[go: up one dir, main page]

JP2009060767A - Diagnosis system of insulation deterioration of rotating machine - Google Patents

Diagnosis system of insulation deterioration of rotating machine Download PDF

Info

Publication number
JP2009060767A
JP2009060767A JP2007228139A JP2007228139A JP2009060767A JP 2009060767 A JP2009060767 A JP 2009060767A JP 2007228139 A JP2007228139 A JP 2007228139A JP 2007228139 A JP2007228139 A JP 2007228139A JP 2009060767 A JP2009060767 A JP 2009060767A
Authority
JP
Japan
Prior art keywords
insulation
rotating machine
measurement
time
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007228139A
Other languages
Japanese (ja)
Inventor
Hideaki Hara
英敬 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2007228139A priority Critical patent/JP2009060767A/en
Publication of JP2009060767A publication Critical patent/JP2009060767A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set an optimal measuring interval to insulating characteristics required for maintenance of a rotating machine. <P>SOLUTION: An initial insulating characteristics Y<SB>S</SB>in a use start point N<SB>0</SB>of the rotating machine and limit insulating characteristics Y<SB>C</SB>in the end point of its life are memorized. A residual lifetime M<SB>P</SB>of the rotating machine at this point is computed based on a relationship among insulating characteristics Y<SB>P</SB>measured at one point N<SB>P</SB>with an elapsed time of use, an initial insulating characteristics and a limit insulating characteristics. Then, a measuring interval K<SB>P</SB>of the insulating characteristics after the measuring point is set within the residual lifetime and within the time width of a monitoring management period 11 before attainment of the limit insulating characteristics of the rotating machine. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばエレベータのかごを上下移動させる巻上機等に組込まれた電動機等の回転機の絶縁特性の劣化を診断する回転機の絶縁劣化診断システムに関する。   The present invention relates to an insulation deterioration diagnosis system for a rotating machine that diagnoses deterioration of insulation characteristics of a rotating machine such as an electric motor incorporated in a hoisting machine that moves an elevator car up and down.

一般に、エレベータのかごの昇降機に用いられる電動機は、10年以上に亘る長期間の継続使用および設置場所の環境等の影響を受け、絶縁特性が徐々に低下してくる。このため、回転機が稼動中に焼損し、長期間稼動停止状態にならないように、予め回転機の絶縁劣化状態を診断し、回転機の機能停止状態に達する前に絶縁回復対策を実施するか、損傷を受けた回転機を新しい回転機に交換するなどの保全処置を実行する必要がある。   In general, an electric motor used for an elevator car elevator is affected by continuous use over a long period of 10 years or more, the environment of the installation location, and the like, and the insulation characteristics gradually deteriorate. Therefore, is it necessary to diagnose the insulation deterioration state of the rotating machine in advance and take measures for insulation recovery before the rotating machine stops functioning so that the rotating machine will not burn out during operation and will not be shut down for a long time? It is necessary to carry out maintenance measures such as replacing a damaged rotating machine with a new rotating machine.

ちなみに、回転機としての絶縁特性は、絶縁抵抗、成極指数(PI値)、誘電正接(tanδ)、誘電正接の電圧依存性(Δtanδ)、静電容量等の各物理量を単独で、又は組合わして加工したものであり、例えば絶縁特性が絶縁抵抗であれば、「JIS A 4302」の「昇降機の検査基準」に、電動機主回路300V以下の場合絶縁抵抗は0.2MΩ以上が要求され、300V以上の場合絶縁抵抗は0.4MΩ以上が要求されている。   By the way, the insulation characteristics as a rotating machine include physical quantities such as insulation resistance, polarization index (PI value), dielectric loss tangent (tan δ), voltage dependence of dielectric loss tangent (Δ tan δ), capacitance, etc. alone or in combination. For example, if the insulation characteristic is insulation resistance, the insulation resistance is required to be 0.2 MΩ or more when the motor main circuit is 300 V or less in the “elevator inspection standard” of “JIS A 4302” In the case of 300 V or more, the insulation resistance is required to be 0.4 MΩ or more.

従来、回転機の絶縁劣化に対して複数の診断方法が提唱されている。その一つとして、特許文献1に開示されている絶縁劣化の診断方法においては、回転機の絶縁抵抗、誘電正接(tanδ)等の各項目を測定する。   Conventionally, a plurality of diagnostic methods have been proposed for insulation deterioration of rotating machines. As one of them, in the method for diagnosing insulation degradation disclosed in Patent Document 1, each item such as insulation resistance and dielectric loss tangent (tan δ) of a rotating machine is measured.

また、環境条件として温度、湿度等を規定する。そして、環境条件を各項目の絶縁測定値に加味して、環境条件が加味された絶縁測定値を所定の判定手順に基づき測定項目毎の判断、回転機の総合評価、及び総合評価と使用開始後の使用経過年数に基づいて当該回転機の診断間隔や評価コメントを付加する。   Moreover, temperature, humidity, etc. are prescribed | regulated as environmental conditions. Then, the environmental conditions are taken into account for the insulation measurement values of each item, and the insulation measurement values with the environmental conditions taken into account are determined for each measurement item based on a predetermined determination procedure, the comprehensive evaluation of the rotating machine, and the comprehensive evaluation and start of use. The diagnosis interval and evaluation comment of the rotating machine are added based on the years of use later.

次に、特許文献2に記載された絶縁寿命推定方法の要点を説明する。図7に示すように、評価対象の回転機の設置環境の一つである相対湿度Hを0%から100%まで変化させた場合における、回転機の絶縁抵抗Aの変化を示す2つの絶縁特性YS、YCを作成する。初期絶縁特性YSは、当該回転機の使用開始時点、すなわち使用開始後の使用経過年数N=N0(=0)における絶縁特性である。一方、限界絶縁特性YCは、当該回転機の絶縁劣化による寿命到来時点の絶縁特性である。なお、初期絶縁特性YS、限界絶縁特性YCは予め実験的に求められている。そして、この初期絶縁特性YS、限界絶縁特性YCを基準特性として記憶保持する。 Next, the main points of the insulation life estimation method described in Patent Document 2 will be described. As shown in FIG. 7, two insulation characteristics showing changes in the insulation resistance A of the rotating machine when the relative humidity H which is one of the installation environments of the rotating machine to be evaluated is changed from 0% to 100%. Y S and Y C are created. The initial insulation characteristic Y S is an insulation characteristic at the start of use of the rotating machine, that is, the number of years of use N = N 0 (= 0) after the start of use. On the other hand, the limit insulation characteristic Y C is an insulation characteristic at the end of the life due to insulation deterioration of the rotating machine. Note that the initial insulation characteristic Y S and the limit insulation characteristic Y C are experimentally obtained in advance. The initial insulation characteristic Y S and the limit insulation characteristic Y C are stored and held as reference characteristics.

次に、当該回転機の使用開始時点から、使用経過年数N=NPで、当該回転機の絶縁抵抗AP、周囲の相対湿度HPを測定し、図7のグラフ上に、今回の測定点P(HP、AP)を書込む。そして、初期絶縁特性YS、限界絶縁特性YCの2つの基準特性を用いて、測定点P(HP、AP)を通過する測定絶縁特性YPを作成する。 Then, from the use start time of the rotating machine, the use elapsed years N = N P, insulation resistance A P of the rotating machine, measures the ambient relative humidity H P, on the graph of FIG. 7, the current measurement Write the point P (H P , A P ). Then, using the two reference characteristics of the initial insulation characteristic Y S and the limit insulation characteristic Y C , the measurement insulation characteristic Y P passing through the measurement point P (H P , A P ) is created.

なお、相対湿度Hと絶縁抵抗Aの関係を示す絶縁特性Yは、回転機の使用開始時点においては、相対湿度Hに対してほぼ直線的に低下するが、使用経過年数Nが増加し、絶縁劣化がある程度進行すると、絶縁特性Yは、低湿度域(相対湿度0〜60%)と高湿度域(相対湿度61〜100%)とでは傾きの異なる折れ線特性となる。すなわち、高湿度域では相対湿度Hに対して敏感になり、絶縁特性Yの絶縁抵抗Aの値は極端に低くなる。   The insulation characteristic Y, which indicates the relationship between the relative humidity H and the insulation resistance A, decreases almost linearly with respect to the relative humidity H at the start of use of the rotating machine. When the deterioration proceeds to some extent, the insulation characteristic Y becomes a polygonal line characteristic having different slopes in the low humidity range (relative humidity 0 to 60%) and the high humidity range (relative humidity 61 to 100%). That is, in the high humidity region, it becomes sensitive to the relative humidity H, and the value of the insulation resistance A of the insulation characteristic Y becomes extremely low.

一つの使用経過年数N=NPにおける測定絶縁特性YPが求まると、この時点における相対湿度HPが寿命到来時点まで継続すると仮定した場合における、現在字時刻(使用経過年数N=NP)における寿命到来時点(使用経過年数N=Nf)までの余寿命MPを作成する。 When the measured insulation characteristic Y P at one usage age N = N P is obtained, the current character time (the usage age N = N P ) assuming that the relative humidity H P at this point continues until the end of the lifetime. The remaining life M P up to the point in time at which the life is reached (the number of years of use N = Nf) is created.

余寿命Mが全寿命Mfである使用経過年数=N0(=0))の初期絶縁特性YSと、余寿命Mが0であるの限界絶縁特性YCと、使用経過年数N=NPの測定絶縁特性YPとの位置関係から、使用経過年数N=NPにおける余寿命MPが推定される。
特開2006−170721号公報 特開2004−177383号公報
The initial insulation characteristic Y S with the remaining life M being the total life Mf = N 0 (= 0)), the limit insulation characteristic Y C with the remaining life M being 0, and the elapsed use time N = N P from the positional relationship between the measurement insulating properties Y P, remaining life M P in the use elapsed years N = N P is estimated.
JP 2006-170721 A JP 2004-177383 A

しかしながら上述した回転機の絶縁劣化を測定し、絶縁劣化に起因する余寿命を推定評価する手法においてもまだ改良すべき次のような課題があった。   However, the following problems still need to be improved in the method of measuring the insulation deterioration of the rotating machine and estimating and evaluating the remaining life due to the insulation deterioration.

図7に示すように、回転機の絶縁特性は新品時と限界時とでは大きな差がある。一方、回転機の絶縁劣化による寿命到来するまえに、絶縁劣化に対する保全処置を実施する必要がある。この保全処置を最適時期に実施する必要必要があるが、この最適実施時期を定めるために、短い間隔で絶縁特性を測定することは、保守員の負担が増大する。また、長い間隔で絶縁特性を測定すると、その期間内に、絶縁劣化による寿命が到来して損傷が発生する懸念がある。   As shown in FIG. 7, there is a large difference in the insulation characteristics of the rotating machine between the new product and the limit. On the other hand, it is necessary to implement maintenance measures against insulation deterioration before the end of life due to insulation deterioration of the rotating machine. Although it is necessary to perform this maintenance procedure at the optimum time, measuring the insulation characteristics at short intervals to determine the optimum performance time increases the burden on maintenance personnel. Further, when the insulation characteristics are measured at a long interval, there is a concern that the life due to the insulation deterioration comes within that period and damage occurs.

しかし、特許文献1に記載された診断方法は、診断時の湿度、温度等の環境条件を加味した判定方法であるため、診断時の回転機の絶縁劣化に関する総合評価としては正確な判定を実施できる。しかし、この回転機が組込まれたエレベータシステムに対する点検保守管理を実施する保守員への点検保守上の助言のひとつである次の診断実施までの診断間隔は使用経過年数を加味して設定しているが、段階的評価であるために正確性に欠けることがある。   However, since the diagnosis method described in Patent Document 1 is a determination method that takes into account environmental conditions such as humidity and temperature at the time of diagnosis, accurate determination is performed as a comprehensive evaluation regarding insulation deterioration of a rotating machine at the time of diagnosis. it can. However, the diagnostic interval until the next diagnosis, which is one of the inspection and maintenance advice for maintenance personnel who carry out inspection and maintenance management for the elevator system incorporating this rotating machine, is set taking into account the years of use. However, since it is a gradual evaluation, it may lack accuracy.

一方、特許文献2に記載された絶縁寿命推定方法においては、回転機に対する絶縁特性の測定(診断)を実施すると、この測定された絶縁特性に基づいて、この時点における電動機の余寿命を自動的に推定する。しかし、この時点以降の最適の診断実施間隔の情報を提供することはない。   On the other hand, in the insulation life estimation method described in Patent Document 2, when measurement (diagnosis) of insulation characteristics for a rotating machine is performed, the remaining life of the motor at this time is automatically determined based on the measured insulation characteristics. To estimate. However, it does not provide information on the optimal diagnosis interval after this point.

本発明はこのような事情に鑑みてなされたものであり、回転機の保守管理上で必要な絶縁特性に対する最適の測定実施間隔を設定でき、回転機の絶縁劣化を正確にかつ効率的に把握でき、寿命到来前に確実に絶縁劣化に対する保全処置を実施することができる回転機の絶縁劣化診断システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and can set an optimum measurement execution interval for the insulation characteristics necessary for maintenance and management of the rotating machine, and accurately and efficiently grasp the insulation deterioration of the rotating machine. An object of the present invention is to provide an insulation deterioration diagnosis system for a rotating machine that can reliably perform maintenance measures against insulation deterioration before the end of its service life.

上記課題を解決するために本発明は、回転機の使用開始後の複数の使用経過時点における当該回転機の絶縁特性の測定結果に基づいて当該回転機の絶縁劣化の診断指示を行う回転機の絶縁劣化診断システムにおいて、予め求められている前記回転機の使用開始時点の初期絶縁特性及び寿命到達時点の限界絶縁特性を記憶する基準特性記憶部と、一つの使用経過時点で絶縁特性が測定されると、この測定された絶縁特性と記憶された初期絶縁特性及び限界絶縁特性との関係から回転機のこの時点における余寿命を算出する余寿命算出手段と、一つの測定実施時点以降の絶縁特性の測定実施間隔を、余寿命以内でかつ回転機の限界絶縁特性に至る前の監視管理期間の時間幅以下に設定する測定実施間隔設定手段とを備えている。   In order to solve the above-described problems, the present invention provides a rotating machine that issues a diagnosis instruction for insulation deterioration of the rotating machine based on the measurement results of the insulating characteristics of the rotating machine at a plurality of usage points after the start of use of the rotating machine. In the insulation deterioration diagnosis system, the reference characteristic storage unit for storing the initial insulation characteristics at the start of use of the rotating machine and the limit insulation characteristics at the end of the service life, which are obtained in advance, and the insulation characteristics are measured at one use elapsed time. Then, the remaining life calculation means for calculating the remaining life at this time of the rotating machine from the relationship between the measured insulation characteristics and the stored initial insulation characteristics and limit insulation characteristics, and the insulation characteristics after one measurement execution time Measurement execution interval setting means for setting the measurement execution interval within the remaining life and less than the time width of the monitoring management period before reaching the limit insulation characteristic of the rotating machine.

このように構成された回転機の絶縁劣化診断システムにおいては、回転機の絶縁特性に対する一つの測定実施時点以降の絶縁特性の測定実施間隔を、余寿命以内でかつ回転機の限界絶縁特性に至る前の監視管理期間以内に設定しているので、回転機の限界絶縁特性に至る前の監視管理期間内で少なくとも1回は絶縁特性に対する測定が実施されるので、限界絶縁特性に至る前に絶縁特性を測定するので、確実に、寿命到来直前に絶縁劣化に対する保全処置を実施することができる。   In the insulation deterioration diagnosis system for a rotating machine configured in this way, the measurement performance interval after one measurement for the insulation characteristics of the rotating machine is within the remaining life and reaches the limit insulation characteristics of the rotating machine. Since it is set within the previous monitoring control period, the insulation characteristic is measured at least once within the monitoring control period before reaching the limit insulation characteristic of the rotating machine. Since the characteristics are measured, it is possible to reliably perform maintenance measures against insulation deterioration immediately before the end of the service life.

また別の発明は、上記発明の回転機の絶縁劣化診断システムにおいて、監視管理期間は回転機の全寿命の30%の時間幅に設定され、測定実施間隔は前記余寿命の1/5に設定されている。   According to another invention, in the insulation deterioration diagnosis system for a rotating machine according to the above invention, the monitoring control period is set to a time width of 30% of the entire life of the rotating machine, and the measurement execution interval is set to 1/5 of the remaining life. Has been.

また別の発明は、上記発明の回転機の絶縁劣化診断システムにおいて、監視管理期間は、使用経過時間の短い方から、観察期間、詳細観察期間、対策準備期間との3つの管理期間で構成され、かつ前記3つの管理期間は互いに等しい前記回転機の全寿命の10%の時間幅に設定され、測定実施間隔は前記余寿命の1/5に設定されている。   According to another invention, in the insulation deterioration diagnosis system for a rotating machine according to the above invention, the monitoring management period is composed of three management periods, that is, an observation period, a detailed observation period, and a countermeasure preparation period, starting from the shorter usage elapsed time. The three management periods are set to a time width of 10% of the total life of the rotating machine which is equal to each other, and the measurement execution interval is set to 1/5 of the remaining life.

ことを特徴とする請求項1又は2記載の回転機の絶縁劣化診断システム。 The insulation deterioration diagnosis system for a rotating machine according to claim 1 or 2,

また別の発明は、上記発明の回転機の絶縁劣化診断システムにおいて、監視管理期間を操作入力するための操作部を備えている。   In another invention, in the insulation deterioration diagnosis system for a rotating machine according to the invention described above, an operation unit for operating and inputting a monitoring management period is provided.

また別の発明は、上記発明の回転機の絶縁劣化診断システムにおいて、各絶縁特性は、相対湿度を変化させた場合の回転機における絶縁抵抗の変化を示す特性であり、一つの測定実施時点における絶縁特性は、当該測定実施時点の使用経過時間、相対湿度、回転機の絶縁抵抗を用いて算出される。   According to another invention, in the insulation deterioration diagnosis system for a rotating machine according to the invention described above, each insulation characteristic is a characteristic indicating a change in insulation resistance in the rotating machine when the relative humidity is changed. The insulation characteristic is calculated using the elapsed use time, relative humidity, and insulation resistance of the rotating machine at the time of the measurement.

本発明によれば、回転機の保守管理上で必要な絶縁特性に対する最適の測定実施間隔を設定でき、回転機の絶縁劣化を正確にかつ効率的に把握でき、寿命到来前に確実に絶縁劣化に対する保全処置を実施することができる。   According to the present invention, it is possible to set an optimum measurement interval for the insulation characteristics necessary for maintenance and management of the rotating machine, accurately and efficiently grasp the insulation deterioration of the rotating machine, and ensure the insulation deterioration before the end of the service life. Conservation measures for can be implemented.

以下、本発明の一実施形態を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係わる回転機の絶縁劣化診断システムの概略構成を示すブロック図である。例えば、コンピュータ等の情報処理装置からなる回転機の絶縁劣化診断システム内には、各種情報を記憶するHDD等で構成された記憶部1、キーボード、マウス等の操作部2、回転機の各絶縁特性及び算出された測定実施間隔等をグラフィック表示する表示部3等のハード部品が設けられている。   FIG. 1 is a block diagram showing a schematic configuration of an insulation deterioration diagnosis system for a rotating machine according to an embodiment of the present invention. For example, in an insulation deterioration diagnosis system for a rotating machine composed of an information processing device such as a computer, a storage unit 1 composed of an HDD or the like for storing various information, an operation unit 2 such as a keyboard and a mouse, and each insulation of a rotating machine Hardware parts such as the display unit 3 are provided for graphically displaying the characteristics and the calculated measurement intervals.

記憶部1内には、初期絶縁特性メモリ4、限界絶縁特性メモリ5、基準抵抗値関数メモリ6、傾き関数メモリ7、測定絶縁特性メモリ8、監視管理期間メモリ9、測定実施間隔メモリ10が設けられている。   In the storage unit 1, an initial insulation characteristic memory 4, a limit insulation characteristic memory 5, a reference resistance value function memory 6, a slope function memory 7, a measurement insulation characteristic memory 8, a monitoring management period memory 9, and a measurement execution interval memory 10 are provided. It has been.

初期絶縁特性メモリ4内には、図7を用いて説明したように、保守管理対象の回転機の使用開始時点、すなわち使用開始後の使用経過年数N=N0(=0)における図2に示す初期絶縁特性YSが記憶されている。 In the initial insulation characteristic memory 4, as described with reference to FIG. 7, FIG. 2 shows the use start time of the rotating machine to be maintained, that is, the number of years of use N = N 0 (= 0) after the start of use. The initial insulation characteristic Y S shown is stored.

S=A0S・exp[BH] …(1)
限界絶縁特性メモリ5内には、当該回転機の絶縁劣化による寿命到来時点(使用経過年数N=Mf(全寿命)の限界絶縁特性YCが記憶されている。
Y S = A 0S · exp [BH] (1)
The limit insulation characteristic memory 5 stores a limit insulation characteristic Y C at the end of the life due to insulation deterioration of the rotating machine (the number of years of use N = Mf (total life)).

C=A0C・exp[BH] …(2)
なお、前述したように、絶縁特性Yは、低湿度域(相対湿度0〜60%)と高湿度域((相対湿度61〜100%)とでは傾きの異なる折れ線特性となるが、この実施形態においては、低湿度域(相対湿度0〜60%)における部分を用いて各種の計算を実施する。
Y C = A 0C · exp [BH] (2)
As described above, the insulation characteristic Y is a polygonal line characteristic having different slopes in the low humidity range (relative humidity 0 to 60%) and the high humidity range ((relative humidity 61 to 100%)). In, various calculations are performed using a portion in a low humidity region (relative humidity 0 to 60%).

監視管理期間メモリ9内には、図2に示すように、前記回転機の限界絶縁特性YCに至る前の監視管理期間11内に形成された、観察期間12、詳細観察期間13、対策準備期間14との3つの管理期間の各上端の絶縁特性Yを示す観察絶縁特性YL、詳細観察絶縁特性YW、対策準備絶縁特性YJが記憶されている。 In the monitoring management period memory 9, as shown in FIG. 2, an observation period 12, a detailed observation period 13, and preparations for countermeasures formed in the monitoring management period 11 before reaching the limit insulation characteristic Y C of the rotating machine. The observation insulation characteristic Y L , the detailed observation insulation characteristic Y W , and the countermeasure preparation insulation characteristic Y J indicating the insulation characteristic Y at each upper end of the three management periods of the period 14 are stored.

L=A0L・exp[BH] …(3)
W=A0W・exp[BH] …(4)
J=A0J・exp[BH] …(5)
なお、観察期間12、詳細観察期間13、対策準備期間14との3つの各管理期間は、この回転機の絶縁劣化に対する限界絶縁特性YCに対応する全寿命Mfの10%に設定されている。したがって、回転機の限界絶縁特性YCに至る前の監視管理期間11は全寿命Mfの30%に設定されている。
Y L = A 0L · exp [BH] (3)
Y W = A 0W · exp [BH] (4)
Y J = A 0J · exp [BH] (5)
The three management periods of the observation period 12, the detailed observation period 13, and the countermeasure preparation period 14 are set to 10% of the total life Mf corresponding to the limit insulation characteristic Y C against the insulation deterioration of the rotating machine. . Therefore, the monitoring management period 11 before reaching the limit insulation characteristic Y C of the rotating machine is set to 30% of the total life Mf.

回転機の保守員は、測定された測定絶縁特性YPが、観察期間12に入ると絶縁劣化に対する観察を実施し、詳細観察期間13に入ると絶縁劣化に対する詳細観察を実施し、対策準備期間14に入ると絶縁劣化に対する保全処置を実施する。 Maintenance personnel rotary machine, measured measured insulation properties Y P is carried out observation for entering the insulation deterioration observation period 12, to conduct detailed observation of the insulation deterioration entering detailed observation period 13, measures preparation period When 14 is entered, maintenance measures for insulation deterioration are implemented.

なお、監視管理期間メモリ9内に記憶された監視管理期間11の全寿命Mfの30%の期間(=0.3Mf)、監視管理期間11を構成する管理期間12〜14の数、及び各管理期間12〜14の全寿命Mfの10%の期間(=0.1Mf)は、監視管理期間設定部15が、操作者の操作部2を介した指示に従って設定される。   Note that a period of 30% of the total lifetime Mf of the monitoring management period 11 stored in the monitoring management period memory 9 (= 0.3 Mf), the number of management periods 12 to 14 constituting the monitoring management period 11, and each management A period of 10% (= 0.1 Mf) of the total lifetime Mf in the periods 12 to 14 is set by the monitoring management period setting unit 15 in accordance with an instruction via the operation unit 2 of the operator.

測定絶縁特性メモリ8には、当該回転機の使用開始時点から、使用経過年数N=NPの時点で測定した図2に示す測定絶縁特性YPが書込まれる。 The measuring insulation characteristics memory 8, from the use start time of the rotating machine, measuring insulation characteristics Y P shown in FIG. 2 as measured at the point of use elapsed years N = N P is written.

P=A0P・exp[BH] …(6)
次に(1)〜(6)式の各絶縁特性Yを説明する。一般的に絶縁特性Yは、相対湿度Hに対する指数関数で示され、各定数A0S〜A0Pは、指数関数が抵抗軸を横切る切片値を示し、具体的には、相対湿度H=0%の時の絶縁抵抗値A0である。この相対湿度H=0の時の絶縁抵抗値A0を基準抵抗値A0とすると、この基準抵抗値A0は、図4に示すように、使用経過年数Nの関数A0=F(N)で示すことが可能であり、この基準抵抗値A0の関数A0=F(N)は、基準抵抗値関数メモリ6に記憶されている。
Y P = A 0P · exp [BH] (6)
Next, each insulation characteristic Y of the equations (1) to (6) will be described. In general, the insulation characteristic Y is expressed by an exponential function with respect to the relative humidity H, and each of the constants A 0S to A 0P indicates an intercept value at which the exponential function crosses the resistance axis. Specifically, the relative humidity H = 0% It is the insulation resistance value A 0 at the time. Assuming that the insulation resistance value A 0 at the relative humidity H = 0 is the reference resistance value A 0 , the reference resistance value A 0 is a function A 0 = F (N ) may indicate, the function a 0 = F of the reference resistance value a 0 (N) is stored in the reference resistance value function memory 6.

絶縁特性Yの定数Bは、絶縁特性Yの傾きを示し、この傾きBは、図3に示すように、測定対象物の汚損速度Vの関数B=F(V)で示すことが可能であり、この傾きBの関数はB=F(V)は、傾き関数メモリ7に記憶されている。   The constant B of the insulation characteristic Y indicates the slope of the insulation characteristic Y, and this slope B can be represented by a function B = F (V) of the contamination rate V of the measurement object as shown in FIG. The function of the slope B is stored in the slope function memory 7 as B = F (V).

また、この回転機の絶縁劣化診断システム内におけるプログラム上に形成された測定値入力部16は、操作者によって、操作部2から操作入力された回転機に対する絶縁の測定結果を測定結果メモリ18に書込むと共に、表示部3に表示する。この測定結果とは、測定実施時点における回転機の使用開始時点(N=N0(=0))からの使用経過年数N=NP、当該回転機の絶縁抵抗AP、周囲の相対湿度HPである。 The measurement value input unit 16 formed on the program in the insulation deterioration diagnosis system for the rotating machine stores the measurement result of the insulation for the rotating machine input from the operating unit 2 by the operator in the measurement result memory 18. The data is written and displayed on the display unit 3. This measurement result includes the number of years of use N = N P from the use start point (N = N 0 (= 0)) of the rotating machine at the time of measurement, the insulation resistance A P of the rotating machine, and the ambient relative humidity H P.

測定絶縁特性算出部18は、上記測定結果(NP、AP、HP)及び図3、図4、(6)式を用いて、測定絶縁特性YPを作成して、測定絶縁特性メモリ8へ書込む。 Measurements insulating characteristic calculation unit 18, the measurement result (N P, A P, H P) and 3, 4, using (6), to create a measurement insulating properties Y P, measuring insulation characteristics memory Write to 8.

P=A0P・exp[BH] …(6)
具体的には、使用経過年数N=NPが既知であるので、基準抵抗値関数メモリ6に記憶されている関数A0=F(N)で、相対湿度H=0における基準抵抗値A0Pを算出する。次に、傾き関数メモリ7に記憶されている関数B=F(V)を用いて傾きBを算出する。そして、図2のグラフ上に、今回の測定点P(HP、AP)を書込む。そして、測定点P(HP、AP)と相対湿度H=0における基準抵抗値A0Pとを通過し、かつ算出した傾きBを有する指数関数を描くと、この指数関数が上述した測定絶縁特性YPとなる。
Y P = A 0P · exp [BH] (6)
Specifically, since the number of years of use N = N P is known, the reference resistance value A 0P at the relative humidity H = 0 with the function A 0 = F (N) stored in the reference resistance value function memory 6. Is calculated. Next, the slope B is calculated using the function B = F (V) stored in the slope function memory 7. Then, the current measurement point P (H P , A P ) is written on the graph of FIG. Then, when an exponential function passing through the measurement point P (H P , A P ) and the reference resistance value A 0P at the relative humidity H = 0 and having the calculated slope B is drawn, this exponential function is measured insulation described above. The characteristic Y P is obtained.

全寿命算出部19は、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における回転機の使用開始時点(N=N0(=0))からの全寿命Mfを算出する。具体的には、初期絶縁特性YS、測定絶縁特性YP、限界絶縁特性YCの基準抵抗値A0S、A0P、A0Cは既知であるので、今回の測定時点における使用経過年数N=NPを用いて、絶縁抵抗値Aの1年当たりの低減率(傾き)ΔA0を求めることができる。 All life calculation unit 19, the relative humidity H in the future, calculates the total life Mf from the use start time of the rotating machine when it believes is the current humidity H P continues (N = N 0 (= 0 )) . Specifically, since the reference insulation values A 0S , A 0P , A 0C of the initial insulation characteristic Y S , the measured insulation characteristic Y P , and the limit insulation characteristic Y C are known, the number of years of use N = Using N P , the reduction rate (slope) ΔA 0 per year of the insulation resistance value A can be obtained.

ΔA0=(A0P―A0S)/NP …(7)
したがって、限界絶縁特性YCの使用経過年数Nで示される全寿命Mfは、
Mf=(A0C―A0S)/ΔA0=NP(A0C―A0S)/(A0P―A0S
…(8)
となる。
ΔA 0 = (A 0P −A 0S ) / N P (7)
Therefore, the total life Mf indicated by the number of years of use N of the limit insulation characteristic Y C is
Mf = (A 0C -A 0S ) / ΔA 0 = N P (A 0C -A 0S ) / (A 0P -A 0S )
… (8)
It becomes.

余寿命算出部20は、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における回転機の余寿命Mpを算出する。すなわち、全寿命Mfから、今回の測定時点における使用経過年数N=NPを減算した値となる。 The remaining life calculation unit 20 calculates the remaining life Mp of the rotating machine when the relative humidity H is assumed to continue with the current humidity H P in the future. That is, it is a value obtained by subtracting the number of years of use N = N P at the time of the current measurement from the total lifetime Mf.

Mp=Mf―NP=NP[{(A0C―A0S)/(A0P―A0S)}―1]
…(9)
測定実施間隔設定部21は、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における、今回の測定時点以降の回転機の絶縁特性の最適の測定実施間隔KPを算出する。そして、算出した、測定実施間隔KPを測定実施間隔メモリ10に書込むと共に、表示部3に表示出力する。
Mp = Mf-N P = N P [{(A 0C -A 0S) / (A 0P -A 0S)} - 1]
… (9)
The measurement execution interval setting unit 21 calculates the optimum measurement execution interval K P of the insulation characteristics of the rotating machine after the current measurement time when the relative humidity H is assumed to continue with the current humidity H P in the future. . Then, the calculated measurement execution interval K P is written in the measurement execution interval memory 10 and displayed on the display unit 3.

なお、測定実施間隔メモリ10には、回転機に対する測定が実施される毎に算出される各測定実施間隔KPが順番に書込まれていく。 For the measurement carried interval memory 10, each measurement carried interval K P measured relative to the rotating machine is calculated every time it is implemented will be written in order.

具体的には、現在時点における余寿命Mpと、監視管理期間メモリ9に記憶されている監視管理期間11の期間、及び監視管理期間11内に形成された、観察期間12、詳細観察期間13、対策準備期間14の期間、及び操作部2からの指示に基づいて設定する。   Specifically, the remaining life Mp at the current time point, the period of the monitoring management period 11 stored in the monitoring management period memory 9, and the observation period 12, the detailed observation period 13, formed in the monitoring management period 11, It is set based on the period of the countermeasure preparation period 14 and the instruction from the operation unit 2.

例えば、図2に示すように、監視管理期間11の期間が、全寿命Mfの30%に設定されていた場合においては、測定実施間隔KPは余寿命Mpの1/5に設定する。 For example, as shown in FIG. 2, when the period of the monitoring management period 11 is set to 30% of the total lifetime Mf, the measurement execution interval K P is set to 1/5 of the remaining lifetime Mp.

次に、測定実施間隔KPを余寿命Mpの1/5に設定する理由を説明する。絶縁特性の測定は、少なくとも1回は限界絶縁特性YCの直前の監視管理期間11内で実施するのが望ましい。仮に、測定絶縁特性YPが監視管理期間11の上限の観察絶縁特性YL以下になるか否かの判断のみで測定実施間隔KPを設定する場合で、測定絶縁特性YPが監視管理期間11の上限以上の場合においては、測定絶縁特性YPの測定が監視管理期間11内に入る測定実施間隔KPの確率は、0.3Mf/Mpである。一方、測定実施間隔KPが余寿命Mpの1/5に設定されていた場合における、測定実施間隔KPの最大値は、0.25Mfである。この値は、監視管理期間11の期間0.3Mfよりも短いので、絶縁特性の測定は、少なくとも1回は限界絶縁特性YCの直前の監視管理期間11内で実施される。しかも、余寿命Mpが大きい場合においては、測定実施間隔KPが大きくなるので、不必要に絶縁特性の測定回数が増加することはない。また、今回の絶縁特性の測定が、監視管理期間11内に入っていた場合は、直ちに絶縁劣化の対策を実施すればよい。 Next, the reason why the measurement execution interval K P is set to 1/5 of the remaining lifetime Mp will be described. It is desirable to measure the insulation characteristic at least once within the monitoring management period 11 immediately before the limit insulation characteristic Y C. If, in case of setting the measurement insulating property Y P is an upper limit of observation insulating properties Y L becomes less whether the measurement carried interval K P only at the discretion of the monitoring management period 11, measured insulation characteristics Y P monitoring management period in the case 11 above the upper limit of the probability of taking measurements interval K P the measurement of the measuring insulation characteristics Y P fall within the monitoring management period 11 is 0.3Mf / Mp. On the other hand, in the case of taking measurements interval K P is set to 1/5 of the remaining life Mp, maximum value of the measurement carried interval K P is 0.25Mf. Since this value is shorter than the period 0.3 Mf of the monitoring management period 11, the insulation characteristic is measured at least once in the monitoring management period 11 immediately before the limit insulation characteristic Y C. In addition, when the remaining life Mp is large, the measurement execution interval K P is large, so that the number of measurements of the insulation characteristics is not unnecessarily increased. In addition, if the current measurement of insulation characteristics is within the monitoring management period 11, measures for insulation deterioration may be immediately implemented.

例えば、算出された余寿命Mpが全寿命Mfの1/2以下になると、測定実施間隔KPは全寿命Mfの1/10以下となるため、監視管理期間11内の各管理期間12,13,14の期間幅(0.1Mf)を超えることがなくなり、余裕を持って絶縁劣化に対する対策を実施できる。 For example, when the calculated remaining life Mp becomes ½ or less of the total life Mf, the measurement execution interval K P becomes 1/10 or less of the total life Mf. , 14 period width (0.1 Mf) is not exceeded, and measures against insulation deterioration can be implemented with a margin.

図5を用いてさらに定量的に説明する。図5は、相対湿度Hが一定と仮定した場合の測定絶縁特性Yの使用経過年数Nに対する変化を示す図である。測定絶縁特性YPAにおいては、使用経過年数NPAで絶縁抵抗値A0Pであり、全寿命MfA、余寿命MPAである。一方、測定絶縁特性YPBにおいては、使用経過年数NPBで絶縁抵抗値A0Pであり、全寿命MfB、余寿命MPBである。 Further quantitative description will be given with reference to FIG. FIG. 5 is a diagram showing a change of the measured insulation characteristic Y with respect to the number of years of use N when the relative humidity H is assumed to be constant. In the measured insulation characteristic Y PA , the elapsed use time N PA is the insulation resistance value A 0P , the total life M fA and the remaining life M PA . On the other hand, in the measured insulation characteristic Y PB , the insulation resistance value A 0P is the elapsed years of use N PB , the total life M fB , and the remaining life M PB .

もし、余寿命MPによらず、測定絶縁特性YPが監視管理期間11の上限以下になるか否かの判断のみで測定実施間隔KPを設定する場合、測定絶縁特性YPBが監視管理期間11入る期間(余寿命MPB/4)を判定良好の時の測定実施間隔KPとし、
使用経過年数比(NPB/NPA)=α
とすると、測定絶縁特性YPAの測定実施間隔KPは、KP=(α・(余寿命MPB/4))となる。
If the measurement interval K P is set only by determining whether or not the measured insulation characteristic Y P is below the upper limit of the monitoring management period 11 regardless of the remaining life M P , the measured insulation characteristic Y PB is monitored and managed. The period of entering period 11 (remaining life M PB / 4) is set as the measurement execution interval K P when the judgment is good,
Ratio of years of use (N PB / N PA ) = α
Then, the measurement execution interval K P of the measurement insulation characteristic Y PA is K P = (α · (remaining life M PB / 4)).

αが2以上であると、再測定時に上記判定が、2段階以上悪化するため、絶縁劣化に対する本来の予防保守を行う余裕がなくなることを意味する。   When α is 2 or more, the above-described determination is worsened by two or more stages at the time of re-measurement, which means that there is no room for original preventive maintenance against insulation deterioration.

ここで、実施形態システムのように、測定実施間隔KPが余寿命から算出されるとするならば、測定絶縁特性YPBにおける測定実施間隔KPが(余寿命MPB/4)であれば、測定絶縁特性YPAの測定実施間隔KP=(余寿命MPA/4)となるため、測定絶縁特性YP毎に適切な測定実施間隔KPを設定することができる。 Here, as in the embodiment system, if the measurement execution interval K P is calculated from the remaining life, if the measurement execution interval K P in the measurement insulation characteristic Y PB is (remaining life M PB / 4). Since the measurement execution interval K P of the measurement insulation characteristic Y PA = (remaining life MP A / 4), an appropriate measurement execution interval K P can be set for each measurement insulation characteristic Y P.

このように、回転機に対する絶縁特性の測定を実施する毎に、余寿命を算出して、この測定時点以降の測定実施間隔KPを最適値に更新していくので、効率的に、回転機に対する絶縁劣化を測定し診断できる。 As described above, every time the insulation characteristic measurement is performed on the rotating machine, the remaining life is calculated, and the measurement execution interval K P after the measurement time is updated to the optimum value. Measure and diagnose insulation deterioration against

測定実施間隔KPを、余寿命Mp以内で、監視管理期間11内に形成された、観察期間12、詳細観察期間13、対策準備期間14の期間である0.1Mfに設定することも可能である。このように、測定実施間隔KPが各管理期間の期間内に設定することによって、回転機の監視管理期間11内における絶縁劣化状態をより詳細に把握できる。 It is also possible to set the measurement execution interval K P to 0.1 Mf, which is the period of the observation period 12, the detailed observation period 13, and the countermeasure preparation period 14 formed in the monitoring management period 11 within the remaining lifetime Mp. is there. In this way, by setting the measurement execution interval K P within each management period, it is possible to grasp in more detail the insulation deterioration state within the monitoring management period 11 of the rotating machine.

図6は、この回転機の絶縁劣化診断システの全体動作を示す流れ図である。記憶部1の各メモリ4、5、6、7、9には予め前述した各特性、各関数が書込まれているとする。   FIG. 6 is a flowchart showing the entire operation of the insulation deterioration diagnosis system for a rotating machine. It is assumed that the above-described characteristics and functions are written in advance in the memories 4, 5, 6, 7, and 9 of the storage unit 1.

操作者によって、操作部2から回転機に対する絶縁の測定結果、すなわち、測定実施時点における回転機の使用開始時点(N=N0(=0))からの使用経過年数N=NP、当該回転機の絶縁抵抗AP、周囲の相対湿度HPが入力されると(ステップS1)、測定絶縁特性算出部18は、この測定結果(NP、AP、HP)を用いて、(6)式で示す測定絶縁特性YPを算出する(S2)。その後、全寿命算出部19は、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における回転機の使用開始時点(N=N0(=0))からの全寿命Mfを算出する(S3)。 The measurement result of the insulation from the operation unit 2 to the rotating machine by the operator, that is, the number of years of use N = N P from the starting point of use of the rotating machine (N = N 0 (= 0)) at the time of measurement, the rotation When the insulation resistance A P of the machine and the ambient relative humidity H P are input (step S1), the measured insulation characteristic calculation unit 18 uses the measurement results (N P , A P , H P ) to calculate (6 ) is calculated and insulating characteristics Y P represented by formula (S2). Thereafter, the total lifetime calculation unit 19 calculates the total lifetime Mf from the use start point (N = N 0 (= 0)) of the rotating machine when it is assumed that the relative humidity H will continue to be the current humidity H P in the future. Calculate (S3).

次に、余寿命算出部20が、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における回転機の余寿命Mpを算出する(S4)。そして、測定実施間隔設定部21は、相対湿度Hが今後、現在の湿度HPが継続すると見なした場合における、今回の測定時点以降における回転機の絶縁特性の最適の測定実施間隔KPを算出する。具体的には、監視管理期間11の期間幅が、全寿命Mfの30%に設定されていた場合においては、測定実施間隔KPは余寿命Mpの1/5に設定する(S5)。そして、今回の測定で得られた測定実施間隔KPを表示部3に表示するとともに、測定実施間隔KPを測定実施間隔メモリ10へ書き込む(S6)。 Then, remaining life calculation unit 20, the relative humidity H in the future, calculates the remaining life Mp rotating machines when it believes is the current humidity H P continues (S4). Then, the measurement execution interval setting unit 21 determines the optimum measurement execution interval K P of the insulation characteristics of the rotating machine after the current measurement time when the relative humidity H is assumed to continue with the current humidity H P in the future. calculate. Specifically, when the period width of the monitoring management period 11 is set to 30% of the total lifetime Mf, the measurement execution interval K P is set to 1/5 of the remaining lifetime Mp (S5). Then, the measurement execution interval K P obtained by the current measurement is displayed on the display unit 3 and the measurement execution interval K P is written into the measurement execution interval memory 10 (S6).

以上で、今回の測定に基づく測定実施間隔KPの算出・設定処理が終了したのでS1へ戻り、今回設定された測定実施間隔KP経過した後に実施される回転機の絶縁特性の測定結果の入力待ち状態になる。 As described above, since the calculation / setting process of the measurement execution interval K P based on the current measurement is completed, the process returns to S1, and the measurement result of the insulation characteristic of the rotating machine executed after the measurement execution interval K P set this time has elapsed. Wait for input.

本発明の一実施形態に係わる回転機の絶縁劣化診断システムの概略構成を示すブロック構成図The block block diagram which shows schematic structure of the insulation deterioration diagnostic system of the rotary machine concerning one Embodiment of this invention. 同実施形態システムにおける各絶縁特性を示す図The figure which shows each insulation characteristic in the system of the same embodiment 同実施形態システムの記憶部の傾き関数メモリの記憶内容を示す図The figure which shows the memory content of the inclination function memory of the memory | storage part of the same embodiment system 同実施形態システムの記憶部の基準抵抗値関数メモリの記憶内容を示す図The figure which shows the memory content of the reference resistance value function memory of the memory | storage part of the same embodiment system 測定実施間隔と全寿命と余寿命との関係を説明するための図Diagram for explaining the relationship between measurement interval, total life and remaining life 同実施形態システムの全体動作を示す流れ図Flow chart showing the overall operation of the system of the same embodiment 従来システムにおける各絶縁特性を示す図Diagram showing each insulation characteristic in the conventional system

符号の説明Explanation of symbols

1…記憶装置、2…操作部、3…表示部、4…初期絶縁特性メモリ、5…限界絶縁特性メモリ、6…基準抵抗値関数メモリ、7…傾き関数メモリ、8…測定絶縁特性メモリ、9…監視管理期間メモリ、10…測定実施間隔メモリ、11…監視管理期間、12…観察期間13…詳細観察期間、14…対策準備期間、15…監視管理期間設定部、16…測定値入力部、17…測定値メモリ、18…測定絶縁特性算出部、19…全寿命算出部、20…余寿命算出部、21…測定実施間隔算出部   DESCRIPTION OF SYMBOLS 1 ... Memory | storage device, 2 ... Operation part, 3 ... Display part, 4 ... Initial insulation characteristic memory, 5 ... Limit insulation characteristic memory, 6 ... Reference resistance value function memory, 7 ... Inclination function memory, 8 ... Measurement insulation characteristic memory, DESCRIPTION OF SYMBOLS 9 ... Monitoring management period memory, 10 ... Measurement execution interval memory, 11 ... Monitoring management period, 12 ... Observation period 13 ... Detailed observation period, 14 ... Countermeasure preparation period, 15 ... Monitoring management period setting part, 16 ... Measurement value input part , 17 ... Measurement value memory, 18 ... Measurement insulation characteristic calculation unit, 19 ... Total life calculation unit, 20 ... Remaining life calculation unit, 21 ... Measurement execution interval calculation unit

Claims (6)

回転機の使用開始後の複数の使用経過時点における当該回転機の絶縁特性の測定結果に基づいて当該回転機の絶縁劣化の診断指示を行う回転機の絶縁劣化診断システムにおいて、
予め求められている前記回転機の使用開始時点の初期絶縁特性及び寿命到達時点の限界絶縁特性を記憶する基準特性記憶部と、
一つの使用経過時点で絶縁特性が測定されると、この測定された絶縁特性と前記記憶された初期絶縁特性及び限界絶縁特性との関係から前記回転機のこの時点における余寿命を算出する余寿命算出手段と、
前記一つの測定実施時点以降の前記絶縁特性の測定実施間隔を、前記余寿命以内でかつ前記回転機の前記限界絶縁特性に至る前の監視管理期間の時間幅以下に設定する測定実施間隔設定手段と
を備えたことを特徴とする回転機の絶縁劣化診断システム。
In the insulation deterioration diagnosis system for a rotating machine that issues a diagnosis instruction for insulation deterioration of the rotating machine based on the measurement results of the insulating characteristics of the rotating machine at a plurality of use elapsed times after the start of use of the rotating machine.
A reference characteristic storage unit for storing the initial insulation characteristics obtained at the start of use of the rotating machine and the limit insulation characteristics at the end of the service life obtained in advance;
When the insulation characteristic is measured at the time of one use, the remaining life of the rotating machine at this time is calculated from the relationship between the measured insulation characteristic and the stored initial insulation characteristic and the limit insulation characteristic. A calculation means;
The measurement execution interval setting means for setting the measurement execution interval of the insulation characteristics after the one measurement execution time to be within the remaining life and not more than the time width of the monitoring management period before reaching the limit insulation characteristics of the rotating machine. An insulation deterioration diagnosis system for a rotating machine.
前記測定実施間隔設定手段は、各使用経過時点で絶縁特性が測定される毎に実施され、一つ前の使用経過時点で設定された測定実施間隔が順次更新されることを特徴とする請求項1記載の回転機の絶縁劣化診断システム。   The measurement execution interval setting means is implemented each time an insulation property is measured at each use elapsed time, and the measurement execution interval set at the previous use elapsed time is sequentially updated. The insulation deterioration diagnosis system for a rotating machine according to 1. 前記監視管理期間は前記回転機の全寿命の30%の時間幅に設定され、
前記測定実施間隔は前記余寿命の1/5に設定されている
ことを特徴とする請求項1又は2記載の回転機の絶縁劣化診断システム。
The monitoring management period is set to a time width of 30% of the entire life of the rotating machine,
The insulation deterioration diagnosis system for a rotating machine according to claim 1 or 2, wherein the measurement execution interval is set to 1/5 of the remaining life.
前記監視管理期間は、前記使用経過時間の短い方から、観察期間、詳細観察期間、対策準備期間との3つの管理期間で構成され、かつ前記3つの管理期間は互いに等しい前記回転機の全寿命の10%の時間幅に設定され、
前記測定実施間隔は前記余寿命の1/5に設定されている
ことを特徴とする請求項1又は2記載の回転機の絶縁劣化診断システム。
The monitoring management period is composed of three management periods, ie, an observation period, a detailed observation period, and a countermeasure preparation period, from the shorter use elapsed time, and the three management periods are equal to each other. Is set to a time width of 10%,
The insulation deterioration diagnosis system for a rotating machine according to claim 1 or 2, wherein the measurement execution interval is set to 1/5 of the remaining life.
前記監視管理期間を操作入力するための操作部を備えたことを特徴とする請求項1から4のいずれか1項記載の回転機の絶縁劣化診断システム。   The insulation deterioration diagnosis system for a rotating machine according to any one of claims 1 to 4, further comprising an operation unit for operating and inputting the monitoring management period. 前記各絶縁特性は、相対湿度を変化させた場合の前記回転機における絶縁抵抗の変化を示す特性であり、
前記一つの測定実施時点における絶縁特性は、当該測定実施時点の使用経過時間、相対湿度、回転機の絶縁抵抗を用いて算出される
ことを特徴とする請求項1から5のいずれか1項記載の回転機の絶縁劣化診断システム。
Each of the insulation characteristics is a characteristic indicating a change in insulation resistance in the rotating machine when the relative humidity is changed,
6. The insulation characteristic at the time when the one measurement is performed is calculated using an elapsed use time, a relative humidity, and an insulation resistance of the rotating machine at the time when the measurement is performed. Insulation deterioration diagnosis system for rotating machines.
JP2007228139A 2007-09-03 2007-09-03 Diagnosis system of insulation deterioration of rotating machine Pending JP2009060767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228139A JP2009060767A (en) 2007-09-03 2007-09-03 Diagnosis system of insulation deterioration of rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228139A JP2009060767A (en) 2007-09-03 2007-09-03 Diagnosis system of insulation deterioration of rotating machine

Publications (1)

Publication Number Publication Date
JP2009060767A true JP2009060767A (en) 2009-03-19

Family

ID=40555978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228139A Pending JP2009060767A (en) 2007-09-03 2007-09-03 Diagnosis system of insulation deterioration of rotating machine

Country Status (1)

Country Link
JP (1) JP2009060767A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860127A (en) * 2010-05-07 2010-10-13 中国石化集团南京化学工业有限公司 Running protecting and monitoring diagnosis system of motor
CN103235261A (en) * 2013-04-22 2013-08-07 联合汽车电子有限公司 System and method thereof for testing endurance of symmetrical motor
CN103777122A (en) * 2014-01-24 2014-05-07 符棠 Withstand voltage testing system and assembly method thereof
JP2017015444A (en) * 2015-06-29 2017-01-19 日鉄住金テックスエンジ株式会社 Method for diagnosing insulation of high voltage ac motor
US11928408B2 (en) 2019-09-10 2024-03-12 Fanuc Corporation Machine learning device, learning model generating method, insulation resistance estimating device, and control device
CN117761535A (en) * 2024-02-22 2024-03-26 中汽研新能源汽车检验中心(天津)有限公司 permanent magnet synchronous motor wet-heat insulation failure evaluation method and device
WO2024084632A1 (en) * 2022-10-19 2024-04-25 三菱電機株式会社 Diagnosis system and learning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860127A (en) * 2010-05-07 2010-10-13 中国石化集团南京化学工业有限公司 Running protecting and monitoring diagnosis system of motor
CN103235261A (en) * 2013-04-22 2013-08-07 联合汽车电子有限公司 System and method thereof for testing endurance of symmetrical motor
CN103777122A (en) * 2014-01-24 2014-05-07 符棠 Withstand voltage testing system and assembly method thereof
JP2017015444A (en) * 2015-06-29 2017-01-19 日鉄住金テックスエンジ株式会社 Method for diagnosing insulation of high voltage ac motor
US11928408B2 (en) 2019-09-10 2024-03-12 Fanuc Corporation Machine learning device, learning model generating method, insulation resistance estimating device, and control device
WO2024084632A1 (en) * 2022-10-19 2024-04-25 三菱電機株式会社 Diagnosis system and learning device
CN117761535A (en) * 2024-02-22 2024-03-26 中汽研新能源汽车检验中心(天津)有限公司 permanent magnet synchronous motor wet-heat insulation failure evaluation method and device

Similar Documents

Publication Publication Date Title
JP2009060767A (en) Diagnosis system of insulation deterioration of rotating machine
US6829515B2 (en) Method and device for determining changes in technical systems such as electric motors caused by ageing
TWI533589B (en) Electric motor control device
JPWO2012114493A1 (en) Electric discharge machining apparatus and electric discharge machining system
JP4458815B2 (en) How to monitor the health of turbine blades (buckets) and diagnose prognosis using neural network based diagnostic techniques in conjunction with pyrometer signals
CN106672722B (en) Machinery diagnosis device, machinery diagnosis method and machinery diagnosis system
KR20180040452A (en) Method for detecting anomaly using equipment age index and apparatus thereof
US7949497B2 (en) Machine condition monitoring using discontinuity detection
CN110082285B (en) Method and device for evaluating corrosion of equipment and predicting service life of equipment
CN119046629A (en) Data interaction method of battery management system
EP3637121A2 (en) System and method of adaptive remaining useful life estimation using constraint convex regression from degradation measurement
JP5253218B2 (en) Device diagnostic method
US11042134B2 (en) Power system status estimation device and status estimation method
US10067105B2 (en) Method for operating a measuring site
JP2020150692A (en) Motor deterioration tendency monitoring system
JP2014153957A (en) Sensor soundness diagnostic device, sensor soundness diagnosis method, plant diagnostic system with sensor soundness diagnostic device and plant diagnostic method by using sensor soundness diagnosis
JP2019096247A (en) Failure mode specifying system, failure mode specifying method, and program
JP6658462B2 (en) Plant equipment deterioration diagnosis device
JP2016222387A (en) Elevator diagnosis method
JP4260465B2 (en) Insulation life estimation method and insulation life estimation system for motor
JP7518046B2 (en) Transformer diagnostic system
JP5014026B2 (en) Information processing apparatus and program
JP6971936B2 (en) Maintenance support equipment, methods and programs for electric power equipment
JP6381282B2 (en) Abnormality detection apparatus and program
JP5321904B2 (en) Remaining life estimation method, maintenance / update plan creation method, remaining life estimation system and maintenance / update plan creation system