[go: up one dir, main page]

JP2009074388A - Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine - Google Patents

Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP2009074388A
JP2009074388A JP2007242504A JP2007242504A JP2009074388A JP 2009074388 A JP2009074388 A JP 2009074388A JP 2007242504 A JP2007242504 A JP 2007242504A JP 2007242504 A JP2007242504 A JP 2007242504A JP 2009074388 A JP2009074388 A JP 2009074388A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
abnormality
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242504A
Other languages
Japanese (ja)
Inventor
Yasushi Iwasaki
靖志 岩▲崎▼
Toru Kidokoro
徹 木所
Yutaka Sawada
裕 澤田
Fumihiko Nakamura
中村  文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007242504A priority Critical patent/JP2009074388A/en
Priority to PCT/IB2008/001913 priority patent/WO2009013600A2/en
Priority to US12/663,783 priority patent/US8744729B2/en
Priority to JP2010514179A priority patent/JP4836021B2/en
Publication of JP2009074388A publication Critical patent/JP2009074388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】気筒間空燃比のばらつき異常を好適に検出する。
【解決手段】水素を浄化可能な触媒要素の上下流側にそれぞれ第1の空燃比センサと第2の空燃比センサを設け、第1の空燃比センサ出力に基づいて主空燃比制御を実行し、第2の空燃比センサ出力に基づいて補助空燃比制御を実行する。補助空燃比制御のための制御量ΔVrgが所定速度で更新され、この制御量が所定の異常判定値ΔVrgsに達したとき気筒間空燃比ばらつき異常が発生したと判断する。異常検出時、異常判定値を含むようにガード範囲ΔVrgHが拡大されると共に、制御量の更新速度が増加される。これによりガード範囲と異常判定値との干渉を防止すると共に検出時間の長期化を防止できる。
【選択図】図11
Dispersion abnormality of an air-fuel ratio between cylinders is preferably detected.
A first air-fuel ratio sensor and a second air-fuel ratio sensor are provided on the upstream and downstream sides of a catalyst element capable of purifying hydrogen, respectively, and main air-fuel ratio control is executed based on the output of the first air-fuel ratio sensor. The auxiliary air-fuel ratio control is executed based on the second air-fuel ratio sensor output. When the control amount ΔVrg for the auxiliary air-fuel ratio control is updated at a predetermined speed and the control amount reaches a predetermined abnormality determination value ΔVrgs, it is determined that an abnormality in the air-fuel ratio variation between cylinders has occurred. When an abnormality is detected, the guard range ΔVrgH is expanded to include the abnormality determination value, and the update amount of the control amount is increased. As a result, interference between the guard range and the abnormality determination value can be prevented and the detection time can be prevented from prolonging.
[Selection] Figure 11

Description

本発明は、多気筒内燃機関の気筒間空燃比ばらつき異常検出装置に係り、特に、多気筒内燃機関において気筒間の空燃比が比較的大きくばらついていることを検出する装置に関する。   The present invention relates to an abnormality detection apparatus for variation in air-fuel ratio between cylinders of a multi-cylinder internal combustion engine, and more particularly to an apparatus for detecting that the air-fuel ratio between cylinders in a multi-cylinder internal combustion engine varies relatively large.

一般に、触媒を利用した排気浄化システムを備える内燃機関では、排気中有害成分の触媒による浄化を高効率で行うため、内燃機関で燃焼される混合気の空気と燃料との混合割合、すなわち空燃比のコントロールが欠かせない。こうした空燃比の制御を行うため、内燃機関の排気通路に空燃比センサを設け、これによって検出された空燃比を所定の目標空燃比に一致させるようフィードバック制御を実施している。   In general, in an internal combustion engine equipped with an exhaust gas purification system using a catalyst, a mixture ratio of air and fuel in an air-fuel mixture burned in the internal combustion engine, that is, an air-fuel ratio, is used to efficiently remove harmful components in exhaust gas with a catalyst. Control is essential. In order to perform such air-fuel ratio control, an air-fuel ratio sensor is provided in the exhaust passage of the internal combustion engine, and feedback control is performed so that the air-fuel ratio detected thereby coincides with a predetermined target air-fuel ratio.

一方、多気筒内燃機関においては、通常全気筒に対し同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても実際の空燃比が気筒間でばらつくことがある。このときばらつきの程度が小さければ、空燃比フィードバック制御で吸収可能であり、また触媒でも排気中有害成分を浄化処理可能なので、排気エミッションに影響を与えず、特に問題とならない。しかし、例えば一部の気筒の燃料噴射系が故障したりして、気筒間の空燃比が大きくばらつくと、排気エミッションを悪化させてしまい、問題となる。このような排気エミッションを悪化させる程の大きな空燃比ばらつきは異常として検出するのが望ましい。特に自動車用内燃機関の場合、排気エミッションの悪化した車両の走行を未然に防止するため、気筒間空燃比ばらつき異常を車載状態(オンボード)で検出することが要請されており、最近ではこれを法規制化する動きもある。   On the other hand, in a multi-cylinder internal combustion engine, air-fuel ratio control is normally performed using the same control amount for all cylinders. Therefore, even if air-fuel ratio control is executed, the actual air-fuel ratio may vary between cylinders. If the degree of variation is small at this time, it can be absorbed by air-fuel ratio feedback control, and harmful components in the exhaust gas can be purified by the catalyst, so that exhaust emissions are not affected and there is no particular problem. However, for example, if the fuel injection system of some cylinders breaks down and the air-fuel ratio between the cylinders varies greatly, exhaust emission deteriorates, which becomes a problem. It is desirable to detect such a large air-fuel ratio variation that deteriorates the exhaust emission as an abnormality. In particular, in the case of an internal combustion engine for automobiles, in order to prevent a vehicle running with deteriorated exhaust emissions from occurring, it is required to detect an abnormal variation in air-fuel ratio between cylinders in an on-board state. There is also a movement to regulate the law.

特許文献1には、空燃比フィードバック制御における空燃比フィードバック補正係数が所定値以上であるときに燃料供給系の不良を診断する装置が開示されている。   Patent Document 1 discloses an apparatus for diagnosing a failure of a fuel supply system when an air-fuel ratio feedback correction coefficient in air-fuel ratio feedback control is a predetermined value or more.

特開平4−318250号公報JP-A-4-318250

しかしながら、特許文献1に記載の装置では、燃料供給系全体に何等かの不良があることは診断できるものの、いずれか一部の気筒が他の気筒に対し空燃比ずれを起こしているというばらつき異常までは検出することができない。   However, in the apparatus described in Patent Document 1, it is possible to diagnose that there is any failure in the entire fuel supply system, but there is a variation abnormality in which any one of the cylinders causes an air-fuel ratio shift with respect to the other cylinders. Cannot be detected.

そこで、本発明はかかる事情に鑑みてなされたものであって、その目的は、気筒間空燃比のばらつき異常を好適に検出することができる多気筒内燃機関の気筒間空燃比ばらつき異常検出装置を提供することにある。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide an inter-cylinder air-fuel ratio variation abnormality detecting device for a multi-cylinder internal combustion engine that can suitably detect an abnormality in variation between cylinders. It is to provide.

本発明によれば、
多気筒内燃機関の排気通路に配置され、排気中に含まれる少なくとも水素を酸化して浄化する触媒要素と、
前記触媒要素の上流側の排気通路に配置され、前記触媒要素を通過していない排気の空燃比である第1の排気空燃比を検出する第1の空燃比センサと、
前記触媒要素の下流側の排気通路に配置され、前記触媒要素を通過した排気の空燃比である第2の排気空燃比を検出する第2の空燃比センサと、
前記第1の排気空燃比の検出値を所定の第1の目標空燃比に一致させるような主空燃比制御及び前記第2の排気空燃比の検出値を所定の第2の目標空燃比に一致させるような補助空燃比制御を実行する空燃比制御手段であって、前記第2の空燃比センサの出力に基づき前記補助空燃比制御のための制御量を所定の更新速度で更新する空燃比制御手段と、
前記制御量が、前記第2の排気空燃比をよりリッチ側に補正するような所定の異常判定値に達したとき、気筒間空燃比ばらつき異常の発生を検出するばらつき異常検出手段と
を備え、
前記空燃比制御手段は、前記制御量を所定のガード範囲内としつつ前記補助空燃比制御を実行し、且つ、前記ばらつき異常検出手段による気筒間空燃比ばらつき異常の検出を実行する際、前記ガード範囲を少なくとも前記異常判定値を含むように拡大すること、及び前記制御量の更新速度を上げることの少なくとも一つを実行する
ことを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置が提供される。
According to the present invention,
A catalytic element that is disposed in an exhaust passage of a multi-cylinder internal combustion engine and oxidizes and purifies at least hydrogen contained in the exhaust;
A first air-fuel ratio sensor that is disposed in an exhaust passage upstream of the catalyst element and detects a first exhaust air-fuel ratio that is an air-fuel ratio of exhaust that does not pass through the catalyst element;
A second air-fuel ratio sensor that is disposed in an exhaust passage downstream of the catalyst element and detects a second exhaust air-fuel ratio that is an air-fuel ratio of exhaust that has passed through the catalyst element;
The main air-fuel ratio control for matching the detected value of the first exhaust air-fuel ratio with a predetermined first target air-fuel ratio and the detected value of the second exhaust air-fuel ratio match with a predetermined second target air-fuel ratio Air-fuel ratio control means for executing such auxiliary air-fuel ratio control, wherein the control amount for the auxiliary air-fuel ratio control is updated at a predetermined update speed based on the output of the second air-fuel ratio sensor Means,
A variation abnormality detecting means for detecting the occurrence of an inter-cylinder air-fuel ratio variation abnormality when the control amount reaches a predetermined abnormality determination value that corrects the second exhaust air-fuel ratio to a richer side;
The air-fuel ratio control means executes the auxiliary air-fuel ratio control while keeping the control amount within a predetermined guard range, and the detection of the abnormality in the air-fuel ratio variation between cylinders by the variation abnormality detection means is performed. An apparatus for detecting an abnormality in an air-fuel ratio variation between cylinders of a multi-cylinder internal combustion engine, wherein at least one of expanding a range so as to include at least the abnormality determination value and increasing an update speed of the control amount is executed. Is provided.

一部の気筒で空燃比がリッチ側にずれると、排気中の水素量が極端に増加する傾向がある。一方、水素を含む排気が触媒要素を通過すると水素が酸化して浄化される。よって、触媒要素を通過せず、従って水素が浄化されていない排気の第1の排気空燃比の検出値は、触媒要素を通過して水素が浄化された排気の第2の排気空燃比の検出値よりも、水素の影響でリッチ側にずれる。逆に言えば、第2の排気空燃比検出値は、第1の排気空燃比検出値よりも、水素の影響でリーン側にずれる。そこでこのリーン側へのずれ(乖離)状態に基づき、気筒間空燃比ばらつき異常が検出される。このリーン側へのずれ量は、一部気筒の空燃比のみがリッチ側にずれているときの方が、全気筒が等価的に一律にずれているときよりも顕著である。なぜなら前者の方が後者より排気中の水素量が多いからである。よって、かかるリーン側へのずれ状態を監視することにより、全気筒が一律にずれているときと区別して気筒間空燃比ばらつき異常を検出できる。空燃比センサに高い応答性を必要としないなど、実用性が非常に高く、高精度且つ好適にばらつき異常検出が可能である。   When the air-fuel ratio shifts to the rich side in some cylinders, the amount of hydrogen in the exhaust tends to increase extremely. On the other hand, when exhaust gas containing hydrogen passes through the catalyst element, hydrogen is oxidized and purified. Therefore, the detected value of the first exhaust air / fuel ratio of the exhaust gas that does not pass through the catalyst element and therefore hydrogen is not purified is the detection value of the second exhaust air / fuel ratio of the exhaust gas that has passed through the catalyst element and purified hydrogen. It shifts to the rich side due to the influence of hydrogen. In other words, the second exhaust air / fuel ratio detected value is shifted to the lean side due to the influence of hydrogen than the first exhaust air / fuel ratio detected value. Therefore, an abnormal variation in the air-fuel ratio between cylinders is detected on the basis of the leaning (divergence) state. The amount of shift to the lean side is more conspicuous when only the air-fuel ratio of some cylinders is shifted to the rich side than when all the cylinders are equally shifted. This is because the former has more hydrogen in the exhaust than the latter. Therefore, by monitoring the lean state, it is possible to detect an abnormality in the air-fuel ratio variation between the cylinders, as distinguished from when all the cylinders are uniformly displaced. The air-fuel ratio sensor does not require high responsiveness, so that it is very practical and can detect variation abnormality with high accuracy and suitably.

一部気筒のインジェクタの故障等により気筒間空燃比ばらつき異常が発生すると、第2の空燃比センサが継続的にリーンな値を検出するので、補助空燃比制御のための制御量は、このリーンずれを解消すべくリッチ側に補正するような値となる。そこでこれを利用し、前記制御量が、第2の排気空燃比をよりリッチ側に補正するような所定値以上の値となったとき、気筒間空燃比ばらつき異常が発生していることを検出する。   When an abnormality in the air-fuel ratio variation between cylinders occurs due to an injector failure or the like in some cylinders, the second air-fuel ratio sensor continuously detects a lean value. The value is corrected to the rich side to eliminate the shift. Therefore, using this, when the control amount becomes a value greater than or equal to a predetermined value that corrects the second exhaust air-fuel ratio to a richer side, it is detected that an abnormality in the air-fuel ratio variation between cylinders has occurred. To do.

ところで、前記制御量のガード範囲を定めると、このガード範囲と、前記制御量の比較対象である異常判定値とが干渉し、制御量が異常判定値に到達できない場合がある。一方、制御量が次第に更新されていくものであるため、実際に異常判定値に到達するまでに時間がかかるという問題がある。そこでこれらの問題を解消すべく、ガード範囲を少なくとも異常判定値を含むように拡大すること、及び制御量の更新速度を上げることの少なくとも一つが実行される。これにより好適に空燃比ばらつき異常を検出することができる。   By the way, when the guard range of the control amount is determined, the guard range may interfere with the abnormality determination value that is the comparison target of the control amount, and the control amount may not reach the abnormality determination value. On the other hand, since the control amount is gradually updated, there is a problem that it takes time to actually reach the abnormality determination value. In order to solve these problems, at least one of expanding the guard range to include at least the abnormality determination value and increasing the update rate of the control amount is executed. As a result, it is possible to suitably detect an abnormality in the air-fuel ratio variation.

好ましくは、前記ばらつき異常検出手段による気筒間空燃比ばらつき異常の検出の前に、気筒間空燃比ばらつき異常の発生の可能性があることを予備的に検出する予備検出手段を備え、
前記ばらつき異常検出手段は、前記予備検出手段により気筒間空燃比ばらつき異常の発生の可能性があることが検出されたときに、気筒間空燃比ばらつき異常の検出を実行する。
Preferably, before the detection of the variation abnormality in the air-fuel ratio between the cylinders by the variation abnormality detection means, a preliminary detection means for preliminarily detecting that there is a possibility of occurrence of an abnormality in the variation in the air-fuel ratio between the cylinders,
The variation abnormality detecting means detects the abnormality between the cylinder air-fuel ratios when it is detected by the preliminary detection means that there is a possibility of occurrence of the abnormality in the air-fuel ratio variation between the cylinders.

好ましくは、前記予備検出手段は、前記第1の空燃比センサの出力と前記第1の目標空燃比相当のセンサ出力との差を所定時間積算して得られる積算値が所定値を超えたとき、前記第1の目標空燃比よりもリーン側の第2の排気空燃比が前記第2の空燃比センサによって所定時間以上検出されたとき、及び前記触媒要素の吸蔵酸素量と放出酸素量との比又は差が所定値より大きいときの少なくとも一つであるとき、気筒間空燃比ばらつき異常の発生の可能性があることを検出する。   Preferably, the preliminary detection means has an integrated value obtained by integrating a difference between an output of the first air-fuel ratio sensor and a sensor output corresponding to the first target air-fuel ratio for a predetermined time exceeding a predetermined value. When the second exhaust air-fuel ratio leaner than the first target air-fuel ratio is detected for a predetermined time or more by the second air-fuel ratio sensor, and between the stored oxygen amount and the released oxygen amount of the catalyst element When at least one of the ratio or difference is greater than a predetermined value, it is detected that there is a possibility of occurrence of abnormal variation in air-fuel ratio between cylinders.

本発明によれば、気筒間空燃比のばらつき異常を好適に検出することができるという、優れた効果が発揮される。   According to the present invention, an excellent effect is exhibited that it is possible to suitably detect abnormality in variation in the air-fuel ratio between cylinders.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係る内燃機関の概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストンを往復移動させることにより動力を発生する。本実施形態の内燃機関1は自動車用の多気筒内燃機関であり、より具体的には並列4気筒の火花点火式内燃機関即ちガソリンエンジンである。但し本発明が適用可能な内燃機関はこのようなものに限られず、多気筒内燃機関であれば気筒数、形式等は特に限定されない。   FIG. 1 is a schematic view of an internal combustion engine according to the present embodiment. As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air in a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston in the combustion chamber 3. . The internal combustion engine 1 of the present embodiment is a multi-cylinder internal combustion engine for automobiles, more specifically, a parallel 4-cylinder spark ignition internal combustion engine, that is, a gasoline engine. However, the internal combustion engine to which the present invention is applicable is not limited to this, and the number of cylinders, the type, and the like are not particularly limited as long as it is a multi-cylinder internal combustion engine.

図示しないが、内燃機関1のシリンダヘッドには吸気ポートを開閉する吸気弁と、排気ポートを開閉する排気弁とが気筒ごとに配設されており、各吸気弁および各排気弁はカムシャフトによって開閉させられる。シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   Although not shown, the cylinder head of the internal combustion engine 1 is provided with an intake valve for opening and closing the intake port and an exhaust valve for opening and closing the exhaust port for each cylinder. Each intake valve and each exhaust valve is provided by a camshaft. Can be opened and closed. A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管4を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式のスロットルバルブ10とが組み込まれている。吸気ポート、枝管、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 which is an intake air collecting chamber via a branch pipe 4 for each cylinder. An intake pipe 13 is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the branch pipe, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁の開弁時に燃焼室3に吸入され、ピストンで圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve is opened, compressed by the piston, and ignited and burned by the spark plug 7.

一方、各気筒の排気ポートは排気マニフォールド14に接続される。排気マニフォールド14は、その上流部をなす気筒毎の枝管14aと、その下流部をなす排気集合部14bとからなる。排気集合部14bの下流側には排気管6が接続されている。排気ポート、排気マニフォールド14及び排気管6により排気通路が形成される。排気管6には三元触媒からなる触媒11が取り付けられている。この触媒11が本発明にいう触媒要素をなしている。触媒11の上流側及び下流側にそれぞれ排気ガスの空燃比を検出するための第1及び第2の空燃比センサ、即ち触媒前センサ17及び触媒後センサ18が設置されている。これら触媒前センサ17及び触媒後センサ18は、触媒11の直前及び直後の位置の排気通路に設置され、排気中の酸素濃度に基づいて空燃比を検出する。このように、排気合流部となる触媒上流側の排気通路に単一の触媒前センサ17が設置されている。   On the other hand, the exhaust port of each cylinder is connected to the exhaust manifold 14. The exhaust manifold 14 includes a branch pipe 14a for each cylinder forming an upstream portion thereof and an exhaust collecting portion 14b forming a downstream portion thereof. An exhaust pipe 6 is connected to the downstream side of the exhaust collecting portion 14b. An exhaust passage is formed by the exhaust port, the exhaust manifold 14 and the exhaust pipe 6. A catalyst 11 made of a three-way catalyst is attached to the exhaust pipe 6. This catalyst 11 constitutes the catalyst element referred to in the present invention. First and second air-fuel ratio sensors for detecting the air-fuel ratio of the exhaust gas, that is, a pre-catalyst sensor 17 and a post-catalyst sensor 18 are installed on the upstream side and the downstream side of the catalyst 11, respectively. The pre-catalyst sensor 17 and the post-catalyst sensor 18 are installed in the exhaust passage immediately before and after the catalyst 11 and detect the air-fuel ratio based on the oxygen concentration in the exhaust gas. In this way, the single pre-catalyst sensor 17 is installed in the exhaust passage on the upstream side of the catalyst, which becomes the exhaust merging portion.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ16、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。なおスロットル開度は通常アクセル開度に応じた開度に制御される。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst sensor 17, and the post-catalyst sensor 18, the ECU 20 includes a crank angle sensor 16 that detects the crank angle of the internal combustion engine 1 and an accelerator that detects the accelerator opening, as shown in the figure. The opening sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc. The throttle opening is normally controlled to an opening corresponding to the accelerator opening.

触媒11は、これに流入する排気の空燃比A/Fが理論空燃比(ストイキ、例えばA/F=14.6)近傍のときに排気中の有害成分であるNOx ,HCおよびCOを同時に浄化する。この三者を同時に高効率で浄化できる空燃比の幅(ウィンドウ)は比較的狭い。加えて、触媒11は、排気中に混入する水素H2も酸化(燃焼)して浄化する。 The catalyst 11 simultaneously purifies NOx, HC and CO, which are harmful components in the exhaust gas, when the air-fuel ratio A / F of the exhaust gas flowing into the catalyst 11 is near the stoichiometric air fuel ratio (stoichiometric, for example, A / F = 14.6). To do. The air-fuel ratio width (window) that can simultaneously purify these three with high efficiency is relatively narrow. In addition, the catalyst 11 oxidizes (combusts) and purifies hydrogen H 2 mixed in the exhaust gas.

触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能である。図2には触媒前センサ17の出力特性を示す。図示するように、触媒前センサ17は、検出した排気空燃比に比例した大きさの電圧信号Vfを出力する。排気空燃比がストイキであるときの出力電圧はVreff(例えば約3.3V)であり、このストイキを境に空燃比−電圧特性の傾きが変化する。   The pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, and can continuously detect an air-fuel ratio over a relatively wide range. FIG. 2 shows the output characteristics of the pre-catalyst sensor 17. As shown in the figure, the pre-catalyst sensor 17 outputs a voltage signal Vf having a magnitude proportional to the detected exhaust air-fuel ratio. The output voltage when the exhaust air-fuel ratio is stoichiometric is Vreff (for example, about 3.3 V), and the slope of the air-fuel ratio-voltage characteristic changes with this stoichiometric boundary.

他方、触媒後センサ18は所謂O2センサからなり、ストイキを境に出力値が急変する特性を持つ。図3には触媒後センサ18の出力特性を示す。図示するように、触媒後センサ18の出力電圧Vrはストイキを境に過渡的に変化し、検出した排気空燃比がストイキよりリーンのときには0.1V程度の低い電圧を示し、検出した排気空燃比がストイキよりリッチのときには0.9V程度の高い電圧を示す。これらのほぼ中間の電圧Vrefr=0.45Vをストイキ相当値とし、センサ出力電圧がVrefrより高いときには排気空燃比はストイキよりリッチ、センサ出力電圧がVrefrより低いときには排気空燃比はストイキよりリーンというように、排気空燃比を検出している。 On the other hand, the post-catalyst sensor 18 is a so-called O 2 sensor, and has a characteristic that the output value changes suddenly with the stoichiometric boundary. FIG. 3 shows the output characteristics of the post-catalyst sensor 18. As shown in the figure, the output voltage Vr of the post-catalyst sensor 18 changes transiently at the stoichiometric boundary, and shows a low voltage of about 0.1 V when the detected exhaust air-fuel ratio is leaner than stoichiometric. When is richer than stoichiometric, it shows a high voltage of about 0.9V. A substantially intermediate voltage Vrefr = 0.45V is set as a stoichiometric equivalent value. When the sensor output voltage is higher than Vrefr, the exhaust air-fuel ratio is richer than stoichiometric, and when the sensor output voltage is lower than Vrefr, the exhaust air-fuel ratio is leaner than stoichiometric. In addition, the exhaust air-fuel ratio is detected.

燃焼室3から排出された排気中に水素が含まれている場合、触媒11を通過する前の、水素が含まれた排気ガスの空燃比即ち第1の排気空燃比が、第1の空燃比センサである触媒前センサ17によって検出される。一方、この水素を含む排気ガスが触媒11を通過すると、排気中の水素が触媒11によって浄化される。この触媒11を通過した後の、水素が浄化された排気ガスの空燃比即ち第2の排気空燃比が、第2の空燃比センサである触媒後センサ18によって検出される。   When the exhaust gas discharged from the combustion chamber 3 contains hydrogen, the air-fuel ratio of the exhaust gas containing hydrogen before passing through the catalyst 11, that is, the first exhaust air-fuel ratio is the first air-fuel ratio. It is detected by the pre-catalyst sensor 17 which is a sensor. On the other hand, when the exhaust gas containing hydrogen passes through the catalyst 11, the hydrogen in the exhaust is purified by the catalyst 11. After passing through the catalyst 11, the air-fuel ratio of the exhaust gas from which hydrogen has been purified, that is, the second exhaust air-fuel ratio, is detected by a post-catalyst sensor 18, which is a second air-fuel ratio sensor.

なお、触媒後センサ18のセンサ素子には触媒が設けられており、この触媒即ちセンサ触媒によっても排気中水素の浄化が可能である。よって、センサ触媒も本発明にいう触媒要素の一部をなし、仮に触媒11で未浄化の水素があれば、このセンサ触媒によって未浄化水素を浄化し、水素浄化後の排気空燃比を触媒後センサ18で検出することができる。もっとも、触媒後センサ18の触媒は任意であり、省略も可能である。センサ触媒は触媒前センサ17には設けられていない。   The sensor element of the post-catalyst sensor 18 is provided with a catalyst, and this catalyst, that is, the sensor catalyst can also purify hydrogen in the exhaust gas. Therefore, the sensor catalyst also constitutes a part of the catalyst element referred to in the present invention. If there is unpurified hydrogen in the catalyst 11, unpurified hydrogen is purified by this sensor catalyst, and the exhaust air / fuel ratio after hydrogen purification is reduced after the catalyst. It can be detected by the sensor 18. However, the catalyst of the post-catalyst sensor 18 is arbitrary and can be omitted. The sensor catalyst is not provided in the pre-catalyst sensor 17.

触媒11に流入する排気ガスの空燃比がストイキ近傍に制御されるように、本実施形態では以下のような空燃比制御がECU20により実行される。この空燃比制御は、触媒前センサ17によって検出された排気空燃比を所定の第1の目標空燃比に一致させるような主空燃比制御と、触媒後センサ18によって検出された排気空燃比を所定の第2の目標空燃比に一致させるような補助空燃比制御とからなる。第1の目標空燃比及び第2の目標空燃比は理論空燃比に等しく設定されている。   In the present embodiment, the ECU 20 performs the following air-fuel ratio control so that the air-fuel ratio of the exhaust gas flowing into the catalyst 11 is controlled near the stoichiometric range. In this air-fuel ratio control, the main air-fuel ratio control for matching the exhaust air-fuel ratio detected by the pre-catalyst sensor 17 with a predetermined first target air-fuel ratio and the exhaust air-fuel ratio detected by the post-catalyst sensor 18 are predetermined. The auxiliary air-fuel ratio control is made to coincide with the second target air-fuel ratio. The first target air-fuel ratio and the second target air-fuel ratio are set equal to the theoretical air-fuel ratio.

図4に空燃比制御ルーチンを示す。このルーチンはECU20により1エンジンサイクル(=720°クランク角)毎に繰り返し実行される。   FIG. 4 shows an air-fuel ratio control routine. This routine is repeatedly executed by the ECU 20 every engine cycle (= 720 ° crank angle).

まずステップS101では、燃焼室内混合気の空燃比をストイキとするような基本の燃料噴射量即ち基本噴射量Qbが算出される。基本噴射量Qbは例えば、エアフローメータにより検出された吸入空気量Gaに基づき、式:Qb=Ga/14.6により算出される。   First, in step S101, a basic fuel injection amount, that is, a basic injection amount Qb is calculated so that the air-fuel ratio of the mixture in the combustion chamber is stoichiometric. The basic injection amount Qb is calculated by, for example, an expression: Qb = Ga / 14.6 based on the intake air amount Ga detected by the air flow meter.

ステップS102では触媒前センサ17の出力Vfが取得される。ステップS103では、このセンサ出力Vfとストイキ相当センサ出力Vreff(図2参照)との差、即ち触媒前センサ出力差ΔVf=Vf−Vreffが算出される。   In step S102, the output Vf of the pre-catalyst sensor 17 is acquired. In step S103, a difference between the sensor output Vf and the stoichiometric equivalent sensor output Vref (see FIG. 2), that is, a pre-catalyst sensor output difference ΔVf = Vf−Vref is calculated.

ステップS104では、この触媒前センサ出力差ΔVfに基づき、図5に示したようなマップ(関数でもよい、以下同様)から主空燃比補正量(補正係数)Kfが算出される。触媒前センサ出力差ΔVf及び主空燃比補正量Kfは、主空燃比制御のための制御量をなす。例えばゲインをPfとするとKf=Pf×ΔVfで表される。そしてステップS105では、図6に示す別ルーチンで設定された補助空燃比補正量Krの値が取得される。最後に、ステップS106にて、インジェクタ12から噴射すべき最終的な燃料噴射量即ち最終噴射量Qfnlが式:Qfnl=Kf×Qb+Krにより算出される。   In step S104, based on the pre-catalyst sensor output difference ΔVf, the main air-fuel ratio correction amount (correction coefficient) Kf is calculated from a map (which may be a function or the same below) as shown in FIG. The pre-catalyst sensor output difference ΔVf and the main air-fuel ratio correction amount Kf form control amounts for main air-fuel ratio control. For example, when the gain is Pf, it is expressed by Kf = Pf × ΔVf. In step S105, the value of the auxiliary air-fuel ratio correction amount Kr set by another routine shown in FIG. 6 is acquired. Finally, in step S106, the final fuel injection amount to be injected from the injector 12, that is, the final injection amount Qfnl is calculated by the formula: Qfnl = Kf × Qb + Kr.

図5のマップによれば、触媒前センサ出力Vfがストイキ相当センサ出力Vreffより大きい(ΔVf>0)ほど、即ち実際の触媒前空燃比がストイキからリーン側に離れるほど、1に対しより大きな補正量Kfが得られ、基本噴射量Qbは増量補正される。反対に、触媒前センサ出力Vfがストイキ相当センサ出力Vreffより小さい(ΔVf<0)ほど、即ち実際の触媒前空燃比がストイキからリッチ側に離れるほど、1に対しより小さな補正量Kfが得られ、基本噴射量Qbは減量補正される。こうして、触媒前センサ17によって検出された触媒前空燃比をストイキに一致させるような主空燃比フィードバック制御が実行される。   According to the map of FIG. 5, the larger the pre-catalyst sensor output Vf is larger than the stoichiometric equivalent sensor output Vref (ΔVf> 0), that is, the greater the actual pre-catalyst air-fuel ratio is away from the stoichiometric side, the larger the correction is made to 1. The amount Kf is obtained, and the basic injection amount Qb is corrected to be increased. Conversely, the smaller the pre-catalyst sensor output Vf is smaller than the stoichiometric equivalent sensor output Vreff (ΔVf <0), that is, the more the actual pre-catalyst air-fuel ratio is further away from stoichiometric, the smaller the correction amount Kf is obtained for 1. The basic injection amount Qb is corrected to decrease. In this way, main air-fuel ratio feedback control is performed so that the pre-catalyst air-fuel ratio detected by the pre-catalyst sensor 17 matches the stoichiometry.

ステップS106で得られた最終噴射量Qfnlの値は、全気筒に対し一律に用いられる。即ち、1エンジンサイクルの間、最終噴射量Qfnlに等しい量の燃料が各気筒のインジェクタ12から順次噴射され、次のエンジンサイクルでは新たに計算された最終噴射量Qfnlの燃料が各気筒のインジェクタ12から順次噴射される。   The value of the final injection amount Qfnl obtained in step S106 is uniformly used for all cylinders. That is, during one engine cycle, an amount of fuel equal to the final injection amount Qfnl is sequentially injected from the injector 12 of each cylinder, and in the next engine cycle, the fuel of the newly calculated final injection amount Qfnl is injected into the injector 12 of each cylinder. It is injected sequentially.

なお、周知のように、最終噴射量Qfnlの算出に当たっては他の補正(水温補正、バッテリ電圧補正等)を追加することも可能である。   As is well known, other corrections (water temperature correction, battery voltage correction, etc.) can be added when calculating the final injection amount Qfnl.

図6には補助空燃比補正量の設定ルーチンを示す。このルーチンはECU20により所定の演算周期で繰り返し実行される。   FIG. 6 shows a routine for setting the auxiliary air-fuel ratio correction amount. This routine is repeatedly executed by the ECU 20 at a predetermined calculation cycle.

まずステップS201では、ECU20に装備されたタイマのカウントが実行され、ステップS202では、触媒後センサ17の出力Vrが取得される。ステップS203では、このセンサ出力Vrとストイキ相当センサ出力Vrefr(図3参照)との差、即ち触媒後センサ出力差ΔVr=Vrefr−Vrが算出され、この触媒後センサ出力差ΔVrが前回積算値に積算される。図7には触媒後センサ出力差ΔVrとその積算の様子を示す。   First, in step S201, the timer provided in the ECU 20 is counted, and in step S202, the output Vr of the post-catalyst sensor 17 is acquired. In step S203, a difference between the sensor output Vr and the stoichiometric equivalent sensor output Vrefr (see FIG. 3), that is, a post-catalyst sensor output difference ΔVr = Vrefr−Vr is calculated, and the post-catalyst sensor output difference ΔVr is set to the previous integrated value. Accumulated. FIG. 7 shows the post-catalyst sensor output difference ΔVr and its integration.

ステップS204では、タイマ値が所定値tsを超えたか否かが判断される。所定値tsを超えていなければルーチンが終了される。   In step S204, it is determined whether or not the timer value exceeds a predetermined value ts. If the predetermined value ts is not exceeded, the routine is terminated.

タイマ値が所定値tsを超えている場合、ステップS205で、この時点での触媒後センサ出力差積算値ΣΔVrが、触媒後センサ学習値ΔVrgとして更新記憶される。そしてステップS206で、この触媒後センサ学習値ΔVrgに基づき、図8に示したようなマップから、補助空燃比補正量Krが算出され、この補助空燃比補正量Krが更新記憶される。触媒後センサ学習値ΔVrg及び補助空燃比補正量Krは、補助空燃比制御のための制御量をなす。例えばゲインをPrとするとKr=Pr×ΔVrgで表される。最後に、ステップS207にて、触媒後センサ出力差積算値ΣΔVr及びタイマがリセットされる。   If the timer value exceeds the predetermined value ts, the post-catalyst sensor output difference integrated value ΣΔVr at this time is updated and stored as the post-catalyst sensor learning value ΔVrg in step S205. In step S206, the auxiliary air-fuel ratio correction amount Kr is calculated from the map as shown in FIG. 8 based on the post-catalyst sensor learning value ΔVrg, and the auxiliary air-fuel ratio correction amount Kr is updated and stored. The post-catalyst sensor learning value ΔVrg and the auxiliary air-fuel ratio correction amount Kr form a control amount for auxiliary air-fuel ratio control. For example, when the gain is Pr, it is expressed by Kr = Pr × ΔVrg. Finally, in step S207, the post-catalyst sensor output difference integrated value ΣΔVr and the timer are reset.

触媒後センサ出力差ΔVrを所定時間tsの間積算する理由は、触媒後センサ出力Vrのストイキ相当センサ出力Vrefrに対する時間平均的なズレ量を検知するためである。積算時間を規定する所定値tsは1エンジンサイクルより遙かに長い時間であり、よって触媒後センサ学習値ΔVrg及び補助空燃比補正量Krの更新は1エンジンサイクルより遙かに長い周期で行われる。   The reason why the post-catalyst sensor output difference ΔVr is integrated for a predetermined time ts is to detect a time-average shift amount of the post-catalyst sensor output Vr with respect to the stoichiometric equivalent sensor output Vrefr. The predetermined value ts that defines the integration time is much longer than one engine cycle. Therefore, the post-catalyst sensor learning value ΔVrg and the auxiliary air-fuel ratio correction amount Kr are updated in a period much longer than one engine cycle. .

図8のマップによれば、触媒後センサ出力Vrが時間平均的にストイキ相当センサ出力Vrefrより小さい(ΔVrg>0)ほど、即ち実際の触媒後空燃比がストイキからリーン側に離れるほど、0に対しより大きな補正量Krが得られ、最終噴射量算出の際に基本噴射量Qbは増量補正される。反対に、触媒後センサ出力Vrが時間平均的にストイキ相当センサ出力Vrefrより大きい(ΔVrg<0)ほど、即ち実際の触媒後空燃比がストイキからリッチ側に離れるほど、0に対しより小さな補正量Krが得られ、基本噴射量Qbは減量補正される。こうして、触媒後センサ18によって検出された触媒後空燃比をストイキに一致させるような補助空燃比フィードバック制御が実行される。触媒前センサ17の劣化等の理由で主空燃比フィードバック制御を実行してもその結果がストイキからズレることがあるので、このズレを補正する目的で、補助空燃比フィードバック制御が実行される。   According to the map of FIG. 8, the post-catalyst sensor output Vr becomes zero as the time average of the post-catalyst sensor output Vrr is smaller than the stoichiometric equivalent sensor output Vrefr (ΔVrg> 0), that is, the actual post-catalyst air-fuel ratio is further away from the stoichiometric side. On the other hand, a larger correction amount Kr is obtained, and the basic injection amount Qb is increased and corrected when the final injection amount is calculated. On the contrary, as the post-catalyst sensor output Vr is larger than the stoichiometric equivalent sensor output Vrefr on a time average (ΔVrg <0), that is, as the actual post-catalyst air-fuel ratio moves away from the stoichiometric side, the correction amount becomes smaller. Kr is obtained, and the basic injection amount Qb is corrected to decrease. In this way, auxiliary air-fuel ratio feedback control is performed so that the post-catalyst air-fuel ratio detected by the post-catalyst sensor 18 matches the stoichiometry. Even if the main air-fuel ratio feedback control is executed for reasons such as deterioration of the pre-catalyst sensor 17, the result may deviate from the stoichiometric condition. Therefore, the auxiliary air-fuel ratio feedback control is executed for the purpose of correcting this deviation.

なお、この例では新たな学習値ΔVrg及び補正量Krが算出される度にこれらの値自身で更新を行うようにしたが、なまし等の平均化処理を行って更新速度を遅らせるようにしてもよい。   In this example, every time a new learning value ΔVrg and correction amount Kr are calculated, these values are updated by themselves. However, an averaging process such as annealing is performed to delay the update rate. Also good.

次に、本実施形態における気筒間空燃比ばらつき異常検出について説明する。   Next, the abnormality detection of the variation in air-fuel ratio between cylinders in this embodiment will be described.

特許文献1にも開示されているように、インジェクタ等の燃料供給系やエアフローメータ等の空気系に全気筒に影響を及ぼすような異常が発生した場合、主空燃比制御におけるフィードバック補正量の絶対値が大きくなるため、これをECUでモニタすることでその異常を検出、診断できる。例えば、燃料噴射量が全体的にストイキ相当量より5%ずれている(即ち、全ての気筒において燃料噴射量がストイキ相当量より5%ずつずれている)と、主空燃比制御におけるフィードバック補正量はその5%ズレを補正するような値、即ち−5%相当の補正量となり、これにより燃料供給系若しくは空気系が5%ずれていることを検出することができる。そしてこのフィードバック補正量が比較的大きい所定値以上となったときに、燃料供給系若しくは空気系が全体として異常であることを検出することができる。本実施形態においてもこのような異常検出手段、即ち、主空燃比補正量Kf又は触媒前センサ出力差ΔVfに基づく別の異常検出手段が装備されている。   As disclosed in Patent Document 1, if an abnormality that affects all cylinders occurs in the fuel supply system such as an injector or the air system such as an air flow meter, the absolute value of the feedback correction amount in the main air-fuel ratio control Since the value increases, the abnormality can be detected and diagnosed by monitoring this with the ECU. For example, if the fuel injection amount is totally deviated by 5% from the stoichiometric amount (that is, the fuel injection amount is deviated by 5% from the stoichiometric amount in all cylinders), the feedback correction amount in the main air-fuel ratio control Is a value for correcting the 5% deviation, that is, a correction amount corresponding to -5%, and it is possible to detect that the fuel supply system or the air system is shifted by 5%. When the feedback correction amount becomes a relatively large predetermined value or more, it can be detected that the fuel supply system or the air system is abnormal as a whole. Also in this embodiment, such an abnormality detection means, that is, another abnormality detection means based on the main air-fuel ratio correction amount Kf or the pre-catalyst sensor output difference ΔVf is provided.

一方、燃料供給系や空気系が全体的にずれているのではなく、気筒間にばらつき(インバランス:imbalance)が発生している場合を考える。図9は、1気筒(#1気筒)のみが他の3気筒(#2〜#4気筒)よりも空燃比リッチ側にずれている場合を示す。例えば、#1気筒のインジェクタに異常が発生し、#1気筒の燃料噴射量がストイキ相当から大きく20%ずれており、他方、#2〜#4気筒では正常で、燃料噴射量がストイキ相当であるとする。このときトータルで見れば20%のずれであり(20+0+0+0=20)、これは、全気筒が5%ずつずれているときと同じとなるはずである(5+5+5+5=20)。   On the other hand, let us consider a case where the fuel supply system and the air system are not displaced as a whole, but variations (imbalance) occur between the cylinders. FIG. 9 shows a case where only one cylinder (# 1 cylinder) is shifted to the air-fuel ratio rich side from the other three cylinders (# 2 to # 4 cylinders). For example, an abnormality has occurred in the injector of the # 1 cylinder, and the fuel injection amount of the # 1 cylinder is greatly shifted by 20% from the stoichiometric equivalent, while the # 2 to # 4 cylinders are normal and the fuel injection amount is equivalent to the stoichiometric. Suppose there is. At this time, the total shift is 20% (20 + 0 + 0 + 0 = 20), which should be the same as when all cylinders are shifted by 5% (5 + 5 + 5 + 5 = 20).

しかし、1気筒のみ大きくリッチ側にずれているときの方が、全気筒で少なく均等にリッチ側にずれているときよりも、燃焼室から発生する水素量が多くなる。そしてこの水素量が多くなった分、排気中の酸素濃度が減少することから、触媒前センサ17の出力Vfは、1気筒のみずれているときの方が全気筒均等にずれているときよりもリッチ側にずれることとなる。   However, the amount of hydrogen generated from the combustion chamber is greater when only one cylinder is significantly shifted to the rich side than when it is shifted to the rich side evenly for all the cylinders. Since the oxygen concentration in the exhaust gas decreases as the amount of hydrogen increases, the output Vf of the pre-catalyst sensor 17 is shifted when only one cylinder is shifted than when all cylinders are shifted equally. It will shift to the rich side.

図10には、1気筒の混合気のストイキに対するリッチ側への空燃比ズレ量(横軸)と、燃焼室で発生する水素量(縦軸)との関係を示す。図示するように、空燃比リッチズレ量の増加に対して発生水素量は二次関数的に増加する。よって、1気筒のみリッチ側に20%ずれた場合の方が、全気筒が5%ずつずれた場合より発生水素量が多くなり、触媒前センサ出力Vfはよりリッチ側の値を示すようになる。   FIG. 10 shows the relationship between the rich air-fuel ratio deviation amount (horizontal axis) with respect to the stoichiometric mixture of one cylinder and the hydrogen amount (vertical axis) generated in the combustion chamber. As shown in the figure, the amount of generated hydrogen increases in a quadratic function as the air-fuel ratio rich shift amount increases. Accordingly, when only one cylinder is shifted to the rich side by 20%, the amount of generated hydrogen is larger than when all the cylinders are shifted by 5%, and the pre-catalyst sensor output Vf shows a richer value. .

トータルとして同等のずれであっても、気筒間に空燃比ばらつきのある場合の方が、全体がずれている場合よりもエミッションが悪化する。例えば後者で、全気筒が5%ずつずれている場合には、例えば補助空燃比フィードバック制御で−5%の補正を行えば、全気筒一律に5%ずれを解消することができる。しかし前者で、1気筒のみ20%ずれている場合には、補助空燃比フィードバック制御で−5%の補正をしても、#1気筒=15%、#2気筒=−5%、#3気筒=−5%、#4気筒=−5%のずれとなり、トータルではズレが解消しているように見えるが(15+(−5)+(−5)+(−5)=0)、気筒別に見ればズレているのであり、よって気筒単位でエミッションが悪化する。   Even when the total deviation is the same, the emission is worse when the air-fuel ratio varies between the cylinders than when the whole is displaced. For example, in the latter case, when all the cylinders are deviated by 5%, for example, if the correction of -5% is performed by the auxiliary air-fuel ratio feedback control, the deviation of all the cylinders can be eliminated uniformly. However, if only one cylinder is displaced by 20% in the former, # 1 cylinder = 15%, # 2 cylinder = −5%, # 3 cylinder even if the auxiliary air-fuel ratio feedback control is corrected by −5% = -5%, # 4 cylinder = -5%, and the total deviation seems to be eliminated (15 + (-5) + (-5) + (-5) = 0), but by cylinder If it sees, it will have shifted | deviated, Therefore, an emission worsens per cylinder.

一方、主空燃比フィードバック制御では、トータルとしての触媒前空燃比を検出してこれをストイキとするよう制御するため、主空燃比フィードバック制御の補正量からは、気筒間空燃比ばらつきが発生していることを検出することができない。つまり気筒間空燃比ばらつきが発生していても、トータルでのズレ量がゼロであれば補正量もゼロとなり、見掛け上はあたかも主空燃比フィードバック制御が問題なく正常に行われているように見えてしまう。   On the other hand, in the main air-fuel ratio feedback control, control is performed so that the pre-catalyst air-fuel ratio as a total is detected and stoichiometrically controlled. Therefore, variation in the air-fuel ratio between cylinders occurs from the correction amount of the main air-fuel ratio feedback control. It cannot be detected. In other words, even if there is a variation in the air-fuel ratio between cylinders, if the total deviation is zero, the correction amount will be zero, and it appears that the main air-fuel ratio feedback control is normally performed without any problems. End up.

そこで、本実施形態では、気筒間空燃比ばらつきがある場合に全体がずれている場合よりも水素量が多くなり、触媒前センサ出力Vfがリッチ側にずれるという特性を利用して、以下のようにして気筒間空燃比ばらつき異常を検出することとしている。   Therefore, in the present embodiment, when there is a variation in the air-fuel ratio between the cylinders, the amount of hydrogen is larger than that when the whole is shifted, and the characteristic that the pre-catalyst sensor output Vf shifts to the rich side is used as follows. Thus, an abnormality in variation in the air-fuel ratio between cylinders is detected.

排気中に水素が含まれている場合、この排気に触媒を作用させることにより、排気中の水素を酸化(燃焼)して浄化することができる。そして、触媒を通過せず水素が浄化されていない排気の空燃比即ち第1の排気空燃比を第1の空燃比センサで検出し、触媒を通過し水素が浄化された排気の空燃比即ち第2の排気空燃比を第2の空燃比センサで検出する。第1の排気空燃比検出値は、第2の排気空燃比検出値よりも、水素の影響でリッチ側にずれる。逆に言えば、第2の排気空燃比検出値は、第1の排気空燃比検出値よりも、水素の影響でリーン側にずれる。そこでこのリーン側へのずれ(乖離)状態に基づき、気筒間空燃比ばらつき異常が検出される。   When hydrogen is contained in the exhaust, a catalyst is allowed to act on the exhaust, whereby the hydrogen in the exhaust can be oxidized (combusted) and purified. Then, the air-fuel ratio of the exhaust gas that has not passed through the catalyst and hydrogen has not been purified, that is, the first exhaust air-fuel ratio is detected by the first air-fuel ratio sensor, and the air-fuel ratio of the exhaust gas that has passed through the catalyst and has been purified of hydrogen, ie, the first exhaust air-fuel ratio. The second air-fuel ratio is detected by a second air-fuel ratio sensor. The first exhaust air / fuel ratio detection value is shifted to the rich side due to the influence of hydrogen than the second exhaust air / fuel ratio detection value. In other words, the second exhaust air / fuel ratio detected value is shifted to the lean side due to the influence of hydrogen than the first exhaust air / fuel ratio detected value. Therefore, an abnormal variation in the air-fuel ratio between cylinders is detected on the basis of the leaning (divergence) state.

分かり易くいうと、水素浄化後の第2の排気空燃比検出値が真の排気空燃比と言えるものであり、水素浄化前の第1の排気空燃比検出値は、真の排気空燃比に水素分が加わって見掛け上リッチにずれた排気空燃比である。言ってしまえば、第1の空燃比センサが騙されているのである。一部気筒の残部気筒に対する空燃比リッチずれ量が多いほど、水素分は二次関数的に多くなる。よって第1の排気空燃比検出値が第2の排気空燃比検出値よりリッチ側に大きくずれているとき、即ち第2の排気空燃比検出値が第1の排気空燃比検出値よりリーン側に大きくずれているとき、気筒間空燃比ばらつき異常が発生しているとみなせるのである。   In other words, it can be said that the second exhaust air-fuel ratio detection value after hydrogen purification is the true exhaust air-fuel ratio, and the first exhaust air-fuel ratio detection value before hydrogen purification is equal to the true exhaust air-fuel ratio. The exhaust air / fuel ratio is apparently richly offset by adding the minute. In other words, the first air-fuel ratio sensor is deceived. As the air-fuel ratio rich shift amount of the remaining cylinders with respect to the remaining cylinders increases, the hydrogen content increases in a quadratic function. Therefore, when the first exhaust air-fuel ratio detection value is greatly deviated to the rich side from the second exhaust air-fuel ratio detection value, that is, the second exhaust air-fuel ratio detection value is leaner than the first exhaust air-fuel ratio detection value. When there is a large deviation, it can be considered that the variation in air-fuel ratio between cylinders has occurred.

以下、この原理に従う気筒間空燃比ばらつき異常検出の一態様について述べる。   Hereinafter, an aspect of detecting an abnormality in the air-fuel ratio variation between cylinders according to this principle will be described.

図9に示すように、例えば#1気筒のみでインジェクタに異常が発生し、#1気筒の空燃比が他の#2〜#4気筒の空燃比より大きくリッチ側にずれているとする。このとき主空燃比フィードバック制御が実行されているので、全気筒の排ガスが合流した後のトータルの排ガスの空燃比は、図9(A)に示すように、ストイキ近傍に制御されている。即ち、触媒前センサ出力Vfはストイキ相当センサ出力Vreffの近傍となっている。しかしながら、#1気筒の空燃比はストイキより大きくリッチであり、#2〜#4気筒の空燃比はストイキよりリーンであり、全体のバランスとしてストイキ近傍になっているに過ぎない。しかも#1気筒から水素が多量に発生される結果、触媒前センサ17の出力Vfは、真の空燃比よりもリッチ側にずれた空燃比を誤ってストイキとして表示している。   As shown in FIG. 9, for example, it is assumed that an abnormality occurs in the injector only in the # 1 cylinder, and the air-fuel ratio of the # 1 cylinder deviates more to the rich side than the air-fuel ratios of the other # 2- # 4 cylinders. Since the main air-fuel ratio feedback control is executed at this time, the air-fuel ratio of the total exhaust gas after the exhaust gases of all the cylinders merge is controlled in the vicinity of the stoichiometry as shown in FIG. That is, the pre-catalyst sensor output Vf is in the vicinity of the stoichiometric equivalent sensor output Vreff. However, the air-fuel ratio of the # 1 cylinder is larger and richer than stoichiometric, and the air-fuel ratio of the # 2 to # 4 cylinders is leaner than stoichiometric, and as a whole balance is only near the stoichiometric. Moreover, as a result of the large amount of hydrogen generated from the # 1 cylinder, the output Vf of the pre-catalyst sensor 17 erroneously displays the air-fuel ratio shifted to the rich side from the true air-fuel ratio as a stoichiometric.

他方、水素を含む排ガスが触媒11を通過すると、水素が浄化されてその影響が取り除かれる。従って、図9(B)に示すように、触媒後センサ18の出力Vrは、真の空燃比、即ちストイキよりリーンの空燃比を表示することとなる。即ち、触媒後センサ出力Vrはストイキ相当センサ出力Vrefrよりリーン側の低い値となる。   On the other hand, when the exhaust gas containing hydrogen passes through the catalyst 11, the hydrogen is purified and its influence is removed. Therefore, as shown in FIG. 9B, the output Vr of the post-catalyst sensor 18 displays a true air-fuel ratio, that is, an air-fuel ratio that is leaner than stoichiometry. That is, the post-catalyst sensor output Vr is a lower value on the lean side than the stoichiometric equivalent sensor output Vrefr.

別の見方をすると、例えば全体で25という触媒前空燃比検出値のリッチズレを補正するため、主空燃比フィードバック制御で−25のリーン補正を行い、触媒前空燃比検出値のリッチズレを0とする。しかし、25のうちの5は純粋な空燃比ずれではなく水素の影響によるもので、主空燃比フィードバック制御は5だけリーン側に補正しすぎである。よって触媒後空燃比はリーンに5だけずれる結果となる。   From another viewpoint, for example, to correct the rich deviation of the pre-catalyst air-fuel ratio detection value of 25, the lean correction of -25 is performed in the main air-fuel ratio feedback control, and the rich deviation of the pre-catalyst air-fuel ratio detection value is set to zero. . However, 5 out of 25 is not a pure air-fuel ratio shift but is caused by the influence of hydrogen, and the main air-fuel ratio feedback control is overcorrected by 5 on the lean side. Therefore, the post-catalyst air-fuel ratio results in a shift of 5 by lean.

よって、主空燃比フィードバック制御により触媒前空燃比がストイキに制御されているにも拘わらず、触媒後センサ18からは、ストイキよりリーンの触媒後空燃比が継続的に検出されるようになる(即ち、触媒後センサ出力がリーンに張り付く)。このような触媒前後の空燃比の相違は、一部の気筒のインジェクタ等の故障により水素が顕著に多く発生したからである。   Therefore, although the pre-catalyst air-fuel ratio is controlled to be stoichiometric by the main air-fuel ratio feedback control, the post-catalyst sensor 18 continuously detects the lean post-catalyst air-fuel ratio from the stoichiometric ( That is, the post-catalyst sensor output sticks lean). Such a difference in the air-fuel ratio before and after the catalyst is because a significant amount of hydrogen is generated due to failure of injectors of some cylinders.

なお、触媒後センサ18がストイキよりリーンの排気空燃比を検出すると、補助空燃比フィードバック制御によるリッチ補正がなされ、燃料噴射量が全気筒一律に増量される。すると触媒前空燃比検出値のリッチずれはさらに大きくなり、触媒後空燃比はリーンに維持される。こうしてやがては、ばらつき異常の程度に見合った主空燃比補正量及び補助空燃比補正量に収束していく。   When the post-catalyst sensor 18 detects an exhaust air-fuel ratio that is leaner than stoichiometric, rich correction is performed by auxiliary air-fuel ratio feedback control, and the fuel injection amount is uniformly increased for all cylinders. Then, the rich deviation of the pre-catalyst air-fuel ratio detection value is further increased, and the post-catalyst air-fuel ratio is maintained lean. Eventually, the main air-fuel ratio correction amount and the auxiliary air-fuel ratio correction amount converge to the degree of variation abnormality.

ところで、図6〜図8を用いて説明したように、補助空燃比フィードバック制御においては、所定時間毎に(即ち所定の更新速度で)、触媒後センサ学習値ΔVrgと補助空燃比補正量Krとが学習ないし更新される。ここで一部気筒のインジェクタの故障等により気筒間空燃比ばらつき異常が発生すると、触媒後センサ出力Vrが継続的にリーンな値となるので、触媒後センサ学習値ΔVrg及び補助空燃比補正量Krは、大きなリーンずれをストイキに戻すような大きな正の値となる。   Incidentally, as described with reference to FIGS. 6 to 8, in the auxiliary air-fuel ratio feedback control, the post-catalyst sensor learning value ΔVrg and the auxiliary air-fuel ratio correction amount Kr are determined at predetermined time intervals (that is, at a predetermined update speed). Is learned or updated. Here, if the variation in air-fuel ratio between cylinders occurs due to the failure of an injector of some cylinders, the post-catalyst sensor output Vr continuously becomes a lean value, so the post-catalyst sensor learning value ΔVrg and the auxiliary air-fuel ratio correction amount Kr Is a large positive value that returns a large lean shift to stoichiometry.

これを示すのが図11である。図11は、全気筒のうちのある1気筒のみの燃料噴射量がストイキ相当量からずれたときのずれの割合、即ちインバランス割合(%)と、触媒後センサ学習値ΔVrgとの関係を調べた試験結果である。インバランス割合はリッチずれのときが正、リーンずれのときが負である。図示するように、インバランス割合がリッチずれ方向に大きくなるほど、触媒後センサ学習値ΔVrgはより大きな値、即ち空燃比をよりリッチ側に補正するような値となる。   This is shown in FIG. FIG. 11 shows the relationship between the ratio of deviation when the fuel injection amount of only one cylinder out of all cylinders deviates from the stoichiometric amount, that is, the imbalance ratio (%), and the post-catalyst sensor learning value ΔVrg. It is a test result. The imbalance ratio is positive when there is a rich shift and negative when there is a lean shift. As shown in the figure, the post-catalyst sensor learning value ΔVrg becomes a larger value, that is, a value that corrects the air-fuel ratio to the rich side as the imbalance ratio increases in the rich shift direction.

そこで、この一態様では、触媒後センサ学習値ΔVrgが所定の異常判定値ΔVrgs以上となったとき、気筒間空燃比ばらつき異常が発生していると判断する。或いは代替的に、触媒後センサ学習値ΔVrgに基づいて算出された補助空燃比補正量Krが所定値Krs以上となったとき、気筒間空燃比ばらつき異常が発生していると判断する。   Therefore, in this aspect, when the post-catalyst sensor learning value ΔVrg is equal to or greater than a predetermined abnormality determination value ΔVrgs, it is determined that an inter-cylinder air-fuel ratio variation abnormality has occurred. Alternatively, when the auxiliary air-fuel ratio correction amount Kr calculated based on the post-catalyst sensor learning value ΔVrg becomes equal to or greater than the predetermined value Krs, it is determined that the inter-cylinder air-fuel ratio variation abnormality has occurred.

この一態様によれば、空燃比センサに高い応答性が要求されず、ある程度劣化して応答性が低下したセンサでも十分使用可能である。高速のデータサンプルや処理能力の高いECUも不要である。また外乱に強く、ロバスト性が高く、機関運転条件やセンサ設置位置にも制約がない。従って非常に実用的であり、高精度な異常検出が可能である。   According to this aspect, the air-fuel ratio sensor is not required to have high responsiveness, and even a sensor that has deteriorated to some extent and has decreased responsiveness can be used sufficiently. There is no need for high-speed data samples or ECUs with high processing capabilities. In addition, it is resistant to disturbances and has high robustness, and there are no restrictions on engine operating conditions and sensor installation positions. Therefore, it is very practical and can detect abnormalities with high accuracy.

ここで図11に示すように、異常判定値ΔVrgsに対応するインバランス割合をIBsとする。このインバランス割合IBsは、エミッション等の観点から許容できないほどの大きさを有するインバランス割合の最小値である。図11は1気筒のみがずれたとき(即ち、インバランス故障のとき)の触媒後センサ学習値ΔVrgの勾配を示すが、全気筒が均等にずれたとき(即ち、バランス故障のとき)には仮想線Zで示すように勾配が遙かに緩やかになる。その理由は、全体がずれたときには主空燃比制御の方で容易に一律に補正できるので、補助空燃比補正量に与える影響は小さいからである。もっとも、全体が大きくずれたときには主空燃比制御の補正量が大きくなるので、前に触れた主空燃比補正量に基づく別の異常検出手段により、本実施形態の異常検出よりも先に、異常が検出されるであろう。   Here, as shown in FIG. 11, the imbalance ratio corresponding to the abnormality determination value ΔVrgs is IBs. The imbalance ratio IBs is the minimum value of the imbalance ratio having an unacceptable size from the viewpoint of emissions and the like. FIG. 11 shows the gradient of the post-catalyst sensor learning value ΔVrg when only one cylinder is deviated (ie, when an imbalance failure occurs), but when all the cylinders are equally displaced (ie, when a balance failure occurs). As indicated by the imaginary line Z, the gradient becomes much gentler. The reason for this is that when the whole is deviated, the main air-fuel ratio control can easily make a uniform correction, so the influence on the auxiliary air-fuel ratio correction amount is small. However, since the correction amount of the main air-fuel ratio control becomes large when the whole is greatly deviated, an abnormality is detected prior to the abnormality detection of this embodiment by another abnormality detection means based on the main air-fuel ratio correction amount touched before. Will be detected.

一部気筒が残部気筒に対しリーンずれすることもあり、この場合には、触媒後センサ学習値ΔVrgの値は、図11に負のインバランス割合領域で示される如くなる。こちらの領域の勾配は正のインバランス割合領域の勾配よりも緩い。ここでリーンずれとは、燃料噴射量が規定量よりも少なくなることであり、ある気筒で大きなリーンずれが起きた場合、当該気筒は通常は失火に陥る。よってリーンずれによるばらつき異常は別の失火検出手段によって先に検出されるであろう。本実施形態の異常検出はリッチずれ異常に対して特に有利な内容のものである。   Some cylinders may deviate from the remaining cylinders. In this case, the post-catalyst sensor learning value ΔVrg is as shown in the negative imbalance ratio region in FIG. The slope of this area is gentler than that of the positive imbalance ratio area. Here, the lean deviation means that the fuel injection amount becomes smaller than a prescribed amount. When a large lean deviation occurs in a certain cylinder, the cylinder usually falls into a misfire. Therefore, the variation abnormality due to the lean deviation will be detected first by another misfire detection means. The abnormality detection of the present embodiment is particularly advantageous for rich deviation abnormality.

ところで、前述の別の異常検出手段に関連して、主空燃比フィードバック制御及び補助空燃比フィードバック制御においては、制御量を所定のガード範囲内としつつ、それらが実行されるようになっている。図5に示すように、主空燃比フィードバック制御の触媒前センサ出力差ΔVfは、制御上、上下のガード値ΔVfH,ΔVfLの範囲内の値しかとることができず(ΔVfL≦ΔVf≦ΔVfH)、これに対応して、主空燃比補正量Kfも上下のガード値KfH,KfLの範囲内の値しかとることができない(KfL≦Kf≦KfH、)。例えば、計算上の触媒前センサ出力差ΔVfが上限ガード値ΔVfH以上になったとき、触媒前センサ出力差ΔVfは上限ガード値ΔVfHに達したとみなされ、制御上、触媒前センサ出力差ΔVfは上限ガード値ΔVfHに固定される。そしてこれと同時に、燃料供給系若しくは空気系が全体として異常である(バランス故障が発生した)と検出される。これにより、燃料供給系若しくは空気系が全体として異常であるにも拘わらず、異常なほどに大きい制御量を用いて主空燃比制御が行われることを防止できる。   By the way, in relation to the other abnormality detecting means described above, in the main air-fuel ratio feedback control and the auxiliary air-fuel ratio feedback control, they are executed while keeping the control amount within a predetermined guard range. As shown in FIG. 5, the pre-catalyst sensor output difference ΔVf of the main air-fuel ratio feedback control can take only values within the range of the upper and lower guard values ΔVfH and ΔVfL for control (ΔVfL ≦ ΔVf ≦ ΔVfH), Correspondingly, the main air-fuel ratio correction amount Kf can only take values within the upper and lower guard values KfH and KfL (KfL ≦ Kf ≦ KfH). For example, when the calculated pre-catalyst sensor output difference ΔVf is equal to or greater than the upper guard value ΔVfH, the pre-catalyst sensor output difference ΔVf is considered to have reached the upper guard value ΔVfH. The upper guard value ΔVfH is fixed. At the same time, it is detected that the fuel supply system or the air system is abnormal as a whole (a balance failure has occurred). Thereby, it is possible to prevent the main air-fuel ratio control from being performed using an abnormally large control amount even though the fuel supply system or the air system is abnormal as a whole.

これと同様に、図8に示す如く、補助空燃比フィードバック制御においても、触媒後センサ学習値ΔVrgは、制御上、上下のガード値ΔVrgH,ΔVrgLの範囲内の値しかとることができず(ΔVrgL≦ΔVrg≦ΔVrgH)、これに対応して、補助空燃比補正量Krも上下のガード値KrH,KrLの範囲内の値しかとることができない(KrL≦Kr≦KrH)。例えば、計算上の触媒後センサ学習値ΔVrgが上限ガード値ΔVrgH以上になったとき、触媒後センサ学習値ΔVrgは上限ガード値ΔVrgHに達したとみなされ、制御上、触媒後センサ学習値ΔVrgは上限ガード値ΔVrgHに固定される。そしてこれと同時に、燃料供給系若しくは空気系が全体として異常である(バランス故障が発生した)と検出される。これにより、燃料供給系若しくは空気系が全体として異常であるにも拘わらず、異常なほどに大きい制御量を用いて補助空燃比制御が行われることを防止できる。   Similarly, as shown in FIG. 8, also in the auxiliary air-fuel ratio feedback control, the post-catalyst sensor learning value ΔVrg can take only values within the range of the upper and lower guard values ΔVrgH and ΔVrgL (ΔVrgL). (.DELTA.Vrg.ltoreq..DELTA.VrgH). Correspondingly, the auxiliary air-fuel ratio correction amount Kr can only take a value within the range of the upper and lower guard values KrH, KrL (KrL.ltoreq.Kr.ltoreq.KrH). For example, when the calculated post-catalyst sensor learning value ΔVrg is equal to or higher than the upper limit guard value ΔVrgH, the post-catalyst sensor learning value ΔVrg is considered to have reached the upper limit guard value ΔVrgH, and for control purposes, the post-catalyst sensor learning value ΔVrg is The upper guard value ΔVrgH is fixed. At the same time, it is detected that the fuel supply system or the air system is abnormal as a whole (a balance failure has occurred). Thereby, it is possible to prevent the auxiliary air-fuel ratio control from being performed using an abnormally large control amount even though the fuel supply system or the air system is abnormal as a whole.

ところで、このようにガード範囲を定めると、気筒間空燃比ばらつき異常を検出する上で次のような問題が生じる。図11に示したように、バランス故障のときには、インバランス割合と触媒後センサ学習値ΔVrgとの関係が仮想線Zで示す如くなる。そしてこの関係に対応して前記ガード範囲、特に上限ガード値ΔVrgHが設定されている。つまりバランス故障のときには仮想線Zに沿う形で触媒後センサ学習値ΔVrgが増大し、触媒後センサ学習値ΔVrgが上限ガード値ΔVrgH以上になったときにバランス故障が発生しているとみなされる。   By the way, when the guard range is determined in this way, the following problem arises in detecting an abnormality in the air-fuel ratio variation between cylinders. As shown in FIG. 11, in the case of a balance failure, the relationship between the imbalance ratio and the post-catalyst sensor learning value ΔVrg is as indicated by a virtual line Z. Corresponding to this relationship, the guard range, in particular, the upper guard value ΔVrgH is set. That is, in the case of a balance failure, the post-catalyst sensor learning value ΔVrg increases along the virtual line Z, and when the post-catalyst sensor learning value ΔVrg exceeds the upper limit guard value ΔVrgH, it is considered that a balance failure has occurred.

しかし、インバランス故障を判定するのに適した異常判定値ΔVrgsは、バランス故障を判定するのに適した上限ガード値ΔVrgHより高いことが多い。このため、両者の干渉によりインバランス故障を検出できないといった問題が生ずる。具体的にいうと、インバランス故障が原因で実際の触媒後センサ学習値ΔVrgが増大しても、異常判定値ΔVrgsより先に上限ガード値ΔVrgHに到達してしまい、バランス故障とみなされてしまうのである。   However, the abnormality determination value ΔVrgs suitable for determining an imbalance failure is often higher than the upper limit guard value ΔVrgH suitable for determining a balance failure. For this reason, the problem that an imbalance failure cannot be detected by interference of both arises. Specifically, even if the actual post-catalyst sensor learning value ΔVrg increases due to an imbalance failure, the upper limit guard value ΔVrgH is reached prior to the abnormality determination value ΔVrgs, and is regarded as a balance failure. It is.

そこで、この問題を解決するため、本実施形態においては、気筒間空燃比ばらつき異常の検出を実行する際には、補助空燃比フィードバック制御におけるガード範囲が少なくとも異常判定値ΔVrgsを含むように拡大される。具体的には、前記上限ガード値ΔVrgHが異常判定値ΔVrgs以上の値(本実施形態では異常判定値ΔVrgsと等しい値)に変更される。これにより、触媒後センサ学習値ΔVrgは既定のガード範囲を超えて可変となり、即ち制御上においても既定の上限ガード値ΔVrgHより大きい値を取ることが可能になり、異常判定値ΔVrgsに到達可能となって、気筒間空燃比ばらつき異常を問題なく検出できるようになる。   Therefore, in order to solve this problem, in the present embodiment, when detecting the abnormality in the air-fuel ratio variation between cylinders, the guard range in the auxiliary air-fuel ratio feedback control is expanded to include at least the abnormality determination value ΔVrgs. The Specifically, the upper limit guard value ΔVrgH is changed to a value equal to or greater than the abnormality determination value ΔVrgs (in this embodiment, a value equal to the abnormality determination value ΔVrgs). As a result, the post-catalyst sensor learning value ΔVrg becomes variable beyond the predetermined guard range, that is, it becomes possible to take a value larger than the predetermined upper limit guard value ΔVrgH in terms of control, and the abnormality determination value ΔVrgs can be reached. Thus, it is possible to detect the variation in air-fuel ratio between cylinders without any problem.

なお、代替的に、補助空燃比補正量Krのガード範囲を拡大してもよく、具体的には補助空燃比補正量Krの上限ガード値KrHを、前記異常判定値ΔVrgsに対応した補助空燃比補正量以上の値に変更してもよい。これらガード範囲を拡大する際、下限ガード値は変更しなくてもよく、或いはより小さい値(拡大側)に変更してもよい。   Alternatively, the guard range of the auxiliary air-fuel ratio correction amount Kr may be expanded. Specifically, the upper limit guard value KrH of the auxiliary air-fuel ratio correction amount Kr is set to the auxiliary air-fuel ratio corresponding to the abnormality determination value ΔVrgs. You may change into the value more than correction amount. When expanding these guard ranges, the lower limit guard value may not be changed, or may be changed to a smaller value (enlargement side).

一方、図7に示したように、触媒後センサ学習値ΔVrgは所定時間毎ts毎に更新されていくものであるため、気筒間空燃比ばらつき異常が発生した場合でも、触媒後センサ学習値ΔVrgが実際に異常判定値ΔVrgsに到達するまでには時間がかかる。そして到達時間があまりに長いと検出に要する時間が長くなる問題がある。   On the other hand, as shown in FIG. 7, the post-catalyst sensor learning value ΔVrg is updated every predetermined time ts, so that even if an abnormality in the air-fuel ratio variation between cylinders occurs, the post-catalyst sensor learning value ΔVrg. Takes time to actually reach the abnormality determination value ΔVrgs. If the arrival time is too long, there is a problem that the time required for detection becomes long.

そこで、この問題を解決するため、本実施形態においては、気筒間空燃比ばらつき異常の検出を実行する際には、触媒後センサ学習値ΔVrgの更新速度が既定速度よりも上げられる。即ち、前記更新時間tsが規定値よりも短縮される。これにより触媒後センサ学習値ΔVrgの更新を速やかに行い、検出時間を短くすることができる。なお、触媒後センサ学習値ΔVrgの更新速度を上げることにより補助空燃比補正量Krの更新速度も追従して上がる。   Therefore, in order to solve this problem, in the present embodiment, the update speed of the post-catalyst sensor learning value ΔVrg is increased from the predetermined speed when detecting the variation in the air-fuel ratio between cylinders. That is, the update time ts is shortened from the specified value. As a result, the post-catalyst sensor learning value ΔVrg can be updated quickly, and the detection time can be shortened. Note that, by increasing the update speed of the post-catalyst sensor learning value ΔVrg, the update speed of the auxiliary air-fuel ratio correction amount Kr also follows.

本実施形態においては、前述のようなガード範囲拡大と更新速度増大との両方を行う。しかしながら、いずれか一方のみを行うようにしてもよい。例えばガード範囲拡大について、既定状態における異常判定値ΔVrgsがガード範囲内に設定されているときはガード範囲の拡大を行わなくてもよい。   In the present embodiment, both the above-described guard range expansion and update speed increase are performed. However, only one of them may be performed. For example, regarding the guard range expansion, when the abnormality determination value ΔVrgs in the default state is set within the guard range, the guard range need not be expanded.

図12に当該一態様の異常検出ルーチンを示す。当該ルーチンはECU20により所定の演算周期毎に繰り返し実行される。   FIG. 12 shows the abnormality detection routine of this aspect. The routine is repeatedly executed by the ECU 20 every predetermined calculation cycle.

まずステップS301では、異常検出のための前提条件が成立しているか否かが判断される。この前提条件とは、例えば、エンジンの暖機が終了していること、触媒が活性温度に達していることなどである。   First, in step S301, it is determined whether a precondition for abnormality detection is satisfied. This precondition includes, for example, that the engine has been warmed up and that the catalyst has reached the activation temperature.

前提条件が成立していない場合ルーチンが終了される。他方、前提条件が成立している場合、ステップS302において、主空燃比及び補助空燃比フィードバック制御の実行条件が成立しているか否かが判断される。この条件とは、例えば、触媒前センサ17及び触媒後センサ18が活性化していることであり、具体的には、ECU20によって検出される両センサの素子インピーダンスが、センサの最小活性温度に相当する所定値より低くなっていることである。   If the precondition is not satisfied, the routine is terminated. On the other hand, if the precondition is satisfied, it is determined in step S302 whether the execution conditions for the main air-fuel ratio and the auxiliary air-fuel ratio feedback control are satisfied. This condition is, for example, that the pre-catalyst sensor 17 and the post-catalyst sensor 18 are activated. Specifically, the element impedances of both sensors detected by the ECU 20 correspond to the minimum activation temperature of the sensor. It is lower than the predetermined value.

実行条件が成立していない場合ルーチンが終了される。他方、実行条件が成立している場合、ステップS303に進んで、触媒後センサ学習値ΔVrgのガード範囲が拡大されると共に、触媒後センサ学習値ΔVrgの更新速度が増大される。即ち、前述したように、触媒後センサ学習値ΔVrgの上限ガード値ΔVrgHが既定値より高い異常判定値ΔVrgsと等しい値に変更され、また、触媒後センサ学習値ΔVrgの更新時間tsが規定値よりも短縮される。   If the execution condition is not satisfied, the routine is terminated. On the other hand, if the execution condition is satisfied, the process proceeds to step S303, where the guard range of the post-catalyst sensor learning value ΔVrg is expanded and the update speed of the post-catalyst sensor learning value ΔVrg is increased. That is, as described above, the upper limit guard value ΔVrgH of the post-catalyst sensor learning value ΔVrg is changed to a value equal to the abnormality determination value ΔVrgs higher than the predetermined value, and the update time ts of the post-catalyst sensor learning value ΔVrg is greater than the specified value. Is also shortened.

こうしてガード範囲拡大と更新速度増大とが行われたならば、次にステップS304において、ストイキを目標空燃比とする主空燃比及び補助空燃比フィードバック制御(ストイキF/B制御)が実行される。   If the guard range expansion and the update speed increase are performed in this way, then in step S304, main air-fuel ratio and auxiliary air-fuel ratio feedback control (stoichiometric F / B control) with the stoichiometric target air-fuel ratio is executed.

次に、ステップS305において、ストイキF/B制御開始時から所定時間が経過したか否か、即ち、触媒後センサ学習値ΔVrg及び補助空燃比補正量Krが空燃比ばらつき状態に対応した値に更新されるのに十分な時間が経過したか否かが判断される。ここで、ステップS303において更新速度が増大されているので、所定時間は比較的短い時間に設定することが可能であり、これにより検出時間の短縮が図られる。   Next, in step S305, whether or not a predetermined time has elapsed since the start of stoichiometric F / B control, that is, the post-catalyst sensor learning value ΔVrg and the auxiliary air-fuel ratio correction amount Kr are updated to values corresponding to the air-fuel ratio variation state. It is determined whether sufficient time has passed to be processed. Here, since the update speed is increased in step S303, the predetermined time can be set to a relatively short time, thereby shortening the detection time.

所定時間が経過していない場合、ルーチンが終了される。他方、所定時間が経過している場合には、ステップS306において、現時点での触媒後センサ学習値ΔVrgの値が取得される。   If the predetermined time has not elapsed, the routine is terminated. On the other hand, if the predetermined time has elapsed, in step S306, the current post-catalyst sensor learning value ΔVrg is acquired.

そしてステップS307において、この取得された触媒後センサ学習値ΔVrgが異常判定値ΔVrgs以上か否かが判定される。ステップS303において上限ガード値ΔVrgHが異常判定値ΔVrgsに拡大変更されているので、触媒後センサ学習値ΔVrgは異常判定値ΔVrgsまで増大することが可能である。   In step S307, it is determined whether or not the acquired post-catalyst sensor learning value ΔVrg is greater than or equal to the abnormality determination value ΔVrgs. Since the upper guard value ΔVrgH is enlarged and changed to the abnormality determination value ΔVrgs in step S303, the post-catalyst sensor learning value ΔVrg can be increased to the abnormality determination value ΔVrgs.

触媒後センサ学習値ΔVrgが異常判定値ΔVrgs以上である(即ち異常判定値ΔVrgsに等しい)場合、ステップS308において、気筒間空燃比ばらつき異常が発生したと判定され、ルーチンが終了される。なおこの異常判定の後、異常の事実をユーザに知らせるべくチェックランプ等の警告装置を起動させるのが好ましい。   If the post-catalyst sensor learning value ΔVrg is equal to or greater than the abnormality determination value ΔVrgs (that is, equal to the abnormality determination value ΔVrgs), it is determined in step S308 that an abnormality in the cylinder air-fuel ratio variation has occurred, and the routine is terminated. After this abnormality determination, it is preferable to activate a warning device such as a check lamp to notify the user of the abnormality.

他方、触媒後センサ学習値ΔVrgが異常判定値ΔVrgs未満である場合、気筒間空燃比ばらつき異常は発生していないとみなされ、ステップS309に進んで、触媒後センサ学習値ΔVrgのガード範囲及び更新速度が既定状態に戻され、ルーチンが終了される。   On the other hand, if the after-catalyst sensor learning value ΔVrg is less than the abnormality determination value ΔVrgs, it is considered that the cylinder-to-cylinder air-fuel ratio variation abnormality has not occurred, and the process proceeds to step S309 to update the guard range and update of the after-catalyst sensor learning value ΔVrg. The speed is returned to the default state and the routine is terminated.

なお、ここでは触媒後センサ学習値ΔVrgの所定値との比較によって気筒間空燃比ばらつき異常の発生を検出したが、当然に、補助空燃比補正量Krの所定値との比較によって気筒間空燃比ばらつき異常の発生を検出してもよい。   Here, the occurrence of the variation in air-fuel ratio between cylinders is detected by comparing the post-catalyst sensor learning value ΔVrg with a predetermined value, but naturally, the inter-cylinder air-fuel ratio is detected by comparing with the predetermined value of the auxiliary air-fuel ratio correction amount Kr. The occurrence of a variation abnormality may be detected.

次に、気筒間空燃比ばらつき異常検出の別の態様について述べる。   Next, another mode of detecting an abnormality in the air-fuel ratio variation between cylinders will be described.

この別の態様では、前述のような気筒間空燃比ばらつき異常の検出の前に、気筒間空燃比ばらつき異常の発生の可能性があることが予備的に検出される。以下、前者の検出を本検出、後者の検出を予備検出と称す。そして予備検出により気筒間空燃比ばらつき異常の発生の可能性があることが検出されたときに、本検出が実行される。このように本検出の前に予備検出を行うことにより、いわゆるダブルチェックが可能となり、検出の精度と信頼性を増すことができる。   In this another aspect, before the detection of the abnormality in the variation in the air-fuel ratio between the cylinders as described above, it is preliminarily detected that there is a possibility of the abnormality in the variation in the air-fuel ratio between the cylinders. Hereinafter, the former detection is referred to as main detection, and the latter detection is referred to as preliminary detection. The main detection is performed when it is detected by the preliminary detection that there is a possibility that the variation in the air-fuel ratio between the cylinders is abnormal. Thus, by performing the preliminary detection before the main detection, a so-called double check becomes possible, and the accuracy and reliability of the detection can be increased.

予備検出の第1実施例をここで説明する。図13に示すように、気筒間空燃比ばらつき異常が発生すると、1エンジンサイクル間(=720°CA)での排気空燃比の変動が大きくなる。(B)の空燃比線図a,b,cはそれぞればらつき無し、1気筒のみ20%のインバランス割合でリッチずれ、及び1気筒のみ50%のインバランス割合でリッチずれの場合の触媒前空燃比の検出値を示す。見られるように、ばらつきの程度が大きくなるほど空燃比変動の振幅は大きくなり、周波数が大きくなる。   A first example of preliminary detection will now be described. As shown in FIG. 13, when the variation in air-fuel ratio between cylinders occurs, the variation in the exhaust air-fuel ratio during one engine cycle (= 720 ° CA) increases. The air-fuel ratio diagrams a, b, and c in (B) are not varied, and the pre-catalyst air in the case of a rich shift with an imbalance ratio of 20% for only one cylinder and a rich shift with an imbalance ratio of 50% for only one cylinder. Indicates the detected value of the fuel ratio. As can be seen, the greater the degree of variation, the greater the amplitude of air-fuel ratio fluctuation and the greater the frequency.

よってその空燃比変動の振幅や周波数が所定値よりも大きくなった場合に気筒間空燃比ばらつき異常の発生の可能性があると検出することができる。本実施形態では振幅に着目して次のように予備検出を行う。即ち、触媒前センサ出力Vfとストイキ相当センサ出力Vreffとの差、具体的にはその差である触媒前センサ出力差ΔVfの絶対値が、所定時間積算され、これにより得られる積算値が所定値を超えたとき、気筒間空燃比ばらつき異常の発生の可能性があると判断する。変動が大きいほど触媒前センサ出力差ΔVfの絶対値が大きくなるので、このことを利用してばらつき異常発生の可能性があることを検出することができる。   Therefore, when the amplitude or frequency of the air-fuel ratio fluctuation becomes larger than a predetermined value, it can be detected that there is a possibility that the variation in air-fuel ratio between cylinders may occur. In the present embodiment, preliminary detection is performed as follows, focusing on the amplitude. That is, the difference between the pre-catalyst sensor output Vf and the stoichiometric equivalent sensor output Vref, specifically, the absolute value of the pre-catalyst sensor output difference ΔVf, which is the difference, is integrated for a predetermined time, and the integrated value obtained thereby is a predetermined value. Is exceeded, it is determined that there is a possibility of occurrence of an abnormal variation in air-fuel ratio between cylinders. Since the absolute value of the pre-catalyst sensor output difference ΔVf increases as the fluctuation increases, it is possible to detect the possibility of occurrence of variation abnormality by utilizing this fact.

図14に予備検出の第1実施例を含む異常検出ルーチンを示す。当該ルーチンはECU20により所定の演算周期毎に繰り返し実行される。   FIG. 14 shows an abnormality detection routine including the first embodiment of preliminary detection. The routine is repeatedly executed by the ECU 20 every predetermined calculation cycle.

ステップS401,S402は前記ステップS301,S302と同様である。ステップS403では前記ステップS304と同様、ストイキF/B制御が実行される。但しこの段階ではまだ触媒後センサ学習値ΔVrgのガード範囲拡大と更新速度増大とは実行されない。   Steps S401 and S402 are the same as steps S301 and S302. In step S403, the stoichiometric F / B control is executed as in step S304. However, at this stage, the guard range expansion and the update speed increase of the post-catalyst sensor learning value ΔVrg are not yet executed.

続くステップS404では、今回の触媒前センサ出力差ΔVfの絶対値が計算され、この値が前回積算値に加算されることにより、触媒前センサ出力差ΔVfが積算される。次いでステップS405では積算開始時(即ちステップS403のストイキF/B制御開始時)から所定の積算時間が経過したか否かが判断される。所定の積算時間が経過していない場合、ルーチンが終了される。他方、所定の積算時間が経過している場合には、ステップS406において、触媒前センサ出力差ΔVfの最終的な積算値が取得され、この最終積算値が所定の予備異常判定値と比較される。   In the following step S404, the absolute value of the current pre-catalyst sensor output difference ΔVf is calculated, and this value is added to the previous integrated value, whereby the pre-catalyst sensor output difference ΔVf is integrated. Next, in step S405, it is determined whether or not a predetermined integration time has elapsed since the start of integration (that is, the start of stoichiometric F / B control in step S403). If the predetermined integration time has not elapsed, the routine is terminated. On the other hand, if the predetermined integration time has elapsed, in step S406, a final integrated value of the pre-catalyst sensor output difference ΔVf is acquired, and this final integrated value is compared with a predetermined preliminary abnormality determination value. .

最終積算値が予備異常判定値以下の場合、気筒間空燃比ばらつき異常の発生の可能性がないと判断され、ルーチンが終了される。他方、最終積算値が予備異常判定値を超えている場合、気筒間空燃比ばらつき異常の発生の可能性があると判断され、ステップS407に進む。   If the final integrated value is less than or equal to the preliminary abnormality determination value, it is determined that there is no possibility of occurrence of an abnormal variation in the air-fuel ratio between cylinders, and the routine is terminated. On the other hand, if the final integrated value exceeds the preliminary abnormality determination value, it is determined that there is a possibility that the variation in air-fuel ratio between cylinders may occur, and the process proceeds to step S407.

以降、ステップS407〜ステップS412では前述したような本検出に関わる処理が行われる。即ち、ステップS407では前記ステップS303と同様、触媒後センサ学習値ΔVrgのガード範囲が拡大されると共に、触媒後センサ学習値ΔVrgの更新速度が増大される。そしてこの状態でステップS408においてストイキF/B制御開始時から所定時間(これは前記積算時間より長い)が経過したか否かが判断される。所定時間が経過していない場合、ルーチンが終了される。他方、所定時間が経過している場合には、ステップS409〜S412において、前記ステップS306〜S309と同様の処理が行われ、気筒間空燃比ばらつき異常が適宜検出される。   Thereafter, in steps S407 to S412, the processes related to the main detection as described above are performed. That is, in step S407, as in step S303, the guard range of the post-catalyst sensor learned value ΔVrg is expanded and the update speed of the post-catalyst sensor learned value ΔVrg is increased. In this state, in step S408, it is determined whether or not a predetermined time (which is longer than the integration time) has elapsed since the start of the stoichiometric F / B control. If the predetermined time has not elapsed, the routine is terminated. On the other hand, if the predetermined time has elapsed, in steps S409 to S412, the same processing as in steps S306 to S309 is performed, and an abnormality in the air-fuel ratio variation between cylinders is appropriately detected.

次に、予備検出の第2実施例を説明する。図9に示したように、気筒間空燃比ばらつき異常が発生すると、主空燃比フィードバック制御により触媒後センサ18からはストイキ近傍の触媒前空燃比が継続的に検出されるが、水素の影響により、触媒後センサ18からは、ストイキよりリーンの触媒後空燃比が継続的に検出されるようになる(即ち、触媒後センサ出力がリーンに張り付く)。そこでこのことを利用し、予備検出の第2実施例では、主空燃比フィードバック制御により触媒前空燃比がストイキに制御されているにも拘わらず、触媒後センサ18によってストイキよりリーンの触媒後空燃比が所定時間以上検出されたとき、気筒間空燃比ばらつき異常の発生の可能性があると判断する。   Next, a second example of preliminary detection will be described. As shown in FIG. 9, when the variation in air-fuel ratio between cylinders occurs, the pre-catalyst air-fuel ratio in the vicinity of the stoichiometry is continuously detected from the post-catalyst sensor 18 by the main air-fuel ratio feedback control. The post-catalyst sensor 18 continuously detects the lean post-catalyst air-fuel ratio from stoichiometry (that is, the post-catalyst sensor output sticks lean). Therefore, using this fact, in the second embodiment of the preliminary detection, the post-catalyst air-fuel ratio is leaner than the stoichiometry by the post-catalyst sensor 18 even though the pre-catalyst air-fuel ratio is controlled to stoichiometric by the main air-fuel ratio feedback control. When the fuel ratio is detected for a predetermined time or more, it is determined that there is a possibility that the variation in air-fuel ratio between cylinders is abnormal.

図15に予備検出の第2実施例を含む異常検出ルーチンを示す。当該ルーチンはECU20により所定の演算周期毎に繰り返し実行される。   FIG. 15 shows an abnormality detection routine including the second embodiment of preliminary detection. The routine is repeatedly executed by the ECU 20 every predetermined calculation cycle.

ステップS501,S502は前記ステップS301,S302と同様である。ステップS503では前記ステップS304と同様、ストイキF/B制御が実行される。但しこの段階ではまだ触媒後センサ学習値ΔVrgのガード範囲拡大と更新速度増大とは実行されない。   Steps S501 and S502 are the same as steps S301 and S302. In step S503, the stoichiometric F / B control is executed as in step S304. However, at this stage, the guard range expansion and the update speed increase of the post-catalyst sensor learning value ΔVrg are not yet executed.

続くステップS504では、触媒後センサ18の出力Vrが取得されると共に、この取得された触媒後センサ出力Vrがストイキ相当値Vrefrより低いか否か、即ち触媒後センサ18によって検出された触媒後空燃比がストイキよりリーンであるか否かが判定される。触媒後センサ出力Vrがストイキ相当値Vrefrより低い場合、ステップS505において、ECU20に装備されたリーン継続カウンタのカウント値Clがカウントアップされ、ステップS507に進む。リーン継続カウンタは、触媒後空燃比の検出値がストイキよりリーンとなっている時間をカウントするためのものである。他方、触媒後センサ出力Vrがストイキ相当値Vrefr以上の場合、ステップS506においてリーン継続カウンタがクリアされ、ステップS507に進む。   In subsequent step S504, the output Vr of the post-catalyst sensor 18 is acquired, and whether the acquired post-catalyst sensor output Vr is lower than the stoichiometric equivalent value Vrefr, that is, the post-catalyst empty detected by the post-catalyst sensor 18. It is determined whether the fuel ratio is leaner than stoichiometric. When the post-catalyst sensor output Vr is lower than the stoichiometric equivalent value Vrefr, in step S505, the count value Cl of the lean continuation counter equipped in the ECU 20 is counted up, and the process proceeds to step S507. The lean continuation counter is for counting the time during which the detected value of the post-catalyst air-fuel ratio is leaner than the stoichiometric value. On the other hand, if the post-catalyst sensor output Vr is greater than or equal to the stoichiometric equivalent value Vrefr, the lean continuation counter is cleared in step S506, and the process proceeds to step S507.

ステップS507においては、リーン継続カウンタのカウント値Clが所定値Cls以上に達したか否か、即ち、触媒後空燃比の検出値のリーン継続時間が所定時間以上に達したか否かが判断される。   In step S507, it is determined whether or not the count value Cl of the lean continuation counter has reached a predetermined value Cls or more, that is, whether or not the lean continuation time of the detected value of the post-catalyst air-fuel ratio has reached a predetermined time or more. The

カウント値Clが所定値Cls以上に達していない場合、気筒間空燃比ばらつき異常の発生の可能性がないと判断され、ルーチンが終了される。他方、カウント値Clが所定値Cls以上に達している場合、気筒間空燃比ばらつき異常の発生の可能性があると判断され、ステップS508に進む。   If the count value Cl does not reach the predetermined value Cls or more, it is determined that there is no possibility of occurrence of an abnormal variation in the air-fuel ratio between cylinders, and the routine is terminated. On the other hand, if the count value Cl has reached the predetermined value Cls or more, it is determined that there is a possibility of occurrence of inter-cylinder air-fuel ratio variation abnormality, and the process proceeds to step S508.

以降、ステップS508〜S513では前記ステップS407〜S412と同様の本検出に関わる処理が行われる。   Thereafter, in steps S508 to S513, processing related to the main detection similar to steps S407 to S412 is performed.

次に、予備検出の第3実施例を説明する。本実施形態では触媒11として酸素吸蔵能を有する三元触媒が用いられている。この場合、触媒に流入する排気ガスの空燃比(触媒前空燃比)がストイキよりリーンのときには触媒が排気ガス中の酸素を吸蔵し、排気ガスの空燃比がストイキよりリッチのときには触媒が既に吸蔵していた酸素を放出する。一方、かかる三元触媒の劣化診断法として所謂Cmax法が知られている。これは、触媒が劣化すると触媒の酸素吸蔵能が低下するという特性を利用して、触媒が現状で吸蔵(又は放出)可能な酸素量(即ち、酸素吸蔵容量OSC)を計測し、この計測値を所定値と比較して触媒の劣化を判定する方法である。この劣化検出においては、空燃比をリッチ・リーンに強制的に切替制御するアクティブ空燃比制御が実行され、このアクティブ空燃比制御実行中に触媒の吸蔵酸素量と放出酸素量とを複数ずつ計測し、その平均値を最終的な酸素吸蔵容量OSCとして、所定値と比較する。   Next, a third embodiment of preliminary detection will be described. In this embodiment, a three-way catalyst having an oxygen storage capacity is used as the catalyst 11. In this case, when the air-fuel ratio of the exhaust gas flowing into the catalyst (pre-catalyst air-fuel ratio) is leaner than stoichiometric, the catalyst stores oxygen in the exhaust gas, and when the exhaust gas air-fuel ratio is richer than stoichiometric, the catalyst has already stored. The oxygen that had been released is released. On the other hand, a so-called Cmax method is known as a method for diagnosing deterioration of such a three-way catalyst. This is because the oxygen storage capacity of the catalyst decreases when the catalyst deteriorates, and the amount of oxygen that can be stored (or released) by the catalyst (that is, the oxygen storage capacity OSC) is measured. Is compared with a predetermined value to determine the deterioration of the catalyst. In this deterioration detection, active air-fuel ratio control for forcibly switching the air-fuel ratio to rich and lean is executed, and during the execution of this active air-fuel ratio control, the stored oxygen amount and the released oxygen amount of the catalyst are measured multiple times. The average value is compared with a predetermined value as the final oxygen storage capacity OSC.

ここで、吸蔵酸素量と放出酸素量との計測について図16を参照しつつ説明する。(A)は目標空燃比A/Ft(破線)と、触媒前センサ17で検出された触媒前空燃比A/Ff(実線)を示す。また(B)は触媒後センサ出力Vrを示す。(C)は触媒から放出された酸素量即ち放出酸素量OSAaの積算値を示し、(D)は触媒に吸蔵された酸素量即ち吸蔵酸素量OSAbの積算値を示す。   Here, measurement of the occluded oxygen amount and the released oxygen amount will be described with reference to FIG. (A) shows the target air-fuel ratio A / Ft (broken line) and the pre-catalyst air-fuel ratio A / Ff (solid line) detected by the pre-catalyst sensor 17. (B) shows the post-catalyst sensor output Vr. (C) shows the integrated value of the amount of oxygen released from the catalyst, that is, the released oxygen amount OSAa, and (D) shows the integrated value of the amount of oxygen stored in the catalyst, that is, the stored oxygen amount OSAb.

図示するように、アクティブ空燃比制御の実行により、触媒に流入する排気ガスの空燃比は所定のタイミングで強制的にリーン及びリッチに交互に切り替えられる。例えば時刻t1より前では目標空燃比A/Ftがストイキよりリーン(例えば15.1)に設定され、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続け、排気中のリーン成分(NOx)を還元して浄化するが、飽和状態即ち満杯まで酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後センサ18の出力がリーン側に反転し、触媒後センサ18の出力がストイキ相当値Vrefrに達する(時刻t1)。この時点で、目標空燃比A/Ftがストイキよりリッチ(例えば14.1)に切り替えられる。   As shown in the figure, by executing the active air-fuel ratio control, the air-fuel ratio of the exhaust gas flowing into the catalyst is forcibly and alternately switched between lean and rich at a predetermined timing. For example, before the time t1, the target air-fuel ratio A / Ft is set to lean (for example, 15.1) from the stoichiometry, and lean gas flows into the catalyst 11. At this time, the catalyst 11 continuously absorbs oxygen and reduces and purifies the lean component (NOx) in the exhaust gas. However, when the oxygen is absorbed to a saturated state, that is, full, oxygen can no longer be absorbed, and the lean gas becomes the catalyst 11. And flows out downstream of the catalyst 11. When this happens, the output of the post-catalyst sensor 18 is reversed to the lean side, and the output of the post-catalyst sensor 18 reaches the stoichiometric equivalent value Vrefr (time t1). At this time, the target air-fuel ratio A / Ft is switched to richer (eg, 14.1) than stoichiometric.

そして今度は触媒11にリッチガスが流入される。このとき触媒11では、それまで吸蔵していた酸素を放出し続け、排気中のリッチ成分(HC,CO)を酸化して浄化するが、やがて触媒11から全ての吸蔵酸素が放出され尽くすとその時点で酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比がリッチ側に変化し、触媒後センサ18の出力がストイキ相当値Vrefrに達する(時刻t2)。この時点で、目標空燃比A/Ftがリーン空燃比に切り替えられる。このようにして、空燃比のリッチ・リーンへの切替えが繰り返し実行される。   This time, rich gas flows into the catalyst 11. At this time, the catalyst 11 continues to release the oxygen stored until then, and oxidizes and purifies the rich components (HC, CO) in the exhaust gas, but when all the stored oxygen is eventually released from the catalyst 11, At that time, oxygen can no longer be released, and the rich gas passes through the catalyst 11 and flows out downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio changes to the rich side, and the output of the post-catalyst sensor 18 reaches the stoichiometric equivalent value Vrefr (time t2). At this time, the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio. In this way, switching of the air-fuel ratio to rich / lean is repeatedly performed.

(C)に示すように、時刻t1〜t2の放出サイクルでは、極短い所定周期毎の放出酸素量OSAaが順次積算されていく。より詳しくは、触媒前センサ17の出力がストイキ相当値に達した時t11から、触媒後センサ18の出力がリーン側に反転した(Vrefrに達した)時t2まで、1演算周期毎の放出酸素量dOSA(dOSAa)が次式(1)により計算され、この1演算周期毎の値が周期毎に積算されていく。こうして得られた最終的な積算値が、触媒の酸素吸蔵容量に相当する放出酸素量OSAaの計測値となる。   As shown in (C), in the release cycle from time t1 to time t2, the released oxygen amount OSAa for each extremely short predetermined period is sequentially accumulated. More specifically, from the time t11 when the output of the pre-catalyst sensor 17 reaches the stoichiometric value, the released oxygen for each calculation cycle from the time t2 when the output of the post-catalyst sensor 18 is reversed to the lean side (has reached Vrefr). The quantity dOSA (dOSAa) is calculated by the following equation (1), and the value for each calculation period is integrated for each period. The final integrated value obtained in this way becomes the measured value of the released oxygen amount OSAa corresponding to the oxygen storage capacity of the catalyst.

Figure 2009074388
Figure 2009074388

Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じると過剰又は不足分の空気量を計算できる。Kは空気に含まれる酸素割合(約0.23)である。   Q is the fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, the excess or insufficient air amount can be calculated. K is the proportion of oxygen contained in the air (about 0.23).

時刻t2〜t3の吸蔵サイクルでも同様に、(D)に示すように、触媒前センサ17の出力がストイキ相当値に達した時t21から、触媒後センサ18の出力がリッチ側に反転した(Vrefrに達した)時t3まで、1演算周期毎の吸蔵酸素量dOSA(dOSAb)が前記式(1)により計算され、この1演算周期毎の値が周期毎に積算されていく。こうして得られた最終的な積算値が、触媒の酸素吸蔵容量に相当する吸蔵酸素量OSAbの計測値となる。こうして放出サイクルと吸蔵サイクルを繰り返すことにより、複数ずつの放出酸素量OSAaと吸蔵酸素量OSAbとが計測、取得される。   Similarly, in the storage cycle from time t2 to t3, as shown in (D), the output of the post-catalyst sensor 18 is reversed to the rich side from the time t21 when the output of the pre-catalyst sensor 17 reaches the stoichiometric value (Vrefr). Until the time t3, the stored oxygen amount dOSA (dOSAb) for each calculation cycle is calculated by the equation (1), and the value for each calculation cycle is integrated for each cycle. The final integrated value obtained in this way becomes a measured value of the stored oxygen amount OSAb corresponding to the oxygen storage capacity of the catalyst. By repeating the release cycle and the storage cycle in this way, a plurality of released oxygen amounts OSAa and stored oxygen amounts OSAb are measured and acquired.

ところで、原理的には、触媒における吸蔵可能な酸素量と放出可能な酸素量とは等しく、よって上記の放出酸素量OSAaと吸蔵酸素量OSAbとは等しいはずである。つまり両者は対称の関係にある。ところが、気筒間空燃比ばらつき異常が発生すると、この対称関係が崩れ、両者は非対称となる。即ち、触媒前センサ17の出力は水素の影響で真の値よりリッチ側にずれた値である。このため触媒に実際に与えられている排気ガスの空燃比は、触媒前センサ17で検出される見掛け上の空燃比より若干リーンである。よって、放出酸素量OSAaと吸蔵酸素量OSAbとの計測値は等しくならず、前者は後者より大きくなる。   By the way, in principle, the amount of oxygen that can be stored and the amount of oxygen that can be released in the catalyst are equal, and thus the amount of released oxygen OSAa and the amount of stored oxygen OSAb should be equal. In other words, they are in a symmetrical relationship. However, when the variation in air-fuel ratio between cylinders occurs, this symmetrical relationship is lost, and both become asymmetric. That is, the output of the pre-catalyst sensor 17 is a value shifted to the rich side from the true value due to the influence of hydrogen. For this reason, the air-fuel ratio of the exhaust gas actually given to the catalyst is slightly leaner than the apparent air-fuel ratio detected by the pre-catalyst sensor 17. Therefore, the measured values of the released oxygen amount OSAa and the stored oxygen amount OSAb are not equal, and the former is larger than the latter.

よってこのことを利用して予備検出を行う。即ち、放出酸素量OSAaと吸蔵酸素量OSAbとをそれぞれ計測すると共に、これら計測値の比R=OSAa/OSAbを算出し、この比Rが所定値より大きいとき、気筒間空燃比ばらつき異常の発生の可能性があると判断する。なお、両計測値の差が所定値より大きいとき気筒間空燃比ばらつき異常の発生の可能性があると判断してもよい。   Therefore, preliminary detection is performed using this fact. That is, the released oxygen amount OSAa and the stored oxygen amount OSAb are respectively measured, and the ratio R = OSAa / OSAb of these measured values is calculated. It is determined that there is a possibility. Note that when the difference between the two measured values is larger than a predetermined value, it may be determined that there is a possibility that an abnormality in the air-fuel ratio variation between the cylinders may occur.

図17に予備検出の第3実施例を含む異常検出ルーチンを示す。当該ルーチンはECU20により所定の演算周期毎に繰り返し実行される。   FIG. 17 shows an abnormality detection routine including the third embodiment of preliminary detection. The routine is repeatedly executed by the ECU 20 every predetermined calculation cycle.

ステップS601,S602は前記ステップS301,S302と同様である。ステップS603では、アクティブ空燃比制御を実行するのに適した所定条件が成立しているか否かが判断される。例えば、吸入空気量Ga及び機関回転速度Neの検出値の変動幅が所定範囲内にあるなど、エンジンが定常運転状態であれば、条件成立となる。条件が成立していない場合にはルーチンが終了され、他方、条件が成立している場合にはステップS604に進む。   Steps S601 and S602 are the same as steps S301 and S302. In step S603, it is determined whether or not a predetermined condition suitable for executing active air-fuel ratio control is satisfied. For example, the condition is satisfied if the engine is in a steady operation state such that the fluctuation range of the detected values of the intake air amount Ga and the engine rotational speed Ne are within a predetermined range. If the condition is not satisfied, the routine is terminated. If the condition is satisfied, the process proceeds to step S604.

ステップS604ではアクティブ空燃比制御が実行される。そしてステップS605において放出酸素量OSAaと吸蔵酸素量OSAbとが計測され、これら計測値が複数ずつ取得される。次いでステップS606では複数の放出酸素量OSAaの計測値と、複数の吸蔵酸素量OSAbの計測値との平均値OSAaAV,OSAbAVがそれぞれ算出され、これら平均値OSAaAV,OSAbAVの比R=OSAaAV/OSAbAVが算出される。そして、この比Rと所定値Rsとが比較される。所定値Rsは1より大きい値に設定されている。   In step S604, active air-fuel ratio control is executed. In step S605, the released oxygen amount OSAa and the stored oxygen amount OSAb are measured, and a plurality of these measured values are acquired. Next, in step S606, average values OSAaAV and OSAbAV of the measured values of the plurality of released oxygen amounts OSAa and the measured values of the plurality of stored oxygen amounts OSAb are respectively calculated, and the ratio R = OSAaAV / OSAbAV of these average values OSAaAV and OSAbAV is Calculated. Then, the ratio R is compared with the predetermined value Rs. The predetermined value Rs is set to a value larger than 1.

比Rが所定値Rs以下の場合、気筒間空燃比ばらつき異常の発生の可能性がないと判断され、ルーチンが終了される。他方、比Rが所定値Rsより大きい場合、気筒間空燃比ばらつき異常の発生の可能性があると判断され、ステップS607に進む。   When the ratio R is equal to or less than the predetermined value Rs, it is determined that there is no possibility of occurrence of an abnormal variation in air-fuel ratio between cylinders, and the routine is terminated. On the other hand, if the ratio R is greater than the predetermined value Rs, it is determined that there is a possibility that the variation in the air-fuel ratio between the cylinders may occur, and the process proceeds to step S607.

ステップS607以降では本検出に関わる処理が行われる。まずステップS607で前記ステップS403と同様、ストイキF/B制御が実行され、ステップS608で前記ステップS407と同様、触媒後センサ学習値ΔVrgのガード範囲拡大と更新速度増大とが実行される。以降のステップS609〜613では前記ステップS408〜S412と同様の処理が行われる。   In step S607 and subsequent steps, processing related to the main detection is performed. First, in step S607, the stoichiometric F / B control is executed as in step S403, and in step S608, the guard range expansion and the update speed increase of the post-catalyst sensor learning value ΔVrg are executed as in step S407. In subsequent steps S609 to 613, processing similar to that in steps S408 to S412 is performed.

なお、予備検出の第1実施例〜第3実施例については、これらを二つ以上組み合わせてもよい。   In addition, about 1st Example-3rd Example of preliminary | backup detection, you may combine these 2 or more.

以上、本発明の好適な実施形態を詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば上述の内燃機関は吸気ポート(吸気通路)噴射式であったが、直噴式エンジンや両噴射方式を兼ね備えたデュアル噴射式エンジンにも、本発明は適用可能である。前記実施形態では触媒前に広域空燃比センサを用い、触媒後にO2センサを用いたが、例えば触媒後に広域空燃比センサを用いたり、触媒前にO2センサを用いてもよい。これら広域空燃比センサ及びO2センサを含め、広く、排気の空燃比を検出するためのセンサを本発明にいう空燃比センサというものとする。前記実施形態では主空燃比制御と補助空燃比制御とで目標空燃比を等しくストイキに設定したが、必ずしもそうする必要はない。両制御の目標空燃比を異ならせることもできる。また例えばエンジンの始動時や暖機時などで主及び補助空燃比制御の目標空燃比をストイキより若干リッチにすることがあるが、このような場合にも本発明は適用可能である。 The preferred embodiment of the present invention has been described in detail above, but various other embodiments of the present invention are conceivable. For example, the above-described internal combustion engine is an intake port (intake passage) injection type, but the present invention can also be applied to a direct injection type engine or a dual injection type engine having both injection types. In the above embodiment, the wide area air-fuel ratio sensor is used before the catalyst and the O 2 sensor is used after the catalyst. However, for example, a wide area air-fuel ratio sensor may be used after the catalyst, or an O 2 sensor may be used before the catalyst. A wide range of sensors for detecting the air-fuel ratio of exhaust gas, including these wide-range air-fuel ratio sensors and O 2 sensors, are referred to as air-fuel ratio sensors in the present invention. In the above embodiment, the target air-fuel ratio is set to be equal in both the main air-fuel ratio control and the auxiliary air-fuel ratio control, but it is not always necessary to do so. It is also possible to make the target air-fuel ratios of both controls different. Further, for example, the target air-fuel ratio of the main and auxiliary air-fuel ratio control may be slightly richer than the stoichiometry at the time of starting the engine or warming up, but the present invention is also applicable to such a case.

前記実施形態では4気筒エンジンにおいて、そのうちの1気筒(#1気筒)が残りの3気筒(#2〜#4気筒)に対しリッチずれした例を示したが、リッチずれ気筒数に制限は無い。一部の複数気筒(例えば#1、#2気筒)が残りの気筒(例えば#3、#4気筒)に対しリッチずれしたような場合にも、本発明は適用可能である。例えば#1〜#3気筒が#4気筒に対しリッチずれした場合には、#1〜#3気筒から見れば、#4気筒がリーンずれしていることになるが、この場合にも本発明は適用可能である。   In the above-described embodiment, an example in which one cylinder (# 1 cylinder) of the four-cylinder engine is richly shifted with respect to the remaining three cylinders (# 2 to # 4 cylinder) is shown, but the number of rich-shifted cylinders is not limited. . The present invention can also be applied to a case where some cylinders (for example, # 1 and # 2 cylinders) are richly shifted from the remaining cylinders (for example, # 3 and # 4 cylinders). For example, when the # 1 to # 3 cylinders are richly displaced from the # 4 cylinder, the # 4 cylinders are leanly displaced from the # 1 to # 3 cylinders. Is applicable.

本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The embodiment of the present invention is not limited to the above-described embodiment, and includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の一実施形態に係る内燃機関の概略図である。1 is a schematic view of an internal combustion engine according to an embodiment of the present invention. 触媒前センサの出力特性を示すグラフである。It is a graph which shows the output characteristic of the sensor before a catalyst. 触媒後センサの出力特性を示すグラフである。It is a graph which shows the output characteristic of a post-catalyst sensor. 空燃比制御ルーチンを示すフローチャートである。It is a flowchart which shows an air fuel ratio control routine. 主空燃比補正量の算出マップである。It is a calculation map of the main air-fuel ratio correction amount. 補助空燃比補正量の設定ルーチンを示すフローチャートである。It is a flowchart which shows the setting routine of an auxiliary air fuel ratio correction amount. 触媒後センサ出力差とその積算の様子を示すグラフである。It is a graph which shows the mode of the sensor output difference after a catalyst, and the mode of the integration. 補助空燃比補正量の算出マップである。It is a calculation map of the auxiliary air-fuel ratio correction amount. 1気筒が他の3気筒よりも空燃比リッチ側にずれている場合を示し、異常検出の第1の態様を説明するための図である。It is a figure for demonstrating the case where one cylinder has shifted | deviated to the air-fuel-ratio rich side from the other 3 cylinders, and is a figure for demonstrating the 1st aspect of abnormality detection. 1気筒のリッチ側への空燃比ズレ量と、燃焼室から排出される水素量との関係を示すグラフである。It is a graph which shows the relationship between the air-fuel-ratio deviation | shift amount to the rich side of 1 cylinder, and the hydrogen amount discharged | emitted from a combustion chamber. インバランス割合と触媒後センサ学習値との関係を調べた試験結果である。It is the test result which investigated the relationship between the imbalance ratio and the post-catalyst sensor learning value. 異常検出の一態様に係る異常検出ルーチンを示すフローチャートである。It is a flowchart which shows the abnormality detection routine which concerns on the one aspect | mode of abnormality detection. 気筒間空燃比ばらつき異常が発生したときの排気空燃比の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the exhaust air-fuel ratio when the air-fuel ratio variation abnormality between cylinders generate | occur | produces. 予備検出の第1実施例を含む異常検出ルーチンを示すフローチャートである。It is a flowchart which shows the abnormality detection routine containing 1st Example of a preliminary | backup detection. 予備検出の第2実施例を含む異常検出ルーチンを示すフローチャートである。It is a flowchart which shows the abnormality detection routine containing 2nd Example of preliminary | backup detection. 吸蔵酸素量と放出酸素量との計測方法を説明するためのタイムチャートである。It is a time chart for demonstrating the measuring method of the amount of occluded oxygen and the amount of released oxygen. 予備検出の第3実施例を含む異常検出ルーチンを示すフローチャートである。It is a flowchart which shows the abnormality detection routine containing 3rd Example of preliminary | backup detection.

符号の説明Explanation of symbols

1 内燃機関
3 燃焼室
6 排気管
11 触媒
12 インジェクタ
14 排気マニフォールド
17 触媒前センサ
18 触媒後センサ
20 電子制御ユニット(ECU)
1 Internal combustion engine 3 Combustion chamber 6 Exhaust pipe 11 Catalyst 12 Injector 14 Exhaust manifold 17 Pre-catalyst sensor 18 Post-catalyst sensor 20 Electronic control unit (ECU)

Claims (3)

多気筒内燃機関の排気通路に配置され、排気中に含まれる少なくとも水素を酸化して浄化する触媒要素と、
前記触媒要素の上流側の排気通路に配置され、前記触媒要素を通過していない排気の空燃比である第1の排気空燃比を検出する第1の空燃比センサと、
前記触媒要素の下流側の排気通路に配置され、前記触媒要素を通過した排気の空燃比である第2の排気空燃比を検出する第2の空燃比センサと、
前記第1の排気空燃比の検出値を所定の第1の目標空燃比に一致させるような主空燃比制御及び前記第2の排気空燃比の検出値を所定の第2の目標空燃比に一致させるような補助空燃比制御を実行する空燃比制御手段であって、前記第2の空燃比センサの出力に基づき前記補助空燃比制御のための制御量を所定の更新速度で更新する空燃比制御手段と、
前記制御量が、前記第2の排気空燃比をよりリッチ側に補正するような所定の異常判定値に達したとき、気筒間空燃比ばらつき異常の発生を検出するばらつき異常検出手段と
を備え、
前記空燃比制御手段は、前記制御量を所定のガード範囲内としつつ前記補助空燃比制御を実行し、且つ、前記ばらつき異常検出手段による気筒間空燃比ばらつき異常の検出を実行する際、前記ガード範囲を少なくとも前記異常判定値を含むように拡大すること、及び前記制御量の更新速度を上げることの少なくとも一つを実行する
ことを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。
A catalytic element that is disposed in an exhaust passage of a multi-cylinder internal combustion engine and oxidizes and purifies at least hydrogen contained in the exhaust;
A first air-fuel ratio sensor that is disposed in an exhaust passage upstream of the catalyst element and detects a first exhaust air-fuel ratio that is an air-fuel ratio of exhaust that does not pass through the catalyst element;
A second air-fuel ratio sensor that is disposed in an exhaust passage downstream of the catalyst element and detects a second exhaust air-fuel ratio that is an air-fuel ratio of exhaust that has passed through the catalyst element;
The main air-fuel ratio control for matching the detected value of the first exhaust air-fuel ratio with a predetermined first target air-fuel ratio and the detected value of the second exhaust air-fuel ratio match with a predetermined second target air-fuel ratio Air-fuel ratio control means for executing such auxiliary air-fuel ratio control, wherein the control amount for the auxiliary air-fuel ratio control is updated at a predetermined update speed based on the output of the second air-fuel ratio sensor Means,
A variation abnormality detecting means for detecting the occurrence of an inter-cylinder air-fuel ratio variation abnormality when the control amount reaches a predetermined abnormality determination value that corrects the second exhaust air-fuel ratio to a richer side;
The air-fuel ratio control means executes the auxiliary air-fuel ratio control while keeping the control amount within a predetermined guard range, and the detection of the abnormality in the air-fuel ratio variation between cylinders by the variation abnormality detection means is performed. An apparatus for detecting an abnormality in an air-fuel ratio variation between cylinders of a multi-cylinder internal combustion engine, wherein at least one of expanding a range so as to include at least the abnormality determination value and increasing an update speed of the control amount is executed. .
前記ばらつき異常検出手段による気筒間空燃比ばらつき異常の検出の前に、気筒間空燃比ばらつき異常の発生の可能性があることを予備的に検出する予備検出手段を備え、
前記ばらつき異常検出手段は、前記予備検出手段により気筒間空燃比ばらつき異常の発生の可能性があることが検出されたときに、気筒間空燃比ばらつき異常の検出を実行する
ことを特徴とする請求項1記載の多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。
Before detecting the variation abnormality between cylinders air-fuel ratio by the variation abnormality detection means, comprising preliminary detection means for preliminarily detecting the possibility of occurrence of variation abnormality between cylinders air-fuel ratio,
The variation abnormality detecting means performs detection of an abnormality in air-fuel ratio variation between cylinders when it is detected by the preliminary detection means that there is a possibility of occurrence of an abnormality in air-fuel ratio variation between cylinders. Item 4. The inter-cylinder air-fuel ratio variation abnormality detection device for a multi-cylinder internal combustion engine according to Item 1.
前記予備検出手段は、前記第1の空燃比センサの出力と前記第1の目標空燃比相当のセンサ出力との差を所定時間積算して得られる積算値が所定値を超えたとき、前記第1の目標空燃比よりもリーン側の第2の排気空燃比が前記第2の空燃比センサによって所定時間以上検出されたとき、及び前記触媒要素の吸蔵酸素量と放出酸素量との比又は差が所定値より大きいときの少なくとも一つであるとき、気筒間空燃比ばらつき異常の発生の可能性があることを検出する
ことを特徴とする請求項2記載の多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。
When the integrated value obtained by integrating the difference between the output of the first air-fuel ratio sensor and the sensor output corresponding to the first target air-fuel ratio for a predetermined time exceeds a predetermined value, the preliminary detection means The second exhaust air-fuel ratio leaner than the target air-fuel ratio of 1 is detected by the second air-fuel ratio sensor for a predetermined time or more, and the ratio or difference between the stored oxygen amount and the released oxygen amount of the catalyst element 3. The inter-cylinder air-fuel ratio of the multi-cylinder internal combustion engine according to claim 2, wherein there is a possibility of occurrence of an abnormal variation in the inter-cylinder air-fuel ratio when at least one of the two is greater than a predetermined value. Variation abnormality detection device.
JP2007242504A 2007-07-24 2007-09-19 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine Pending JP2009074388A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007242504A JP2009074388A (en) 2007-09-19 2007-09-19 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
PCT/IB2008/001913 WO2009013600A2 (en) 2007-07-24 2008-07-23 Apparatus and method for detecting abnormalair-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
US12/663,783 US8744729B2 (en) 2007-07-24 2008-07-23 Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP2010514179A JP4836021B2 (en) 2007-07-24 2008-07-23 Cylinder air-fuel ratio variation abnormality detecting device and method for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242504A JP2009074388A (en) 2007-09-19 2007-09-19 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009074388A true JP2009074388A (en) 2009-04-09

Family

ID=40609619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242504A Pending JP2009074388A (en) 2007-07-24 2007-09-19 Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009074388A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203881A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Device for detecting air-fuel ratio dispersion abnormality between cylinders of multi-cylinder internal combustion engine
WO2010119554A1 (en) * 2009-04-16 2010-10-21 トヨタ自動車株式会社 Device for diagnosing catalyst abnormality
WO2011052096A1 (en) * 2009-10-29 2011-05-05 トヨタ自動車株式会社 Internal combustion engine system control device
JP2011106309A (en) * 2009-11-13 2011-06-02 Mazda Motor Corp Method and apparatus for detecting abnormality of engine
WO2011064899A1 (en) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 Device for determining imbalance in air-fuel ratio between cylinders for internal combustion engine
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
WO2011152509A1 (en) * 2010-06-04 2011-12-08 日立オートモティブシステムズ株式会社 Engine controller
JP2011247149A (en) * 2010-05-26 2011-12-08 Mazda Motor Corp Method and device for detecting failure in engine
WO2012014328A1 (en) * 2010-07-27 2012-02-02 トヨタ自動車株式会社 Fuel-injection-quantity control device for internal combustion engine
JP2012077713A (en) * 2010-10-05 2012-04-19 Toyota Motor Corp Multi-cylinder internal combustion engine control device
JP2012167646A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Inter-cylinder air-fuel ratio variation abnormality detection device
US8554450B2 (en) 2011-07-12 2013-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US8868317B2 (en) 2010-08-12 2014-10-21 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for an internal combustion engine
WO2014171080A1 (en) * 2013-04-19 2014-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for internal combustion engine
KR101726871B1 (en) 2014-07-03 2017-04-27 컨티넨탈 오토모티브 시스템즈 인코포레이티드 Detection of air-fuel ratio rich-lean imbalance using an oxygen sensor
JP2020159301A (en) * 2019-03-27 2020-10-01 三菱自動車工業株式会社 Engine controller
JP2020159302A (en) * 2019-03-27 2020-10-01 三菱自動車工業株式会社 Engine control

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203881A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Device for detecting air-fuel ratio dispersion abnormality between cylinders of multi-cylinder internal combustion engine
WO2010119554A1 (en) * 2009-04-16 2010-10-21 トヨタ自動車株式会社 Device for diagnosing catalyst abnormality
WO2011052096A1 (en) * 2009-10-29 2011-05-05 トヨタ自動車株式会社 Internal combustion engine system control device
US8554447B2 (en) 2009-10-29 2013-10-08 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system controller
JP5246456B2 (en) * 2009-10-29 2013-07-24 トヨタ自動車株式会社 Internal combustion engine system control device
JP2011106309A (en) * 2009-11-13 2011-06-02 Mazda Motor Corp Method and apparatus for detecting abnormality of engine
JP5041100B2 (en) * 2009-11-26 2012-10-03 トヨタ自動車株式会社 Device for determining an imbalance between air-fuel ratios of an internal combustion engine
WO2011064899A1 (en) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 Device for determining imbalance in air-fuel ratio between cylinders for internal combustion engine
US9194315B2 (en) 2009-11-26 2015-11-24 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio imbalance among cylinders determining apparatus for an internal combustion engine
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP2011247149A (en) * 2010-05-26 2011-12-08 Mazda Motor Corp Method and device for detecting failure in engine
WO2011152509A1 (en) * 2010-06-04 2011-12-08 日立オートモティブシステムズ株式会社 Engine controller
CN102472184B (en) * 2010-07-27 2015-04-01 丰田自动车株式会社 Fuel-injection-quantity control device for internal combustion engine
CN102472184A (en) * 2010-07-27 2012-05-23 丰田自动车株式会社 Fuel-injection-quantity control device for internal combustion engine
WO2012014328A1 (en) * 2010-07-27 2012-02-02 トヨタ自動車株式会社 Fuel-injection-quantity control device for internal combustion engine
US8868317B2 (en) 2010-08-12 2014-10-21 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for an internal combustion engine
JP2012077713A (en) * 2010-10-05 2012-04-19 Toyota Motor Corp Multi-cylinder internal combustion engine control device
JP2012167646A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Inter-cylinder air-fuel ratio variation abnormality detection device
US8695568B2 (en) 2011-02-16 2014-04-15 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance abnormality determination device
US8554450B2 (en) 2011-07-12 2013-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
WO2014171080A1 (en) * 2013-04-19 2014-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for internal combustion engine
CN105121821A (en) * 2013-04-19 2015-12-02 丰田自动车株式会社 Air-fuel ratio control apparatus for internal combustion engine
US20160076474A1 (en) * 2013-04-19 2016-03-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for internal combustion engine
US9752523B2 (en) 2013-04-19 2017-09-05 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for internal combustion engine
CN105121821B (en) * 2013-04-19 2018-02-02 丰田自动车株式会社 Air-fuel-ratio control apparatus for internal combustion engine
KR101726871B1 (en) 2014-07-03 2017-04-27 컨티넨탈 오토모티브 시스템즈 인코포레이티드 Detection of air-fuel ratio rich-lean imbalance using an oxygen sensor
JP2020159301A (en) * 2019-03-27 2020-10-01 三菱自動車工業株式会社 Engine controller
JP2020159302A (en) * 2019-03-27 2020-10-01 三菱自動車工業株式会社 Engine control
JP7234734B2 (en) 2019-03-27 2023-03-08 三菱自動車工業株式会社 engine controller
JP7234735B2 (en) 2019-03-27 2023-03-08 三菱自動車工業株式会社 engine controller

Similar Documents

Publication Publication Date Title
JP4836021B2 (en) Cylinder air-fuel ratio variation abnormality detecting device and method for multi-cylinder internal combustion engine
JP2009074388A (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP5035688B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP4496549B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP5187409B2 (en) Air-fuel ratio variation abnormality detection device
JP5273202B2 (en) Air-fuel ratio variation abnormality detection device
AU2016201876B2 (en) Exhaust purification system of internal combustion engine
JP5024676B2 (en) Catalyst deterioration suppressor
JP2009030455A (en) Apparatus and method for detecting an air-fuel ratio variation abnormality between cylinders of a multi-cylinder internal combustion engine
US8024105B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP5348190B2 (en) Control device for internal combustion engine
JP2010190089A (en) Abnormality diagnostic device for multicylinder internal combustion engine
JP5067509B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP2010025090A (en) Abnormality diagnosing device for air-fuel ratio sensor
JP2014013032A (en) Detection device for abnormality of variation in air-fuel ratio between cylinder
US9664096B2 (en) Control apparatus for internal combustion engine
JP4844587B2 (en) Catalyst deterioration diagnosis device
JP5783202B2 (en) Abnormality detection device for internal combustion engine
JP2012132392A (en) Failure detection device of air-fuel-ratio variation between cylinders
CN105189991B (en) The control device of explosive motor
US9588017B2 (en) Apparatus for detecting variation abnormality in air-fuel ratio between cylinders
US20140007856A1 (en) Inter-cylinder air/fuel ratio variation abnormality detection apparatus and method for multicylinder internal combustion engine
JP2012097718A (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine
JP2013221482A (en) Abnormality in variation of air-fuel ratio among cylinder detection device