[go: up one dir, main page]

JP2009054517A - Long-distance operation proximity sensor - Google Patents

Long-distance operation proximity sensor Download PDF

Info

Publication number
JP2009054517A
JP2009054517A JP2007222369A JP2007222369A JP2009054517A JP 2009054517 A JP2009054517 A JP 2009054517A JP 2007222369 A JP2007222369 A JP 2007222369A JP 2007222369 A JP2007222369 A JP 2007222369A JP 2009054517 A JP2009054517 A JP 2009054517A
Authority
JP
Japan
Prior art keywords
coil
detection
excitation
magnetic
proximity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222369A
Other languages
Japanese (ja)
Inventor
Tsutomu Tadane
勉 唯根
Shigeharu Matsumoto
重治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Electronics Industries Co Ltd
Original Assignee
Koyo Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Electronics Industries Co Ltd filed Critical Koyo Electronics Industries Co Ltd
Priority to JP2007222369A priority Critical patent/JP2009054517A/en
Publication of JP2009054517A publication Critical patent/JP2009054517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a guided proximity sensor capable of performing a long-distance operation in a conventional shape, and a proximity sensor with high detection accuracy capable of performing a longer-distance operation. <P>SOLUTION: In the proximity sensor, a magnetic plated wire coil 5 is adopted on a sensor head section 3, an arithmetic and processing section 11 where at least smoothing and deduction logic software of detection data is installed is formed as a structural element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、動作距離が長い長距離動作近接センサに関わり、より詳しくは、その励磁兼検出センサヘッドの改良に関するものである。このセンサヘッドは、導体検出物を非接触で高周波励磁し、かつ、導体検出物に発生した渦電流によるインピーダンス変化や共振状況を検出することで、当該導体検出物の位置、距離、速度、振動および材質を検出するものである。なお、本明細書での近接センサは近接スイッチと称することもできる。   The present invention relates to a long-distance operation proximity sensor having a long operation distance, and more particularly to an improvement of the excitation and detection sensor head. This sensor head excites the detected object at high frequency without contact, and detects the impedance change and resonance status due to the eddy current generated in the detected object, thereby detecting the position, distance, speed, vibration of the detected object. And detecting the material. Note that the proximity sensor in this specification can also be referred to as a proximity switch.

動作距離を長距離化し、近接センサ設置の自由度向上、検出動作時接触・破損防止などを目的とした誘導型・長距離動作近接センサの要求が高まっている。近接センサの動作距離または安定検出距離はJISで規格化されている、なお、長距離についてはJIS規格(JIS C 8201−5−2(IEC 60497)で規定されている。コイルのハウジングや検出回路等で長距離化する技術は特許文献1、特許文献2に開示されている。
US 4509023 特開2006−156360
There is an increasing demand for an inductive / long-distance operating proximity sensor for the purpose of increasing the operating distance, improving the flexibility of proximity sensor installation, and preventing contact and damage during detection operations. The operating distance or stable detection distance of the proximity sensor is standardized by JIS, and the long distance is specified by JIS standard (JIS C 8201-5-2 (IEC 60497). Coil housing and detection circuit A technique for increasing the distance by the above method is disclosed in Patent Document 1 and Patent Document 2.
US 4509023 JP 2006-156360 A

誘導型近接センサの検出距離を長距離化する技術として、励磁および検出コイルのQ(クオリティファクタ)を高める、インダクタンスを大きくする、近接効果の低減、磁束の作用距離の拡大などがある。コイル形状、コイルハウジング、磁束誘導膜使用による磁束強化および検出部の信号対ノイズ比向上、検出コイルの温度補償等により長距離化してきたが、検出距離対コイル直径比を、信頼性および安定性を維持しかつ形状を大きくせずに0.5以上にすることは困難である。   Techniques for increasing the detection distance of the inductive proximity sensor include increasing the Q (quality factor) of the excitation and detection coils, increasing the inductance, reducing the proximity effect, and expanding the working distance of the magnetic flux. Coil shape, coil housing, magnetic flux enhancement by using magnetic flux induction film, improvement of signal-to-noise ratio of detection unit, temperature compensation of detection coil, etc. have been extended, but the detection distance to coil diameter ratio is reliable and stable However, it is difficult to maintain the ratio to 0.5 or more without increasing the shape.

本発明により解決すべき課題は検出距離対コイル直径比を、信頼性および安定性を維持しつつ、0.5〜1.0の長距離化を可能にすることである。   The problem to be solved by the present invention is to make the detection distance to coil diameter ratio 0.5 to 1.0 longer while maintaining reliability and stability.

(1)請求項1に係る本発明による近接センサは、センサヘッドの励磁兼検出コイルまたは専用励磁コイルに磁性メッキ線コイルが用いられていることを特徴とするものである。   (1) The proximity sensor according to the first aspect of the present invention is characterized in that a magnetic plated wire coil is used as the excitation / detection coil or the dedicated excitation coil of the sensor head.

長距離動作近接センサ用の励磁兼検出コイルまたは専用励磁コイルに磁性メッキ線コイルを用いたことにより、検出距離対コイル直径比を、信頼性および安定性を維持し、かつ、形状を大きくせずに0.5以上の長距離化が可能になる。   By using a magnetic plated wire coil for the excitation / detection coil or dedicated excitation coil for long-distance operation proximity sensors, the reliability and stability of the detection distance to coil diameter ratio are maintained, and the shape is not increased. In addition, it is possible to increase the distance by 0.5 or more.

(2)請求項2に係る本発明による近接センサは、センサヘッドの励磁兼検出コイルまたは励磁コイルが、磁性メッキされた単線またはリッツ線で空心またはコア上の多層巻きソレノイドコイルで構成されていることを特徴とするものである。   (2) In the proximity sensor according to the second aspect of the present invention, the excitation / detection coil or the excitation coil of the sensor head is composed of a magnetically plated single wire or a litz wire and an air core or a multilayer wound solenoid coil on the core. It is characterized by this.

なお、検出信号対ノイズ比を向上させる場合は基準コイル部、コイルが空心の場合はアンプ部にセンサヘッドからの磁束漏洩を防止する磁気シールド部、必要に応じて動作光通信部、を備えることが好ましい。   If the detection signal-to-noise ratio is to be improved, a reference coil unit is provided, and if the coil is empty, an amplifier unit is provided with a magnetic shield unit that prevents magnetic flux leakage from the sensor head and, if necessary, an operating light communication unit. Is preferred.

(3)請求項3に係る本発明による近接センサは、センサヘッドの励磁コイルおよび検出コイルが、磁性メッキされた単線またはリッツ線で空心またはコア上のそれぞれ独立した専用の多層巻きソレノイドコイルから構成されていることを特徴とするものである。   (3) In the proximity sensor according to the present invention according to claim 3, the excitation coil and the detection coil of the sensor head are composed of independent multi-layer wound solenoid coils on the air core or on the core with magnetically plated single wires or litz wires. It is characterized by being.

この磁性メッキ線は好ましくは単線またはリッツ線で、多層巻きソレノイドコイルは高周波特性のよいコアまたは空心に巻かれた単一の専用コイル構成とし、それぞれ励磁専用と検出専用コイルを形成することである。   This magnetic plated wire is preferably a single wire or a litz wire, and the multi-layer wound solenoid coil has a single dedicated coil configuration wound around a core or air core with good high-frequency characteristics, and forms a dedicated coil for excitation and a dedicated detection coil, respectively. .

(4)請求項4に係る本発明による近接センサは、センサヘッドの励磁兼検出コイルまたは専用励磁コイルの磁性メッキによるQ向上効果やコイル径対ピッチ間隔などの巻き線形状によってコイルの高周波温度係数を低減して検出精度を高めたことを特徴とするものである。すなわち、本発明では、励磁と検出を別個の磁性メッキ線コイルで形成し、検出精度および感度を向上させることである。   (4) The proximity sensor according to the present invention according to claim 4 is a high-frequency temperature coefficient of the coil depending on the winding shape such as the Q improvement effect by the magnetic plating of the excitation / detection coil or the dedicated excitation coil of the sensor head and the coil diameter versus pitch interval. This is characterized in that the detection accuracy is improved by reducing. In other words, in the present invention, excitation and detection are formed by separate magnetic plated wire coils to improve detection accuracy and sensitivity.

この場合の好ましい形態としては検出コイルを3つ正三角形状に配置し、渦電流の平面分布を検出する2次元近接センサを形成する構成である。   A preferred form in this case is a configuration in which three detection coils are arranged in an equilateral triangle shape to form a two-dimensional proximity sensor that detects a planar distribution of eddy currents.

この場合の好ましい形態としては、高周波励磁コイルの温度係数がコイル直流抵抗および表皮効果損および近接効果損の関数であり、磁性メッキ線コイルは表皮効果損および近接効果損を磁性メッキなしの銅線に比較して大きく変化できることを用いて、上記磁性メッキ線コイルのメッキ線径およびコイルの全長、形状、ピッチ等によって温度係数を低減することである。   As a preferred form in this case, the temperature coefficient of the high-frequency excitation coil is a function of the coil DC resistance and the skin effect loss and the proximity effect loss, and the magnetic plated wire coil has the skin effect loss and the proximity effect loss as a copper wire without magnetic plating. The temperature coefficient is reduced by the plating wire diameter of the magnetic plating wire coil and the overall length, shape, pitch, etc. of the magnetic plating wire coil.

(5)請求項5に係る本発明による近接センサは、センサヘッドの磁性メッキ線をもちいた励磁兼検出コイルと同値のインダクタンスを有する磁性メッキ線または銅線を基準コイルとして検出物から受ける磁気的影響が低い配置箇所に追加配置したことで、上記両コイルを同じ励磁条件で励磁して上記両コイルの誘起電流、インピーダンスを差分検出することを可能としたセンサヘッド構成になっていることを特徴とするものである。   (5) A proximity sensor according to the present invention according to claim 5 is a magnetic sensor that receives a magnetic plated wire or a copper wire having an inductance equivalent to that of an excitation / detection coil using a magnetic plated wire of a sensor head from a detected object as a reference coil. It is a sensor head configuration that enables differential detection of the induced current and impedance of both coils by exciting both coils under the same excitation conditions by additionally arranging them at locations where influence is low It is what.

この態様では、導体検出物に発生した渦電流による磁界および発熱の検出コイルに与える影響が少なく、かつその他の高温環境等は同じ環境に上記磁性メッキ線コイルと同値のインダクタンスおよび直流抵抗をもった基準コイルを設置して同じ励磁電流を流し、誘起電流およびインピーダンスを検出し、近接センサの検出コイルのそれらと差分演算させて検出精度を向上させることができる。   In this aspect, the eddy current generated in the conductor detection object has little influence on the detection coil of the magnetic field and heat generation, and other high-temperature environments have the same value of inductance and DC resistance as the magnetic plated wire coil in the same environment. It is possible to improve the detection accuracy by installing a reference coil, causing the same exciting current to flow, detecting the induced current and the impedance, and calculating the difference with those of the detection coil of the proximity sensor.

(6)請求項6に係る本発明による近接センサは、磁性メッキ線コイルをもちいた励磁部とGMR(Giant Magneto Resistive Sensor)からなる検出部とを備えたセンサヘッド構成になっていることを特徴とするものである。   (6) The proximity sensor according to the present invention according to claim 6 has a sensor head configuration including an excitation unit using a magnetic plated wire coil and a detection unit made of GMR (Giant Magneto Resistive Sensor). It is what.

この態様では、高周波励磁された検出物の渦電流による磁束を1つまたは複数の巨大磁気抵抗センサを用いて検出コイルによるインピーダンス変化検出に比べて高精度に磁束を検出することができる。この場合、高周波励磁電流を連続した矩形波や正弦波でなく、無電流期間のあるパルス電流にして、この無電流期間中の磁束変化を巨大磁気抵抗センサで検出しさらに検出精度を向上させる構成も含まれる。   In this aspect, it is possible to detect magnetic flux with high accuracy by using one or a plurality of giant magnetoresistive sensors as compared with impedance change detection by a detection coil using the eddy current of a high-frequency excited detection object. In this case, the high-frequency excitation current is not a continuous rectangular wave or sine wave, but a pulse current with a no-current period, and the magnetic flux change during this no-current period is detected by a giant magnetoresistive sensor to further improve the detection accuracy Is also included.

(7)請求項7に係る本発明による近接センサは、磁性メッキ線コイルの検出出力をスムージング制御およびFUMI(Function of Mutual Information)理論に基づいて推定する回路を具備している。この請求項7の態様では、検出物の速度変動や発熱変動および励磁コイルや検出環境の変動の影響による検出ノイズを、推論や統計論をもちいて減少する数学的手段である。励磁高周波またはそれ以上の早い周期のホワイトノイズは移動平均や平滑などのスムージングソフトウエア、検出物の速度、振動、発熱などのマルコフ過程的な緩やかな変動によるノイズは変動ノイズの標準偏差を検出信号の標準偏差とすることによって低減することができる。   (7) A proximity sensor according to a seventh aspect of the present invention includes a circuit that estimates a detection output of a magnetic plated wire coil based on smoothing control and FUMI (Function of Mutual Information) theory. In this aspect of the present invention, mathematical means is used to reduce detection noise caused by fluctuations in the speed of detected objects, fluctuations in heat generation, and fluctuations in the excitation coil and detection environment using inference and statistical theory. White noise with a high frequency of excitation high frequency or higher is a smoothing software such as moving average and smoothing, noise due to Markov process gradual fluctuations such as the speed, vibration, heat generation etc. of the detected object is detected as standard deviation of fluctuation noise The standard deviation can be reduced.

請求項1に係る本発明では、検出距離対コイル直径比を、信頼性および安定性を維持しつつ、0.5〜1.0の長距離化を可能にすることができる。   According to the first aspect of the present invention, the detection distance to coil diameter ratio can be increased by 0.5 to 1.0 while maintaining reliability and stability.

請求項2,3に係る本発明では、Fe(鉄)薄膜メッキによるコイルのインダクタンスの増加、近接効果の低減および磁束の遠距離作用効果によって銅線コイルによる請求項1構成の近接センサより長距離動作が可能になる。この長距離動作は高周波特性のよいコアや空心コイルをもちいることによりさらに長距離化できる。   According to the second and third aspects of the present invention, the distance is longer than the proximity sensor according to the first aspect of the present invention using the copper wire coil due to the increase in the inductance of the coil by Fe (iron) thin film plating, the reduction of the proximity effect, and the long-range effect of the magnetic flux. Operation becomes possible. This long-distance operation can be further extended by using a core or air-core coil with good high-frequency characteristics.

請求項4に係る本発明ではコイルの巻き線形状および線材の単線やリッツ線により近接効果を調整し、励磁・検出コイル全体の温度係数を低減し、長距離化と検出精度向上が可能になる。   In the present invention according to claim 4, the proximity effect is adjusted by the coil winding shape and the single wire or litz wire of the wire, the temperature coefficient of the entire excitation / detection coil is reduced, and the distance can be increased and the detection accuracy can be improved. .

請求項5に係る本発明では励磁・検出コイルの外に検出物の渦電流の効果の無い場所に同一インダクタンス・直流抵抗の基準コイルをおき、検出精度を向上させ長距離可を可能にすることができる。   In the present invention according to claim 5, a reference coil having the same inductance and DC resistance is placed outside the excitation / detection coil in a place where the effect of the eddy current of the detected object is not present, thereby improving detection accuracy and enabling a long distance. Can do.

請求項6に係る本発明ではスピントロニクス磁気センサ素子の巨大磁気抵抗(GMR)等を用いた高感度の検出センサを用いて検出感度を上げ検出精度を向上させ長距離可を可能にすることができる。   In the present invention according to claim 6, it is possible to increase the detection sensitivity and improve the detection accuracy by using a high-sensitivity detection sensor using a giant magnetoresistance (GMR) or the like of the spintronics magnetic sensor element, thereby enabling a long distance. .

請求項7に係る本発明では検出出力のスムージングおよびFUMI理論とうの推論ロジックを近接センサ構成のCPUのソフトウエアで実現し、検出精度を向上させ長距離可を可能にすることができる。   In the present invention according to claim 7, smoothing of the detection output and inference logic such as the FUMI theory can be realized by the software of the CPU of the proximity sensor configuration, so that the detection accuracy can be improved and a long distance is possible.

以下、添付した図面を参照して、本発明の実施の形態に係る近接センサを説明する。   Hereinafter, a proximity sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の実施の形態にかかり、磁性メッキ線コイルをもちいた近接センサのブロック構成例を示す。図1を参照して、1は上下または左右方向に接近・後退動作する導電性の検出物である。   FIG. 1 shows a block configuration example of a proximity sensor using a magnetic plated wire coil according to an embodiment of the present invention. Referring to FIG. 1, reference numeral 1 denotes a conductive detection object that moves up and down or in the left-right direction.

3はセンサヘッド部であり、このセンサヘッド部3は、検出物1に非接触に設置されたコアまたは空心に巻かれた磁性メッキ線コイル5、抵抗、ダイオード等の図示略の温度補正回路部で構成される。   Reference numeral 3 denotes a sensor head unit. The sensor head unit 3 includes a core disposed in a non-contact manner on the detected object 1 or a magnetic plated wire coil 5 wound around the air core, a resistor, a diode, and other temperature correction circuit units (not shown). Consists of.

9は検出動作回路部であり、この検出動作回路部9は、磁性メッキ線コイル5に励磁高周波電流を発振または供給する発振回路部、同時に該磁性メッキ線コイル5のインピーダンス変動等を検出する検出回路部、その他として補正するための回路部、等を含む。   Reference numeral 9 denotes a detection operation circuit unit. The detection operation circuit unit 9 oscillates or supplies an excitation high-frequency current to the magnetic plating wire coil 5, and simultaneously detects an impedance variation of the magnetic plating wire coil 5. A circuit unit, a circuit unit for correction, and the like are included.

11は演算・処理部であり、この演算・処理部11は、CPUを含む回路で構成され、発振制御、高精度検出アルゴリズム、動作表示等のソフトウエア制御を担うようになっている。   Reference numeral 11 denotes an arithmetic / processing unit. The arithmetic / processing unit 11 includes a circuit including a CPU, and is responsible for software control such as oscillation control, high-precision detection algorithm, and operation display.

13は当該近接センサの動作状態を表示処理する回路からなる動作表示部、15は近接センサの動作状態に関して光通信するための変調回路からなる動作光通信部、17は当該近接センサの検出出力を出力する検出出力部、19は外部パソコンやPLC(プログラマブルコントローラ)21に接続されてシリアル通信するUSBコネクタからなるシリアル通信部、23は動作表示部13に駆動されて動作状態を示す態様で発光する動作表示用発光ダイオード、25は動作光通信部15で駆動されて発光する動作光通信用発光ダイオードである。   13 is an operation display unit composed of a circuit for displaying the operation state of the proximity sensor, 15 is an operation light communication unit composed of a modulation circuit for optically communicating the operation state of the proximity sensor, and 17 is a detection output of the proximity sensor. A detection output unit 19 for output, a serial communication unit 19 including a USB connector connected to an external personal computer or PLC (programmable controller) 21 for serial communication, and 23 driven by the operation display unit 13 to emit light in a manner indicating an operation state. The operation display light emitting diode 25 is a light emitting diode for operation light communication that is driven by the operation light communication unit 15 to emit light.

検出出力部17と動作光通信部15それぞれから検出データが出力される。検出出力部17と動作光通信部15それぞれを双方向通信として検出データの信頼性および安全制御のためのフィードバック制御をさせることも可能である。   Detection data is output from each of the detection output unit 17 and the operating light communication unit 15. The detection output unit 17 and the operating light communication unit 15 can be made bidirectional communication to perform feedback control for detection data reliability and safety control.

27は空心コイルの場合に検出物と逆方向の磁束を低減する磁気薄膜等による磁気シールドであり、この磁気シールド17は磁気メッキ線コイル5が空心の場合に発生する磁束が近接センサ内部の電子回路に影響を与えないようにする。   Reference numeral 27 denotes a magnetic shield made of a magnetic thin film or the like that reduces the magnetic flux in the direction opposite to the detected object in the case of an air-core coil. The magnetic shield 17 has a magnetic flux generated when the magnetic-plated wire coil 5 is air-core. Do not affect the circuit.

28はアンプ分離型の場合にセンサヘッド部3とそれより後段側のアンプ部とを接続するための同軸ケーブルである。   Reference numeral 28 denotes a coaxial cable for connecting the sensor head unit 3 and the amplifier unit on the rear stage side in the case of the amplifier separation type.

29は基準コイルであり、この基準コイル29は〔〕で示すように検出物1に発生する渦電流および検出物1の振動等の影響を低減させるために、磁性メッキ線コイル5と同値のインダクタンスおよび直流抵抗を有する。この基準コイル29は、検出物1の磁気的影響の少ない場所に追加設置され、当該近接センサの検出精度を高めて長距離動作を可能にする。   Reference numeral 29 is a reference coil, and this reference coil 29 has an inductance equivalent to that of the magnetic plated wire coil 5 in order to reduce the influence of eddy current generated in the detected object 1 and vibration of the detected object 1 as indicated by []. And has direct current resistance. The reference coil 29 is additionally installed at a place where the magnetic influence of the detected object 1 is small, and the detection accuracy of the proximity sensor is increased to enable a long distance operation.

基準コイル29は磁性メッキ線または銅線で構成することができる。基準コイル29は、磁性メッキ線コイル5と同じ励磁条件で励磁されることで、両コイル5,29の誘起電流、インピーダンスを差分検出し、この差分検出を用いて検出精度を高めて長距離動作を可能とすることができる。   The reference coil 29 can be composed of a magnetic plated wire or a copper wire. The reference coil 29 is excited under the same excitation conditions as the magnetic plating wire coil 5, thereby detecting a difference between the induced currents and impedances of the coils 5 and 29, and using this difference detection to improve detection accuracy and to operate over a long distance. Can be made possible.

図2(a)(b)は磁性メッキ線コイル5の構成例を示している。   FIGS. 2A and 2B show a configuration example of the magnetic plated wire coil 5.

図2(a)で示す磁性メッキ線コイル5は、コイル材である銅線5aの表面に強磁性体層5bを形成して構成されている。強磁性体層5bは膜厚1μm前後のFe薄膜等のメッキ層である。   The magnetic plated wire coil 5 shown in FIG. 2A is configured by forming a ferromagnetic layer 5b on the surface of a copper wire 5a that is a coil material. The ferromagnetic layer 5b is a plating layer such as an Fe thin film having a thickness of about 1 μm.

図2(b)で示す磁性メッキ線コイル5は、図2(a)と同様に銅線5aの表面に強磁性体層5bを形成すると共にその強磁性体層5bの表面に錆止めおよびハンダ付けを容易にする必要最低限膜厚のNi(ニッケル)等の薄膜付加層5cを形成したうえで、さらに、その薄膜付加層5cの表面にポリアミドやポリウレタン樹脂を用いた絶縁層5dを形成して構成される。   The magnetic plated wire coil 5 shown in FIG. 2 (b) is formed with a ferromagnetic layer 5b on the surface of the copper wire 5a as in FIG. 2 (a), and with rust prevention and soldering on the surface of the ferromagnetic layer 5b. After forming a thin film additional layer 5c such as Ni (nickel) having a minimum necessary thickness for facilitating the process, an insulating layer 5d using polyamide or polyurethane resin is further formed on the surface of the thin film additional layer 5c. Composed.

図2(a)(b)の磁性メッキ線コイル5では強磁性体層5bにより磁気エネルギを蓄えてインダクタンスの増加、近接効果の低減、磁気シールド効果を長距離動作に積極的に生かせることができる。   In the magnetic plated wire coil 5 of FIGS. 2 (a) and 2 (b), magnetic energy can be stored by the ferromagnetic layer 5b, and the inductance can be increased, the proximity effect can be reduced, and the magnetic shield effect can be actively utilized for the long distance operation. .

図3(a)(b)にセンサヘッド部3の構成例を示す。   3A and 3B show a configuration example of the sensor head unit 3. FIG.

図3(a)は、励磁と検出とを兼用する単一コイルからなるセンサヘッド部3を示す。図3(a)では(a−1)にセンサヘッド部3の正面構成、(a−2)に側面断面構成を示す。図3(a)では検出物1も示す。   FIG. 3A shows a sensor head unit 3 formed of a single coil that is used for both excitation and detection. In FIG. 3A, (a-1) shows a front configuration of the sensor head unit 3, and (a-2) shows a side sectional configuration. FIG. 3A also shows the detected object 1.

図3(b)は中央に位置する1つの励磁コイル3aと、その周囲の充填樹脂3c中に配置された3つの検出コイル3bとからなるセンサヘッド部3を示す。検出コイル3aも樹脂充填されている。図3(b)では(b−1)にセンサヘッド部3の正面構成、(b−2)に側面断面構成を示す。図3(b)のセンサヘッド部3では、励磁コイル3aおよび3つの検出コイル3bはいずれも磁性メッキ線コイルであり、励磁コイル3aに対して検出コイル3bは正三角形状に配置されていることで、高感度、高信頼性の2次元検出を可能する形態である。この場合、検出コイル3bは磁性メッキ線を用いない形態もある。   FIG. 3B shows a sensor head unit 3 including one excitation coil 3a located at the center and three detection coils 3b arranged in the surrounding filling resin 3c. The detection coil 3a is also filled with resin. In FIG.3 (b), the front structure of the sensor head part 3 is shown to (b-1), and a side surface cross-section structure is shown to (b-2). In the sensor head unit 3 of FIG. 3B, the excitation coil 3a and the three detection coils 3b are all magnetic plated wire coils, and the detection coil 3b is arranged in an equilateral triangle with respect to the excitation coil 3a. Thus, it is a form that enables two-dimensional detection with high sensitivity and high reliability. In this case, there is a form in which the detection coil 3b does not use a magnetic plating wire.

図4(a)に励磁・検出兼用の磁性メッキ線コイル5の高周波における等価回路を示し、また、図4(b)に多層ソレノイドコイルの巻き線形状を示す。図4(a)でR(X)は銅損+近接効果損、L(X)はインダクタンスである。図4(b)でpはコイルピッチ、dはコイル材の直径、rはコイル径、Lはコイル長さである。   FIG. 4A shows an equivalent circuit at a high frequency of the magnetic plated wire coil 5 which is also used for excitation and detection, and FIG. 4B shows a winding shape of the multilayer solenoid coil. In FIG. 4A, R (X) is copper loss + proximity effect loss, and L (X) is inductance. In FIG. 4B, p is the coil pitch, d is the diameter of the coil material, r is the coil diameter, and L is the coil length.

磁性メッキ線コイル5の温度係数は図4(a)のR(X)である銅損と近接効果損に大きく影響される。銅損すなわち直流抵抗はコイルを形成している銅線の抵抗で磁性メッキ線コイル5の幾何学的形状には無関係である。近接効果損はコイルピッチを大きくしたり、コイルピッチに対して銅線径を細くすれば小さくできる。すなわち巻き線形状によるので、励磁周波数、磁性メッキ線コイル5の太さ、コイルの巻き線形状によってコイル全体の高周波温度係数を低減し検出精度を高めることができる。   The temperature coefficient of the magnetic plated wire coil 5 is greatly influenced by the copper loss and the proximity effect loss which are R (X) in FIG. The copper loss, that is, the direct current resistance is the resistance of the copper wire forming the coil, and is independent of the geometric shape of the magnetic plated wire coil 5. Proximity effect loss can be reduced by increasing the coil pitch or reducing the copper wire diameter relative to the coil pitch. That is, because of the winding shape, the high frequency temperature coefficient of the entire coil can be reduced and the detection accuracy can be increased by the excitation frequency, the thickness of the magnetic plated wire coil 5, and the winding shape of the coil.

図4(b)で示す多層巻きソレノイドコイルは、センサヘッド部3の励磁兼検出コイルまたは励磁コイルを構成し、磁性メッキされた単線またはリッツ線で空心またはコア上のそれぞれ独立した専用の多層巻きソレノイドコイルの構成になっている。そして多層巻きソレノイドコイルの磁性メッキ線によるQ値向上効果や、コイル径r、ピッチ間隔p等の巻き線形状によって高周波温度係数を低減して検出精度を高めることができる。   The multilayer wound solenoid coil shown in FIG. 4 (b) constitutes an excitation / detection coil or excitation coil of the sensor head unit 3, and is a dedicated multilayer winding individually independent on the air core or core with a magnetically plated single wire or litz wire. It has a solenoid coil configuration. The high frequency temperature coefficient can be reduced and the detection accuracy can be increased by the effect of improving the Q value by the magnetic plating wire of the multilayer wound solenoid coil and the winding shape such as the coil diameter r and the pitch interval p.

図5は高感度の巨大磁気抵抗素子などのスピントロニクス磁気センサ素子31を検出部として一つまたは複数個内蔵したセンサヘッド部3の構成を示す。このセンサヘッド部3では、磁性メッキ線コイル5を検出物1の励磁に特化させ、検出感度を高め長距離動作を可能にする。このスピントロニクス磁気センサ素子31は矢印a1で示すように高機能検出部33を構成することができる。   FIG. 5 shows a configuration of a sensor head unit 3 including one or a plurality of spintronics magnetic sensor elements 31 such as a high-sensitivity giant magnetoresistive element as a detection unit. In the sensor head unit 3, the magnetic plated wire coil 5 is specialized for excitation of the detection object 1, thereby increasing detection sensitivity and enabling long-distance operation. The spintronics magnetic sensor element 31 can constitute a high-function detector 33 as indicated by an arrow a1.

発振回路部35をパルス波形などの間歇発振にして、矢印a2で示すようにセンサヘッド部3を励磁電流の無い状態での磁束検出を可能にしてさらに高感度、高信頼性の検出を可能にし、この発振回路部35からの同期信号を矢印a3で示すように高機能検出部33での検出に用いた構成である。発振回路部35を矢印a4で示すようにCPUバスa7に接続し、バスa6を通じて演算・処理部11であるCPUに接続する一方、矢印a5で示すように高機能検出部33をCPUバスa7に接続し、バスa6を通じて演算・処理部11に接続する。   The oscillation circuit unit 35 is intermittently oscillated with a pulse waveform or the like, and as shown by an arrow a2, the sensor head unit 3 can detect a magnetic flux in the absence of an excitation current, thereby enabling detection with higher sensitivity and reliability. The synchronization signal from the oscillation circuit unit 35 is used for detection by the high function detection unit 33 as indicated by an arrow a3. The oscillation circuit unit 35 is connected to the CPU bus a7 as indicated by the arrow a4, and is connected to the CPU that is the arithmetic / processing unit 11 through the bus a6, while the high function detection unit 33 is connected to the CPU bus a7 as indicated by the arrow a5. Connect to the arithmetic / processing unit 11 through the bus a6.

図6(a)(b)に本発明を実施するための図1の演算・処理部11の長距離動作検出ソフトウエア(ファームウエア)の補正イメージ、図7に検出精度向上フローチャートを示している。   6 (a) and 6 (b) show a correction image of the long-distance motion detection software (firmware) of the arithmetic / processing unit 11 of FIG. 1 for carrying out the present invention, and FIG. 7 shows a detection accuracy improvement flowchart. .

図6(a)は横軸が距離、縦軸が検出値であり、検出物1の材質がそれぞれ鉄、アルミニウム、ステンレスである場合、それぞれの材質による検出物1上での渦電流発生や温度上昇による検出値の差異のイメージである。材質が鉄の場合は一点鎖線b1、アルミニウムでは点線b2、ステンレスは実線b3でそれぞれ示すような検出特性を示すが、抵抗、ダイオード等の図示略の温度補正回路部により二重線b4で示す検出特性に補正する。図6(a)には二重線で補正後の検出特性を示す。   In FIG. 6A, when the horizontal axis is the distance and the vertical axis is the detection value, and the material of the detection object 1 is iron, aluminum, and stainless steel, the generation of eddy currents and the temperature on the detection object 1 due to each material. It is an image of the difference of the detection value by a raise. When the material is iron, the detection characteristics are as indicated by the alternate long and short dash line b1, when aluminum is indicated by the dotted line b2, and when stainless steel is indicated by the solid line b3. Correct for characteristics. FIG. 6A shows detection characteristics after correction with a double line.

図6(b)は検出物とセンサヘッド間の接近と後退(上下左右)による応差(ヒステリシス)を事前のパラメータや補正ソフトウエアによって低減するための補正を示す図である。図6(b)で横軸は検出物とセンサヘッドとの接近距離、縦軸は検出磁束である。c1は応差曲線、c2,c3は補正前応差、c4,c5は補正後応差である。c2はc4に図中左→右、c3はc5に図中右→左に補正される。検出物1の応差特性による接近と後退(上下左右)による磁束変化を補正ソフトウエアによってc4,c5で示す補正後応差に低減させる。   FIG. 6B is a diagram showing correction for reducing the hysteresis (hysteresis) due to the approach and retreat (up / down / left / right) between the detected object and the sensor head by a prior parameter or correction software. In FIG. 6B, the horizontal axis represents the approach distance between the detected object and the sensor head, and the vertical axis represents the detected magnetic flux. c1 is a hysteresis curve, c2 and c3 are hysteresis before correction, and c4 and c5 are hysteresis after correction. c2 is corrected from left to right in the drawing at c4, and c3 is corrected from right to left in the drawing at c5. Magnetic flux change due to approach and retreat (up / down / left / right) due to the hysteresis characteristic of the detected object 1 is reduced to the corrected hysteresis shown by c4 and c5 by the correction software.

図7はFUMI(Function of Mutual Information)理論をもちいたソフトウエアの概要フローチャートである。このフローチャートで示すように、渦電流によるコイルのインピーダンス変位の検出信号の検出値Sの標準偏差をSD/Sとする。次に、発振、渦電流発熱によるホワイトノイズをスムージングソフトウエアで処理する。次に、検出物の移動によるノイズは励磁周波数にくらべて緩やかなノイズ(マルコフ過程ノイズ)であり、マルコフ過程ノイズの標準偏差SD/Tをその計算ソフトウエアで計算する。最後にFUMI理論式で関数をSD/TをSD/Sとして検出値Sを補正することにより検出精度を向上するソフトウエアを実装する。すなわち、高周波励磁周期よりはるかに緩やかな検出物の速度変動、振動変動、温度変動などのマルコス過程ノイズ(変動)の標準偏差SD/Tを検出信号の標準偏差SD/Sとして検出値Sの補正をFUMI理論をもちいたソフトウエアで実施する。なお、以上のソフトウエアは、演算・処理部11に搭載する。   FIG. 7 is a schematic flowchart of software using the FUMI (Function of Mutual Information) theory. As shown in this flowchart, the standard deviation of the detection value S of the detection signal of the impedance displacement of the coil due to the eddy current is SD / S. Next, white noise due to oscillation and eddy current heat generation is processed by smoothing software. Next, the noise due to the movement of the detected object is a moderate noise (Markov process noise) compared to the excitation frequency, and the standard deviation SD / T of the Markov process noise is calculated by the calculation software. Finally, software that improves the detection accuracy by correcting the detection value S with the function SD / T as SD / S in the FUMI theoretical formula is implemented. That is, the detection value S is corrected by using the standard deviation SD / T of Marcos process noise (variation) such as speed fluctuation, vibration fluctuation, temperature fluctuation, etc. of the detected object much slower than the high frequency excitation cycle as the standard deviation SD / S of the detection signal. Is implemented with software using FUMI theory. The above software is installed in the calculation / processing unit 11.

図1は磁性メッキ線コイル近接センサ構成図である。FIG. 1 is a configuration diagram of a magnetic plated wire coil proximity sensor. 図2は磁性メッキ線構成図である。FIG. 2 is a magnetic plating wire configuration diagram. 図3は励磁コイルと検出コイルを独立したコイル形態を示す図である。FIG. 3 is a diagram showing a coil configuration in which the excitation coil and the detection coil are independent. 図4は励磁・検出コイル(インダクタンス)とR(損失)とを示す図である。FIG. 4 is a diagram showing an excitation / detection coil (inductance) and R (loss). 図5はスピントロニクス磁気センサ素子を検出部に用いた構成図である。FIG. 5 is a configuration diagram in which a spintronic magnetic sensor element is used as a detection unit. 図6は検出特性と補正例とを示す図である。FIG. 6 is a diagram showing detection characteristics and correction examples. 図7は検出精度向上アルゴリズム(FUMI理論)の概要フローチャートである。FIG. 7 is a schematic flowchart of a detection accuracy improvement algorithm (FUMI theory).

符号の説明Explanation of symbols

1 検出物
3 センサヘッド部
5 磁性メッキ線コイル
1 Detected object 3 Sensor head 5 Magnetic plated wire coil

Claims (7)

センサヘッドの励磁兼検出コイルまたは励磁コイルに磁性メッキ線コイルが用いられていることを特徴とする近接センサ。   A proximity sensor characterized in that a magnetic plated wire coil is used for the excitation / detection coil or the excitation coil of the sensor head. センサヘッドの励磁兼検出コイルまたは専用励磁コイルが、磁性メッキされた単線またはリッツ線で空心またはコア上の多層巻きソレノイドコイルで構成されていることを特徴とする近接センサ。   A proximity sensor, wherein the excitation / detection coil or the dedicated excitation coil of the sensor head is composed of a magnetically plated single wire or litz wire, or an air core or a multilayer wound solenoid coil on a core. センサヘッドの励磁コイルおよび検出コイルが、磁性メッキされた単線またはリッツ線で空心またはコア上のそれぞれ独立した専用の多層巻きソレノイドコイルから構成されていることを特徴とする近接センサ。   A proximity sensor, wherein an excitation coil and a detection coil of a sensor head are each composed of a magnetic multilayer-plated single coil or a litz wire, each of which is an independent multi-layer wound solenoid coil on an air core or a core. センサヘッドの励磁兼検出コイルまたは専用励磁コイルの磁性メッキによる
効果やコイル径対ピッチ間隔などの巻き線形状によってコイルの高周波温度係数を低減して検出精度を高めたことを特徴とする近接センサ。
A proximity sensor characterized in that the detection accuracy is improved by reducing the high-frequency temperature coefficient of the coil by the effect of magnetic plating of the excitation / detection coil of the sensor head or the dedicated excitation coil and the winding shape such as the coil diameter versus pitch interval.
センサヘッドの磁性メッキ線をもちいた励磁兼検出コイルと同値のインダクタンスを有する磁性メッキ線または銅線を基準コイルとして検出物から受ける磁気的影響が低い配置箇所に追加配置したことで、上記両コイルを同じ励磁条件で励磁して上記両コイルの誘起電流、インピーダンスを差分検出することを可能としたセンサヘッド構成になっている、ことを特徴とする近接センサ。   Both of the above coils can be obtained by arranging a magnetic plated wire or copper wire having the same inductance as the excitation / detection coil using the magnetic plated wire of the sensor head as a reference coil at a location where the magnetic influence from the detected object is low. A proximity sensor having a sensor head configuration capable of detecting a difference between induced currents and impedances of the two coils by exciting them under the same excitation conditions. 磁性メッキ線コイルをもちいた励磁部とGMR(Giant Magneto Resistive Sensor)からなる検出部とを備えたセンサヘッド構成になっている、ことを特徴とする近接センサ。   A proximity sensor having a sensor head configuration including an excitation unit using a magnetic plated wire coil and a detection unit made of GMR (Giant Magneto Resistive Sensor). 磁性メッキ線コイルまたはGMRによる検出出力をFUMI(Function of Mutual Information)理論およびスムージング制御によって推論するソフトウエアを具備した、ことを特徴とする請求項1ないし6のいずれか1項に記載の近接センサ。   The proximity sensor according to any one of claims 1 to 6, further comprising software for inferring a detection output by a magnetic plated wire coil or GMR by FUMI (Function of Mutual Information) theory and smoothing control. .
JP2007222369A 2007-08-29 2007-08-29 Long-distance operation proximity sensor Pending JP2009054517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222369A JP2009054517A (en) 2007-08-29 2007-08-29 Long-distance operation proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222369A JP2009054517A (en) 2007-08-29 2007-08-29 Long-distance operation proximity sensor

Publications (1)

Publication Number Publication Date
JP2009054517A true JP2009054517A (en) 2009-03-12

Family

ID=40505408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222369A Pending JP2009054517A (en) 2007-08-29 2007-08-29 Long-distance operation proximity sensor

Country Status (1)

Country Link
JP (1) JP2009054517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119114A (en) * 2009-12-02 2011-06-16 Shinshu Univ Proximity sensor oscillated in high frequency
CN113056804A (en) * 2018-11-12 2021-06-29 欧姆龙株式会社 Sensor with a sensor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194291A (en) * 1985-02-22 1986-08-28 横河電機株式会社 Absolute dry basis weight profile control apparatus
WO2006046358A1 (en) * 2004-10-28 2006-05-04 Shinshu University Apparatus equipped with high frequency coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194291A (en) * 1985-02-22 1986-08-28 横河電機株式会社 Absolute dry basis weight profile control apparatus
WO2006046358A1 (en) * 2004-10-28 2006-05-04 Shinshu University Apparatus equipped with high frequency coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119114A (en) * 2009-12-02 2011-06-16 Shinshu Univ Proximity sensor oscillated in high frequency
CN113056804A (en) * 2018-11-12 2021-06-29 欧姆龙株式会社 Sensor with a sensor element

Similar Documents

Publication Publication Date Title
US9479134B2 (en) Position detecting system
CN101149402B (en) Electric current detector
JP6166227B2 (en) Power transmission device and power reception device
JP4960767B2 (en) Displacement sensor
JP4674533B2 (en) AC current detection coil
US8154278B2 (en) Metal face inductive proximity sensor
JP5150521B2 (en) High frequency oscillation type proximity sensor
JP6593825B2 (en) Non-contact sensor
CN107462758B (en) Closed loop current sensor
JP2008215970A (en) Bus bar integrated current sensor
JP2010216863A (en) Proximity sensor
CN107430153A (en) Current sensing means
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US20180274949A1 (en) Electromagnetic induction type displacement detection apparatus and measuring instrument using the same
JP6083690B2 (en) Power factor measuring device
JP2004014925A (en) Air-core coil
JP2009054517A (en) Long-distance operation proximity sensor
JP2002202328A (en) Magnetic field type current sensor
JP2008203240A (en) Electromagnetic impedance sensor and passenger protection system using it
JP5914827B2 (en) Force sensor, force detection device using the same, and force detection method
JP6493191B2 (en) Proximity sensor
JP6155715B2 (en) Displacement sensor
CN113008434B (en) An Orthogonal Differential Flexible Electromagnetic Sensor for Residual Stress Detection
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
CN106353704B (en) System and method for magnetic characterization of induction heating wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100823

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911