[go: up one dir, main page]

JP2009068856A - Carbon activity measuring probe - Google Patents

Carbon activity measuring probe Download PDF

Info

Publication number
JP2009068856A
JP2009068856A JP2007234466A JP2007234466A JP2009068856A JP 2009068856 A JP2009068856 A JP 2009068856A JP 2007234466 A JP2007234466 A JP 2007234466A JP 2007234466 A JP2007234466 A JP 2007234466A JP 2009068856 A JP2009068856 A JP 2009068856A
Authority
JP
Japan
Prior art keywords
electrode
carbon
sub
probe
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234466A
Other languages
Japanese (ja)
Inventor
Minoru Sasabe
実 雀部
Shun Maruoka
俊 丸岡
Takahiro Yoshikawa
隆宏 吉川
Yasunobu Yoshimi
康信 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite Japan Ltd
Original Assignee
Heraeus Electro Nite Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite Japan Ltd filed Critical Heraeus Electro Nite Japan Ltd
Priority to JP2007234466A priority Critical patent/JP2009068856A/en
Publication of JP2009068856A publication Critical patent/JP2009068856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical carbon activity measuring probe having a mixed sub-electrode, easy to manufacture, good in measuring precision and having excellent durability causing no quality deterioration even if the probe is preserved in air. <P>SOLUTION: The sub-electrode 23 comprising magnesium carbonate (MgCO<SB>3</SB>) or a mixture of magnesium carbonate and magnesium oxide (MgO) is provided on the outer surface of a solid electrolyte pipe 13 having oxygen ion conductivity to constitute a standard electrode element (sensor element 3) becoming a pair along with a counter electrode (acting electrode 25). Local equilibrium is established between carbon and oxygen in a molten metal and magnesium carbonate constituting the sub-electrode or the mixture and the activity of oxygen in a local equilibrium layer is measured to measure the activity of carbon in the molten metal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属精錬工程における溶融金属中の炭素濃度、特に鉄鋼精錬工程における溶鉄中の炭素活量を迅速にかつ精密に測定するための炭素活量測定用プローブに係り、特に、使用前の長期保存によっても品質劣化のない耐久性に優れた実用性のある炭素活量測定用プローブに関する。   The present invention relates to a carbon activity measurement probe for quickly and accurately measuring the carbon concentration in molten metal in a metal refining process, particularly the carbon activity in molten iron in a steel refining process. The present invention relates to a practical carbon activity measuring probe that is excellent in durability without deterioration in quality even after long-term storage.

金属精錬工程において、溶融金属中に含まれる炭素の含有量を測定する手法としては、溶融試料を汲み上げて冷却凝固させ固体試料を作り機器分析に供する方法や、溶融試料を汲み上げて固体となるまでの間を利用して熱電対による熱分析を行い、炭素濃度を決めるCD法があるが、機器分析は試料採取から分析結果を得るまでに多大の時間を要するという欠点があり、またCD法は、炭素以外の元素が共存するとその影響を受けること、炭素濃度が少ない場合には精度が悪くなることなどの欠点を有する。また、試料を汲み上げて凝固を待つので時間がかかることなども欠点である。   In the metal refining process, the carbon content in the molten metal can be measured by pumping the molten sample, cooling and solidifying it to make a solid sample for instrument analysis, or until the molten sample is pumped to become solid. There is a CD method that determines the carbon concentration by performing thermal analysis with a thermocouple using the gap between the two, but instrumental analysis has the disadvantage that it takes a lot of time from sampling to obtaining the analysis result, and the CD method is However, when elements other than carbon coexist, they are affected, and when the carbon concentration is low, the accuracy is deteriorated. Another disadvantage is that it takes time to pump the sample and wait for coagulation.

これらの欠点を克服する方法として、従来から酸素センサを直接利用して炭素濃度を推定する方法が提案されている(例えば、非特許文献1参照。)。この方法は溶鉄を凝固させないので溶鉄中の炭素濃度を迅速に測定できるが、精錬装置の個性の影響を受けるために装置1台ずつ異なったキャリブレーションが必要である。上記の欠点を克服するために、混合副電極を有する溶鉄中の炭素活量測定用プローブが提案されている(例えば、特許文献1参照。)。この特許文献1は、金属の炭化物と酸化物を混合して混合副電極を構成しているが、炭化物は一般に硬いものであり、混合副電極を作成するために適正な粒度のものを得ることは困難であるためプローブの作成に困難がつきまとうことと、作成の困難さに起因する精度の若干の悪さがあるという欠点がある。   As a method for overcoming these drawbacks, a method for estimating a carbon concentration by directly using an oxygen sensor has been proposed (for example, see Non-Patent Document 1). Since this method does not solidify the molten iron, the carbon concentration in the molten iron can be measured quickly. However, since each device is affected by the individuality of the refining device, different calibrations are required for each device. In order to overcome the above disadvantages, a probe for measuring carbon activity in molten iron having a mixed sub-electrode has been proposed (see, for example, Patent Document 1). In this patent document 1, metal carbide and oxide are mixed to form a mixed sub-electrode. However, the carbide is generally hard, and an appropriate particle size for obtaining a mixed sub-electrode is obtained. However, there are drawbacks in that it is difficult to produce a probe and there is a slight inaccuracy due to the difficulty of production.

この炭化物を用いた混合副電極を有するプローブの欠点を解決するべく、副電極構成物質に金属炭酸化物と該炭酸化物を構成する金属と同じ金属からなる金属酸化物との混合物を使用することが提案されている(例えば、特許文献2参照。)。しかしながら、当該特許文献2で挙げられている金属炭酸化物や金属酸化物、とくに炭酸ナトリウムおよび酸化ナトリウムは、空気中で保存すると潮解あるいは風解を生ずる性質を持ち、これが作成されたプローブの長期保存を困難とする原因となっていて、実用上使用しにくいという欠点となっている。   In order to solve the disadvantages of the probe having a mixed subelectrode using carbide, it is possible to use a mixture of a metal carbonate and a metal oxide made of the same metal as the metal constituting the carbonate as a subelectrode constituent material. It has been proposed (see, for example, Patent Document 2). However, the metal carbonates and metal oxides mentioned in Patent Document 2, especially sodium carbonate and sodium oxide, have the property of causing deliquescence or defoliation when stored in the air, and long-term storage of the probes on which they are prepared. It is a cause that makes it difficult to use and practically difficult to use.

米国特許第5393403号公報US Pat. No. 5,393,403 特開2005−43297号公報JP-A-2005-43297 製鋼第19委員会製鋼センサ小委員会編集,「製鋼用センサの新しい展開」,日本学術振興会,1989年,p.4・88−p.4・93Edited by Steelmaking Sensor Subcommittee, Steelmaking 19th Committee, “New development of sensors for steelmaking”, Japan Society for the Promotion of Science, 1989, p. 4.88-p. 4.93

そこで、本発明が前述の状況に鑑み、解決しようとするところは、混合副電極を有する炭素活量測定用プローブにおいて、製作が容易で測定精度も良く、さらには空気中で保存しても品質劣化のない耐久性に優れた実用性のある炭素活量測定用プローブを提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the carbon activity measuring probe having the mixed sub-electrode, which is easy to manufacture and has a high measurement accuracy. The object is to provide a practical carbon activity measuring probe having excellent durability without deterioration.

本発明は、前述の課題解決のために、溶融金属中の炭素活量を測定する炭素活量測定用プローブにおいて、炭酸マグネシウム、又は炭酸マグネシウム及び酸化マグネシウムの混合物からなる副電極を、酸素イオン導電性を有する固体電解質の外表面に設けることにより、対極と対になる標準電極用素子を構成し、溶融金属中の炭素、酸素、および前記副電極を構成している炭酸マグネシウム又は混合物の間に局部平衡を成立させ、局部平衡層内の酸素活量を測定することによって溶融金属中の炭素の活量を測定することを特徴とする炭素活量測定用プローブを構成した。   In order to solve the above-mentioned problems, the present invention provides a carbon activity measuring probe for measuring carbon activity in a molten metal, wherein a sub-electrode made of magnesium carbonate or a mixture of magnesium carbonate and magnesium oxide is provided with oxygen ion conductive material. By providing it on the outer surface of the solid electrolyte having the property, it constitutes a standard electrode element that is paired with the counter electrode, and between the carbon in the molten metal, oxygen, and the magnesium carbonate or mixture constituting the sub electrode. A carbon activity measuring probe characterized in that the carbon activity in the molten metal is measured by establishing local equilibrium and measuring the oxygen activity in the local equilibrium layer.

ここで、前記混合物中の酸化マグネシウムの構成質量比(酸化マグネシウムの質量/(炭酸マグネシウムの質量+酸化マグネシウムの質量))は、0.9以下とすることが好ましい。   Here, the constituent mass ratio of magnesium oxide in the mixture (magnesium oxide mass / (magnesium carbonate mass + magnesium oxide mass)) is preferably 0.9 or less.

以上にしてなる本願発明によれば、副電極を炭酸マグネシウム、又は炭酸マグネシウム及び酸化マグネシウムの混合物で構成したので、容易かつ安価に副電極を作製でき、測定精度にも優れているとともに、作製してから使用までの間、空気中で長期間保存しても、副電極の潮解や風解が起こることなく、品質劣化のない耐久性に優れた実用性のある炭素活量測定用プローブが得られる。   According to the present invention as described above, since the sub-electrode is composed of magnesium carbonate or a mixture of magnesium carbonate and magnesium oxide, the sub-electrode can be easily and inexpensively manufactured, and it has excellent measurement accuracy and is manufactured. Even if it is stored in the air for a long time from start to use, a practical carbon activity measurement probe with excellent durability and no deterioration in quality is obtained without deliquescence or wind deflation of the secondary electrode. It is done.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1及び2は、本発明に係る炭素濃度測定用プローブの代表的実施形態を示し、図中符号1はプローブ、2は炭素センサ、3はセンサ素子をそれぞれ示している。   1 and 2 show typical embodiments of a probe for measuring carbon concentration according to the present invention, in which reference numeral 1 denotes a probe, 2 denotes a carbon sensor, and 3 denotes a sensor element.

本発明の炭素濃度測定用プローブ1は、図1に示すように、炭酸マグネシウム(MgCO3)と酸化マグネシウム(MgO)の混合物からなる副電極23を、酸素イオン導電性を有する固体電解質管13の外表面に設けることにより、対極(作用極25)と対になる標準電極用素子(センサ素子3)を構成し、溶融金属中の炭素、酸素、および前記副電極を構成している混合物の間に局部平衡を成立させ、局部平衡層内の酸素活量を測定することによって溶融金属中の炭素の活量を測定することを特徴とする。なお、以下の実施形態の説明においては、上記混合物により副電極23を構成した例について説明するが、副電極23を炭酸マグネシウム(MgCO3)のみから構成することもできる。炭酸マグネシウムは分解温度が600℃(岩波 理化学辞典 第4版 p761参照)で、本件の炭素濃度測定用プローブ1を使用する際の溶融金属温度は通常1200〜1700℃であることから、副電極23を炭酸マグネシウムのみから構成しても、測定時に分解してマグネシウム酸化物を生じ、上記混合物で構成したものと同じこととなる。プローブ1は公知の通り、後述するセンサ素子3などが紙管などに取付けられて構成されるものであるが、ここではプローブ1の基本構成を説明するので、紙管の図示を省略している。 As shown in FIG. 1, the probe for measuring carbon concentration 1 of the present invention has a sub-electrode 23 made of a mixture of magnesium carbonate (MgCO 3 ) and magnesium oxide (MgO) as a solid electrolyte tube 13 having oxygen ion conductivity. By providing on the outer surface, a standard electrode element (sensor element 3) that is paired with a counter electrode (working electrode 25) is formed, and between the carbon and oxygen in the molten metal and the mixture constituting the sub electrode It is characterized in that the carbon activity in the molten metal is measured by establishing local equilibrium and measuring the oxygen activity in the local equilibrium layer. In the following description of the embodiment, an example in which the sub-electrode 23 is formed of the above mixture will be described. However, the sub-electrode 23 can be formed of only magnesium carbonate (MgCO 3 ). Magnesium carbonate has a decomposition temperature of 600 ° C. (see Iwanami Rikagaku Dictionary 4th edition, p761), and the molten metal temperature when using the carbon concentration measurement probe 1 of this case is usually 1200 to 1700 ° C. Even if it is composed only of magnesium carbonate, it decomposes during measurement to produce magnesium oxide, which is the same as that composed of the above mixture. As is well known, the probe 1 is configured by attaching a sensor element 3 and the like, which will be described later, to a paper tube or the like. However, since the basic configuration of the probe 1 is described here, the paper tube is not shown. .

より詳しくは、センサ素子3は、一端(図において上側)が開口し、他端(下側)が閉鎖された中空の石英管からなるキャップ或いはカバー5を備えている。この石英キャップ5は、その軸方向所定の位置でその側壁に対向した状態で形成されている2個の円形の開口7、9と、下側閉端部に形成された1個の円形の開口11とを備えている。固体電解質管13は、公知の酸素センサを構成する例えばジルコニアなど酸素イオン導電性を備えた一端閉鎖型の管であり、該固体電解質管13の中には、標準電極15となる金属及びその金属の酸化物とからなる混合物が所定量充填され、標準電極15に標準極用リード線17の一端が挿入・接続されている。   More specifically, the sensor element 3 includes a cap or cover 5 made of a hollow quartz tube having one end (upper side in the figure) opened and the other end (lower side) closed. The quartz cap 5 has two circular openings 7 and 9 formed in a state facing the side wall at a predetermined position in the axial direction, and one circular opening formed in the lower closed end portion. 11. The solid electrolyte tube 13 is a one-end-closed tube having oxygen ion conductivity such as zirconia that constitutes a known oxygen sensor. The solid electrolyte tube 13 includes a metal serving as the standard electrode 15 and its metal. A predetermined amount of a mixture made of the oxide is filled, and one end of a standard electrode lead wire 17 is inserted into and connected to the standard electrode 15.

固体電解質管13は石英キャップ5の中に同心状に配置され、それぞれ高温用接着剤21によりハウジング19に固定されている。固体電解質管13の下端は石英キャップ5の開口7、9の下側縁部より下まで伸びており、標準電極15を構成する混合物は、その上面が開口7、9の上側縁部より上の位置となるだけの量が充填されている。高温用接着剤21の下面は開口7、9の下側縁部には達していない。石英キャップ5の中には、開口7、9の下側縁部の位置まで副電極23を構成する炭酸マグネシウムおよび酸化マグネシウムの混合物よりなる副電極物質が充填され、固体電解質管13の下側部分がその中に埋まっている状態となっており、石英キャップ5内の混合副電極23の上側には空所24が画成されている。   The solid electrolyte tubes 13 are arranged concentrically in the quartz cap 5 and are fixed to the housing 19 by high-temperature adhesives 21 respectively. The lower end of the solid electrolyte tube 13 extends below the lower edge of the openings 7 and 9 of the quartz cap 5, and the upper surface of the mixture constituting the standard electrode 15 is above the upper edge of the openings 7 and 9. The amount is enough to be positioned. The lower surface of the high temperature adhesive 21 does not reach the lower edge of the openings 7 and 9. The quartz cap 5 is filled with a sub-electrode material made of a mixture of magnesium carbonate and magnesium oxide constituting the sub-electrode 23 up to the position of the lower edge of the openings 7 and 9, and the lower portion of the solid electrolyte tube 13. Is embedded in the quartz cap 5, and a void 24 is defined above the mixed sub-electrode 23 in the quartz cap 5.

作用極25は、作用極用リード線27に接続され、この作用極25、作用極用リード線、固体電解質管13、標準電極15、及び標準極用リード線17により従来からの酸素センサ12が構成されており、さらに石英キャップ5及び混合副電極23を備えることにより、センサ素子3と作用極25とからなる炭素センサ2が構成されている。そして、図2に示すようにこの炭素センサ2と熱電対31とを組合わせて炭素濃度測定用プローブ1が構成される。この炭素濃度測定用プローブ1を溶融金属中に投入し、酸素センサの起電力と熱電対の起電力を知ることにより、溶鋼中の炭素活量を知ることができるのである。   The working electrode 25 is connected to a working electrode lead wire 27, and the working electrode 25, the working electrode lead wire, the solid electrolyte tube 13, the standard electrode 15, and the standard electrode lead wire 17 constitute a conventional oxygen sensor 12. Further, the carbon sensor 2 including the sensor element 3 and the working electrode 25 is configured by further including the quartz cap 5 and the mixed sub-electrode 23. As shown in FIG. 2, the carbon sensor 2 and the thermocouple 31 are combined to constitute the carbon concentration measurement probe 1. The carbon activity in the molten steel can be known by inserting the carbon concentration measuring probe 1 into the molten metal and knowing the electromotive force of the oxygen sensor and the electromotive force of the thermocouple.

すなわち、炭素プローブが溶鉄に浸漬されると、石英キャップ5の開口7、9から空所24内に溶鉄が入り込む。この空所24に入り込んだ溶鉄中の炭素と溶鉄中の酸素および副電極23との間に局部平衡が形成される。副電極を構成している炭酸マグネシウム(MgCO3)、酸化マグネシウム(MgO)、溶鉄中の炭素(C)、および溶鉄中の酸素(O)の間の局部平衡反応は(1)式で表され、その平衡定数K1は(2)式で表される。
MgCO3=MgO++2 ・・・(1)
1=(aMgO×aC×aO 2)/aMgO3 ・・・(2)
That is, when the carbon probe is immersed in the molten iron, the molten iron enters the space 24 from the openings 7 and 9 of the quartz cap 5. A local equilibrium is formed between the carbon in the molten iron that has entered the void 24, the oxygen in the molten iron, and the sub-electrode 23. The local equilibrium reaction between magnesium carbonate (MgCO 3 ), magnesium oxide (MgO), carbon (C) in molten iron, and oxygen (O) in molten iron constituting the sub-electrode is expressed by equation (1). The equilibrium constant K 1 is expressed by equation (2).
MgCO 3 = MgO + C +2 O (1)
K 1 = (a MgO × a C × a O 2) / a MgO3 ··· (2)

ここで、は溶鉄中の炭素を、は溶鉄中の酸素をそれぞれ意味し、aMgO、aC、aO、aMgO3はそれぞれMgO、、MgCO3の活量を示す。酸化物および炭酸化物に純物質を使用しているときには、それぞれの活量は1である。この場合に(2)式は、
C×aO=1/K1 ・・・(3)
となる。K1は温度が決まれば定数であるので、温度が一定の場合には炭素の活量と酸素の活量は1対1対応にある。したがって酸素の活量を知ることができれば、炭素の活量を知ることができる。
Here, C is the carbon in the molten iron, O means each oxygen in molten iron shows a MgO, a C, a O , a MgO3 respectively MgO, C, O, the activity of MgCO 3. When pure substances are used for oxides and carbonates, the respective activities are 1. In this case, equation (2) is
a C × a O = 1 / K 1 (3)
It becomes. Since K 1 is a constant when the temperature is determined, the carbon activity and the oxygen activity have a one-to-one correspondence when the temperature is constant. Therefore, if the activity of oxygen can be known, the activity of carbon can be known.

溶鉄中の酸素と酸素センサで測定される酸素の間には次の平衡関係がある。
=O2 ・・・(4)
ここでは溶鉄中の酸素、O2は酸素センサで測定できる酸素である。(4)式の反応の平衡定数K4は(5)式で表される。
4=Po2/aO 2 ・・・(5)
ここでPo2は酸素分圧である。
The following equilibrium relationship exists between oxygen in molten iron and oxygen measured by an oxygen sensor.
2 O = O 2 (4)
Here, O is oxygen in the molten iron, and O 2 is oxygen that can be measured by an oxygen sensor. The equilibrium constant K 4 of the reaction of the formula (4) is expressed by the formula (5).
K 4 = P o2 / a O 2 (5)
Here, P o2 is the oxygen partial pressure.

溶鉄中の(作用極の)酸素分圧Po2(W)、基準極の酸素分圧Po2(R)、温度Tと酸素センサの起電力EMFとの間には、式(6)の関係がある。
EMF=RTln(Po2(W)/Po2(R)) ・・・(6)
(6)式において、Rは気体定数(R=8.3144J/(mol・K)、Fはファラデー定数(F=96500J/(V・mol)であり、Tはケルビン温度を、EMFはボルト単位を用いて測定する。よって、酸素センサでEMFを知り、熱電対で温度を知ることができれば、(6)式からPo2(W)を知ることができ、このPo2(W)を(5)式に代入すればaOを知ることができ、このaOを(3)式に代入すれば炭素の活量aCを知ることができる。換言すれば、炭素プローブのEMFと温度から炭素の活量aCを知ることができる。
The relationship of the equation (6) among the oxygen partial pressure P o2 (W) in the molten iron, the oxygen partial pressure P o2 (R) at the reference electrode, the temperature T, and the electromotive force EMF of the oxygen sensor There is.
EMF = RTln (P o2 (W ) / P o2 (R)) ··· (6)
In equation (6), R is a gas constant (R = 8.3144J / (mol · K), F is a Faraday constant (F = 96500J / (V · mol)), T is the Kelvin temperature, and EMF is in volts. measured using a. Thus, knowing the EMF in the oxygen sensor, if it is possible to know the temperature with a thermocouple, (6) can know P o2 (W) is from equation the P o2 (W) is (5 ) can know a O by substituting the formula if. in other words it is possible to know the a O a (3) the activity of the carbon by substituting the formula a C, carbon from EMF and temperature carbon probe The activity a C of can be known.

以上本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

以下、本発明に係る炭素活量測定用プローブの実施例について、炭素濃度の測定精度、および副電極物質の潮解あるいは風解の原因となる吸湿性について試験した結果を説明する。   In the following, the results of testing the carbon concentration measurement accuracy and the hygroscopicity that causes deliquescence or defrosting of the sub-electrode material will be described for the examples of the carbon activity measurement probe according to the present invention.

実施例の炭素活量測定用プローブは、以下の構成を有している。すなわち、溶鉄中に炭素プローブ1を投入して炭素濃度を測定する状態を示す縦断面を図2に示した。前述の如くセンサ素子3と対極25とで炭素センサ2が構成され、これと熱電対31とが図示しない紙管などに取付けられて炭素プローブ1が構成される。標準極用リード線17と対極用リード線27は電位差計35に接続され、熱電対31はリード線32を介して温度測定器33に接続される。   The probe for measuring carbon activity of the examples has the following configuration. That is, FIG. 2 shows a longitudinal section showing a state in which the carbon probe 1 is introduced into molten iron and the carbon concentration is measured. As described above, the sensor element 3 and the counter electrode 25 constitute the carbon sensor 2, and this and the thermocouple 31 are attached to a paper tube or the like (not shown) to constitute the carbon probe 1. The standard electrode lead wire 17 and the counter electrode lead wire 27 are connected to a potentiometer 35, and the thermocouple 31 is connected to a temperature measuring device 33 through a lead wire 32.

石英キャップ5は以下のように製作した(図1参照)。即ち外径11mm、内径9mm、長さ35mmの一端を溶封した。そして溶封した下端部中央に直径2mmの開口11を開けた。さらに下端部から上方25mmの位置で側壁に直径5mmの開口7、9を径方向で向合うようにして設けた。   The quartz cap 5 was manufactured as follows (see FIG. 1). That is, one end having an outer diameter of 11 mm, an inner diameter of 9 mm, and a length of 35 mm was sealed. Then, an opening 11 having a diameter of 2 mm was opened in the center of the sealed lower end. Furthermore, openings 7 and 9 having a diameter of 5 mm were provided on the side wall at a position 25 mm above the lower end so as to face each other in the radial direction.

標準電極15を内部に収受した固体電解質管13と石英キャップ5とをセラミック製のハウジング19に高温用接着剤21でそれぞれ固定した後、副電極23を構成する試薬のMgCO3と試薬のMgOを混合した粉末を石英キャップ5内へ、側壁部の開口7、9の下端縁部の高さまで充填した。石英キャップ5内で副電極23の上方に高さ5mmの空所24が画成された。この空所24内では固体電解質は剥き出しになっている。側壁の開口7、9から溶鉄が石英キャップ5内へ流入し、副電極23と混合し、前述の局部平衡が形成される。石英キャップ5内へ副電極23を一杯に充填するのではなく、副電極23の上方に空所24を画成しておくこと、またキャップ5の下端部に開口11を形成しておくことにより、溶鉄が流入しやすく、また流入した溶鉄が副電極23と接触し易くなり、局部平衡が形成されるまでの時間が早くなるという利点がある。すなわち短時間での測定が可能となる。 After fixing the solid electrolyte tube 13 and the quartz cap 5 receiving the standard electrode 15 to the ceramic housing 19 with the high-temperature adhesive 21 respectively, the reagent MgCO 3 and the reagent MgO constituting the sub-electrode 23 are added. The mixed powder was filled into the quartz cap 5 up to the height of the lower edge of the openings 7 and 9 in the side wall. A space 24 having a height of 5 mm was defined above the sub-electrode 23 in the quartz cap 5. In the void 24, the solid electrolyte is exposed. Molten iron flows into the quartz cap 5 from the openings 7 and 9 on the side walls and mixes with the sub electrode 23 to form the above-mentioned local equilibrium. Rather than filling the quartz cap 5 with the sub-electrode 23, the space 24 is defined above the sub-electrode 23, and the opening 11 is formed at the lower end of the cap 5. There is an advantage that the molten iron can easily flow in, and the molten iron that has flowed in easily comes into contact with the sub-electrode 23, so that the time until local equilibrium is formed is shortened. That is, measurement can be performed in a short time.

このプローブを構成する主要な部材を以下に示す。
酸素センサ12を構成する固体電解質管5:8mol%のMgOで安定化されたZrO2の一端閉鎖管
酸素センサの標準極15:CrとCr23の混合粉末
対極(作用極25):直径3mmのMo棒
標準極と対極のリード線:直径0.29mmのMo線
副電極23:粉末試薬MgCO3と粉末試薬MgOを質量比1:xに混合した粉末であり、xの値は0から9の間で試みた。
熱電対31:Type−Rh
The main members constituting this probe are shown below.
Solid electrolyte tube 5 constituting the oxygen sensor 12: ZrO2 end-closed tube stabilized with 8 mol% MgO Standard electrode 15 of the oxygen sensor: Mixed powder of Cr and Cr 2 O 3 Counter electrode (working electrode 25): diameter 3 mm Mo rod of standard electrode and counter electrode lead wire: Mo wire with a diameter of 0.29 mm Sub electrode 23: Powder in which powder reagent MgCO 3 and powder reagent MgO are mixed in a mass ratio 1: x, and the value of x ranges from 0 to 9 Tried between.
Thermocouple 31: Type-Rh

(炭素濃度の測定精度)
炭素プローブを溶鉄中に投入し、プローブのEMFが安定した直後にサンプラーで溶鉄を採取し、これを化学分析して炭素濃度を求めた。1550℃の溶鉄中の炭素濃度の対数と炭素プローブで測定されたEMFの関係を図3に示した。図3を得たときの諸条件は、以下の通りである。
副電極構成物質の質量混合比:MgCO3:MgO=1:1
温度:1550℃
炭素濃度:0.001から1%の間
溶鉄を収容するるつぼ:多孔質アルミナ製
雰囲気:100%N2
図3より、分析値で得た炭素濃度の対数とEMFの関係は良い直線関係にあり、実用上問題ない十分な測定精度を備えていることが分かる。
(Measurement accuracy of carbon concentration)
A carbon probe was put into the molten iron, and immediately after the EMF of the probe was stabilized, the molten iron was collected with a sampler, and this was chemically analyzed to determine the carbon concentration. FIG. 3 shows the relationship between the logarithm of the carbon concentration in the molten iron at 1550 ° C. and the EMF measured by the carbon probe. The conditions for obtaining FIG. 3 are as follows.
Mass mixing ratio of sub-electrode constituent materials: MgCO 3 : MgO = 1: 1
Temperature: 1550 ° C
Carbon concentration: between 0.001 and 1% Crucible containing molten iron: Made of porous alumina Atmosphere: 100% N 2
From FIG. 3, it can be seen that the relationship between the logarithm of the carbon concentration obtained from the analysis value and the EMF is a good linear relationship and has sufficient measurement accuracy with no practical problem.

(副電極物質の吸湿性比較試験)
比較物質は、Na22,Na2CO3,MgO,MgCO3の各試薬である。Na22とNa2CO3は、従来のプローブにおいて組み合わせて一組の副電極物質を構成するものであり、MgOとMgCO3は、本発明のプローブにおいて組み合わせて一組の副電極物質を構成するものである。これら各試薬の粉末試料約1gを時計皿に平らになるように載せ、温度26℃、湿度70%の大気中に放置し、15分毎に質量を測定した。
(Hygroscopic comparison test of secondary electrode substance)
The comparative substances are Na 2 O 2 , Na 2 CO 3 , MgO, and MgCO 3 reagents. Na 2 O 2 and Na 2 CO 3 are combined in a conventional probe to constitute a set of sub-electrode materials, and MgO and MgCO 3 are combined in a probe of the present invention to form a set of sub-electrode materials. It constitutes. About 1 g of a powder sample of each of these reagents was placed on a watch glass so as to be flat, and was left in an atmosphere at a temperature of 26 ° C. and a humidity of 70%, and the mass was measured every 15 minutes.

結果を図4に示す。横軸は分単位で表示した試験時間であり、縦軸は試料1gが吸湿したグラム単位の質量である。グラフにはNa22,Na2CO3,MgCO3の結果しか示していないが、MgOは試験時間120分では質量変化を生じなかったので、グラフへの記入を省略した。120分の結果を用いて特に吸湿の多いNa22を他の試料と比較すると、Na2CO3に対しては約50倍、MgCO3に対しては約92倍の吸湿力があることが分かる。またMgOに対しては数値的表示ができないほど大きいといえる。また、Na2CO3は、MgCO3に対して約1.8倍の吸湿力があることが分かる。この結果からも、吸湿性の小さいMgCO3やMgOよりなる本発明プローブの副電極は潮解あるいは風解が生じにくく、空気中で保存しても品質劣化が殆どないことが分かる。 The results are shown in FIG. The horizontal axis represents the test time expressed in minutes, and the vertical axis represents the mass in grams that 1 g of sample absorbed. Although only the results of Na 2 O 2 , Na 2 CO 3 and MgCO 3 are shown in the graph, MgO did not change in mass at the test time of 120 minutes, so the entry in the graph was omitted. Compared with the other samples, Na 2 O 2, which has a particularly high moisture absorption, using the result of 120 minutes, it has a hygroscopic capacity of about 50 times for Na 2 CO 3 and about 92 times for MgCO 3 . I understand. It can also be said that MgO is so large that it cannot be numerically displayed. It can also be seen that Na 2 CO 3 has a hygroscopicity about 1.8 times that of MgCO 3 . Also from this result, it can be seen that the sub-electrode of the probe of the present invention made of MgCO 3 or MgO having low hygroscopicity hardly causes deliquescence or defoliation, and there is almost no deterioration in quality even when stored in the air.

本発明の炭素プローブの構成を示す断面図。Sectional drawing which shows the structure of the carbon probe of this invention. 炭素プローブを使用して炭素活量を測定する状態を示す断面図。Sectional drawing which shows the state which measures carbon activity using a carbon probe. 炭素プローブの起電力と溶鉄中炭素濃度との関係を示すグラフ。The graph which shows the relationship between the electromotive force of a carbon probe, and the carbon concentration in molten iron. 吸湿性比較試験の結果を示すグラム。The gram which shows the result of a hygroscopic comparison test.

符号の説明Explanation of symbols

1 炭素活量測定用プローブ
2 炭素センサ
3 センサ素子
5 カバー
7、9、11 開口
12 酸素センサ
13 固体電解質
15 標準電極
17 リード線
19 ハウジング
23 混合副電極
24 空所
25 対極
27 リード線
31 熱電対
32 リード線
33 温度測定器
35 電位差計
DESCRIPTION OF SYMBOLS 1 Carbon activity measurement probe 2 Carbon sensor 3 Sensor element 5 Cover 7, 9, 11 Opening 12 Oxygen sensor 13 Solid electrolyte 15 Standard electrode 17 Lead wire 19 Housing 23 Mixed subelectrode 24 Space 25 Counter electrode 27 Lead wire 31 Thermocouple 32 Lead wire 33 Temperature measuring device 35 Potentiometer

Claims (2)

溶融金属中の炭素活量を測定する炭素活量測定用プローブにおいて、
炭酸マグネシウム、又は炭酸マグネシウム及び酸化マグネシウムの混合物からなる副電極を、酸素イオン導電性を有する固体電解質の外表面に設けることにより、対極と対になる標準電極用素子を構成し、溶融金属中の炭素、酸素、および前記副電極を構成している炭酸マグネシウム又は混合物の間に局部平衡を成立させ、局部平衡層内の酸素活量を測定することによって溶融金属中の炭素の活量を測定することを特徴とする炭素活量測定用プローブ。
In the carbon activity measurement probe for measuring the carbon activity in the molten metal,
By providing a sub-electrode made of magnesium carbonate or a mixture of magnesium carbonate and magnesium oxide on the outer surface of a solid electrolyte having oxygen ion conductivity, a standard electrode element that is paired with a counter electrode is formed. The carbon activity in the molten metal is measured by establishing a local equilibrium between the carbon, oxygen, and the magnesium carbonate or mixture constituting the sub-electrode and measuring the oxygen activity in the local equilibrium layer. A probe for measuring carbon activity.
前記混合物中の酸化マグネシウムの構成質量比を、0.9以下とした請求項1記載の炭素活量測定用プローブ。   The probe for measuring carbon activity according to claim 1, wherein the constituent mass ratio of magnesium oxide in the mixture is 0.9 or less.
JP2007234466A 2007-09-10 2007-09-10 Carbon activity measuring probe Pending JP2009068856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234466A JP2009068856A (en) 2007-09-10 2007-09-10 Carbon activity measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234466A JP2009068856A (en) 2007-09-10 2007-09-10 Carbon activity measuring probe

Publications (1)

Publication Number Publication Date
JP2009068856A true JP2009068856A (en) 2009-04-02

Family

ID=40605293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234466A Pending JP2009068856A (en) 2007-09-10 2007-09-10 Carbon activity measuring probe

Country Status (1)

Country Link
JP (1) JP2009068856A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132950A (en) * 1990-09-26 1992-05-07 Nkk Corp Probe for measuring activity of solute element within fused metal using mixed sub-electrode
JP2004020285A (en) * 2002-06-13 2004-01-22 Thermo Techno:Kk Method, apparatus, and probe for measuring concentration of phosphorus in molten iron
JP2005043297A (en) * 2003-07-25 2005-02-17 Japan Air Gases Ltd Probe for measuring carbon activity in molten steel metal and method for measuring carbon activity
JP2006132959A (en) * 2004-11-02 2006-05-25 Tokyo Yogyo Co Ltd Magnesium sensor probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132950A (en) * 1990-09-26 1992-05-07 Nkk Corp Probe for measuring activity of solute element within fused metal using mixed sub-electrode
JP2004020285A (en) * 2002-06-13 2004-01-22 Thermo Techno:Kk Method, apparatus, and probe for measuring concentration of phosphorus in molten iron
JP2005043297A (en) * 2003-07-25 2005-02-17 Japan Air Gases Ltd Probe for measuring carbon activity in molten steel metal and method for measuring carbon activity
JP2006132959A (en) * 2004-11-02 2006-05-25 Tokyo Yogyo Co Ltd Magnesium sensor probe

Similar Documents

Publication Publication Date Title
US3773641A (en) Means for determining the oxygen content of liquid metals
US3619381A (en) Determining oxygen content of materials
JP2018533727A (en) Sensor for measuring hydrogen content in molten metal and measuring method
US3752753A (en) Method of fabricating a sensor for the determination of the oxygen content of liquid metals
US20090139876A1 (en) Apparatus and Method for Measuring Hydrogen Concentration
RU2483300C1 (en) Solid electrolyte sensor for amperometric measurement of gas mixture moisture
JP4225858B2 (en) Probe for measuring carbon activity in molten steel metal and method for measuring carbon activity
JP2009068856A (en) Carbon activity measuring probe
RU2483298C1 (en) Solid-electrolyte sensor for amperometric measurement of hydrogen and oxygen concentration in gas mixtures
US4814062A (en) Membrane reference electrode
JP2009068855A (en) Probe for measuring concentration of copper in molten metal
RU63534U1 (en) DEVICE FOR MEASURING OXYGEN CONCENTRATION
US11435329B2 (en) Reaction tube for elemental analysis
RU2752801C1 (en) Amperometric method for measuring concentration of nitric oxide in gas mixture with nitrogen
RU2489711C1 (en) Solid electrolyte sensor for measurement of oxygen concentration in gases and molten metals
JPS5929813B2 (en) carbon concentration measuring device
JP5811632B2 (en) Carbon dioxide concentration meter
CN115856055B (en) Device and method for measuring hydrogen content in magnesium melt
RU2795670C1 (en) Sensor for measuring oxygen concentration in a gas mixture
SU1013833A1 (en) Electrochemical cell for measuring oxygen concentration
JP7265007B2 (en) Solid reference material and hydrogen gas sensor
RU189631U1 (en) Sensor for measuring the concentration of oxygen and hydrogen in inert, protective and oxidizing gas mixtures
RU2071051C1 (en) Sensor for partial pressure of oxygen in gas mixture
JP2530076B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same
JP3293041B2 (en) Apparatus for measuring oxygen activity in slag, consumable crucible used for the measuring apparatus, and temperature measuring method applied to the measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529