JP2009054290A - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- JP2009054290A JP2009054290A JP2007216877A JP2007216877A JP2009054290A JP 2009054290 A JP2009054290 A JP 2009054290A JP 2007216877 A JP2007216877 A JP 2007216877A JP 2007216877 A JP2007216877 A JP 2007216877A JP 2009054290 A JP2009054290 A JP 2009054290A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- power generation
- cell system
- hydrogen
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 133
- 239000007789 gas Substances 0.000 claims abstract description 137
- 238000010248 power generation Methods 0.000 claims abstract description 120
- 239000012528 membrane Substances 0.000 claims abstract description 35
- 238000007599 discharging Methods 0.000 claims abstract description 13
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 110
- 238000001514 detection method Methods 0.000 claims description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 abstract description 109
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 109
- 150000002431 hydrogen Chemical class 0.000 abstract description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 52
- 238000002347 injection Methods 0.000 abstract description 24
- 239000007924 injection Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 24
- 239000012530 fluid Substances 0.000 abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 43
- 239000001301 oxygen Substances 0.000 description 43
- 229910052760 oxygen Inorganic materials 0.000 description 43
- 230000014759 maintenance of location Effects 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】燃料電池内において発電反応に供されることのない非反応流体を効率よく排出する技術を提供する。
【解決手段】燃料電池100は、電極に挟持された電解質膜を含む複数の発電モジュール110を備え、複数の発電モジュール110のそれぞれに連結する、排ガスを排出するための水素排出マニホールド122と、水素排出マニホールド122から分岐する複数の分岐流路130とを備えている。複数の分岐流路130のそれぞれは、ガス噴射弁131を備える。制御部600は、ガス噴射弁131の弁の開閉を制御して、複数の発電モジュール110のそれぞれからの排ガス排出量を制御することができる。
【選択図】図1
【解決手段】燃料電池100は、電極に挟持された電解質膜を含む複数の発電モジュール110を備え、複数の発電モジュール110のそれぞれに連結する、排ガスを排出するための水素排出マニホールド122と、水素排出マニホールド122から分岐する複数の分岐流路130とを備えている。複数の分岐流路130のそれぞれは、ガス噴射弁131を備える。制御部600は、ガス噴射弁131の弁の開閉を制御して、複数の発電モジュール110のそれぞれからの排ガス排出量を制御することができる。
【選択図】図1
Description
この発明は、燃料電池システムに関する。
燃料電池は、反応ガスとして水素及び酸素の供給を受けて発電を行う。燃料電池では、発電が行われる発電領域に、発電反応で生じる水分や、発電反応に供されることのない非反応ガス(N2ガス等)を含む非反応流体が滞留してしまうと、発電領域における反応ガスの流れを阻害して発電効率が低下する可能性がある。これまで、非反応流体を燃料電池の外部へと排出するために種々の技術が提案されてきた(特許文献1等)。
ところで、燃料電池は一般に、複数の発電モジュールで発電を行い、各発電モジュールで発電された電気を集電することによって燃料電池の出力とする。また、上述した非反応流体の滞留は一部の発電モジュールにおいて発生し、他の発電モジュールは正常に発電を行うことが可能である場合が多い。そのため、非反応流体は、発電効率が低下した発電モジュールから排出されることが好ましい。しかし、これまでこうした要求に対して十分な工夫がなされてこなかったのが実情であった。
本発明は、燃料電池内において発電反応に供されることのない非反応流体を効率よく排出する技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]燃料電池システムであって、電極に挟持された電解質膜を含む複数の発電モジュールと、前記複数の発電モジュールのそれぞれに連結する、排ガスを排出するための排気用マニホールドとを有する燃料電池と、前記排気用マニホールドから分岐し、それぞれバルブを備える複数の分岐排気流路と、前記バルブの開閉を制御して、各分岐排気流路からの前記排ガスの排出量を制御する制御部とを備える燃料電池システム。この燃料電池システムによれば、複数の分岐排気流路のそれぞれについて排ガスの排出量を制御できる。従って、特定の発電モジュールからの排ガス排出量を制御できる。即ち、複数の発電モジュールから選択的に特定の発電モジュールからの排ガス排出量を増加させることができ、非反応流体の排出処理を効率よく実行することが可能となる。
[適用例2]適用例1記載の燃料電池システムであって、前記制御部は、前記複数の分岐排気流路の一部のバルブのみを開き、他の分岐排気流路のバルブを閉じる燃料電池システム。この燃料電池システムによれば、開かれたバルブの近傍の発電モジュールからの排ガス排出量を増加させることができる。
[適用例3]適用例1または適用例2記載の燃料電池システムであって、さらに、前記排気用マニホールドの端部に接続する排気用接続配管を備え、前記複数の分岐排気流路は、前記排気用接続配管に接続している燃料電池システム。この燃料電池システムによれば、排気用マニホールドからの排ガスと、複数の分岐排気流路からの排ガスとを混合して同時に排出することが可能である。従って、より効率よく非反応流体の排出処理を実行することが出来る。
[適用例4]適用例1または適用例3記載の燃料電池システムであって、前記排気用マニホールドは、アノード排ガスを排出するためのアノード排ガス排気用マニホールドである燃料電池システム。この燃料電池システムによれば、燃料電池のアノード側からの非反応流体の排出処理を効率よく実行することが出来る。
[適用例5]適用例1ないし適用例4のいずれかに記載の燃料電池システムであって、さらに、前記複数の発電モジュールの電圧を検出するための電圧検出部を備え、前記制御部は、前記複数の発電モジュールのうちで所定以上の電圧低下を示す低電圧発電モジュールが検出されたときに、前記複数の分岐排気流路のうち、前記低電圧発電モジュールの最も近くに設けられた分岐排気流路のバルブを開く燃料電池システム。この燃料電池システムによれば、複数の発電モジュールのうち、低電圧発電モジュールからの排ガス排出量を増加させることが出来る。従って、当該発電モジュールが、非反応流体によって低電圧となっている場合に、他の発電モジュールからの排ガス排出量の増加を抑制しつつ、低電圧発電モジュールの電圧回復をすることが可能である。
[適用例6]適用例5に記載の燃料電池システムであって、前記燃料電池から排出されたアノード排ガスは、前記燃料電池へと再循環することなく、前記燃料電池システムの外部へと排出され、前記アノード排ガスは、窒素ガス成分を含む燃料電池システム。この燃料電池システムによれば、水素の供給量を酸素の供給量より微少量として発電を行う場合に、いずれかの発電モジュールに窒素が滞留しても、当該発電モジュールの排ガス排出量を増加させることが出来る。従って、効率よく窒素の排出処理を行うことが出来る。
なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池、その燃料電池を備えた燃料電池システム、その燃料電池システムを搭載した車両等の形態で実現することができる。
A.第1実施例:
図1は本発明の一実施例としての燃料電池システムの構成を示す概略図である。この燃料電池システム1000は、燃料電池100と、水素供給系統200と、酸素供給系統300と、水素排出系統400と、酸素排出系統500と、制御部600とを備えている。
図1は本発明の一実施例としての燃料電池システムの構成を示す概略図である。この燃料電池システム1000は、燃料電池100と、水素供給系統200と、酸素供給系統300と、水素排出系統400と、酸素排出系統500と、制御部600とを備えている。
燃料電池100は、反応ガスとして水素と酸素の供給を受けて発電を行う固体高分子型燃料電池である。なお、燃料電池100としては、固体高分子型燃料電池でなくとも良く、任意の種々のタイプの燃料電池に本発明を適用することが可能である。
燃料電池100は、複数の発電モジュール110が積層された、いわゆるスタック構造を有する。ここで、本明細書中において「発電モジュール」とは、1つの膜電極接合体(後述)と、当該膜電極接合体の2つの電極面に隣接する反応ガスのためのガス流路(後述)とを含む、発電を行う燃料電池の構成部分を意味している。
燃料電池100には、反応ガスの供給及び排出を担う複数のガスマニホールド121〜124が設けられている。具体的には、水素の供給を担う水素供給マニホールド121と、水素の排出を担う水素排出マニホールド122と、酸素の供給を担う酸素供給マニホールド123と、酸素の排出を担う酸素排出マニホールド124とが設けられている。各ガスマニホールド121〜124は、発電モジュール110の積層方向に沿って設けられており、各発電モジュール110の各電極に設けられたガス流路と連通している。
この燃料電池100には、水素排出マニホールド122から分岐して燃料電池100の側面から外部へと連通する複数の分岐流路130が、略等間隔で設けられている。ここで、「燃料電池100の側面」とは、発電モジュール110の積層方向に沿った面を意味する。複数の分岐流路130のそれぞれにはガス噴射弁131が設けられている。ガス噴射弁131は、水素排出マニホールド122から水素排出配管410に向かってアノード排ガスを噴出可能なように設けられている。なお、ガス噴射弁131は、弁の開放時間によってガスの噴出量を調整可能である。
また、燃料電池100には、発電モジュール110ごとの発電電圧を計測するFC電圧検出部140が設けられている。FC電圧検出部140は、その計測結果を制御部600へと出力する。
水素供給系統200は、燃料電池100に燃料ガスである水素ガスを供給する。水素供給系統200は、水素タンク210と、水素供給配管220とを備える。水素タンク210は、高圧水素を貯蔵する。水素供給配管220は、水素タンク210と燃料電池100の水素供給マニホールド121とを接続する。水素供給配管220には、上流側に水素遮断弁221と、その下流側に水素の圧力を調整するためのレギュレータ222とが設けられている。
酸素供給系統300は、燃料電池に酸化ガスである高圧空気を供給する。酸素供給系統300は、エアコンプレッサ310と、酸素供給配管320とを備えている。酸素供給配管320は、エアコンプレッサ310と燃料電池100の酸素供給マニホールド123とを接続する。なお、酸素供給系統300には、供給する高圧空気を加湿するための加湿部(図示せず)が設けられているものとしても良い。
水素排出系統400は、燃料電池100の水素排出マニホールド122の端部122eと接続する水素排出配管410を備えている。通常、反応に供されることのなかった水素を含むアノード排ガスは、水素排出マニホールドの端部122eから水素排出配管410を経て燃料電池システム1000の外部へと排出される。なお、端部122eからのアノード排ガスの流れは水素排出バルブ411によって制御されている。
水素排出配管410は、燃料電池100の側面に設けられた複数の分岐流路130と、水素排出バルブ411の下流側において連結する。アノード排ガスの一部は、所定の場合に複数の分岐流路130のうちのいずれかを介して、ガス噴射弁131によって水素排出配管410へと排出される。このガス噴射弁131による排気処理の詳細は後述する。
水素排出配管410には、複数の分岐流路130との連結部413の下流側に希釈器412が設けられている。希釈器412は、アノード排ガスと他のガスとを混合することによってアノード排ガスにおける水素濃度を低減し、アノード排ガスを大気中へと排出可能とするためのものである。この希釈器412によって、後述するガス噴射弁131による排気処理によってアノード排ガスの排出量が増加した場合であっても、アノード排ガス中の水素濃度を低減し、水素の可燃限界値(約4%程度)以内に抑えることが可能である。
酸素排出系統500は、燃料電池100の酸素排出マニホールド124と接続する酸素排出配管510を備えている。酸素排出配管510には、燃料電池100から排出される反応に供されることのなかった酸素を含むカソード排ガスが流入する。酸素排出配管510は、カソード排ガスをそのままシステム外部へと排出するものとしても良いし、酸素供給系統300の配管へと接続して、カソード排ガスをシステム内で循環させるものとしても良い。
制御部600は、マイクロコンピュータを中心とした論理回路として構成されており、中央処理装置(図示せず)や記憶装置(図示せず)などを備える。制御部600は、水素遮断弁221や、エアコンプレッサ310、水素排出バルブ411、ガス噴射弁131などと信号線を介して接続されており、燃料電池システム1000を制御する。制御部600は、燃料電池100の発電の際に、FC電圧検出部140からの出力値を基に後述する窒素排出処理を実行する。
ところで、本実施例の燃料電池システム1000は、アノード排ガス中の水素を燃料電池100へと再循環させることなく燃料電池100の運転を継続する、いわゆるアノード循環レスシステムである。制御部600は、燃料電池100への水素の供給量を酸素の供給量に比較して微少量として燃料電池1000の運転を行う。具体的には、水素の供給量と酸素の供給量との比は、例えば1:100としても良い。これによって、反応に供されることなく燃料電池100から排出される水素の量を低減して、水素の利用効率を向上する。
図2(A1)は、燃料電池100の発電モジュール110に含まれる膜電極接合体10を示す概略図である。膜電極接合体10は、発電反応に供される領域である発電領域11の外周縁にシール部12が設けられている。発電領域11は、略長方形形状で構成されている。シール部12は、発電領域11を挟んで対向する短辺の中央に突出部12eを有する。これによって、膜電極接合体10の四隅には、燃料電池100として組み付けられたときにガスマニホールド121〜124(図1)を構成する矩形凹部13が設けられている。
図2(A2)は、図2(A1)に示すA2−A2切断における膜電極接合体10の断面図である。膜電極接合体10の発電領域11には、電解質膜14と、電解質膜14の両面に配置されるアノード15及びカソード16とが含まれる。
電解質膜14は、湿潤状態で良好なプロトン伝導性を示す固体高分子である。2つの電極15,16の電解質膜14と接しない外面には反応ガスを全体に行き渡らせるためのガス拡散層(図示せず)が設けられ、電解質膜14と接する面には、発電反応を促進するために、白金などの触媒が担持された触媒層(図示せず)が設けられている。
シール部12は、電解質膜14の外周端部14e及び2つの電極15,16の外周端部15e,16eを被覆するように成形されている。なお、電解質膜14の外周端部14eは、2つの電極端部15e,16eより突出しており、これによって電極端部15e,16eにおける反応ガスのクロスリークの発生を抑制する。
なお、燃料電池100として組み付けられる際には、膜電極接合体10の2つの電極15,16の外表面には、反応ガスを電極全体に行き渡らせるためのガス流路部材17が配置される。ガス流路部材17としては、導電性を有する多孔質部材で構成することができる。ガス流路部材17は、発電された電気の導電パスとしても機能する。
図2(B)は、燃料電池100の発電モジュール110に用いられるセパレータ20を示す概略図である。セパレータ20は、膜電極接合体10とほぼ同一の形状を有する板状部材であり、膜電極接合体10と同様に矩形凹部13が設けられている。なお、セパレータ20としては、導電性を有する薄い板状部材(例えば金属板)によって構成することが出来る。
セパレータ20の2つの面にはそれぞれ、反応ガスを誘導するための流路である誘導流路溝21が設けられている。第1の面に設けられた誘導流路溝21は、セパレータ20の全体を蛇行して併走する複数の溝として構成されており、対向する位置にある2つの矩形凹部13を連結している。図示されていない第2の面に設けられた誘導流路溝21は、残りの2つの矩形凹部13を連結している点以外は、第1の面に設けられた誘導流路溝21と同様に設けられている。
図3は、上述した膜電極接合体10及びセパレータ20を燃料電池100として組み付ける工程を示す模式図である。複数の膜電極接合体10及びセパレータ20は、交互に積層されて、中空の略直方体である電池筐体30に収納される。なお、膜電極接合体10の発電領域11には、ガス流路部材17が配置されている。電池筐体30としては、例えば、ステンレス鋼(SUS)によって構成することが出来る。
膜電極接合体10及びセパレータ20の端面と電池筐体30の内壁面との接触部位は、絶縁部材によってシールされる。また、積層された膜電極接合体10及びセパレータ20の矩形凹部13の端面と、電池筐体30の内壁面とで囲まれる4つの空間は、ガスマニホールド121〜124を構成する。なお、積層された膜電極接合体10及びセパレータ20は、図示しない締結部材によって積層方向に締結荷重が加えられる。
図4は、完成した燃料電池100を示す概略斜視図である。各ガスマニホールド121〜124にはぞれぞれ、図1で説明した水素供給配管220と酸素供給配管320と水素排出配管410と酸素排出配管510とが接続されている。水素排出配管410は、水素排出マニホールド122との接続部からU字型に折り返すことによって水素排出マニホールド122と併走する。なお、酸素用のマニホールド123,124はその接続端部のみが図示されている。
燃料電池100の側面には、水素排出マニホールド122から分岐するガス噴射弁131を備えた複数の分岐流路130が、略等間隔で積層方向に配列されて設けられる。複数の分岐流路130は、水素排出マニホールド122と水素排出配管410とが併走する部位において、水素排出マニホールド122と水素排出配管410とを連結する。
図4には、燃料電池100における水素の流れを破線矢印で概略的に示してある。水素供給配管220を介して水素供給マニホールド121に流入した水素は、セパレータ20に設けられた誘導流路溝21によって誘導されて各膜電極接合体10のアノード側の発電領域11を流れる。アノード排ガスは、誘導流路溝21によって各膜電極接合体10のアノード側の発電領域11から水素排出マニホールド122へと流入し、さらに、水素排出配管410へと流入する。なお、燃料電池100における酸素の流れも同様である。
図5は、燃料電池100の一部の内部構成を示す概略断面図である。図5には、燃料電池100の任意の3つの発電モジュール110が図示されているが、説明の便宜のために、それぞれを、紙面に向かって左から順に、「発電モジュール110A」、「発電モジュール110B」、「発電モジュール110C」と呼ぶ。なお、図5には、燃料電池100内の水素の流れを矢印で図示してある。
ここで、仮に発電モジュール110Bのアノード側のガス流路の圧力損失が、他の発電モジュール110A,110Cのアノード側のガス流路の圧力損失より大きいと仮定する。ここで、「ガス流路」とは、各セパレータ20に設けられた誘導流路溝21と、膜電極接合体10の電極面に配置されたガス流路部材17と、各電極15,16に設けられたガス拡散層とを含む、発電モジュール内においてガスが流れる領域の総称である。
この仮定の下で燃料電池100を運転した場合、水素供給マニホールド121から発電モジュール110Bのアノード側のガス流路へと流入する水素量は、他の発電モジュール110A,110Cのアノード側のガス流路へと流入する水素量より少なくなる。すると、それに応じて発電モジュール110Bから水素排出マニホールド122へと排出されるアノード排ガスの量が減少し、水素排出マニホールド122から発電モジュール110Bのアノード側のガス流路へとアノード排ガスが逆流してしまう場合がある(破線矢印Cf)。
ところで、燃料電池100のカソード側には酸化ガスとして高圧空気が供給されているが、反応に供されることのない非反応ガス(主に窒素)は、電解質膜14を介してアノード側へとリークしてしまうことが知られている。このアノード側へとリークした窒素は、各発電モジュールにおいて正常に排気が行われていれば、アノード排ガスとして反応に供されなかった水素とともに排出される。
しかし、上述した発電モジュール110Bのようにアノード排ガスの逆流が発生している発電モジュール110においては、図のハッチング領域NAに示すように、窒素が排出されることなく発電領域に滞留してしまう。また、時間の経過とともにその滞留量は増加する。
この「窒素の滞留」が発生している発電モジュール110では、窒素によって発電領域における水素の流れが阻害されるため発電効率が低下してしまう。さらに、窒素の滞留量が著しく増加すると、その発電モジュール110は、発電停止に至る場合がある。
なお、アノード循環レスシステムでは、酸素の供給量に対して水素の供給量が極めて少なく、アノード側とカソード側とでガス流路に圧力差が生じるため、窒素のアノード側へのリークが発生しやすい。従って、上述したアノード側の発電領域における窒素の滞留は、本実施例の燃料電池システム1000のようなアノード循環レスシステムにおいて生じやすい。
図6は、複数の分岐流路130うちの1つのガス噴射弁131が開放されている時の燃料電池100内におけるガスの流れを示す模式図である。図6は、ガスの流れを示す矢印が異なる点以外はほぼ図5と同じである。
水素排出マニホールド122に設けられた複数の分岐流路130のうち、窒素の滞留が生じた発電モジュール110Bの最も近くにある分岐流路130nのガス噴射弁131が開くと、水素の流れは図6に示す矢印のように変化する。即ち、水素排出マニホールド122のアノード排ガスの一部が分岐流路130nを介して水素排出配管410へと噴射されるため、発電モジュール110Bへのアノード排ガスの逆流が解消し、発電モジュール110Bに滞留した窒素が排出される。
このように、複数の分岐流路130が設けられた燃料電池100によれば、複数の分岐流路130のうちのいずれかの流路から選択的に排ガスの排出を行うことができ、これによって、任意の発電モジュール110の排ガス排出量を増加させることができる。従って、窒素の滞留している発電モジュールの排ガス排出量を増加させて窒素の滞留を解消することができる。
図7は、燃料電池システム1000の運転の際に、制御部600が行う処理手順を示すフローチャートである。ステップS10において、制御部600は、反応ガスを燃料電池100に供給するための処理を行う。具体的には、水素供給系統200の水素遮断弁221を開くとともに、酸素供給系統300のエアコンプレッサ310を始動する(図1)。また、制御部600は、水素排出系統400の水素排出バルブ411が閉じられている場合には、水素排出バルブ411を開く。なお、水素及び酸素の供給量は、燃料電池システム1000に接続する外部負荷(図示せず)からの出力要求に応じて制御される。
燃料電池100が発電を開始すると、制御部600は、燃料電池100の発電モジュール110のいずれかにおいて窒素の滞留が発生していないかを監視する(ステップS20)。具体的には、制御部600は、燃料電池100に設けられたFC電圧検出部140が測定する各発電モジュール110の電圧値の変化から窒素の滞留を検出する。
図8は、窒素の滞留が発生している発電モジュール110におけるFC電圧検出部140によって検出された電圧値の時間変化を示すグラフの一例である。窒素の滞留が発生している発電モジュール110においては、時間の経過とともに発電電圧が連続的に低下する。
そこで、制御部600は、ステップS20(図7)において各時間ごとに燃料電池100の全発電モジュール110の発電電圧の平均値(平均電圧値Va)を算出しておき、平均電圧値Vaより電圧値が低下している発電モジュール110を検出する。そして、制御部600は、当該発電モジュール110の電圧値と平均電圧値Vaとの差(電圧低下量Vd)を求め、平均電圧値Vaに対する電圧低下量Vdの比率(電圧低下率Vdr)を算出する。制御部600は、電圧低下率Vdrが所定の値(例えば5%)より大きい発電モジュール110は、窒素の滞留が発生していると判定する。
窒素の滞留が発生している発電モジュール110を検出すると、制御部600は以下に説明する「窒素排出処理」(ステップS30〜ステップS60)を実行する。制御部600は、ステップS30として、当該発電モジュール110における窒素の滞留量を算出する。
図9は、発電モジュール110における電圧低下率Vdrに対する窒素滞留量を示すグラフである。このグラフは、予め実験等によって求めておき、制御部600の記憶装置に窒素滞留量マップとして格納されている。制御部600は、この窒素滞留量マップから、ステップS20で得た電圧低下率Vdrに対応する窒素滞留量Nqを得る。
図10は、窒素滞留量に対する、窒素の滞留を解消するために最適な分岐流路130からのガス排出量を示すグラフである。このグラフは、予め実験等によって求めておき、制御部600の記憶装置に排出ガス量マップとして格納されている。この排出ガス量マップは、各発電モジュール110に対応するマップが準備されているものとしても良い。制御部600は、この排出ガス量マップから、ステップS30で得た窒素滞留量Nqに対応する、複数の分岐流路130から排出する排出ガス量Eqを決定する(ステップS40)。
図11は、分岐流路130のガス噴射弁131の開放時間と噴射されるガス量との関係を示すグラフである。このグラフは、各ガス噴射弁131の特性によって決まるものであり、制御部600の記憶装置にガス噴射弁特性マップとして格納されている。制御部600は、このガス噴射弁特性マップを用いて、ステップS40で決定された排出ガス量Eqを排出するために必要なガス噴射弁131の弁開放時間Teを求める(ステップS50)。
ステップS60では、制御部600は、ステップS50で求めた弁開放時間Teに応じてガス噴射弁131を開き、滞留窒素を含むアノード排ガスを所定のガス量だけ水素排出配管410へと排出する。
このように、本実施例の燃料電池システム1000によれば、複数の分岐流路130の一部の弁(バルブ)のみを開いて窒素ガスを排出する。従って、燃料電池100を構成する複数の発電モジュール110のうち、窒素が滞留して発電効率が低下したものに対して、窒素排出処理を実行することができる。また、本実施例では、窒素排出処理によって発電効率の低下していない他の発電モジュール110からの排気量の増加を抑制することができるため、水素の利用効率を向上することができる。
B.第2実施例:
図12は、本発明の第2実施例としての燃料電池システムの構成を示す概略図である。図12は、複数の分岐流路130が酸素排出配管510に接続している点以外は、図1とほぼ同じである。
図12は、本発明の第2実施例としての燃料電池システムの構成を示す概略図である。図12は、複数の分岐流路130が酸素排出配管510に接続している点以外は、図1とほぼ同じである。
この燃料電池システム1000Aでは、第1実施例の燃料電池システム1000と同様に、窒素の滞留が発生している発電モジュール110に対して酸素排出配管510を介して窒素排出処理を実行することができる。また、この燃料電池システム1000Aでは、複数の分岐流路130からの窒素排出処理を行った場合であっても、複数の分岐流路130から窒素とともに排出されるアノード排ガスは、酸素排出配管に流れる大量の空気(例えば1000NL/minの空気)と混合される。従って、水素排出系統400とは異なり、酸素排出配510に希釈器を設けることなくアノード排ガスを排出可能となる。ただし、酸素排出配管510には、水素排出配管410と同様に、希釈器が設けられるものとしても良い。
なお、複数の分岐流路130からのアノード排ガスが酸素排出配管510から排出されるため、水素排出配管410から排出されるアノード排ガスは、第1実施例よりも低減される。従って、水素排出系統400の希釈器412は、第1実施例のものよりも小型なものを採用することが可能であり、これによって、システムの小型化が可能となる。
C.第3実施例:
図13は、本発明の第3実施例としての燃料電池システムの構成を示す概略図である。図13は、水素排出配管410が、水素排出マニホールド122と直接的に接続していない点以外は、図1とほぼ同じである。即ち、水素排出配管410は、複数の分岐流路130を介してのみ水素排出マニホールド122と接続されている。
図13は、本発明の第3実施例としての燃料電池システムの構成を示す概略図である。図13は、水素排出配管410が、水素排出マニホールド122と直接的に接続していない点以外は、図1とほぼ同じである。即ち、水素排出配管410は、複数の分岐流路130を介してのみ水素排出マニホールド122と接続されている。
この燃料電池システム1000Bは、いわゆるアノードデッドエンド運転を行う燃料電池システムである。ここで、「アノードデッドエンド運転」とは、燃料ガスのアノード側への供給を継続しつつ、アノード側からの燃料ガスの排出をしない状態で発電を継続する運転のことを言う。第1実施例の燃料電池システム1000では、発電が継続されているときには、反応に供されることのなかった水素の排出も少量ずつではあるが、継続して行われていた。しかし、第3実施例の燃料電池システム1000Bでは、そうした水素の継続的な排出を行わないため、水素排出配管410と水素排出マニホールド122とを接続しない状態とすることが可能となる。
ところで、こうしたアノードデッドエンド運転を行う燃料電池においても、発電を継続すると、発電領域に窒素が滞留して発電反応を阻害する場合があることが知られている。しかも、アノード側からアノード排ガスの経路が省略されている場合には、滞留する窒素の排出処理が困難となる。そこで、この第3実施例では、第1実施例と同様に、複数の分岐流路130によって滞留窒素の排出処理を実行する。これによって、発電モジュール110ごとに窒素の滞留を解消することができ、アノードデッドエンド運転を良好に継続することが可能となる。なお、このアノードデッドエンド運転を行えば、発電の際の水素の利用効率を向上することができる。
D.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
D1.変形例1:
上記実施例において、燃料電池100をアノード循環レスシステムに用いられていたが、他の燃料電池システムに用いられるものとしても良い。例えば、アノード排ガス中の水素が外部へと排出されることなく燃料電池へと再循環するシステムに用いられるものとしても良い。
上記実施例において、燃料電池100をアノード循環レスシステムに用いられていたが、他の燃料電池システムに用いられるものとしても良い。例えば、アノード排ガス中の水素が外部へと排出されることなく燃料電池へと再循環するシステムに用いられるものとしても良い。
この場合には、複数の分岐流路130は、水素排出マニホールド122ではなく、酸素排出マニホールド124に設けられるものとしても良い。これによって、例えば、カソード側に発生した余分な水分を非反応流体として、複数の分岐流路130から排出するものとしても良い。
D2.変形例2:
上記実施例において、複数の分岐流路130はガス噴射弁131を備えていたが、ガス噴射弁131を備えていなくとも良い。例えば、複数の分岐流路130には、ガス噴射弁131に替えて、ガスの流量を調整可能な流量調整バルブが設けられているものとしても良い。あるいは、複数の分岐流路130には、単なるバルブが設けられているものとしても良い。即ち、排出ガスの流量を調整することなく非反応流体の排出処理を実行するものとしても良く、制御部600が、所定の時間だけ当該バルブを開放するものとしても良い。このような構成であっても、複数の分岐流路130によって窒素排出処理を実行することが可能である。
上記実施例において、複数の分岐流路130はガス噴射弁131を備えていたが、ガス噴射弁131を備えていなくとも良い。例えば、複数の分岐流路130には、ガス噴射弁131に替えて、ガスの流量を調整可能な流量調整バルブが設けられているものとしても良い。あるいは、複数の分岐流路130には、単なるバルブが設けられているものとしても良い。即ち、排出ガスの流量を調整することなく非反応流体の排出処理を実行するものとしても良く、制御部600が、所定の時間だけ当該バルブを開放するものとしても良い。このような構成であっても、複数の分岐流路130によって窒素排出処理を実行することが可能である。
また、上記実施例において、ガス噴射弁131は、弁の開放時間によって噴出するガス流量を制御することができたが、弁の開度によってガス流量を調整するるものとしても良い。これによって、さらに、ガス噴射弁131によるきめ細かい排出流量の制御が可能となる。
D3.変形例3:
上記実施例において、複数の分岐流路130は、燃料電池100の側面に略等間隔で設けられていたが等間隔で設けられていなくとも良い。例えば、窒素滞留を生じやすい発電モジュール110の近傍にのみ設けられているものとしても良い。
上記実施例において、複数の分岐流路130は、燃料電池100の側面に略等間隔で設けられていたが等間隔で設けられていなくとも良い。例えば、窒素滞留を生じやすい発電モジュール110の近傍にのみ設けられているものとしても良い。
D4.変形例4:
上記実施例において、電圧低下率Vdrが所定の値より大きくなったときに窒素の排出処理を実行していたが、所定以上の電圧低下を示す低電圧発電モジュールが検出されたときに、窒素排出処理を実行するものとしても良い。また、電圧低下以外の他の条件によって窒素の排出処理を実行するものとしても良い。
上記実施例において、電圧低下率Vdrが所定の値より大きくなったときに窒素の排出処理を実行していたが、所定以上の電圧低下を示す低電圧発電モジュールが検出されたときに、窒素排出処理を実行するものとしても良い。また、電圧低下以外の他の条件によって窒素の排出処理を実行するものとしても良い。
D5.変形例5:
上記実施例において、制御部600が、発電電圧の低下によって窒素の滞留を検出していたが、他の方法によって窒素の滞留を検出するものとしても良い。また、窒素の滞留を検出することなく、複数の分岐流路130による排出処理を実行するものとしても良い。例えば、制御部600は、燃料電池システム1000が運転を継続している間は、複数の分岐流路130のガス噴射弁131を、所定の時間間隔で1つずつ開放する制御を繰り返すものとしても良い。このような構成であれば、発電モジュール110のそれぞれに対して順次排出処理が実行されるため、窒素の滞留が発生する可能性を低減することができる。
D6.変形例6:
上記実施例において、複数の分岐流路130は、水素排出配管410又は酸素排出配管510に接続していたが、それら排出配管に接続することなく、直接的に複数の分岐流路130から燃料電池の外部へと排ガスを排出するものとしても良い。
上記実施例において、複数の分岐流路130は、水素排出配管410又は酸素排出配管510に接続していたが、それら排出配管に接続することなく、直接的に複数の分岐流路130から燃料電池の外部へと排ガスを排出するものとしても良い。
D7.変形例7:
上記実施例において、複数の分岐流路130のうち、制御部600によってガス噴射弁131が開いた流路のみが排ガスを排出していたが、複数の分岐流路130のそれぞれが、常にガスの排出を行っているものとしても良い。この場合には、非反応ガスが滞留する発電モジュール110が生じたときに、当該発電モジュール110に最も近い分岐流路以外の分岐流路からの排出量を抑制するものとしても良い。これによって、当該発電モジュール110に最も近い分岐流路からのガスの排出量を増加させることができる。
上記実施例において、複数の分岐流路130のうち、制御部600によってガス噴射弁131が開いた流路のみが排ガスを排出していたが、複数の分岐流路130のそれぞれが、常にガスの排出を行っているものとしても良い。この場合には、非反応ガスが滞留する発電モジュール110が生じたときに、当該発電モジュール110に最も近い分岐流路以外の分岐流路からの排出量を抑制するものとしても良い。これによって、当該発電モジュール110に最も近い分岐流路からのガスの排出量を増加させることができる。
D8.変形例8:
上記実施例において、燃料電池100のガスマニホールド121〜124は、膜電極接合体10及びセパレータ20の外周端面と電池筐体30の内壁面との間に設けられていたが、膜電極接合体10及びセパレータの外周縁に貫通孔として設けられていても良い。この場合には、複数の分岐流路130は、膜電極接合体10又はセパレータ20の外周端面から水素排出マニホールド122へと連通する流路として設けられるものとしても良い。
上記実施例において、燃料電池100のガスマニホールド121〜124は、膜電極接合体10及びセパレータ20の外周端面と電池筐体30の内壁面との間に設けられていたが、膜電極接合体10及びセパレータの外周縁に貫通孔として設けられていても良い。この場合には、複数の分岐流路130は、膜電極接合体10又はセパレータ20の外周端面から水素排出マニホールド122へと連通する流路として設けられるものとしても良い。
10…膜電極接合体
11…発電領域
12…シール部
12e…突出部
13…矩形凹部
14…電解質膜
14e…外周端部
15…アノード
15e,16e…電極端部
16…カソード
17…ガス流路部材
20…セパレータ
21…誘導流路溝
30…電池筐体
100…燃料電池
1000,1000A,1000B…燃料電池システム
110,110A,110B,110C…発電モジュール
121〜124…ガスマニホールド
122e…水素排出マニホールドの端部
130…複数の分岐流路
130n…分岐流路
131…ガス噴射弁
140…FC電圧検出部
200…水素供給系統
210…水素タンク
220…水素供給配管
221…水素遮断弁
222…レギュレータ
300…酸素供給系統
310…エアコンプレッサ
320…酸素供給配管
400…水素排出系統
410…水素排出配管
411…水素排出バルブ
412…希釈器
413…連結部
500…酸素排出系統
510…酸素排出配管
600…制御部
11…発電領域
12…シール部
12e…突出部
13…矩形凹部
14…電解質膜
14e…外周端部
15…アノード
15e,16e…電極端部
16…カソード
17…ガス流路部材
20…セパレータ
21…誘導流路溝
30…電池筐体
100…燃料電池
1000,1000A,1000B…燃料電池システム
110,110A,110B,110C…発電モジュール
121〜124…ガスマニホールド
122e…水素排出マニホールドの端部
130…複数の分岐流路
130n…分岐流路
131…ガス噴射弁
140…FC電圧検出部
200…水素供給系統
210…水素タンク
220…水素供給配管
221…水素遮断弁
222…レギュレータ
300…酸素供給系統
310…エアコンプレッサ
320…酸素供給配管
400…水素排出系統
410…水素排出配管
411…水素排出バルブ
412…希釈器
413…連結部
500…酸素排出系統
510…酸素排出配管
600…制御部
Claims (6)
- 燃料電池システムであって、
電極に挟持された電解質膜を含む複数の発電モジュールと、
前記複数の発電モジュールのそれぞれに連結する、排ガスを排出するための排気用マニホールドと、
を有する燃料電池と、
前記排気用マニホールドから分岐し、それぞれバルブを備える複数の分岐排気流路と、
前記バルブの開閉を制御して、各分岐排気流路からの前記排ガスの排出量を制御する制御部と、
を備える、燃料電池システム。 - 請求項1記載の燃料電池システムであって、
前記制御部は、前記複数の分岐排気流路の一部のバルブのみを開き、他の分岐排気流路のバルブを閉じる、燃料電池システム。 - 請求項1または請求項2記載の燃料電池システムであって、さらに、
前記排気用マニホールドの端部に接続する排気用接続配管を備え、
前記複数の分岐排気流路は、前記排気用接続配管に接続している、燃料電池システム。 - 請求項1ないし請求項3のいずれかに記載の燃料電池システムであって、
前記排気用マニホールドは、アノード排ガスを排出するためのアノード排ガス排気用マニホールドである、燃料電池システム。 - 請求項1ないし請求項4のいずれかに記載の燃料電池システムであって、さらに、
前記複数の発電モジュールの電圧を検出するための電圧検出部を備え、
前記制御部は、前記複数の発電モジュールのうちで所定以上の電圧低下を示す低電圧発電モジュールが検出されたときに、前記複数の分岐排気流路のうち、前記低電圧発電モジュールの最も近くに設けられた分岐排気流路のバルブを開く、燃料電池システム。 - 請求項5に記載の燃料電池システムであって、
前記燃料電池から排出されたアノード排ガスは、前記燃料電池へと再循環することなく、前記燃料電池システムの外部へと排出され、
前記アノード排ガスは、窒素ガス成分を含む、燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007216877A JP2009054290A (ja) | 2007-08-23 | 2007-08-23 | 燃料電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007216877A JP2009054290A (ja) | 2007-08-23 | 2007-08-23 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009054290A true JP2009054290A (ja) | 2009-03-12 |
Family
ID=40505219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007216877A Pending JP2009054290A (ja) | 2007-08-23 | 2007-08-23 | 燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009054290A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011192556A (ja) * | 2010-03-15 | 2011-09-29 | Seiko Instruments Inc | 燃料電池 |
JP2013140731A (ja) * | 2012-01-05 | 2013-07-18 | Nissan Motor Co Ltd | 燃料電池システム |
US8710748B2 (en) | 2009-12-11 | 2014-04-29 | Konica Minolta Holdings, Inc. | Illumination apparatus |
US10297845B2 (en) | 2014-10-02 | 2019-05-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method of same |
-
2007
- 2007-08-23 JP JP2007216877A patent/JP2009054290A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8710748B2 (en) | 2009-12-11 | 2014-04-29 | Konica Minolta Holdings, Inc. | Illumination apparatus |
JP2011192556A (ja) * | 2010-03-15 | 2011-09-29 | Seiko Instruments Inc | 燃料電池 |
JP2013140731A (ja) * | 2012-01-05 | 2013-07-18 | Nissan Motor Co Ltd | 燃料電池システム |
US10297845B2 (en) | 2014-10-02 | 2019-05-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8318380B2 (en) | Fuel cell and vehicle having fuel cell | |
US8956776B2 (en) | Fuel cell system and method of detecting abnormality of fuel cell system | |
US7862942B2 (en) | Strategies for mitigating cell degradation during start-up and shutdown with H2/N2 storage | |
US20100098983A1 (en) | Fuel cell performing anode dead-end operation with improved water management | |
US9343756B2 (en) | Fuel cell separator and fuel cell stack and reactant gas control method thereof | |
US20150107453A1 (en) | Water recovery device | |
CA2678594C (en) | Gas flow mechanism in a fuel cell | |
US9853316B2 (en) | Fuel cell system | |
WO2012165073A1 (ja) | 燃料電池システム | |
CN101490880B (zh) | 燃料电池系统及其控制方法 | |
US10003093B2 (en) | Fuel cell system including a fuel cell and a controller for controlling water vapor amount or average flow rate of a fuel gas | |
WO2013137017A1 (ja) | 燃料電池システム及び燃料電池システムの制御方法 | |
US20130078543A1 (en) | Operation method for fuel cell, and fuel cell system | |
JP2009054290A (ja) | 燃料電池システム | |
CN102668214A (zh) | 燃料电池组 | |
JP5354942B2 (ja) | 燃料電池システム | |
JP6307536B2 (ja) | 燃料電池システムの低温起動方法 | |
JP2014044872A (ja) | 燃料電池の運転方法 | |
WO2008104860A1 (en) | Fuel cell | |
JP2009026524A (ja) | 燃料電池モジュール及び燃料電池 | |
KR101186797B1 (ko) | 서로 다른 압력을 유지하는 복수 개의 유로 형상을 가지는 연료전지 | |
JP5320695B2 (ja) | 燃料電池システム | |
JP2008171587A (ja) | 燃料電池システム | |
JP2023091245A (ja) | 燃料電池 | |
JP2007250438A (ja) | 燃料電池および燃料電池システム |