[go: up one dir, main page]

JP2009072740A - Exhaust emission control method and device for internal combustion engine - Google Patents

Exhaust emission control method and device for internal combustion engine Download PDF

Info

Publication number
JP2009072740A
JP2009072740A JP2007246443A JP2007246443A JP2009072740A JP 2009072740 A JP2009072740 A JP 2009072740A JP 2007246443 A JP2007246443 A JP 2007246443A JP 2007246443 A JP2007246443 A JP 2007246443A JP 2009072740 A JP2009072740 A JP 2009072740A
Authority
JP
Japan
Prior art keywords
exhaust gas
internal combustion
combustion engine
sulfur
sulfur content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007246443A
Other languages
Japanese (ja)
Inventor
Toshiaki Arato
利昭 荒戸
Hidehiro Iizuka
秀宏 飯塚
Toshiaki Nagayama
敏明 長山
Toshifumi Mukai
利文 向井
Kazuhisa Higashiyama
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007246443A priority Critical patent/JP2009072740A/en
Publication of JP2009072740A publication Critical patent/JP2009072740A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device and method for an internal combustion engine with enhanced exhaust emission control performance and reduced fuel consumption of the internal combustion engine. <P>SOLUTION: The exhaust emission control device cleans exhaust gas of the internal combustion engine by a nitrogen oxides collection type exhaust gas cleaning catalyst, wherein a sulfur collecting material having a composite oxide with an alkali metal element or an alkaline earth metal element and Ti as the main components is set in an exhaust gas flow passage upstream of the nitrogen oxides collection type exhaust gas cleaning catalyst. An oxidation catalyst oxidizing sulfur to sulfur oxides may be provided in an exhaust gas passage upstream of the sulfur collecting material. By the present invention, sulfur contained in exhaust gas can be efficiently collected and removed, contributing to enhancement of the exhaust gas cleaning performance of the exhaust emission control device and enhancement of durability. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関から排出される排気ガスの浄化方法と浄化装置に係る。特に、内燃機関の排気通路に硫黄分捕捉材及び窒素酸化物捕捉型の排気浄化触媒を備えた排気浄化装置とその排気浄化方法に関する。   The present invention relates to a purification method and a purification device for exhaust gas discharged from an internal combustion engine. In particular, the present invention relates to an exhaust gas purification apparatus provided with a sulfur content capturing material and a nitrogen oxide capturing type exhaust gas purification catalyst in an exhaust passage of an internal combustion engine, and an exhaust gas purification method thereof.

リーンバーンエンジン或いはディーゼルエンジンは、空燃比が通常のガソリンエンジンに比べて大きく、三元触媒では排気を浄化できないことから、窒素酸化物を吸着または吸収し、捕捉する窒素酸化物捕捉型の排気浄化触媒が用いられている。   Lean burn engine or diesel engine has a larger air-fuel ratio than ordinary gasoline engines, and exhaust gas cannot be purified with a three-way catalyst. Therefore, nitrogen oxide trapping type exhaust purification that absorbs and absorbs nitrogen oxides and captures them. A catalyst is used.

特開平6−336914号公報(特許文献1),特開2002−47917号公報(特許文献2)には、空燃比が理論空燃比より大きいリーンのときには窒素酸化物を取り込み、加速時のように空燃比が理論空燃比に近づいたときには取り込んだ窒素酸化物を還元して窒素として放出する窒素酸化物捕捉型の排気浄化触媒が開示されている。   In JP-A-6-336914 (Patent Document 1) and JP-A-2002-47917 (Patent Document 2), when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, nitrogen oxide is taken in, as in acceleration. A nitrogen oxide trapping type exhaust purification catalyst is disclosed in which when the air-fuel ratio approaches the stoichiometric air-fuel ratio, the captured nitrogen oxide is reduced and released as nitrogen.

このような窒素酸化物捕捉型の排気浄化触媒は、燃料に含まれる硫黄分によって被毒され、性能低下を引き起こす問題が指摘されている。重質な燃料ほど、燃料中の硫黄分を多量に含む。このため、軽油を燃料とするディーゼル機関では、ガソリンを燃料とする内燃機関に比べて窒素酸化物捕捉型排気浄化触媒の活性低下が生じやすい。   It has been pointed out that such a nitrogen oxide trapping type exhaust purification catalyst is poisoned by sulfur contained in the fuel and causes a decrease in performance. A heavier fuel contains a larger amount of sulfur in the fuel. For this reason, in a diesel engine using light oil as a fuel, the activity of the nitrogen oxide capture type exhaust purification catalyst is likely to decrease compared to an internal combustion engine using gasoline as a fuel.

特開平6−66129号公報(特許文献3)には、硫黄被毒した窒素酸化物捕捉型の排気浄化触媒を高温に加熱するとともに、排気ガスの酸素濃度を低下させて空燃比を理論空燃比に切り替えることにより、捕捉されている硫黄を放出させ、再生させることが開示されている。   In JP-A-6-66129 (Patent Document 3), a sulfur-poisoned nitrogen oxide trapping type exhaust purification catalyst is heated to a high temperature, and the oxygen concentration of the exhaust gas is reduced to set the air-fuel ratio to the stoichiometric air-fuel ratio. It is disclosed that the trapped sulfur is released and regenerated by switching to.

特許文献1には、SOx捕捉材を再生した際に放出されたSOxがNOx捕捉材に捕捉されてしまうのを防止するために、SOx捕捉材からSOxが放出される前にNOx捕捉材に流入する排気の酸素濃度を低下させることが記載されている。   In Patent Document 1, in order to prevent SOx released when the SOx trapping material is regenerated from being trapped by the NOx trapping material, it flows into the NOx trapping material before the SOx is released from the SOx trapping material. It is described that the oxygen concentration of exhaust gas is reduced.

また、特許文献2には、塩基性の金属元素を含有する硫黄成分固定化剤を用いて、窒素酸化物捕捉型の排気浄化触媒に排気ガスが流入する以前に硫黄分を固形化するとともに、固形化剤中に固形化させる硫黄分に対して当量より多い塩基性金属を含有させておくことが記載されている。   Patent Document 2 uses a sulfur component immobilizing agent containing a basic metal element to solidify sulfur before exhaust gas flows into a nitrogen oxide trapping exhaust purification catalyst, It is described that a basic metal is contained in the solidifying agent in an amount larger than an equivalent amount relative to the sulfur content to be solidified.

特開平6−336914号公報(要約)JP-A-6-336914 (Summary) 特開2002−47917号公報(要約)JP 2002-47917 A (summary) 特開平6−66129号公報(要約)JP-A-6-66129 (summary)

窒素酸化物捕捉型の排気浄化触媒に捕捉された硫黄分を放出して触媒を再生する場合に、空燃比を理論空燃比近傍にするので、燃料が多量に消費されて燃費の悪化が生ずる恐れがある。また高温に加熱するので、排気浄化触媒に含まれる貴金属にシンタリングが生じ、触媒活性が低下する恐れがある。SOx捕捉材を用いる方法では、SOx捕捉材から放出されたSOxがNOx捕捉材に捕捉される可能性があり、またその防止には複雑な制御が必要となる。硫黄成分固形化剤を用いる方法では、硫黄成分を固形化した固形化剤の処理が必要である。   When regenerating the catalyst by releasing sulfur trapped by the nitrogen oxide trapping type exhaust purification catalyst, the air / fuel ratio is brought close to the stoichiometric air / fuel ratio, so that a large amount of fuel may be consumed, resulting in deterioration of fuel consumption. There is. Moreover, since it is heated to a high temperature, sintering may occur in the noble metal contained in the exhaust purification catalyst, which may reduce the catalytic activity. In the method using the SOx trapping material, SOx released from the SOx trapping material may be trapped by the NOx trapping material, and complicated control is required to prevent it. In the method using the sulfur component solidifying agent, it is necessary to treat the solidifying agent obtained by solidifying the sulfur component.

そこで、本発明の目的は上記課題を解決し、燃費を向上させながら簡便に硫黄による被毒を防止し、排気浄化触媒の活性の低下を抑制する排気浄化方法及び排気浄化装置を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust purification method and an exhaust purification device that solve the above-mentioned problems, easily prevent poisoning with sulfur while improving fuel efficiency, and suppress a decrease in the activity of the exhaust purification catalyst. is there.

上記課題を解決する本願発明の特徴は、硫黄分捕捉材と、窒素酸化物捕捉型排気浄化触媒とを有する内燃機関の排ガス浄化装置であって、硫黄分捕捉材がアルカリ土類元素,アルカリ金属元素,チタンを主たる成分とする複合酸化物を含有することにある。特に、アルカリ土類元素またはアルカリ金属元素とチタンとの複合酸化物を含むことが好ましい。   A feature of the present invention that solves the above problem is an exhaust gas purifying apparatus for an internal combustion engine having a sulfur trapping material and a nitrogen oxide trapping type exhaust purification catalyst, wherein the sulfur trapping material is an alkaline earth element, an alkali metal It is to contain a complex oxide whose main component is element, titanium. In particular, a composite oxide of an alkaline earth element or an alkali metal element and titanium is preferably included.

また、他の本願発明の特徴は、排ガス中の硫黄分を硫黄分捕捉材を用いて捕捉し、その後排ガス中の窒素酸化物を捕捉して浄化する内燃機関の排ガス浄化方法であって、前記硫黄分捕捉材がアルカリ土類元素,アルカリ金属元素,チタンを主たる成分とする複合酸化物を含有することにある。前記硫黄分捕捉材は、粒子状に製粒されていること、もしくは、ハニカム基材の上にコート層として設けられていることが好ましい。   Another feature of the present invention is an exhaust gas purification method for an internal combustion engine that captures sulfur content in exhaust gas using a sulfur content capturing material, and then captures and purifies nitrogen oxides in the exhaust gas. The sulfur content-trapping material contains a complex oxide mainly composed of alkaline earth elements, alkali metal elements, and titanium. It is preferable that the sulfur content capturing material is granulated in the form of particles, or provided as a coat layer on the honeycomb substrate.

上記アルカリ土類金属類あるいはアルカリ金属類元素とTiの複合酸化物は、Tiとアルカリ土類金属類あるいはアルカリ金属類元素の比率がモル比で1:2から1:6であることが好ましい。硫黄分捕捉材の細孔容積が1グラム当り0.05cm3以上、もしくは表面積が1グラム当り10m2以上であることが望ましい。表面積が大きいことにより、硫黄分の捕捉能力が向上し、かつ長時間にわたって硫黄分を捕捉し続けることができる。前記硫黄分捕捉材は、排気ガスに含まれる硫黄分を捕捉除去するための直径0.1ミクロン〜100ミクロンの空隙を包含する。このような空隙を有することにより、硫黄分の捕捉能力が向上し、かつ長時間にわたって硫黄分を捕捉し続けることができる。 In the alkaline earth metal or the composite oxide of alkali metal element and Ti, the molar ratio of Ti and the alkaline earth metal or alkali metal element is preferably 1: 2 to 1: 6. It is desirable that the sulfur trapping material has a pore volume of 0.05 cm 3 or more per gram or a surface area of 10 m 2 or more per gram. Due to the large surface area, the ability to capture sulfur can be improved, and the sulfur can be continuously captured for a long time. The sulfur content capturing material includes a void having a diameter of 0.1 to 100 microns for capturing and removing the sulfur content contained in the exhaust gas. By having such a space | gap, the capture | acquisition capability of sulfur content improves, and it can continue capture | acquiring a sulfur content for a long time.

上記特徴を有する発明により、硫黄分が捕捉された捕捉材を再生するための処理の頻度を少なくすることができ、もしくは再生処理が不要となる。従って、硫黄分捕捉材の再生処理の際に高温で触媒を過熱する必要がなく、窒素酸化物捕捉浄化触媒の活性の低下や、再生時に排ガスを理論空燃比燃焼条件とすることによる燃比の悪化を改善することができる。   According to the invention having the above characteristics, the frequency of processing for regenerating the capturing material in which the sulfur content is captured can be reduced, or regeneration processing is not necessary. Therefore, it is not necessary to overheat the catalyst at a high temperature during the regeneration process of the sulfur content trapping material, the activity of the nitrogen oxide capture purification catalyst is reduced, or the fuel ratio is deteriorated by setting the exhaust gas to the stoichiometric air-fuel ratio combustion condition at the time of regeneration. Can be improved.

上記本願発明によれば、窒素酸化物捕捉型排気浄化触媒の活性の低下を防止し、耐久性の高い排ガス浄化装置を提供できる。また、硫黄捕捉材の再生処理の回数を少なくし、燃費の悪化を低減できる。   According to the present invention described above, it is possible to provide a highly durable exhaust gas purifying apparatus that prevents a decrease in the activity of the nitrogen oxide trapping exhaust purification catalyst. Moreover, the frequency | count of the regeneration process of a sulfur capture | acquisition material can be decreased, and the deterioration of a fuel consumption can be reduced.

上記本発明をさらに詳細に説明する。本発明の排気浄化装置は、内燃機関より放出される燃焼排ガス中の窒素酸化物を除去する窒素酸化物捕捉型排気浄化触媒を備える。窒素酸化物捕捉型排気浄化触媒は、硫黄酸化物などの硫黄分と強固に結合し、窒素酸化物の浄化性能が低下するという課題を有する。また、窒素酸化物浄化触媒の性能低下が生じなくとも、硫黄酸化物を大気中に放出することは望ましくない。従って、上述の通り、硫黄酸化物捕捉材を窒素酸化物浄化触媒の上流側の排気流路上に配置し、内燃機関より放出された排ガス中の硫黄分を捕捉することとした。   The present invention will be described in further detail. The exhaust purification device of the present invention includes a nitrogen oxide trapping exhaust purification catalyst that removes nitrogen oxides in combustion exhaust gas discharged from an internal combustion engine. The nitrogen oxide capture type exhaust purification catalyst has a problem that it is strongly bonded to a sulfur content such as sulfur oxide and the purification performance of nitrogen oxide is lowered. Moreover, even if the performance of the nitrogen oxide purification catalyst does not deteriorate, it is not desirable to release sulfur oxide into the atmosphere. Therefore, as described above, the sulfur oxide trapping material is disposed on the exhaust flow channel upstream of the nitrogen oxide purification catalyst, and the sulfur content in the exhaust gas discharged from the internal combustion engine is trapped.

上記硫黄捕捉材の硫黄分捕捉性能を高めることにより、硫黄分捕捉材の交換や再生などの処理回数を低減できる。その結果、交換の手間や、再生処理による燃費の悪化を低減できる。また、硫黄分の流入を減らし、かつ高温による硫黄捕捉材の再生処理回数を低減することにより、窒素酸化物浄化触媒の性能の低下を防止し、浄化性能を長期間維持することが可能となる。   By increasing the sulfur trapping performance of the sulfur trapping material, the number of treatments such as replacement and regeneration of the sulfur trapping material can be reduced. As a result, it is possible to reduce the trouble of replacement and the deterioration of fuel consumption due to the regeneration process. In addition, by reducing the inflow of sulfur content and reducing the number of times the sulfur trapping material is regenerated by high temperature, it is possible to prevent the performance of the nitrogen oxide purification catalyst from being lowered and to maintain the purification performance for a long period of time. .

硫黄捕捉材の硫黄分捕捉性能は、チタンとアルカリ金属成分,アルカリ土類成分とからなる複合酸化物を有効成分とすることにより向上する。特にこれらの複合酸化物を主として硫黄分捕捉材の活性成分を構成することが好ましい。アルカリ金属成分としては、リチウム,カリウムの少なくともいずれか、アルカリ土類金属成分としては、カルシウム,ストロンチウム,バリウムの少なくともいずれかが挙げられる。硫黄分捕捉材は、上記基本組成となる複合酸化物に加えて、アルカリ成分を混合または含浸により追加されていることが好ましい。アルカリ金属元素あるいはアルカリ土類金属元素とTiとの配合比は、モル比で2:1から6:1が好ましい。   The sulfur trapping performance of the sulfur trapping material is improved by using a composite oxide composed of titanium, an alkali metal component, and an alkaline earth component as an active component. In particular, it is preferable that these composite oxides mainly constitute an active component of the sulfur content capturing material. Examples of the alkali metal component include at least one of lithium and potassium, and examples of the alkaline earth metal component include at least one of calcium, strontium, and barium. In addition to the complex oxide having the above basic composition, the sulfur content capturing material is preferably added with an alkali component by mixing or impregnation. The mixing ratio of the alkali metal element or alkaline earth metal element and Ti is preferably 2: 1 to 6: 1 in molar ratio.

上記硫黄分捕捉材には、排ガス中の硫黄分がアルカリ金属,アルカリ土類金属とチタンとの複合酸化物と反応し、硫酸塩となって捕捉され、固定されていると推測される。従って、硫黄分捕捉材の上流側の排気流路上に酸化触媒を設けることが好ましい。たとえば、排ガス中の硫黄分をSO2やSO3に酸化し、硫黄分捕捉材に捕捉させやすくすることができる。複合酸化物と硫黄分との反応により生成する硫酸塩の分解温度は、通常の内燃機関の排気温度よりも高温である。従って、生成した硫酸塩は安定で、通常の内燃機関の運転状態では硫黄分の脱離は生じにくい。従って、通常の内燃機関の運転状態で、硫黄分捕捉材より硫黄分が放出されたり、放出された硫黄分による窒素酸化物浄化触媒の被毒が生じる事はない。 It is assumed that the sulfur content in the exhaust gas reacts with the composite oxide of alkali metal, alkaline earth metal and titanium to be captured and fixed as sulfate by the sulfur content capturing material. Therefore, it is preferable to provide an oxidation catalyst on the exhaust flow channel upstream of the sulfur content capturing material. For example, the sulfur content in the exhaust gas can be oxidized to SO 2 or SO 3 and can be easily captured by the sulfur content capturing material. The decomposition temperature of the sulfate produced by the reaction between the composite oxide and the sulfur content is higher than the exhaust temperature of a normal internal combustion engine. Therefore, the produced sulfate is stable, and the desorption of the sulfur content hardly occurs in the normal operating state of the internal combustion engine. Therefore, in a normal operation state of the internal combustion engine, sulfur content is not released from the sulfur content trapping material, and the nitrogen oxide purification catalyst is not poisoned by the released sulfur content.

上記の本発明の排気浄化装置は、リーンバーンエンジンや、ディーゼルエンジンなどの内燃機関の排気浄化装置として好適である。ディーゼルエンジンより排出される排気ガスには、煤塵などの微粒子が含まれている。この微粒子により硫黄分捕捉材や、窒素酸化物浄化触媒の目詰まりを生じ、排気浄化性能が低下する恐れがある。従って、硫黄分捕捉材の上流側に微粒子除去フィルタを設置して微粒子を除去することが好ましい。また、微粒子除去フィルタに硫黄分捕捉材を塗布または充填し、一体として設けることができる。一体とすることにより、排気浄化装置の構造を簡易にすることが可能となる。   The exhaust purification device of the present invention is suitable as an exhaust purification device for an internal combustion engine such as a lean burn engine or a diesel engine. The exhaust gas discharged from the diesel engine contains particulates such as dust. These fine particles may cause clogging of the sulfur content capturing material and the nitrogen oxide purification catalyst, which may reduce exhaust purification performance. Accordingly, it is preferable to remove fine particles by installing a fine particle removal filter upstream of the sulfur content capturing material. Moreover, the particulate matter removal filter can be coated or filled with a sulfur content trapping material and provided as a single unit. By integrating, it becomes possible to simplify the structure of the exhaust emission control device.

硫黄分捕捉材は、粒子状に製粒して用いたり、ハニカムなどの基材にコート層として付着させ、ハニカムコート触媒とする。硫黄分捕捉材は、粉末原料を混合し、焼成した後に粒子状に製粒され、もしくはハニカムのコート層として調整される。また、他の多孔質担体等に活性成分である複合酸化物を担持して製造してもよい。排気ガスに含まれる硫黄分を捕捉しやすくするため、粒子やコート層は多孔質とし、空隙を有することが好ましい。粉末原料に活性炭或いは有機物を添加して焼成することで、硫黄分捕捉材に空隙細孔を生じさせることができる。空隙の直径は0.1ミクロン〜100ミクロンのものがよい。このような空隙により、排気ガス中の硫黄分を効率よく捕捉することができる。空隙の細孔容積は硫黄分捕捉材1グラム当り0.05cm3以上がよい。また、硫黄分捕捉材1グラム当り5m2以上の表面積を有することが望ましい。 The sulfur content trapping material is used after being granulated in the form of particles, or adhered to a substrate such as a honeycomb as a coat layer to form a honeycomb coat catalyst. The sulfur-capturing material is mixed with a powder raw material and fired, and then granulated into particles or adjusted as a honeycomb coating layer. Further, it may be produced by supporting a composite oxide as an active component on another porous carrier or the like. In order to easily capture the sulfur content contained in the exhaust gas, the particles and the coating layer are preferably porous and have voids. By adding activated carbon or an organic substance to the powder raw material and baking it, void pores can be generated in the sulfur content capturing material. The diameter of the air gap is preferably 0.1 to 100 microns. Due to such voids, the sulfur content in the exhaust gas can be captured efficiently. The pore volume of the voids is preferably 0.05 cm 3 or more per gram of the sulfur capturing material. Further, it is desirable to have a surface area of 5 m 2 or more per gram of sulfur content capturing material.

本発明に係る内燃機関排気浄化装置の一例を図1に示す。本実施例の排気浄化装置は、内燃機関1の排気通路2に、排気ガスの流れ方向の上流側から順番に酸化触媒3,硫黄分捕捉材を備えた排気微粒子フィルタ4及び窒素酸化物捕捉型の排気浄化触媒を備えている。   An example of an internal combustion engine exhaust gas purification apparatus according to the present invention is shown in FIG. The exhaust emission control device of the present embodiment includes an exhaust particulate filter 4 provided with an oxidation catalyst 3 and a sulfur content trapping material in the exhaust passage 2 of the internal combustion engine 1 in order from the upstream side in the exhaust gas flow direction, and a nitrogen oxide trapping type The exhaust purification catalyst is provided.

実施例1は、活性炭を混合し製造したBaとTiの複合酸化物よりなる硫黄分捕捉材の例である。図2にBaとTiの複合酸化物よりなる硫黄分捕捉材の調製工程を示す。本実施例は、図2に示す調整工程によって硫黄分捕捉材を調製した。   Example 1 is an example of a sulfur content capturing material made of a mixed oxide of Ba and Ti produced by mixing activated carbon. FIG. 2 shows a process for preparing a sulfur content trapping material made of a composite oxide of Ba and Ti. In this example, a sulfur content capturing material was prepared by the adjusting step shown in FIG.

まず、酢酸バリウム試薬11を秤量し、精製水12に攪拌混合13し、溶解させた。酢酸バリウム水溶液中にチタニアゾル14を、バリウムとチタンのモル比で1:1の割合になるように秤量して添加し、精製水に溶解した。次にアンモニア水15を少量添加した。アンモニア水を添加したのは、酢酸バリウムとチタニアゾルの混合溶液のpHを10にして水酸化物沈殿を生成するためである。引き続き攪拌混合16しながら蒸発乾固を行った。自動加熱乳鉢を用いて蒸発乾固した場合には、原料粒子が長時間にわたり表面改質を受けて反応性の高い原料となる。蒸発乾固後に、固形分を自動乳鉢により粉砕18して粉末を得た。さらに600℃大気中で加熱焼成19して所定の成分化合物を得た。600℃で加熱焼成したのはチタン酸バリウムの均一な複合酸化物を得るためである。その後粉砕20して粉末状の硫黄分捕捉材の原料21を得た。   First, the barium acetate reagent 11 was weighed, stirred and mixed 13 in purified water 12, and dissolved. In a barium acetate aqueous solution, titania sol 14 was weighed and added so that the molar ratio of barium to titanium was 1: 1, and dissolved in purified water. Next, a small amount of aqueous ammonia 15 was added. Ammonia water was added in order to generate a hydroxide precipitate by setting the pH of the mixed solution of barium acetate and titania sol to 10. Subsequently, the mixture was evaporated to dryness with stirring and mixing 16. When evaporating to dryness using an automatic heating mortar, the raw material particles undergo surface modification over a long period of time and become a highly reactive raw material. After evaporation to dryness, the solid content was pulverized 18 with an automatic mortar to obtain a powder. Furthermore, it heat-fired 19 in 600 degreeC air | atmosphere, and obtained the predetermined | prescribed component compound. The reason for heating and baking at 600 ° C. is to obtain a uniform composite oxide of barium titanate. Thereafter, the mixture was pulverized 20 to obtain a raw material 21 of a powdery sulfur content capturing material.

次に粒子状硫黄分捕捉材31を調製した。まず水溶性粘結剤22を水にあらかじめ溶かして、造粒用粘結剤を調製した。水溶性粘結剤22はポリビニルアルコールである。粉末状の硫黄分捕捉材原料21に活性炭を添加し、均一になるように21と25を十分攪拌混合した後に造粒用粘結剤をさらに混合し、スラリーを調製した。上記スラリーは硫黄分捕捉材料原料:活性炭:造粒用粘結剤の重量比が90:10:63になるように調製した。スラリーを押出造粒機により造粒し、造粒粉29を得た。造粒機は、スプレードライあるいは転動造粒機でも同様の造粒結果が得られた。造粒粉29を500℃で1時間加熱し活性炭を燃焼させた後、0.5mmから0.7mmの篩によって分級30して整粒造粒粉31を得た。   Next, the particulate sulfur content capturing material 31 was prepared. First, the water-soluble binder 22 was previously dissolved in water to prepare a granulating binder. The water-soluble binder 22 is polyvinyl alcohol. Activated carbon was added to the powdery sulfur content capturing material 21 and 21 and 25 were sufficiently stirred and mixed so as to be uniform, and then a granulating binder was further mixed to prepare a slurry. The slurry was prepared so that the weight ratio of the sulfur-capturing material raw material: activated carbon: the binder for granulation was 90:10:63. The slurry was granulated by an extrusion granulator to obtain granulated powder 29. Similar granulation results were obtained with a spray dryer or a tumbling granulator. The granulated powder 29 was heated at 500 ° C. for 1 hour to burn the activated carbon, and then classified 30 with a sieve of 0.5 mm to 0.7 mm to obtain a sized granulated powder 31.

生成した製粒造粒粉について、硫黄分捕捉性能を測定する試験を行った。ガス流れ方向に対して酸化触媒ハニカム、硫黄分捕捉材を充填したハニカムの順になるように石英反応管内に設置し、電気炉で300℃に昇温して硫黄分を含有するガスを6時間流通した。ガス成分としては乾燥時換算で酸素10vol%,一酸化炭素0.2vol%,一酸化窒素200volppm,二酸化硫黄150volppm,残部窒素である。これに水をガス全量に対して気体標準状態容積換算で3vol%となるように添加した。硫黄分捕捉材としては、DPF(ディーゼルパーティキュレートフィルタ)1L中に180gの粒子状硫黄分捕捉材を充填して使用した。酸化触媒としては、モルデナイトに白金を担持したものを使用した。   The produced granulated granulated powder was subjected to a test for measuring the sulfur content capturing performance. Installed in the quartz reaction tube in the order of the oxidation catalyst honeycomb and the honeycomb filled with sulfur trapping material with respect to the gas flow direction, heated to 300 ° C in an electric furnace and circulated the gas containing sulfur for 6 hours did. The gas components are 10 vol% oxygen, 0.2 vol% carbon monoxide, 200 volppm nitric oxide, 150 volppm sulfur dioxide, and the balance nitrogen when dry. Water was added to this so that it might be 3 vol% in terms of gas standard state volume with respect to the total amount of gas. As the sulfur content capturing material, 1 g of DPF (diesel particulate filter) was filled with 180 g of particulate sulfur content capturing material. As the oxidation catalyst, mordenite carrying platinum was used.

硫黄分含有ガスの流通後、硫黄分捕捉材を粉砕し、硫黄分析計によってその粉末中の硫黄分を定量した。その結果、最初に二酸化硫黄(SO2)で加えた量の98%の硫黄が硫黄分捕捉材から検出された。従って、少なくとも98%の硫黄分が硫黄分捕捉材により捕捉されており、高い硫黄分捕捉の効果が実証された。 After distribution of the sulfur-containing gas, the sulfur-capturing material was pulverized and the sulfur content in the powder was quantified with a sulfur analyzer. As a result, 98% of the sulfur initially added with sulfur dioxide (SO 2 ) was detected from the sulfur trap. Therefore, at least 98% of the sulfur content was captured by the sulfur content capturing material, and a high sulfur content capturing effect was demonstrated.

実施例2は、活性炭を混合し製造したSrとTiの複合酸化物よりなる硫黄分捕捉材の例である。   Example 2 is an example of a sulfur content capturing material made of a composite oxide of Sr and Ti produced by mixing activated carbon.

まず硫黄分捕捉材の原料を以下によって調製した。すなわち酢酸ストロンチウムとチタニアゾルを、ストロンチウムとチタンのモル比で2:1の割合になるように秤量後、精製水に溶解し、次にアンモニア水15を少量添加した。引き続き攪拌混合16しながら蒸発乾固を行った。水分が完全に除かれた後に乳鉢中で粉砕し、600℃で1時間焼成し、粉末状の硫黄分捕捉材を得た。   First, a raw material for the sulfur content capturing material was prepared as follows. That is, strontium acetate and titania sol were weighed so that the molar ratio of strontium and titanium was 2: 1, dissolved in purified water, and then a small amount of aqueous ammonia 15 was added. Subsequently, the mixture was evaporated to dryness with stirring and mixing 16. After moisture was completely removed, the mixture was pulverized in a mortar and fired at 600 ° C. for 1 hour to obtain a powdery sulfur content trapping material.

この粉末状硫黄分捕捉材に平均粒径が50ミクロンの活性炭を粉末状硫黄分捕捉材:活性炭重量比にして10:1となるように秤量,混合した。続いて造粒用粘結剤を混合し、造粒機により造粒した。粉末状硫黄分捕捉材と造粒用粘結剤の重量比率は粉末状硫黄分捕捉材:造粒用粘結剤=100:60であった。造粒機により作製された粒子は0.5〜0.7mmの大きさに篩分けされて、500℃で1時間焼成して粒子状の硫黄分捕捉材を得た。最終的に調製された粒子状硫黄分捕捉材の1g当りの比表面積は35m2であり、1g当りの細孔容積は0.5cm3であった。 Activated carbon having an average particle size of 50 microns was weighed and mixed with this powdery sulfur content trapping material so that the powdery sulfur content trapping material: activated carbon weight ratio was 10: 1. Subsequently, the binder for granulation was mixed and granulated by a granulator. The weight ratio of the powdery sulfur content capturing material and the granulating binder was powdery sulfur content capturing material: granulating binder = 100: 60. The particles produced by the granulator were sieved to a size of 0.5 to 0.7 mm and fired at 500 ° C. for 1 hour to obtain a particulate sulfur content trapping material. The particulate sulfur content trapping material finally prepared had a specific surface area per 1 g of 35 m 2 and a pore volume per 1 g of 0.5 cm 3 .

上記工程により生成したSr2TiO4からなる造粒粉を硫黄分捕捉材に用いて、硫黄分の捕捉性能を測定した。硫黄分捕捉性能の測定試験は、実施例1と同様に実施した。硫黄分含有ガスの流通後、硫黄分捕捉材を粉砕し、硫黄分析計によってその粉末中の硫黄分を定量した。その結果、最初に二酸化硫黄(SO2)で加えた量の98%の硫黄が硫黄分捕捉材から検出され、硫黄分捕捉材による硫黄分捕捉の効果が実証された。 Using the granulated powder made of Sr 2 TiO 4 produced in the above process as a sulfur content capturing material, the sulfur content capturing performance was measured. The sulfur content capturing performance measurement test was performed in the same manner as in Example 1. After distribution of the sulfur-containing gas, the sulfur-capturing material was pulverized and the sulfur content in the powder was quantified with a sulfur analyzer. As a result, 98% of the sulfur initially added with sulfur dioxide (SO 2 ) was detected from the sulfur content capturing material, and the effect of capturing the sulfur content by the sulfur content capturing material was demonstrated.

実施例3は、活性炭量を変え、空隙率を変化させた硫黄分捕捉材の性能を確認した。   In Example 3, the performance of the sulfur content capturing material in which the amount of activated carbon was changed and the porosity was changed was confirmed.

Sr2TiO4の組成を有する複合酸化物を原料に用い、平均粒径が50ミクロンの活性炭を混合した。活性炭の混合量は、硫黄分捕捉材原料粉末と活性炭との合量に対し、0wt%,5wt%,10wt%,20wt%となるように添加、混合した。活性炭量を変えた4種類の硫黄分捕捉材原料に、それぞれ造粒用粘結剤を混合し、造粒機により造粒した。粉末状硫黄分捕捉材と造粒用粘結剤の重量比率は、粉末状硫黄分捕捉材:造粒用粘結剤=100:60とした。造粒機により作製された粒子は0.5〜0.7mmの大きさに篩分けし、500℃で1時間焼成して粒子状の硫黄分捕捉材を得た。 A composite oxide having a composition of Sr 2 TiO 4 was used as a raw material, and activated carbon having an average particle size of 50 microns was mixed. The mixing amount of the activated carbon was added and mixed so as to be 0 wt%, 5 wt%, 10 wt%, and 20 wt% with respect to the total amount of the sulfur content capturing material raw material powder and the activated carbon. Each of the four types of sulfur-capturing material raw materials with different amounts of activated carbon was mixed with a granulating binder and granulated with a granulator. The weight ratio between the powdery sulfur content-trapping material and the granulating binder was set to powdery sulfur content-trapping material: granulating binder = 100: 60. The particles produced by the granulator were sieved to a size of 0.5 to 0.7 mm and fired at 500 ° C. for 1 hour to obtain a particulate sulfur content trapping material.

得られた4種類の硫黄分捕捉材の硫黄捕捉性能を実施例1と同様にして測定した。硫黄分捕捉性能試験後に、4種類の硫黄分捕捉材に捕捉された硫黄分から、硫黄分捕捉率を求めた結果を図3に示す。図3は活性炭を含まない硫黄分捕捉材の硫黄捕捉率を1として5種類の硫黄分捕捉材の硫黄分捕捉率を相対比較した結果である。硫黄捕捉率は活性炭添加量が10wt%の場合に最も高くなった。   The sulfur trapping performance of the obtained four kinds of sulfur traps was measured in the same manner as in Example 1. FIG. 3 shows the result of obtaining the sulfur content capturing rate from the sulfur content captured by the four types of sulfur content capturing materials after the sulfur content capturing performance test. FIG. 3 shows the result of relative comparison of the sulfur trapping rates of five types of sulfur trapping materials, assuming that the sulfur trapping rate of the sulfur trapping material not containing activated carbon is 1. The sulfur capture rate was highest when the amount of activated carbon added was 10 wt%.

実施例4は、活性炭の粒径を変え、空隙の直径を変化させて硫黄分捕捉材の性能を確認した。   In Example 4, the performance of the sulfur trapping material was confirmed by changing the particle diameter of the activated carbon and changing the diameter of the voids.

Sr2TiO4の組成を有する複合酸化物を原料に用い、硫黄分捕捉材原料粉末と活性炭との合量に対し、活性炭が10wt%になるように添加,混合した。活性炭の平均粒径は、10μm,30μm,50μmおよび90μmの4種類とした。4種類の硫黄分捕捉材原料に、それぞれ造粒用粘結剤を混合し、造粒機により造粒した。粉末状硫黄分捕捉材と造粒用粘結剤の重量比率は、粉末状硫黄分捕捉材:造粒用粘結剤=100:60とした。造粒機により作製された粒子は0.5〜0.7mmの大きさに篩分けし、500℃で1時間焼成して粒子状の硫黄分捕捉材を得た。 A composite oxide having a composition of Sr 2 TiO 4 was used as a raw material, and the activated carbon was added and mixed so that the activated carbon became 10 wt% with respect to the total amount of the sulfur content capturing material raw material powder and the activated carbon. The average particle diameter of the activated carbon was four types of 10 μm, 30 μm, 50 μm and 90 μm. The four types of sulfur-capturing material raw materials were each mixed with a granulating binder and granulated with a granulator. The weight ratio between the powdery sulfur content-trapping material and the granulating binder was set to powdery sulfur content-trapping material: granulating binder = 100: 60. The particles produced by the granulator were sieved to a size of 0.5 to 0.7 mm and fired at 500 ° C. for 1 hour to obtain a particulate sulfur content trapping material.

500℃で焼成されたときに活性炭が燃焼消失することで、焼成して得られた粒子状の硫黄分捕捉材には、活性炭の部分が細孔空隙となって残る。よって、それぞれの硫黄分捕捉材の空隙の細孔径は、添加した活性炭の平均粒径と等しい。   When activated carbon burns and disappears when fired at 500 ° C., the activated carbon portion remains as pore voids in the particulate sulfur trapping material obtained by firing. Therefore, the pore diameter of the voids of each sulfur content capturing material is equal to the average particle diameter of the added activated carbon.

得られた4種類の硫黄分捕捉材の硫黄捕捉性能を実施例1と同様にして測定した。硫黄分捕捉性能試験後に4種類の硫黄分捕捉材に捕捉された硫黄分からを求めた硫黄分捕捉率と、空隙細孔径との相対的関係を図4に示す。   The sulfur trapping performance of the obtained four kinds of sulfur traps was measured in the same manner as in Example 1. FIG. 4 shows the relative relationship between the sulfur trapping rate obtained from the sulfur trapped by the four types of sulfur trapping materials after the sulfur trapping performance test and the pore diameter.

活性炭を添加しない粒状硫黄分捕捉材(細孔径0)の硫黄分捕捉率を1として、硫黄分捕捉率を相対値で示している。空隙細孔径が50μm(活性炭の平均粒径が50μm)のときに、硫黄分捕捉率が最大値を示した。   The sulfur trapping rate of the granular sulfur trapping material (pore diameter 0) to which no activated carbon is added is 1, and the sulfur trapping rate is shown as a relative value. When the pore diameter was 50 μm (the average particle diameter of activated carbon was 50 μm), the sulfur trapping rate showed the maximum value.

次に、アルカリ金属元素,アルカリ土類金属元素とチタンのモル比について検討した。   Next, the molar ratio of alkali metal element, alkaline earth metal element and titanium was examined.

アルカリ金属元素(バリウム)とチタンのモル比を1:1〜7:1の間で変化させた捕捉材について、硫黄分吸収率を比較した。チタンとしては、アナターゼ型結晶構造のチタンを使用した。活性炭量は硫黄分捕捉材重量全体の5%分を添加した。各捕捉材について、アルカリとチタンのモル比が2:1のものを基準として比較した結果、図5のような結果となった。アルカリとチタンのモル比が4:1の場合が最も高い吸収率を示し、モル比2:1〜6:1の範囲で高い硫黄分捕捉率を示した。従って、アルカリ金属元素とチタンのモル比は2:1〜6:1の範囲が好ましい。   The trapping materials in which the molar ratio of the alkali metal element (barium) and titanium was changed between 1: 1 to 7: 1 were compared for the sulfur content absorption rate. As titanium, titanium having an anatase type crystal structure was used. The amount of activated carbon was 5% of the total weight of the sulfur-capturing material. As a result of comparing each trapping material based on a molar ratio of alkali to titanium of 2: 1, the result shown in FIG. 5 was obtained. The case where the molar ratio of alkali to titanium was 4: 1 showed the highest absorption rate, and the high sulfur content capture rate was shown in the range of molar ratio 2: 1 to 6: 1. Therefore, the molar ratio of alkali metal element to titanium is preferably in the range of 2: 1 to 6: 1.

次に、硫黄分捕捉材の比表面積,細孔容積,細孔直径について適切な範囲を検討した。比表面積,細孔容積,細孔直径は、活性炭の量や大きさを変化させて調整した。硫黄捕捉成分としては、BaTiO3を使用した。細孔を合計した容積を0.05cm3/g、0.05cm3/g以下のもの、0.05cm3/g以上のもの、をそれぞれ複数作製し、硫黄分の吸収率の平均値を確認したところ、空隙率0.05cm3/g以上のものは高い硫黄分吸収率を示した(図6)。従って、空隙率0.05cm3/g以上のものが好ましい。比表面積が2m2/g以下、2〜5m2/g,5〜8m2/g,8m2/g以上の4種類で確認したところ、比表面積5〜8m2/gで硫黄分の吸収率が高くなり、8m2/g以上としてもほとんど変化がなかった(図7)。従って、比表面積は5m2/g以上であることが好ましい。また、細孔直径が0.01〜10μm,0.01〜100μm,0.1〜100μm,1〜1000μmのものを比較すると、0.1〜100μmのものを使用した場合に最も硫黄分の吸収率が高かった(図8)。 Next, appropriate ranges were examined for the specific surface area, pore volume, and pore diameter of the sulfur content-trapping material. The specific surface area, pore volume, and pore diameter were adjusted by changing the amount and size of the activated carbon. BaTiO 3 was used as the sulfur trapping component. The total volume of the pores 0.05cm 3 /g,0.05cm 3 / g or less of those, 0.05 cm 3 / g or more of a plurality of prepared respectively, confirming an average value of the absorption rate of sulfur As a result, those having a porosity of 0.05 cm 3 / g or higher showed a high sulfur content absorption rate (FIG. 6). Accordingly, those having a porosity of 0.05 cm 3 / g or more are preferable. A specific surface area of 2m 2 / g or less, 2~5m 2 / g, 5~8m 2 / g, was confirmed by 8m 2 / g or more four, absorption of sulfur in specific surface area 5~8m 2 / g Increased, and there was almost no change even at 8 m 2 / g or more (FIG. 7). Accordingly, the specific surface area is preferably 5 m 2 / g or more. In addition, when the pore diameters of 0.01 to 10 μm, 0.01 to 100 μm, 0.1 to 100 μm, and 1 to 1000 μm are compared, the absorption of sulfur content is the highest when 0.1 to 100 μm is used The rate was high (Figure 8).

本発明の一実施例による内燃機関排気浄化装置の構成図である。1 is a configuration diagram of an exhaust purification system for an internal combustion engine according to an embodiment of the present invention. 硫黄分捕捉材の調製工程を示した図である。It is the figure which showed the preparation process of a sulfur content trapping material. 硫黄分捕捉材の硫黄分捕捉率比と、硫黄分捕捉材調製工程時に添加した活性炭量との関係を示した特性図である。It is the characteristic figure which showed the relationship between the sulfur content capture | acquisition ratio of a sulfur content capture material, and the amount of activated carbon added at the time of a sulfur content capture material preparation process. 硫黄分捕捉材の硫黄分捕捉率比と、硫黄分捕捉材調製工程時に添加した活性炭の平均粒径との関係を示した特性図である。It is the characteristic view which showed the relationship between the sulfur content capture | acquisition ratio of a sulfur content capture material, and the average particle diameter of the activated carbon added at the time of a sulfur content capture material preparation process. 硫黄分捕捉材の硫黄分捕捉率比と、硫黄分捕捉材のアルカリ成分とチタン成分の比率の関係を示す特性図である。It is a characteristic view which shows the relationship between the sulfur content capture | acquisition ratio of a sulfur content capture | acquisition material, and the ratio of the alkali component of a sulfur content capture material, and a titanium component. 硫黄分吸収材の細孔容積と、硫黄分捕捉材の吸収率平均値との関係を示す特性図である。It is a characteristic view which shows the relationship between the pore volume of a sulfur content absorber, and the absorptance average value of a sulfur content capture material. 硫黄分吸収材の比表面積と、硫黄分捕捉材の硫黄分捕捉率比の関係を示す特性図である。It is a characteristic view which shows the relationship between the specific surface area of a sulfur content absorption material, and the sulfur content capture rate ratio of a sulfur content capture material. 硫黄分吸収材中の細孔の直径と、硫黄分捕捉材の硫黄分捕捉率比の関係を示す特性図である。It is a characteristic view which shows the relationship between the diameter of the pore in a sulfur content absorption material, and the sulfur content capture rate ratio of a sulfur content capture material.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 酸化触媒
4 硫黄分捕捉材料を充填した排気微粒子フィルタ
5 窒素酸化物浄化触媒
11 酢酸バリウム
12 精製水
13,16 攪拌混合
14 チタニアゾル
15 アンモニア水
17 蒸発乾固
18,20 粉砕
19 焼成
21 硫黄分捕捉材原料
22 水溶性粘結剤
23 活性炭
24 造粒機
25 造粒
26 乾燥
27 分級
28 粒子状硫黄分捕捉材
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3 Oxidation catalyst 4 Exhaust particulate filter 5 filled with sulfur content capturing material 5 Nitrogen oxide purification catalyst 11 Barium acetate 12 Purified water 13, 16 Stir and mix 14 Titania sol 15 Ammonia water 17 Evaporation to dryness 18, 20 Grinding 19 Firing 21 Sulfur content capturing material 22 Water-soluble binder 23 Activated carbon 24 Granulator 25 Granulating 26 Drying 27 Classification 28 Particulate sulfur content capturing material

Claims (10)

内燃機関の排ガス中の硫黄分を硫黄分捕捉材により捕捉し、硫黄分捕捉後の排ガス中の窒素酸化物を窒素酸化物捕捉浄化触媒により浄化する内燃機関の排気浄化方法であって、
前記硫黄分捕捉材はアルカリ土類元素あるいはアルカリ金属類元素とTiよりなる複合酸化物を含むことを特徴とする内燃機関の排気浄化方法。
An exhaust purification method for an internal combustion engine that captures sulfur in an exhaust gas of an internal combustion engine with a sulfur capture material and purifies nitrogen oxide in the exhaust gas after capturing the sulfur with a nitrogen oxide capture and purification catalyst,
The exhaust gas purifying method for an internal combustion engine, wherein the sulfur trapping material contains a complex oxide composed of an alkaline earth element or an alkali metal element and Ti.
請求項1に記載された内燃機関の排気浄化方法において、
前記硫黄分捕捉材は細孔を有する多孔質であって、前記硫黄分捕捉材は1グラム当り0.05cm3以上の細孔容積を有することを特徴とする内燃機関の排気浄化方法。
The exhaust gas purification method for an internal combustion engine according to claim 1,
An exhaust gas purification method for an internal combustion engine, wherein the sulfur trapping material is porous having pores, and the sulfur trapping material has a pore volume of 0.05 cm 3 or more per gram.
請求項1または2に記載された内燃機関の排気浄化方法において、前記硫黄分捕捉材は1グラム当り5m2以上の表面積を有することを特徴とする内燃機関の排気浄化方法。 3. The exhaust gas purification method for an internal combustion engine according to claim 1, wherein the sulfur content trapping material has a surface area of 5 m 2 or more per gram. 請求項1ないし3のいずれかに記載された内燃機関の排気浄化方法において、前記硫黄分捕捉材は、前記硫黄分捕捉材は細孔を有する多孔質であって、前記細孔の直径は0.1ミクロン〜100ミクロンであることを特徴とする内燃機関の排気浄化方法。   The exhaust gas purification method for an internal combustion engine according to any one of claims 1 to 3, wherein the sulfur content trapping material is porous having pores, and the diameter of the pores is 0. An exhaust purification method for an internal combustion engine, characterized by being in the range of 1 micron to 100 microns. 請求項1ないし4のいずれかに記載された内燃機関の排気浄化方法において、前記硫黄分捕捉材が粒状に製粒されていることを特徴とする内燃機関の排気浄化方法。   5. The exhaust gas purification method for an internal combustion engine according to claim 1, wherein the sulfur content capturing material is granulated in a granular form. 請求項1ないし5のいずれかに記載された内燃機関の排気浄化方法において、前記硫黄分捕捉材はハニカム基材上にコート層として付着していることを特徴とする内燃機関の排気浄化方法。   6. The exhaust gas purification method for an internal combustion engine according to claim 1, wherein the sulfur content trapping material is attached as a coat layer on the honeycomb substrate. 請求項1ないし6のいずれかに記載された内燃機関の排気浄化方法において、前記複合酸化物は、アルカリ土類金属類或いはアルカリ金属類元素とTiとのモル比率が2:1から6:1の範囲にある複合酸化物を含有することを特徴とする内燃機関の排気浄化方法。   7. The exhaust gas purification method for an internal combustion engine according to claim 1, wherein the complex oxide has a molar ratio of alkaline earth metal or alkali metal element to Ti of 2: 1 to 6: 1. An exhaust gas purification method for an internal combustion engine, comprising a complex oxide in the range of. 請求項1ないし7のいずれかに記載された内燃機関の排気浄化方法において、
前記排ガス中の硫黄分を硫黄分捕捉材により捕捉する前に排ガス中の硫黄分を酸化する工程を有することを特徴とする内燃機関の排気浄化方法。
The exhaust gas purification method for an internal combustion engine according to any one of claims 1 to 7,
An exhaust purification method for an internal combustion engine, comprising a step of oxidizing the sulfur content in the exhaust gas before capturing the sulfur content in the exhaust gas with the sulfur content capturing material.
内燃機関の排気流路に設けられ、内燃機関の排ガス中の硫黄分を捕捉する硫黄分捕捉材と、前記硫黄分捕捉材の下流側に設けられ、硫黄分捕捉後の排ガス中の窒素酸化物を浄化する窒素酸化物捕捉浄化触媒とを有する内燃機関の排気浄化装置であって、
前記硫黄分捕捉材はアルカリ土類元素あるいはアルカリ金属類元素とTiよりなる複合酸化物を含むことを特徴とする内燃機関の排ガス浄化装置。
Provided in the exhaust flow path of the internal combustion engine, a sulfur content capturing material for capturing sulfur content in the exhaust gas of the internal combustion engine, and a nitrogen oxide in the exhaust gas after capturing the sulfur content, provided on the downstream side of the sulfur content capture material An exhaust gas purification apparatus for an internal combustion engine having a nitrogen oxide capturing and purifying catalyst for purifying gas,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the sulfur trapping material contains a complex oxide composed of an alkaline earth element or an alkali metal element and Ti.
請求項9に記載された内燃機関の排ガス浄化装置において、
前記複合酸化物は、アルカリ土類金属類あるいはアルカリ金属類元素とTiとのモル比率が2:1から6:1の範囲であり、
前記硫黄分捕捉材は細孔を有する多孔質であって、前記細孔の容積が1グラムの硫黄分捕捉材当り0.05cm3以上であり、表面積が1グラムの硫黄分捕捉材あたり5m2以上であることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 9,
The composite oxide has an alkaline earth metal or alkali metal element and Ti molar ratio in the range of 2: 1 to 6: 1.
The sulfur content trapping material is porous having pores, and the pore volume is 0.05 cm 3 or more per gram of sulfur content capturing material, and the surface area is 5 m 2 per 1 gram of sulfur content capturing material. An exhaust emission control device for an internal combustion engine characterized by the above.
JP2007246443A 2007-09-25 2007-09-25 Exhaust emission control method and device for internal combustion engine Pending JP2009072740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246443A JP2009072740A (en) 2007-09-25 2007-09-25 Exhaust emission control method and device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246443A JP2009072740A (en) 2007-09-25 2007-09-25 Exhaust emission control method and device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009072740A true JP2009072740A (en) 2009-04-09

Family

ID=40608286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246443A Pending JP2009072740A (en) 2007-09-25 2007-09-25 Exhaust emission control method and device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009072740A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181988A (en) * 1997-09-04 1999-03-26 Hitachi Ltd Exhaust gas purification device for internal combustion engine
JP2007111620A (en) * 2005-10-20 2007-05-10 Babcock Hitachi Kk Sulfur absorbing material, and exhaust emission control device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181988A (en) * 1997-09-04 1999-03-26 Hitachi Ltd Exhaust gas purification device for internal combustion engine
JP2007111620A (en) * 2005-10-20 2007-05-10 Babcock Hitachi Kk Sulfur absorbing material, and exhaust emission control device using the same

Similar Documents

Publication Publication Date Title
JP4628676B2 (en) Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
CN105247179B (en) Catalyzed filter for treating exhaust gases
JP4564645B2 (en) Exhaust gas purification catalyst
CN105247178B (en) Catalyzed filter for treating exhaust gases
JP6416098B2 (en) Catalytic soot filter
US7306771B2 (en) Filter catalyst for purifying exhaust gases and its manufacturing method thereof
US8409519B2 (en) Exhaust-gas converting filter and production process for the same
US7797931B2 (en) Catalyst composition for diesel particulate filter
EP1043065B1 (en) Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method
CN112074657B (en) Coated wall-flow filter
CN102223951A (en) Particulate substance removing material, particulate substance removing filter catalyst using particulate substance removing material, and method for regenerating particulate substance removing filter catalyst
WO2010041741A1 (en) Exhaust gas purifying device
US8932546B2 (en) Catalytically active particulate filter and use thereof
CN103370131A (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
KR20220095236A (en) particulate filter
JP2008215093A (en) Exhaust gas cleaning filter and automobile equipped with the same
JP2010077845A (en) Exhaust emission control filter and manufacturing method thereof
JP2009072740A (en) Exhaust emission control method and device for internal combustion engine
EP1982763B1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JP2008272617A (en) Exhaust gas cleaning device
JP2005342711A (en) Denitration method for diesel engine exhaust gas
JP2004243189A (en) Exhaust gas purification device for internal combustion engine
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
JP5160282B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP2009121375A (en) Exhaust emission control method and exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122