, it can be seen that when a small amount of Pd is supported on the CeZr-based composite oxide by the ammonia coprecipitation method as in the present invention, the oxygen releasing ability at a low temperature increases.

図8は上記7種類の供試材の酸素放出量を100℃毎に区切って見たグラフである。実施例供試材では、100℃以上200℃未満の温度範囲において、酸素放出量が比較例供試材よりも顕著に高くなっていることがわかる。この100℃以上200℃未満の温度範囲での実施例供試材の酸素放出量は、酸素原子として2.0×10μmol/g以上である。 FIG. 8 is a graph obtained by dividing the oxygen release amount of the above seven kinds of test materials every 100 ° C. It can be seen that in the example specimen, the oxygen release amount is significantly higher than that in the comparative example specimen in the temperature range of 100 ° C. or higher and lower than 200 ° C. The oxygen release amount of the example test material in the temperature range of 100 ° C. or more and less than 200 ° C. is 2.0 × 10 4 μmol / g or more as oxygen atoms.

図9A,図9Bは実施例供試材及び比較例供試材(蒸発乾固)の酸素放出機構のモデル図である。実施例供試材の場合(図9A)は、比較例供試材(図9B)に比べて、CeZr系複合酸化物粒子1に担持されているPd粒子2が微小であり、且つそれが高分散に担持されている考えられる。つまり、実施例供試材の場合、Pd粒子2がCeZr系複合酸化物粒子1に接触している箇所が多い。このため、実施例供試材では、比較例供試材よりも、Pdが酸素吸蔵・放出を効率良く媒介することになり、上記低温域での活性酸素の放出量が多くなっていると考えられる。     FIG. 9A and FIG. 9B are model diagrams of the oxygen release mechanism of the example test material and the comparative sample material (evaporation to dryness). In the case of the example test material (FIG. 9A), the Pd particles 2 supported on the CeZr-based composite oxide particles 1 are finer and higher than the comparative example test material (FIG. 9B). It is thought that it is carried in dispersion. That is, in the case of the example test material, there are many places where the Pd particles 2 are in contact with the CeZr-based composite oxide particles 1. For this reason, in the example test material, Pd mediates oxygen storage / release more efficiently than the comparative sample material, and it is considered that the amount of active oxygen released in the low temperature range is increased. It is done.

<触媒金属担持酸素吸蔵材の排ガス浄化性能>
表1に示す水洗回数(0回〜4回)が異なる5種類の実施例供試材、比較例供試材(蒸発乾固によるPd担持量;0.05質量%)、比較例供試材(蒸発乾固によるPd担持量;0.01質量%)、並びに比較例供試材(Pd無担持)について、リグ評価用ハニカム触媒を作成し、それらの排ガス浄化性能(ライトオフ温度T50及び高温浄化性能C400)を評価した。なお、比較例供試材(Pd担持量;0.05質量%)についてはライトオフ温度のみを測定した。
<Exhaust gas purification performance of catalytic metal-supported oxygen storage material>
5 types of test materials with different numbers of washing times (0 to 4 times) shown in Table 1, comparative sample materials (Pd loading by evaporation to dryness: 0.05 mass%), comparative sample materials (Pd loading by evaporation to dryness; 0.01% by mass) and comparative sample materials (no Pd supported), honeycomb catalysts for rig evaluation were prepared and their exhaust gas purification performance (light-off temperature T50 and high temperature) The purification performance C400) was evaluated. In addition, only the light-off temperature was measured about the comparative sample material (Pd carrying amount; 0.05 mass%).

すなわち、各供試材にバインダ及び水を合わせてスラリーを作り、このスラリーにハニカム担体を浸漬して引き上げ、余分に付着したスラリーを除去し、乾燥・焼成を行なうことにより、上記供試材を含有する触媒層がセル壁面に形成されたリグ評価用ハニカム触媒を作成した。ハニカム担体に付着させたスラリーの焼成条件は500℃×2時間(大気中)とした。ハニカム担体1L当たりの供試材担持量は80g/Lとした。バインダとしてはZrバインダを採用し、バインダ量は8.9g/Lとした。ハニカム担体としては、セル壁厚さ4mil(101.6×10−3mm)、1平方インチ(635.16mm)当たりのセル数400のものを採用した。 That is, a slurry is prepared by combining a binder and water with each sample material, and the honeycomb carrier is dipped in this slurry and pulled up, the excess adhering slurry is removed, and dried and fired to obtain the above sample material. A honeycomb catalyst for rig evaluation in which the contained catalyst layer was formed on the cell wall surface was prepared. The firing condition of the slurry adhered to the honeycomb carrier was 500 ° C. × 2 hours (in the air). The loading amount of the test material per liter of honeycomb carrier was 80 g / L. A Zr binder was used as the binder, and the binder amount was 8.9 g / L. As the honeycomb carrier, a cell having a cell wall thickness of 4 mil (101.6 × 10 −3 mm) and 400 cells per square inch (635.16 mm 2 ) was employed.

そうして、各ハニカム触媒について、熱エージング(大気雰囲気,1000℃×24時間)を施した後、モデル排ガス流通反応装置にセットし、プリコンディショニングを行なった後、T50及びC400を測定した。プリコンディショニングは、A/F=14.7のモデル排気ガス(表4参照)を空間速度120000/hで触媒に流しながら、ガス温度を30℃/分の速度で室温から上昇させていき、600℃の温度にして20分間流す、というものである。     Thus, each honeycomb catalyst was subjected to heat aging (atmospheric atmosphere, 1000 ° C. × 24 hours), set in a model exhaust gas flow reactor, preconditioned, and then T50 and C400 were measured. Preconditioning is performed by increasing the gas temperature from room temperature at a rate of 30 ° C./minute while flowing model exhaust gas (see Table 4) with A / F = 14.7 through the catalyst at a space velocity of 120,000 / h. A temperature of 20 ° C. is allowed to flow for 20 minutes.

排ガス浄化性能評価用のモデル排ガスはA/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表4に示す。また、空間速度SVは60000/h、昇温速度は30℃/分とした。     The model exhaust gas for exhaust gas purification performance evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. Table 4 shows the gas composition when A / F = 14.7, A / F = 13.8 and A / F = 15.6. The space velocity SV was 60000 / h, and the temperature elevation rate was 30 ° C./min.

T50(℃)は、モデル排ガス温度の上昇により、触媒下流で検出されるガスの各成分(HC、CO及びNOx)濃度が、触媒に流入するガスの各成分(HC、CO及びNOx)濃度の半分になった時点(すなわち浄化率が50%になった時点)の触媒入口ガス温度であって、触媒の低温浄化性能を表すものである。C400(%)は、触媒入口ガス温度400℃のときのガスの各成分(HC、CO及びNOx)の浄化率であって、触媒の高温浄化性能を表すものである。T50の結果を図10に、C400の結果を図11に示す。     T50 (° C.) indicates that the concentration of each component (HC, CO and NOx) of the gas detected downstream of the catalyst due to the rise of the model exhaust gas temperature is the concentration of each component (HC, CO and NOx) of the gas flowing into the catalyst. This is the catalyst inlet gas temperature at the time when it is halved (that is, when the purification rate is 50%) and represents the low-temperature purification performance of the catalyst. C400 (%) is the purification rate of each component (HC, CO and NOx) of the gas when the catalyst inlet gas temperature is 400 ° C., and represents the high temperature purification performance of the catalyst. The result of T50 is shown in FIG. 10, and the result of C400 is shown in FIG.

T50(図10)及びC400(図11)をみると、水洗回数が異なる5種類の実施例触媒はいずれも、比較例触媒よりも排ガス浄化性能がよい。特徴的なことは、Pd担持量が0.01質量%以下の4種類の実施例触媒は、比較例触媒(蒸発乾固によるPd担持量;0.01質量%)よりもPd担持量が少ないにも拘わらず、T50に関しては40℃以上も低くなり、C400に関しては10%前後、若しくはそれ以上に高くなっている点である。各々のPd担持量が0.05質量%の実施例と比較例とを比較しても、T50は実施例の方が40℃以上も低くなっている。     Looking at T50 (FIG. 10) and C400 (FIG. 11), all of the five types of example catalysts with different numbers of water washings have better exhaust gas purification performance than the comparative example catalyst. Characteristically, the four example catalysts having a Pd loading of 0.01% by mass or less have a smaller Pd loading than the comparative catalyst (Pd loading by evaporation to dryness; 0.01% by mass). Nevertheless, T50 is as low as 40 ° C. or higher, and C400 is as high as about 10% or higher. Even when each of the Pd loadings of 0.05% by mass is compared with the comparative example, T50 is lower by 40 ° C. or more in the example.

この結果から、本発明のように、アンモニア共沈法によってPdをCeZr系複合酸化物に微量担持することが、Pd担持量を大きく減らしつつ、排ガス浄化性能の飛躍的な向上に有効であることがわかる。また、5種類の実施例供試材をみると、Pd担持量が少なくなるに従って、T50が上昇し、またC400が低下する傾向が見られるものの、水洗回数が多くなってくると、すなわち、Pd担持量が零に近づくと、T50の上昇傾向及びC400の低下傾向が共に鈍り、一定の排ガス浄化性能に落ち着いている。但し、その排ガス浄化性能は比較例触媒よりも格段に良い。     From this result, it is effective to drastically improve the exhaust gas purification performance while greatly reducing the amount of Pd supported while supporting a small amount of Pd on the CeZr-based composite oxide by the ammonia coprecipitation method as in the present invention. I understand. Further, when looking at the five types of sample materials, T50 increases and C400 tends to decrease as the amount of Pd supported decreases, but when the number of water washing increases, that is, Pd When the loading amount approaches zero, both the increasing tendency of T50 and the decreasing tendency of C400 are dull, and the exhaust gas purification performance is settled down. However, the exhaust gas purification performance is much better than the comparative example catalyst.

このことは、アンモニア共沈法によってPdをCeZr系複合酸化物に担持させると、極微量のPdがCeZr系複合酸化物粒子上のシンタリングし難い特定の場所(一次粒子表面の凹陥部、一次粒子間)に高分散状態で配置されることを示唆している。     This is because, when Pd is supported on the CeZr-based composite oxide by the ammonia coprecipitation method, a very small amount of Pd is difficult to sinter on the CeZr-based composite oxide particles (the concave portion of the primary particle surface, the primary This suggests that they are arranged in a highly dispersed state (between particles).

なお、上記実施形態では触媒金属担持酸素吸蔵材を排ガス浄化用触媒に用いたが、本発明に係る触媒金属担持酸素吸蔵材を燃料電池用CO選択酸化触媒に利用すると、非常に少ないPd担持量で優れた酸素放出能及び高い触媒活性が得られ、改質ガスのCO濃度低減に有利になる。     In the above embodiment, the catalyst metal-supported oxygen storage material is used as an exhaust gas purification catalyst. However, when the catalyst metal-supported oxygen storage material according to the present invention is used as a fuel cell CO selective oxidation catalyst, a very small amount of Pd supported. With this, an excellent oxygen releasing ability and high catalytic activity can be obtained, which is advantageous for reducing the CO concentration of the reformed gas.

本発明に係る触媒金属担持酸素吸蔵材を模式的に示す斜視図である。It is a perspective view which shows typically the catalyst metal carrying | support oxygen storage material which concerns on this invention. 本発明に係る触媒金属担持酸素吸蔵材のTEM写真である。It is a TEM photograph of the catalyst metal carrying oxygen storage material concerning the present invention. 各種供試材の昇温酸化試験によるHO発生量を示すグラフ図である。It is a graph showing of H 2 O emissions by heating oxidation test various test materials. 水洗回数(Pd担持量)が異なる5種類の触媒金属担持酸素吸蔵材(フレッシュ品)の細孔分布を示すグラフ図である。It is a graph which shows the pore distribution of five types of catalyst metal carrying | support oxygen storage materials (fresh goods) from which the frequency | count of water washing (Pd carrying amount) differs. 水洗回数(Pd担持量)が異なる5種類の触媒金属担持酸素吸蔵材(熱処理品)の細孔分布を示すグラフ図である。It is a graph which shows the pore distribution of five types of catalyst metal carrying | support oxygen storage materials (heat treatment goods) from which the frequency | count of water washing (Pd carrying amount) differs. 本発明に係る触媒金属担持酸素吸蔵材及び比較例各々の熱処理後の細孔分布を示すグラフ図である。It is a graph which shows the pore distribution after the heat processing of each catalyst metal carrying | support oxygen storage material which concerns on this invention, and a comparative example. 各種供試材の酸素放出特性を示すグラフ図である。It is a graph which shows the oxygen release characteristic of various test materials. 各種供試材の酸素放出量を示すグラフ図である。It is a graph which shows the oxygen release amount of various test materials. 実施例及び比較例の酸素放出機構のモデル図である。It is a model figure of the oxygen release mechanism of an Example and a comparative example. 実施例触媒及び比較例触媒のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of an Example catalyst and a comparative example catalyst. 実施例触媒及び比較例触媒の排ガス高温浄化率を示すグラフ図である。It is a graph which shows the exhaust gas high temperature purification rate of an Example catalyst and a comparative example catalyst.

符号の説明Explanation of symbols

1 CeZr系複合酸化物粒子
2 Pd粒子
3 一次粒子
4 表面凹陥部
1 CeZr-based composite oxide particle 2 Pd particle 3 Primary particle 4 Surface recess

Claims (10)

CeZr系複合酸化物粒子に触媒金属としてPdが担持されている触媒金属担持酸素吸蔵材であって、
上記Pdの大半が、上記CeZr系複合酸化物粒子を構成する一次粒子表面の凹陥部に、又はその一次粒子間に配置されていることを特徴とする触媒金属担持酸素吸蔵材。
A catalyst metal-supported oxygen storage material in which Pd is supported as a catalyst metal on CeZr-based composite oxide particles,
A catalytic metal-supported oxygen storage material, wherein most of the Pd is disposed in a concave portion of a surface of a primary particle constituting the CeZr-based composite oxide particle or between the primary particles.
請求項1において、
上記Pdの担持量が0.05質量%以下であることを特徴とする触媒金属担持酸素吸蔵材。
In claim 1,
A catalytic metal-supported oxygen storage material, wherein the supported amount of Pd is 0.05% by mass or less.
Pdが触媒金属として担持されてなるCeZr系複合酸化物の一次粒子が凝集して二次粒子を形成してなり、
上記Pdの担持量が0.05質量%以下であることを特徴とする触媒金属担持酸素吸蔵材。
The primary particles of CeZr-based composite oxide in which Pd is supported as a catalyst metal aggregate to form secondary particles,
A catalytic metal-supported oxygen storage material, wherein the supported amount of Pd is 0.05% by mass or less.
請求項1又は請求項3において、
上記Pdの担持量が0.01質量%以下であることを特徴とする触媒金属担持酸素吸蔵材。
In claim 1 or claim 3,
A catalytic metal-supported oxygen storage material, wherein the supported amount of Pd is 0.01% by mass or less.
請求項1乃至請求項4のいずれか一において、
大気雰囲気において1000℃の温度に24時間保持した後の細孔径分布のピークが50nm以上70nm以下の範囲にあり、ピーク細孔径でのlog微分細孔容積が0.15cm/g以上であることを特徴とする触媒金属担持酸素吸蔵材。
In any one of Claims 1 thru | or 4,
The peak of the pore size distribution after being kept at a temperature of 1000 ° C. for 24 hours in the air atmosphere is in the range of 50 nm to 70 nm and the log differential pore volume at the peak pore size is 0.15 cm 3 / g or more. A catalyst metal-supported oxygen storage material.
請求項1乃至請求項5のいずれか一において、
100℃以上200℃未満での酸素放出量が酸素原子として2.0×10μmol/g以上であることを特徴とする触媒金属担持酸素吸蔵材。
In any one of Claims 1 thru | or 5,
A catalyst metal-supported oxygen storage material, wherein an oxygen release amount at 100 ° C. or more and less than 200 ° C. is 2.0 × 10 4 μmol / g or more as oxygen atoms.
CeZr系複合酸化物粒子に触媒金属としてPdが担持されている触媒金属担持酸素吸蔵材の製造方法であって、
Ceイオン、Zrイオン及びPdイオンを含む酸性溶液にアンモニア水を添加混合する工程と、
得られた沈殿物の脱水処理を行なう工程と、
得られた脱水物を焼成することにより、触媒金属担持酸素吸蔵材を得る工程とを備え、
上記脱水工程において、上記触媒金属担持酸素吸蔵材のPd担持量が0.05質量%以下となるように、上記Pdイオンに係る成分の一部を上澄み液と共に除去することを特徴とする触媒金属担持酸素吸蔵材の製造方法。
A method for producing a catalyst metal-supported oxygen storage material in which Pd is supported as a catalyst metal on CeZr-based composite oxide particles,
Adding and mixing aqueous ammonia to an acidic solution containing Ce ions, Zr ions and Pd ions;
A step of dehydrating the obtained precipitate;
A step of obtaining the catalyst metal-supported oxygen storage material by calcining the obtained dehydrated product,
In the dehydration step, a part of the component relating to the Pd ions is removed together with the supernatant so that the amount of Pd supported on the catalyst metal-supported oxygen storage material is 0.05% by mass or less. A method for producing a supported oxygen storage material.
請求項7において、
上記脱水工程においては、上記触媒金属担持酸素吸蔵材のPd担持量が0.01質量%以下となるように、上記Pdイオンに係る成分の一部を除去することを特徴とする触媒金属担持酸素吸蔵材の製造方法。
In claim 7,
In the dehydration step, part of the component relating to the Pd ions is removed so that the amount of Pd supported on the catalyst metal-supported oxygen storage material is 0.01% by mass or less. Production method of occlusion material.
請求項1乃至請求項6のいずれか一に記載されている触媒金属担持酸素吸蔵材を含有するエンジン排ガス浄化用触媒。     An engine exhaust gas purification catalyst containing the catalyst metal-supported oxygen storage material according to any one of claims 1 to 6. 請求項1乃至請求項6のいずれか一に記載されている触媒金属担持酸素吸蔵材を含有する燃料電池用CO選択酸化触媒。     A CO selective oxidation catalyst for a fuel cell, comprising the catalytic metal-supported oxygen storage material according to any one of claims 1 to 6.
JP2007247628A 2007-09-25 2007-09-25 Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same Pending JP2009078202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247628A JP2009078202A (en) 2007-09-25 2007-09-25 Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247628A JP2009078202A (en) 2007-09-25 2007-09-25 Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same

Publications (1)

Publication Number Publication Date
JP2009078202A true JP2009078202A (en) 2009-04-16

Family

ID=40653362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247628A Pending JP2009078202A (en) 2007-09-25 2007-09-25 Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same

Country Status (1)

Country Link
JP (1) JP2009078202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196100A1 (en) 2013-06-04 2014-12-11 新日本電工株式会社 Ceria-zirconia mixed oxide and method for producing same
JP2015047518A (en) * 2013-08-29 2015-03-16 マツダ株式会社 Particulate filter with catalyst and production method thereof
JP2021107061A (en) * 2019-12-27 2021-07-29 株式会社エスエヌジー Packed bed and circulation method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216509A (en) * 1997-02-10 1998-08-18 Daihatsu Motor Co Ltd Oxygen storing cerium-based compounded oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216509A (en) * 1997-02-10 1998-08-18 Daihatsu Motor Co Ltd Oxygen storing cerium-based compounded oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196100A1 (en) 2013-06-04 2014-12-11 新日本電工株式会社 Ceria-zirconia mixed oxide and method for producing same
US10010868B2 (en) 2013-06-04 2018-07-03 Nippon Denko Co., Ltd. Ceria-zirconia-based composite oxide and method of production of the same
JP2015047518A (en) * 2013-08-29 2015-03-16 マツダ株式会社 Particulate filter with catalyst and production method thereof
JP2021107061A (en) * 2019-12-27 2021-07-29 株式会社エスエヌジー Packed bed and circulation method using the same

Similar Documents

Publication Publication Date Title
CN106984309B (en) Exhaust gas purification catalyst and method for producing the same
JP2004174490A (en) Catalyst material and method for manufacturing the same
EP3250321A1 (en) Rhodium-containing catalysts for automotive emissions treatment
CN105792931A (en) Catalyst for purifying exhaust gas and manufacturing method thereof
JP2009078202A (en) Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same
JP2015157236A (en) Catalyst material for purifying engine exhaust gas, and particulate filter
CN111405941B (en) Catalyst for hydrogen production and catalyst for exhaust gas purification using same
WO2020100831A1 (en) Catalyst for purifying exhaust gas of gasoline engine, method for producing catalyst, and method for purifying exhaust gas in which same is used
JP6532825B2 (en) Exhaust gas purification catalyst
JP2014171971A (en) Exhaust gas purifying catalyst
JP2005334791A (en) Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst
JP2009078203A (en) Catalytic material for cleaning exhaust gas, method for manufacturing the same and catalyst using the same
JP5412789B2 (en) Exhaust gas purification catalyst
JP4714568B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2008238106A (en) Catalyst and method for treating exhaust gas
CN113056329B (en) Catalyst for purifying exhaust gas of diesel engine, method for producing the same, and method for purifying exhaust gas using the same
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP4577408B2 (en) Exhaust gas purification catalyst
JP5412788B2 (en) Exhaust gas purification catalyst
CN113226543A (en) Catalyst for exhaust gas oxidation, method for producing same, and exhaust gas oxidation method using same
JP6639309B2 (en) Exhaust gas purification catalyst
JP2007196150A (en) Oxygen occluding agent and catalyst for cleaning exhaust gas
JP2007136420A (en) Exhaust gas purification catalyst and method for producing the same
JP6044605B2 (en) Particulate filter with catalyst and method for producing the same
JP2015231598A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321