[go: up one dir, main page]

JP2009050376A - Mirror with temperature adjusting function, dew point instrument, and humidity sensor - Google Patents

Mirror with temperature adjusting function, dew point instrument, and humidity sensor Download PDF

Info

Publication number
JP2009050376A
JP2009050376A JP2007218526A JP2007218526A JP2009050376A JP 2009050376 A JP2009050376 A JP 2009050376A JP 2007218526 A JP2007218526 A JP 2007218526A JP 2007218526 A JP2007218526 A JP 2007218526A JP 2009050376 A JP2009050376 A JP 2009050376A
Authority
JP
Japan
Prior art keywords
light
temperature
mirror
temperature measuring
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007218526A
Other languages
Japanese (ja)
Other versions
JP5096076B2 (en
Inventor
Atsushi Watanabe
敦 渡邉
Tatsunori Ito
達典 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007218526A priority Critical patent/JP5096076B2/en
Publication of JP2009050376A publication Critical patent/JP2009050376A/en
Application granted granted Critical
Publication of JP5096076B2 publication Critical patent/JP5096076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of further miniaturizing a mirror with a temperature adjusting function. <P>SOLUTION: The mirror 2 with the temperature adjusting function includes a temperature measurement element 21, a thermo-element 22, a temperature adjusting electrode 23 and a temperature non-adjusting electrode 24 for energizing the thermo-element 22, and a substrate 20. The substrate 20 has a diaphragm structure where a recessed part 20a is formed in the back surface. The temperature measurement element 21 is a platinum resistor whose resistance value is changed according to the temperature. Then, the temperature measurement element 21 is formed as a thin film in a diaphragm area where the recessed part 20a is formed and the thickness of the substrate is reduced on the main surface of the substrate 20. The thermo-element 22 is an element for performing heating or cooling by heat transfer utilizing the Peltier effect and is formed as a thin film so as to surround the periphery of the temperature measurement element 21 on the main surface of the substrate 20. The temperature adjusting electrode 23 is formed at the inner peripheral part of the thermo-element 22 formed so as to surround the periphery of the temperature measurement element 21, and the temperature non-adjusting electrode 24 is formed at the outer peripheral part of the thermo-element 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度調節機能付き鏡と、これを用いた露点計及び湿度センサに関する。   The present invention relates to a mirror with a temperature control function, and a dew point meter and a humidity sensor using the mirror.

従来、温度調節機能付き鏡が露点計や湿度センサに用いられている。この温度調節機能付き鏡は、ペルチェ素子などの熱電素子と、白金抵抗体などの測温素子とを備えることにより、温度調節が可能に構成されている(例えば、特許文献1参照)。
特開2006−337092号公報
Conventionally, a mirror with a temperature control function is used for a dew point meter and a humidity sensor. This mirror with a temperature adjustment function is configured to be capable of temperature adjustment by including a thermoelectric element such as a Peltier element and a temperature measuring element such as a platinum resistor (see, for example, Patent Document 1).
JP 2006-337092 A

しかし、特許文献1に記載の温度調節機能付き鏡は、鏡と熱電素子と測温素子とを別々に製造した後に、これらを接合することにより製造されている。このため、この接合に際し機械的な制約が大きく、温度調節機能付き鏡を更に小型化することが困難であるという問題があった。   However, the mirror with a temperature control function described in Patent Document 1 is manufactured by separately manufacturing a mirror, a thermoelectric element, and a temperature measuring element, and then bonding them. For this reason, there is a problem in that mechanical restrictions are large at the time of joining, and it is difficult to further reduce the size of the mirror with a temperature control function.

本発明は、こうした問題に鑑みなされたものであり、温度調節機能付き鏡の更なる小型化を可能とする技術を提供することを目的とする。   The present invention has been made in view of these problems, and an object thereof is to provide a technique that enables further miniaturization of a mirror with a temperature control function.

上記目的を達成するためになされた請求項1に記載の発明は、鏡面の温度を調節する機能を有する温度調節機能付き鏡であって、基板の面上に薄膜形成された熱電素子と、基板の面上または熱電素子上に薄膜形成された測温素子とを備え、熱電素子は、測温素子を加熱または冷却し、測温素子の表面が鏡面として利用されることを特徴とする温度調節機能付き鏡である。   In order to achieve the above object, the invention according to claim 1 is a mirror with a temperature adjusting function having a function of adjusting the temperature of the mirror surface, the thermoelectric element formed in a thin film on the surface of the substrate, and the substrate A temperature measuring element formed in a thin film on the surface of the thermoelectric element or the thermoelectric element, the thermoelectric element heating or cooling the temperature measuring element, and the surface of the temperature measuring element is used as a mirror surface It is a mirror with a function.

尚、「基板の面上に薄膜形成する」とは、直接または他部材を介して基板の面上に形成することである。同様に、「熱電素子上に薄膜形成する」とは、直接または他部材を介して熱電素子の面上に形成することである。   “Forming a thin film on the surface of the substrate” means forming on the surface of the substrate directly or via another member. Similarly, “to form a thin film on a thermoelectric element” is to form the film on the surface of the thermoelectric element directly or via another member.

このように構成された温度調節機能付き鏡では、測温素子と熱電素子が基板上に一体となって形成されている。このため、熱電素子と測温素子とを別々に製造してこれらを接合することが不要となり、温度調節機能付き鏡を更に小型化することが可能となる。また、測温素子は、薄膜形成によって表面の光反射率を高くすることで、その表面を鏡として用いることができる。   In the thus configured mirror with a temperature adjusting function, the temperature measuring element and the thermoelectric element are integrally formed on the substrate. For this reason, it becomes unnecessary to manufacture the thermoelectric element and the temperature measuring element separately and to join them, and it is possible to further reduce the size of the mirror with a temperature adjusting function. Further, the temperature measuring element can be used as a mirror by increasing the light reflectance of the surface by forming a thin film.

また、請求項1に記載の温度調節機能付き鏡においては、請求項2に記載のように、複数の熱電素子を有し、複数の熱電素子の少なくとも一部は、直列に連なるように配置されるとともに、測温素子と隣接するようにしてもよい。   Moreover, in the mirror with a temperature control function according to claim 1, as described in claim 2, the mirror has a plurality of thermoelectric elements, and at least some of the plurality of thermoelectric elements are arranged in series. In addition, it may be adjacent to the temperature measuring element.

このように構成された温度調節機能付き鏡では、或る熱電素子が移動させた熱を、その後、熱拡散による移動よりも速く、この熱電素子に隣接された別の熱電素子により更に移動させる。このため、1つの熱電素子を用いて、測温素子を加熱または冷却する場合よりも、測温素子から熱を移動させる速度を向上させることができる。   In the mirror with a temperature control function configured as described above, the heat transferred by a certain thermoelectric element is further moved by another thermoelectric element adjacent to the thermoelectric element faster than the movement by thermal diffusion. For this reason, the speed which moves heat from a temperature measuring element can be improved rather than the case where a temperature measuring element is heated or cooled using one thermoelectric element.

また、請求項1または請求項2に記載の温度調節機能付き鏡においては、請求項3に記載のように、複数の熱電素子を有し、複数の熱電素子の少なくとも一部は、測温素子に対してそれぞれ隣接して配置されるようにしてもよい。   Moreover, in the mirror with a temperature control function according to claim 1 or 2, as described in claim 3, the mirror has a plurality of thermoelectric elements, and at least a part of the plurality of thermoelectric elements is a temperature measuring element. May be arranged adjacent to each other.

このように構成された温度調節機能付き鏡では、複数の熱電素子が1つの測温素子から同時に熱を移動させる。このため、1つの熱電素子を用いて、測温素子を加熱または冷却する場合よりも、単位時間当たりに測温素子から熱を移動させる量を多くすることができる。   In the mirror with a temperature control function configured as described above, a plurality of thermoelectric elements simultaneously transfer heat from one temperature measuring element. Therefore, the amount of heat transferred from the temperature measuring element per unit time can be increased as compared with the case where the temperature measuring element is heated or cooled using one thermoelectric element.

また、請求項1〜請求項3の何れかに記載の温度調節機能付き鏡は、請求項4に記載のように、測温素子は、基板の面上に薄膜形成されるようにすることが可能である。
そして、請求項1〜請求項4の何れかに記載の温度調節機能付き鏡においては、請求項5に記載のように、基板は、測温素子及び熱電素子が形成されている面とは反対側の面において凹部が形成されたダイヤフラム領域と、このダイヤフラム領域以外の領域である周縁領域とを有し、測温素子は、ダイヤフラム領域内に配置され、熱電素子は、ダイヤフラム領域と周縁領域に跨って配置されるようにしてもよい。
Further, in the mirror with a temperature adjusting function according to any one of claims 1 to 3, the temperature measuring element may be formed as a thin film on the surface of the substrate as described in claim 4. Is possible.
And in the mirror with a temperature control function according to any one of claims 1 to 4, as described in claim 5, the substrate is opposite to the surface on which the temperature measuring element and the thermoelectric element are formed. A diaphragm region in which a concave portion is formed on the side surface, and a peripheral region that is a region other than the diaphragm region, the temperature measuring element is disposed in the diaphragm region, and the thermoelectric element is disposed in the diaphragm region and the peripheral region. You may make it arrange | position across.

このように構成された温度調節機能付き鏡では、ダイヤフラム領域の基板の厚みは、周縁領域の基板の厚みより薄くなるため、ダイヤフラム領域は周縁領域よりも熱容量が小さくなる。そして、鏡面となる測温素子がダイヤフラム領域に配置されている。このため、ダイヤフラム領域に測温素子を配置しない場合と比較して、鏡面の温度調節を高速かつ高精度に行うことが可能となる。また、ダイヤフラム領域と周縁領域に跨るように熱電素子が配置されているので、熱電素子を介してダイヤフラム領域から移動した熱が周縁領域に伝達されても、これにより、周縁領域の温度が急激に上昇することを防止することができる。   In the mirror with a temperature control function configured as described above, the thickness of the substrate in the diaphragm region is thinner than the thickness of the substrate in the peripheral region, and thus the diaphragm region has a smaller heat capacity than the peripheral region. And the temperature measuring element used as a mirror surface is arrange | positioned in the diaphragm area | region. For this reason, it becomes possible to adjust the temperature of the mirror surface at high speed and with high accuracy compared to the case where the temperature measuring element is not arranged in the diaphragm region. In addition, since the thermoelectric element is arranged so as to straddle the diaphragm area and the peripheral area, even if the heat transferred from the diaphragm area is transmitted to the peripheral area via the thermoelectric element, the temperature of the peripheral area rapidly increases. The rise can be prevented.

また、請求項1〜請求項5の何れかに記載の温度調節機能付き鏡においては、請求項6に記載のように、基板は、不透明材料により構成されているようにしてもよいし、請求項9に記載のように、基板は、透明材料により構成されているようにしてもよい。   Moreover, in the mirror with a temperature control function according to any one of claims 1 to 5, as described in claim 6, the substrate may be made of an opaque material. As described in Item 9, the substrate may be made of a transparent material.

そして請求項7に記載のように、発光素子と、受光素子と、請求項6に記載の温度調節機能付き鏡とを備え、発光素子及び受光素子は、発光素子が発する光を、請求項6に記載の温度調節機能付き鏡に反射させて、この反射光を受光素子が受光するように配置され、 発光素子から発光させた状態で、熱電素子により測温素子を冷却して、受光素子により受光された光の強度が低下した時に、測温素子により測定された温度を露点として演算する露点演算手段を備えることによって、露点計を構成するようにしてもよい。   According to a seventh aspect of the present invention, the light-emitting element, the light-receiving element, and the temperature-adjusting mirror according to the sixth aspect are provided, and the light-emitting element and the light-receiving element emit light emitted from the light-emitting element. The light-receiving element is arranged so that the reflected light is reflected by a mirror with a temperature control function described in 1. and the temperature-measuring element is cooled by a thermoelectric element in a state where the reflected light is emitted from the light-emitting element. You may make it comprise a dew point meter by providing the dew point calculating means which calculates the temperature measured by the temperature measuring element as a dew point when the intensity | strength of the received light falls.

また請求項8に記載のように、発光素子と、受光素子と、請求項6に記載の温度調節機能付き鏡とを備え、発光素子及び受光素子は、発光素子が発する光を、請求項6に記載の温度調節機能付き鏡に反射させて、この反射光を受光素子が受光するように配置され、発光素子から発光させた状態で、熱電素子により測温素子を冷却して、受光素子により受光された光の強度が低下した時に、測温素子により測定された温度を露点として演算する露点演算手段と、この露点における飽和水蒸気量と、被測定気体の温度における飽和水蒸気量とに基づいて、被測定気体の湿度を演算する湿度演算手段とを備えることによって、湿度センサを構成するようにしてもよい。   According to an eighth aspect of the present invention, the light-emitting element, the light-receiving element, and the temperature-adjusting mirror according to the sixth aspect are provided, and the light-emitting element and the light-receiving element emit light emitted from the light-emitting element. The light-receiving element is arranged so that the reflected light is reflected by the mirror with the temperature control function described in 1. and the temperature-measuring element is cooled by the thermoelectric element in a state where the reflected light is emitted from the light-emitting element. Based on the dew point calculation means for calculating the temperature measured by the temperature measuring element as the dew point when the intensity of the received light decreases, the saturated water vapor amount at the dew point, and the saturated water vapor amount at the temperature of the gas to be measured The humidity sensor may be configured by including humidity calculation means for calculating the humidity of the gas to be measured.

また請求項10に記載のように、発光素子と、受光素子と、請求項9に記載の温度調節機能付き鏡とを備え、発光素子及び受光素子は、発光素子が発する光を、請求項9に記載の温度調節機能付き鏡に透過させて、この透過光を受光素子が受光するように配置され、発光素子から発光させた状態で、熱電素子により測温素子を冷却して、受光素子により受光された光の強度が低下した時に、測温素子により測定された温度を露点として演算する露点演算手段を備えることによって、露点計を構成するようにしてもよい。   According to a tenth aspect of the present invention, the light-emitting element includes a light-emitting element, a light-receiving element, and the temperature-adjusting mirror according to the ninth aspect. The temperature measuring element is transmitted through a mirror with a temperature control function described in 1., and the transmitted light is arranged to be received by the light receiving element. In a state where the light receiving element emits light, the temperature measuring element is cooled by the thermoelectric element, and the light receiving element You may make it comprise a dew point meter by providing the dew point calculating means which calculates the temperature measured by the temperature measuring element as a dew point when the intensity | strength of the received light falls.

また請求項11に記載のように、発光素子と、受光素子と、請求項9に記載の温度調節機能付き鏡とを備え、発光素子及び受光素子は、発光素子が発する光を、請求項9に記載の温度調節機能付き鏡に透過させて、この透過光を受光素子が受光するように配置され、発光素子から発光させた状態で、熱電素子により測温素子を冷却して、受光素子により受光された光の強度が低下した時に、測温素子により測定された温度を露点として演算する露点演算手段と、この露点における飽和水蒸気量と、被測定気体の温度における飽和水蒸気量とに基づいて、被測定気体の湿度を演算する湿度演算手段とを備えることによって、湿度センサを構成するようにしてもよい。   Further, as described in claim 11, the light-emitting element, the light-receiving element, and the mirror with a temperature adjusting function according to claim 9, the light-emitting element and the light-receiving element emit light emitted from the light-emitting element. The temperature measuring element is transmitted through a mirror with a temperature control function described in 1., and the transmitted light is arranged to be received by the light receiving element. In a state where the light receiving element emits light, the temperature measuring element is cooled by the thermoelectric element, and the light receiving element Based on the dew point calculation means for calculating the temperature measured by the temperature measuring element as the dew point when the intensity of the received light decreases, the saturated water vapor amount at the dew point, and the saturated water vapor amount at the temperature of the gas to be measured The humidity sensor may be configured by including humidity calculation means for calculating the humidity of the gas to be measured.

以下に本発明の実施形態について図面とともに説明する。
図1は、本発明が適用された温度調節機能付き鏡2を備える露点計1の概略構成を示す側面図である。以下の説明では、図1に示す露点計1のうち左側を先端側として、右側を後端側として説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view showing a schematic configuration of a dew point meter 1 including a mirror 2 with a temperature adjusting function to which the present invention is applied. In the following description, the left side of the dew point meter 1 shown in FIG. 1 will be described as the front end side, and the right side will be described as the rear end side.

露点計1は、図1に示すように、温度調節機能付き鏡2と、温度調節機能付き鏡2に通電するためのケーブル群3(図1ではケーブル32のみを示す。図2を参照)と、温度調節機能付き鏡2に光L1を照射する発光素子11及び温度調節機能付き鏡2で反射した光L2を受光する受光素子12を備えた発光・受光部4と、温度調節機能付き鏡2とケーブル群3と発光・受光部4を収納する筺体5とから構成される。   As shown in FIG. 1, the dew point meter 1 includes a mirror 2 with a temperature control function, and a cable group 3 for energizing the mirror 2 with a temperature control function (FIG. 1 shows only a cable 32; see FIG. 2). The light emitting / receiving unit 4 including the light emitting element 11 that irradiates the light L1 to the mirror 2 with temperature adjusting function and the light receiving element 12 that receives the light L2 reflected by the mirror 2 with temperature adjusting function, and the mirror 2 with temperature adjusting function And a cable group 3 and a housing 5 that houses the light emitting / receiving section 4.

これらのうち発光・受光部4は、上述の発光素子11及び受光素子12と、発光素子11により照射された光が温度調節機能付き鏡2で反射されることなく直接受光素子12に到達するのを防ぐために発光素子11と受光素子12との間に設けられた遮光壁13と、露点計1の外部からの光が受光素子12に到達するのを防ぐために設けられた遮光壁14,15と、発光素子11と受光素子12と遮光壁13,14,15を温度調節機能付き鏡2の上方に配置されるように支持する支持部16とから構成されている。なお、遮光壁14は発光素子11を挟んで遮光壁13と反対側に配置され、遮光壁15は受光素子12を挟んで遮光壁14と反対側に設けられている。   Among these, the light emitting / receiving section 4 directly reaches the light receiving element 12 without being reflected by the above-described light emitting element 11 and light receiving element 12 and the mirror 2 with the temperature adjusting function. A light shielding wall 13 provided between the light emitting element 11 and the light receiving element 12, and light shielding walls 14 and 15 provided to prevent light from the outside of the dew point meter 1 from reaching the light receiving element 12. The light-emitting element 11, the light-receiving element 12, and the light-shielding walls 13, 14, and 15 are configured to support the temperature-adjusting mirror 2 so as to be disposed above the support 2. The light shielding wall 14 is disposed on the side opposite to the light shielding wall 13 with the light emitting element 11 interposed therebetween, and the light shielding wall 15 is provided on the side opposite to the light shielding wall 14 with the light receiving element 12 interposed therebetween.

また筺体5の先端側は、被測定気体を筺体5の内部に導入するための開口部41が設けられている。そして、開口部41と温度調節機能付き鏡2との間に通気フィルタ43が設置されている。更に筺体5の後端側には、ケーブル群3を露点計1の内部に導入するための開口部42が設けられている。そして、ケーブル群3の一部が筺体5の内部に導入された状態でケーブル群3を固定するために、開口部42は樹脂44によりモールドされている。   Further, an opening 41 for introducing a gas to be measured into the inside of the housing 5 is provided on the front end side of the housing 5. And the ventilation filter 43 is installed between the opening part 41 and the mirror 2 with a temperature control function. Further, an opening 42 for introducing the cable group 3 into the dew point meter 1 is provided on the rear end side of the housing 5. Then, in order to fix the cable group 3 in a state where a part of the cable group 3 is introduced into the housing 5, the opening 42 is molded with a resin 44.

図2は、本発明が適用された温度調節機能付き鏡2の概略構成を示す平面図である。
温度調節機能付き鏡2は、図2に示すように、測温素子21と、熱電素子22と、熱電素子22に通電するための電極23,24と、測温素子21と熱電素子22と電極23,24を支持する基板20とを備える。なお以下、電極23を温調電極23、電極24を非温調電極24とも称す。
FIG. 2 is a plan view showing a schematic configuration of a mirror 2 with a temperature control function to which the present invention is applied.
As shown in FIG. 2, the mirror 2 with a temperature adjustment function includes a temperature measuring element 21, a thermoelectric element 22, electrodes 23 and 24 for energizing the thermoelectric element 22, a temperature measuring element 21, a thermoelectric element 22, and an electrode. And a substrate 20 that supports 23 and 24. Hereinafter, the electrode 23 is also referred to as a temperature control electrode 23, and the electrode 24 is also referred to as a non-temperature control electrode 24.

これらのうち基板20は、シリコンを材料として構成されたシリコン基板である。そして基板20は、その裏面に凹部20aが形成されたダイヤフラム構造を有している(図1を参照)。   Of these, the substrate 20 is a silicon substrate made of silicon. And the board | substrate 20 has a diaphragm structure in which the recessed part 20a was formed in the back surface (refer FIG. 1).

また測温素子21は、温度によってその抵抗値が変化する白金抵抗体である。そして測温素子21は、基板20の主面上において、凹部20aが形成されて基板の厚みが薄くなっているダイヤフラム領域20bに薄膜形成される。   The temperature measuring element 21 is a platinum resistor whose resistance value changes depending on the temperature. The temperature measuring element 21 is formed as a thin film on the main surface of the substrate 20 in the diaphragm region 20b where the recess 20a is formed and the thickness of the substrate is reduced.

また熱電素子22は、ペルチェ効果を利用した熱移動により加熱または冷却を行う素子であり、基板20の主面上において測温素子21の周囲を取り囲むように薄膜形成される。これにより、熱電素子22のうち内周部分は、ダイヤフラム領域20b(図1を参照)上に配置され、内周部分以外の部分は、ダイヤフラム領域20bより基板の厚みが厚くなっている周縁領域20c(図1を参照)上に配置される。   The thermoelectric element 22 is an element that heats or cools by heat transfer using the Peltier effect, and is formed in a thin film so as to surround the temperature measuring element 21 on the main surface of the substrate 20. Thus, the inner peripheral portion of the thermoelectric element 22 is disposed on the diaphragm region 20b (see FIG. 1), and the portion other than the inner peripheral portion is the peripheral region 20c in which the substrate is thicker than the diaphragm region 20b. (See FIG. 1).

また温調電極23は、測温素子21の周囲を取り囲むように形成された熱電素子22の内周部に形成されるとともに、非温調電極24は熱電素子22の外周部に形成される。
またケーブル群3のうち、熱電素子用ケーブル31は、配線25を介して温調電極23と電気的に接続される。また熱電素子用ケーブル32は、配線を介することなく直接、非温調電極24と電気的に接続される。更に測温素子用ケーブル33,34は、それぞれ配線26,27を介して測温素子21と電気的に接続される。
The temperature control electrode 23 is formed on the inner peripheral portion of the thermoelectric element 22 formed so as to surround the temperature measuring element 21, and the non-temperature control electrode 24 is formed on the outer peripheral portion of the thermoelectric element 22.
In the cable group 3, the thermoelectric element cable 31 is electrically connected to the temperature control electrode 23 via the wiring 25. Further, the thermoelectric element cable 32 is directly electrically connected to the non-temperature control electrode 24 without a wiring. Further, the temperature measuring element cables 33 and 34 are electrically connected to the temperature measuring element 21 through wirings 26 and 27, respectively.

そして、例えばP型の熱電素子を用いた場合、熱電素子用ケーブル31側を正極とするとともに熱電素子用ケーブル32を負極として熱電素子22に通電すると、温調電極23から非温調電極24へ向かう方向に熱が移動し(図2の矢印HAを参照)、測温素子21を冷却することができる。更に、熱電素子22を介して非温調電極24に到達した熱は、熱電素子用ケーブル32を介して外部に放出される(図2の矢印HBを参照)。   For example, when a P-type thermoelectric element is used, when the thermoelectric element cable 31 side is used as a positive electrode and the thermoelectric element cable 32 is used as a negative electrode and the thermoelectric element 22 is energized, the temperature adjustment electrode 23 changes to the non-temperature adjustment electrode 24. Heat moves in the direction of heading (see arrow HA in FIG. 2), and the temperature measuring element 21 can be cooled. Furthermore, the heat that has reached the non-temperature control electrode 24 via the thermoelectric element 22 is released to the outside via the thermoelectric element cable 32 (see arrow HB in FIG. 2).

なおケーブル群3のうち、非温調電極24と接続される熱電素子用ケーブル32は、ヒートシンクとして機能させるために、その他のケーブル31,33,34よりも径が大きい。また、配線25による温調電極23の熱引きを抑制するために、配線25の幅をできるだけ狭くすることが望ましい。同様に、配線26,27による測温素子21の熱引きを抑制するために、配線26,27の幅をできるだけ狭くすることが望ましい。   In the cable group 3, the thermoelectric element cable 32 connected to the non-temperature control electrode 24 has a larger diameter than the other cables 31, 33, 34 in order to function as a heat sink. Further, in order to suppress the heat pulling of the temperature control electrode 23 by the wiring 25, it is desirable to make the width of the wiring 25 as narrow as possible. Similarly, it is desirable to make the widths of the wirings 26 and 27 as narrow as possible in order to suppress heat sinking of the temperature measuring element 21 by the wirings 26 and 27.

次に、露点計1の電気的構成について説明する。図3は、露点計1の電気的構成を示すブロック図である。
露点計1は、図3に示すように、発光素子11と受光素子12と測温素子21と熱電素子22を制御する制御回路50を備える。
Next, the electrical configuration of the dew point meter 1 will be described. FIG. 3 is a block diagram showing an electrical configuration of the dew point meter 1.
As shown in FIG. 3, the dew point meter 1 includes a control circuit 50 that controls the light emitting element 11, the light receiving element 12, the temperature measuring element 21, and the thermoelectric element 22.

制御回路50は、制御回路50全体を制御するCPU51と、発光素子11を発光させるための電流を出力する電流出力回路52と、受光素子12が受光した光の強度が電流値により特定される電気信号を受光素子12から入力する電流入力回路53と、測温素子21の抵抗値を検出する抵抗入力回路54と、測温素子21を加熱または冷却するための電流を熱電素子22に出力する電流出力回路55と、電流入力回路53に入力した電流の電流値および抵抗入力回路54が検出した抵抗値をアナログ値からデジタル値に変換してCPU51へ出力するA/Dコンバータ56と、CPU51が指示した電流値を示すデジタル値をアナログ値に変換して電流出力回路52,55へ出力するD/Aコンバータ57とから構成される。   The control circuit 50 includes a CPU 51 that controls the entire control circuit 50, a current output circuit 52 that outputs a current for causing the light emitting element 11 to emit light, and an electric current in which the intensity of light received by the light receiving element 12 is specified by a current value. A current input circuit 53 for inputting a signal from the light receiving element 12, a resistance input circuit 54 for detecting the resistance value of the temperature measuring element 21, and a current for outputting a current for heating or cooling the temperature measuring element 21 to the thermoelectric element 22. The CPU 51 instructs the output circuit 55, the A / D converter 56 that converts the current value of the current input to the current input circuit 53 and the resistance value detected by the resistance input circuit 54 from an analog value to a digital value, and outputs the digital value to the CPU 51. The D / A converter 57 converts the digital value indicating the current value into an analog value and outputs the analog value to the current output circuits 52 and 55.

次に、露点計1の動作について説明する。図4は、露点計1の測定タイミングを示すチャートである。
図4に示すように、露点計1は、測定周期SSを1サイクルとして露点の測定を繰り返し行う。具体的には、図4(a)に示すように、制御回路50が、電流値I1を初期値として測定周期SS経過後に電流値I2となるように徐々に電流値を増加させて、熱電素子22に対して電流を出力する。なお、図4(a)では電流値が徐々に大きくなっており、1サイクル中において測定開始時刻t0から時間が経過するほど測温素子21から熱電素子22への単位時間当たり熱移動量(即ち、測温素子21の冷却速度)が大きくなることを示している。
Next, the operation of the dew point meter 1 will be described. FIG. 4 is a chart showing the measurement timing of the dew point meter 1.
As shown in FIG. 4, the dew point meter 1 repeatedly measures the dew point with the measurement cycle SS as one cycle. Specifically, as shown in FIG. 4A, the control circuit 50 gradually increases the current value so that the current value I2 becomes the current value I2 after the lapse of the measurement period SS with the current value I1 as the initial value, and the thermoelectric element. 22 outputs a current. In FIG. 4A, the current value gradually increases, and the amount of heat transfer per unit time from the temperature measuring element 21 to the thermoelectric element 22 (that is, as time elapses from the measurement start time t0 in one cycle) This indicates that the cooling rate of the temperature measuring element 21 is increased.

また制御回路50は、受光素子12から電流を入力し、その電流値を検出する。そして図4(b)に示すように、測温素子21が熱電素子22により冷却されると、測温素子21の表面に結露が生じ(点P1を参照)、反射光L2の強度を示す電流値が電流値I4から電流値I3に低下する。このため、反射光L2の強度が低下し始めた時(図4では時刻t1)に、結露が生じたと判断することができる。   The control circuit 50 receives a current from the light receiving element 12 and detects the current value. Then, as shown in FIG. 4B, when the temperature measuring element 21 is cooled by the thermoelectric element 22, condensation occurs on the surface of the temperature measuring element 21 (see the point P1), and the current indicating the intensity of the reflected light L2 The value decreases from the current value I4 to the current value I3. For this reason, it can be determined that condensation has occurred when the intensity of the reflected light L2 starts to decrease (time t1 in FIG. 4).

更に制御回路50は、抵抗入力回路54を介して測温素子21の抵抗値を検出する。そして、図4(c)に示すように、熱電素子22により測温素子21が冷却されることによって測温素子21の抵抗値が徐々に低下する。このため、結露発生時(即ち、時刻t1)における測温素子21の抵抗値(点P2を参照)を検出し、この抵抗値を温度に変換することにより露点を測定することができる。このようにして露点を測定する制御回路50は、本発明の露点演算手段に相当する。   Further, the control circuit 50 detects the resistance value of the temperature measuring element 21 via the resistance input circuit 54. And as shown in FIG.4 (c), when the temperature measuring element 21 is cooled by the thermoelectric element 22, the resistance value of the temperature measuring element 21 will fall gradually. For this reason, the dew point can be measured by detecting the resistance value (see point P2) of the temperature measuring element 21 at the time of occurrence of dew condensation (that is, time t1) and converting the resistance value to temperature. The control circuit 50 that measures the dew point in this way corresponds to the dew point calculation means of the present invention.

このように構成された温度調節機能付き鏡2では、測温素子21と熱電素子22が基板20の主面上に一体となって形成されている。このため、熱電素子22と測温素子21とを別々に製造してこれらを接合することが不要となり、温度調節機能付き鏡2を更に小型化することが可能となる。また、測温素子21は、薄膜形成によって表面の光反射率を高くすることで、その表面を鏡として用いることができる。   In the mirror 2 with a temperature adjusting function configured as described above, the temperature measuring element 21 and the thermoelectric element 22 are integrally formed on the main surface of the substrate 20. For this reason, it becomes unnecessary to manufacture the thermoelectric element 22 and the temperature measuring element 21 separately and to join them, and it becomes possible to further miniaturize the mirror 2 with a temperature control function. Further, the temperature measuring element 21 can use the surface as a mirror by increasing the light reflectance of the surface by forming a thin film.

また、ダイヤフラム領域20bの基板の厚みは、周縁領域20cの基板の厚みより薄くなるため、ダイヤフラム領域20bは周縁領域20cよりも熱容量が小さくなる。そして、鏡面となる測温素子21がダイヤフラム領域20bに配置されている。このため、ダイヤフラム領域20bに測温素子21を配置しない場合と比較して、鏡面の温度調節を高速かつ高精度に行うことが可能となる。更に、熱電素子22はダイヤフラム領域20bと周縁領域20cに跨って配置されており、周縁領域20cはダイヤフラム領域20bより熱容量が大きいので、熱電素子22を介してダイヤフラム領域20bから移動した熱が周縁領域20cに伝達されても、これにより、周縁領域20cの温度が急激に上昇することを防止することができる。   Further, since the thickness of the substrate in the diaphragm region 20b is thinner than the thickness of the substrate in the peripheral region 20c, the diaphragm region 20b has a smaller heat capacity than the peripheral region 20c. And the temperature measuring element 21 used as a mirror surface is arrange | positioned in the diaphragm area | region 20b. For this reason, compared with the case where the temperature measuring element 21 is not arranged in the diaphragm region 20b, the temperature of the mirror surface can be adjusted at high speed and with high accuracy. Furthermore, since the thermoelectric element 22 is disposed across the diaphragm region 20b and the peripheral region 20c, and the peripheral region 20c has a larger heat capacity than the diaphragm region 20b, the heat transferred from the diaphragm region 20b via the thermoelectric element 22 is the peripheral region. Even if it is transmitted to 20c, this can prevent the temperature of the peripheral region 20c from rapidly rising.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採ることができる。
例えば上記実施形態では、1つの熱電素子22を用いて測温素子21の温度を調節するものを示したが、複数の熱電素子を用いるようにしてもよい。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, As long as it belongs to the technical scope of this invention, a various form can be taken.
For example, in the above-described embodiment, the one in which the temperature of the temperature measuring element 21 is adjusted using one thermoelectric element 22 is shown, but a plurality of thermoelectric elements may be used.

例えば図5(a)に示すように、温度調節機能付き鏡100は、1つの測温素子101と、4つの熱電素子111,112,113,114と、測温素子101と熱電素子111〜114を支持する基板121とを備える。なお、熱電素子111は第1電極131と第2電極141を備え、同様に、熱電素子112,113,114はそれぞれ第1電極132,133,134と第2電極142,143,144を備える。   For example, as shown in FIG. 5A, the mirror 100 with a temperature adjusting function includes one temperature measuring element 101, four thermoelectric elements 111, 112, 113, and 114, a temperature measuring element 101, and thermoelectric elements 111 to 114. And a substrate 121 that supports the substrate. The thermoelectric element 111 includes a first electrode 131 and a second electrode 141. Similarly, the thermoelectric elements 112, 113, and 114 include a first electrode 132, 133, and 134 and a second electrode 142, 143, and 144, respectively.

そして、第1電極131と第2電極141との間で熱電素子111を介して電流が流れるように第1電極131と第2電極141を電流源151に配線する。同様に、第1電極132,133,134と第2電極142,143,144との間で熱電素子112,113,114を介して電流が流れるように第1電極132,133,134と第2電極142,143,144を電流源151に配線する。   Then, the first electrode 131 and the second electrode 141 are wired to the current source 151 so that a current flows between the first electrode 131 and the second electrode 141 via the thermoelectric element 111. Similarly, the first electrodes 132, 133, 134 and the second electrodes are connected so that current flows between the first electrodes 132, 133, 134 and the second electrodes 142, 143, 144 via the thermoelectric elements 112, 113, 114. The electrodes 142, 143, and 144 are wired to the current source 151.

更に、測温素子101と第1電極131とが隣り合うように熱電素子111を配置し、第2電極141と第1電極132が隣り合うように熱電素子112を配置し、第2電極142と第1電極133が隣り合うように熱電素子113を配置し、第2電極143と第1電極134が隣り合うように熱電素子114を配置される。   Further, the thermoelectric element 111 is arranged so that the temperature measuring element 101 and the first electrode 131 are adjacent to each other, the thermoelectric element 112 is arranged so that the second electrode 141 and the first electrode 132 are adjacent to each other, and the second electrode 142 The thermoelectric elements 113 are arranged so that the first electrodes 133 are adjacent to each other, and the thermoelectric elements 114 are arranged so that the second electrodes 143 and the first electrodes 134 are adjacent to each other.

これにより、測温素子101を基準とした熱電素子111,112,113,114を介する熱移動方向(図5(a)の矢印H1〜H5を参照)が同じになるように(矢印H1〜H5は、測温素子101から熱が出て行く方向を示している)、熱電素子111,112,113,114が直列に連なるように配置されるとともに、熱電素子111が測温素子101と隣接して配置される。   Thereby, the heat transfer directions (see arrows H1 to H5 in FIG. 5A) through the thermoelectric elements 111, 112, 113, and 114 with reference to the temperature measuring element 101 are the same (arrows H1 to H5). Indicates the direction in which heat is output from the temperature measuring element 101), the thermoelectric elements 111, 112, 113, and 114 are arranged in series, and the thermoelectric element 111 is adjacent to the temperature measuring element 101. Arranged.

このように熱電素子を配置することにより、或る熱電素子(例えば熱電素子111)が移動させた熱を、その後、熱拡散による移動よりも速く、この熱電素子に隣接された別の熱電素子(例えば熱電素子112)により更に移動させる。このため、1つの熱電素子を用いて、測温素子21を加熱または冷却する場合よりも、測温素子21から熱を移動させる速度を向上させることができる。   By arranging the thermoelectric element in this way, the heat transferred by a certain thermoelectric element (for example, the thermoelectric element 111) is then faster than the movement by thermal diffusion, and another thermoelectric element adjacent to this thermoelectric element ( For example, it is further moved by the thermoelectric element 112). For this reason, the speed at which heat is transferred from the temperature measuring element 21 can be improved as compared with the case where the temperature measuring element 21 is heated or cooled using one thermoelectric element.

或いは、図5(b)に示すように、温度調節機能付き鏡200は、1つの測温素子101と、4つの熱電素子111,112,113,114と、測温素子101と熱電素子111〜114を支持する基板122とを備える。そして、熱電素子111,112,113,114は、それぞれ異なる位置で、測温素子101と第1電極131,132,133,134が隣り合うように配置される。   Or as shown in FIG.5 (b), the mirror 200 with a temperature control function is the one temperature measuring element 101, the four thermoelectric elements 111,112,113,114, the temperature measuring element 101, and the thermoelectric elements 111-. And a substrate 122 that supports 114. The thermoelectric elements 111, 112, 113, and 114 are arranged at different positions so that the temperature measuring element 101 and the first electrodes 131, 132, 133, and 134 are adjacent to each other.

これにより、測温素子101に対してそれぞれ異なる位置で、測温素子101を基準とした熱電素子を介する熱移動方向(図5(b)の矢印H11〜H18を参照)が同じになるように(矢印H11〜H18は、測温素子101から熱が出て行く方向を示している)、測温素子101に対してそれぞれ隣接して配置される。   Thereby, the heat transfer directions (see arrows H11 to H18 in FIG. 5B) are the same at different positions with respect to the temperature measuring element 101 via the thermoelectric element. (Arrows H <b> 11 to H <b> 18 indicate directions in which heat is emitted from the temperature measuring element 101), and are arranged adjacent to the temperature measuring element 101.

このように熱電素子を配置することにより、複数の熱電素子が1つの測温素子101から同時に熱を移動させる。このため、1つの熱電素子を用いて、測温素子101を加熱または冷却する場合よりも、単位時間当たりに測温素子101から熱を移動させる量を多くすることができる。   By arranging the thermoelectric elements in this way, a plurality of thermoelectric elements move heat from one temperature measuring element 101 simultaneously. For this reason, the amount of heat transferred from the temperature measuring element 101 per unit time can be increased as compared with the case where the temperature measuring element 101 is heated or cooled using one thermoelectric element.

また上記実施形態では、不透明材料であるシリコンで構成された基板20を用いた温度調節機能付き鏡2に光を照射し、温度調節機能付き鏡2で反射した光を受光することにより露点を測定する露点計1を示したが、図6(a)に示すように、透明材料を用いた基板301上に測温素子21及び熱電素子22を形成した温度調節機能付き鏡300を備え、温度調節機能付き鏡300の裏面側から測温素子21に向けて光L31を照射し、測温素子21を透過した光L32を受光することにより露点を測定するようにしてもよい。   In the above embodiment, the dew point is measured by irradiating the mirror 2 with temperature control function using the substrate 20 made of silicon, which is an opaque material, and receiving the light reflected by the mirror 2 with temperature control function. The dew point meter 1 is shown. As shown in FIG. 6A, a temperature adjusting element 300 and a thermoelectric element 22 are formed on a substrate 301 made of a transparent material, and the temperature adjusting function 300 is provided. You may make it measure a dew point by irradiating the light L31 toward the temperature measuring element 21 from the back surface side of the mirror 300 with a function, and receiving the light L32 which permeate | transmitted the temperature measuring element 21. FIG.

また上記実施形態では、測温素子21及び熱電素子22が同一平面上に配置される温度調節機能付き鏡2を備える露点計1を示したが、図6(b)に示すように、基板401上に熱電素子422を配置し、更に熱電素子422の上に測温素子421を配置することにより、基板401の厚さ方向に熱を移動させる(図6(b)の矢印H41を参照)ようにした温度調節機能付き鏡400を備え、温度調節機能付き鏡400の表面側から測温素子421に向けて光L41を照射し、測温素子421で反射した光L42を受光することにより露点を測定するようにしてもよい。   Moreover, in the said embodiment, although the dew point meter 1 provided with the mirror 2 with the temperature control function in which the temperature measuring element 21 and the thermoelectric element 22 are arrange | positioned on the same plane was shown, as shown in FIG.6 (b), board | substrate 401 is shown. The thermoelectric element 422 is disposed on the thermoelectric element 422, and the temperature measuring element 421 is disposed on the thermoelectric element 422, so that heat is moved in the thickness direction of the substrate 401 (see arrow H41 in FIG. 6B). The temperature-adjusting mirror 400 is provided, the light L41 is irradiated from the surface side of the temperature-adjusting mirror 400 toward the temperature measuring element 421, and the light L42 reflected by the temperature measuring element 421 is received, thereby setting the dew point. You may make it measure.

また上記実施形態では、温度調節機能付き鏡2の上方に発光素子11と受光素子12が配置される露点計1を示したが、図7(a)に示すように、基板501上に発光素子511と受光素子512と測温素子521と熱電素子522を一体形成し、発光素子511から測温素子521に向けて光L51を照射し、測温素子521で反射した光L52を受光素子512で受光することにより露点を測定するようにしてもよい。   Moreover, in the said embodiment, although the dew point meter 1 by which the light emitting element 11 and the light receiving element 12 are arrange | positioned above the mirror 2 with a temperature control function was shown, as shown to Fig.7 (a), a light emitting element is provided on the board | substrate 501. 511, a light receiving element 512, a temperature measuring element 521, and a thermoelectric element 522 are integrally formed, and light L51 is irradiated from the light emitting element 511 toward the temperature measuring element 521, and the light L52 reflected by the temperature measuring element 521 is reflected by the light receiving element 512. The dew point may be measured by receiving light.

また上記実施形態では、制御回路50から電流を出力することにより発光素子11を発光させるとともに、受光素子12からの電気信号を制御回路50に入力することにより反射光の強度を検出して露点を測定する露点計1を示したが、図7(b)に示すように、光ファイバー613により外部から導かれた光L61を発光部611から温度調節機能付き鏡2に向けて照射するとともに、温度調節機能付き鏡2で反射した光L62を受光部612で受光し、更に、受光部612で受光した光L62を光ファイバー614により外部へ導くことによって、露点を測定するようにしてもよい。   In the above embodiment, the light emitting element 11 is caused to emit light by outputting a current from the control circuit 50, and the dew point is detected by detecting the intensity of the reflected light by inputting an electric signal from the light receiving element 12 to the control circuit 50. Although the dew point meter 1 to be measured is shown, as shown in FIG. 7 (b), the light L61 guided from the outside by the optical fiber 613 is irradiated from the light emitting unit 611 toward the mirror 2 with a temperature adjusting function, and the temperature is adjusted. The dew point may be measured by receiving the light L62 reflected by the functional mirror 2 by the light receiving unit 612 and guiding the light L62 received by the light receiving unit 612 to the outside through the optical fiber 614.

また上記実施形態では、温度調節機能付き鏡2を用いて露点を測定する露点計1を示した。しかし、露点計1で測定された露点における飽和水蒸気量と、被測定気体の温度における飽和水蒸気量とに基づいて、被測定気体の湿度を演算する処理を制御回路50のCPU51が行うことによって、湿度センサとして用いるようにしてもよい。この場合に、CPU51は、本発明の湿度演算手段に相当する。   Moreover, in the said embodiment, the dew point meter 1 which measures a dew point using the mirror 2 with a temperature control function was shown. However, the CPU 51 of the control circuit 50 performs a process of calculating the humidity of the gas to be measured based on the saturated water vapor amount at the dew point measured by the dew point meter 1 and the saturated water vapor amount at the temperature of the gas to be measured. It may be used as a humidity sensor. In this case, the CPU 51 corresponds to the humidity calculation means of the present invention.

露点計1の概略構成を示す側面図である。1 is a side view showing a schematic configuration of a dew point meter 1. FIG. 温度調節機能付き鏡2の概略構成を示す平面図である。It is a top view which shows schematic structure of the mirror 2 with a temperature control function. 露点計1の電気的構成を示すブロック図である。2 is a block diagram showing an electrical configuration of the dew point meter 1. FIG. 露点計1の測定タイミングを示すチャートである。3 is a chart showing the measurement timing of the dew point meter 1. 温度調節機能付き鏡100,200の概略構成を示す平面図である。It is a top view which shows schematic structure of the mirrors 100 and 200 with a temperature control function. 温度調節機能付き鏡300,400の概略構成を示す平面図である。It is a top view which shows schematic structure of the mirrors 300 and 400 with a temperature control function. 別の実施形態の露点計の概略構成を示す側面図である。It is a side view which shows schematic structure of the dew point meter of another embodiment.

符号の説明Explanation of symbols

1…露点計、2,100,200,300,400…温度調節機能付き鏡、3…ケーブル群、4…発光・受光部、5…筺体、11,511…発光素子、12,512…受光素子、13〜15…遮光壁、16…支持部、20,121,122,301,401,501…基板、20a…凹部、20b…ダイヤフラム領域、20c…周縁領域、21,101,421,521…測温素子、22,111〜114,422,522…熱電素子、23…温調電極、24…非温調電極、25〜27…配線、31,32…熱電素子用ケーブル、33,34…測温素子用ケーブル、41,42…開口部、43…通気フィルタ、44…樹脂、50…制御回路、51…CPU、52,55…電流出力回路、53…電流入力回路、54…抵抗入力回路、56…A/Dコンバータ、57…D/Aコンバータ、611…発光部、612…受光部、613,614…光ファイバー   DESCRIPTION OF SYMBOLS 1 ... Dew point meter, 2,100,200,300,400 ... Temperature control mirror, 3 ... Cable group, 4 ... Light emitting / receiving part, 5 ... Housing, 11,511 ... Light emitting element, 12,512 ... Light receiving element , 13 to 15: Light shielding wall, 16: Supporting part, 20, 121, 122, 301, 401, 501 ... Substrate, 20a ... Recess, 20b ... Diaphragm area, 20c ... Peripheral area, 21, 101, 421, 521 ... Measurement Temperature element 22, 111-114, 422, 522 ... Thermoelectric element, 23 ... Temperature control electrode, 24 ... Non-temperature control electrode, 25-27 ... Wiring, 31, 32 ... Cable for thermoelectric element, 33, 34 ... Temperature measurement Element cable, 41, 42 ... opening, 43 ... vent filter, 44 ... resin, 50 ... control circuit, 51 ... CPU, 52, 55 ... current output circuit, 53 ... current input circuit, 54 ... resistance input circuit, 56 ... A / Converter, 57 ... D / A converter, 611 ... light-emitting portion, 612 ... receiving portion, 613 and 614 ... optical fiber

Claims (11)

鏡面の温度を調節する機能を有する温度調節機能付き鏡であって、
基板の面上に薄膜形成された熱電素子と、
前記基板の面上または前記熱電素子上に薄膜形成された測温素子とを備え、
前記熱電素子は、前記測温素子を加熱または冷却し、
前記測温素子の表面が前記鏡面として利用される
ことを特徴とする温度調節機能付き鏡。
A mirror with a temperature adjustment function having a function of adjusting the temperature of the mirror surface,
A thermoelectric element formed in a thin film on the surface of the substrate;
A temperature measuring element formed in a thin film on the surface of the substrate or on the thermoelectric element;
The thermoelectric element heats or cools the temperature measuring element,
A mirror with a temperature control function, wherein the surface of the temperature measuring element is used as the mirror surface.
複数の前記熱電素子を有し、
複数の前記熱電素子の少なくとも一部は、
直列に連なるように配置されるとともに、前記測温素子と隣接する
ことを特徴とする請求項1に記載の温度調節機能付き鏡。
A plurality of the thermoelectric elements;
At least some of the plurality of thermoelectric elements are:
The mirror with a temperature adjusting function according to claim 1, wherein the mirror is arranged so as to be connected in series and is adjacent to the temperature measuring element.
複数の前記熱電素子を有し、
複数の前記熱電素子の少なくとも一部は、
前記測温素子に対してそれぞれ隣接して配置される
ことを特徴とする請求項1または請求項2に記載の温度調節機能付き鏡。
A plurality of the thermoelectric elements;
At least some of the plurality of thermoelectric elements are:
The mirror with a temperature adjusting function according to claim 1, wherein the mirror is disposed adjacent to each of the temperature measuring elements.
前記測温素子は、前記基板の面上に薄膜形成される
ことを特徴とする請求項1〜請求項3の何れかに記載の温度調節機能付き鏡。
The mirror with temperature control function according to any one of claims 1 to 3, wherein the temperature measuring element is formed as a thin film on the surface of the substrate.
前記基板は、前記測温素子及び前記熱電素子が形成されている前記面とは反対側の面において凹部が形成されたダイヤフラム領域と、このダイヤフラム領域以外の領域である周縁領域とを有し、
前記測温素子は、前記ダイヤフラム領域内に配置され、
前記熱電素子は、前記ダイヤフラム領域と前記周縁領域に跨って配置される
ことを特徴とする請求項1〜請求項4の何れかに記載の温度調節機能付き鏡。
The substrate has a diaphragm region in which a concave portion is formed on a surface opposite to the surface on which the temperature measuring element and the thermoelectric element are formed, and a peripheral region that is a region other than the diaphragm region,
The temperature measuring element is disposed in the diaphragm region,
The said thermoelectric element is arrange | positioned ranging over the said diaphragm area | region and the said peripheral area | region. The mirror with the temperature control function in any one of Claims 1-4 characterized by the above-mentioned.
前記基板は、不透明材料により構成されていることを特徴とする請求項1〜請求項5の何れかに記載の温度調節機能付き鏡。   6. The mirror with a temperature adjusting function according to claim 1, wherein the substrate is made of an opaque material. 発光素子と、受光素子と、請求項6に記載の温度調節機能付き鏡とを備え、
前記発光素子及び前記受光素子は、前記発光素子が発する光を、請求項6に記載の温度調節機能付き鏡に反射させて、この反射光を前記受光素子が受光するように配置され、
前記発光素子から発光させた状態で、前記熱電素子により前記測温素子を冷却して、前記受光素子により受光された光の強度が低下した時に、前記測温素子により測定された温度を露点として演算する露点演算手段を備える
ことを特徴とする露点計。
A light-emitting element, a light-receiving element, and the temperature-adjusting mirror according to claim 6,
The light emitting element and the light receiving element are arranged so that the light emitted from the light emitting element is reflected by a mirror with a temperature adjusting function according to claim 6 so that the light receiving element receives the reflected light.
When the temperature measuring element is cooled by the thermoelectric element in a state where light is emitted from the light emitting element, and the intensity of light received by the light receiving element is reduced, the temperature measured by the temperature measuring element is used as a dew point. A dew point meter comprising a dew point calculating means for calculating.
発光素子と、受光素子と、請求項6に記載の温度調節機能付き鏡とを備え、
前記発光素子及び前記受光素子は、前記発光素子が発する光を、請求項6に記載の温度調節機能付き鏡に反射させて、この反射光を前記受光素子が受光するように配置され、
前記発光素子から発光させた状態で、前記熱電素子により前記測温素子を冷却して、前記受光素子により受光された光の強度が低下した時に、前記測温素子により測定された温度を露点として演算する露点演算手段と、
この露点における飽和水蒸気量と、被測定気体の温度における飽和水蒸気量とに基づいて、被測定気体の湿度を演算する湿度演算手段とを備える
ことを特徴とする湿度センサ。
A light-emitting element, a light-receiving element, and the temperature-adjusting mirror according to claim 6,
The light emitting element and the light receiving element are arranged so that the light emitted from the light emitting element is reflected by a mirror with a temperature adjusting function according to claim 6 so that the light receiving element receives the reflected light.
When the temperature measuring element is cooled by the thermoelectric element in a state where light is emitted from the light emitting element, and the intensity of light received by the light receiving element is reduced, the temperature measured by the temperature measuring element is used as a dew point. Dew point calculating means for calculating,
A humidity sensor comprising: a humidity calculating means for calculating the humidity of the gas to be measured based on the saturated water vapor amount at the dew point and the saturated water vapor amount at the temperature of the gas to be measured.
前記基板は、透明材料により構成されていることを特徴とする請求項1〜請求項5の何れかに記載の温度調節機能付き鏡。   6. The mirror with a temperature adjusting function according to claim 1, wherein the substrate is made of a transparent material. 発光素子と、受光素子と、請求項9に記載の温度調節機能付き鏡とを備え、
前記発光素子及び前記受光素子は、
前記発光素子が発する光を、請求項9に記載の温度調節機能付き鏡に透過させて、この透過光を前記受光素子が受光するように配置され、
前記発光素子から発光させた状態で、前記熱電素子により前記測温素子を冷却して、前記受光素子により受光された光の強度が低下した時に、前記測温素子により測定された温度を露点として演算する露点演算手段を備える
ことを特徴とする露点計。
A light emitting element, a light receiving element, and a mirror with a temperature control function according to claim 9,
The light emitting element and the light receiving element are:
The light emitted from the light emitting element is transmitted through the mirror with a temperature adjusting function according to claim 9, and the transmitted light is arranged to be received by the light receiving element.
When the temperature measuring element is cooled by the thermoelectric element in a state where light is emitted from the light emitting element, and the intensity of light received by the light receiving element is reduced, the temperature measured by the temperature measuring element is used as a dew point. A dew point meter comprising a dew point calculating means for calculating.
発光素子と、受光素子と、請求項9に記載の温度調節機能付き鏡とを備え、
前記発光素子及び前記受光素子は、
前記発光素子が発する光を、請求項9に記載の温度調節機能付き鏡に透過させて、この透過光を前記受光素子が受光するように配置され、
前記発光素子から発光させた状態で、前記熱電素子により前記測温素子を冷却して、前記受光素子により受光された光の強度が低下した時に、前記測温素子により測定された温度を露点として演算する露点演算手段と、
この露点における飽和水蒸気量と、被測定気体の温度における飽和水蒸気量とに基づいて、被測定気体の湿度を演算する湿度演算手段とを備える
ことを特徴とする湿度センサ。
A light emitting element, a light receiving element, and a mirror with a temperature control function according to claim 9,
The light emitting element and the light receiving element are:
The light emitted from the light emitting element is transmitted through the mirror with a temperature adjusting function according to claim 9, and the transmitted light is arranged to be received by the light receiving element.
When the temperature measuring element is cooled by the thermoelectric element in a state where light is emitted from the light emitting element, and the intensity of light received by the light receiving element is reduced, the temperature measured by the temperature measuring element is used as a dew point. Dew point calculating means for calculating,
A humidity sensor comprising: a humidity calculating means for calculating the humidity of the gas to be measured based on the saturated water vapor amount at the dew point and the saturated water vapor amount at the temperature of the gas to be measured.
JP2007218526A 2007-08-24 2007-08-24 Temperature control mirror, dew point meter, and humidity sensor Expired - Fee Related JP5096076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218526A JP5096076B2 (en) 2007-08-24 2007-08-24 Temperature control mirror, dew point meter, and humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218526A JP5096076B2 (en) 2007-08-24 2007-08-24 Temperature control mirror, dew point meter, and humidity sensor

Publications (2)

Publication Number Publication Date
JP2009050376A true JP2009050376A (en) 2009-03-12
JP5096076B2 JP5096076B2 (en) 2012-12-12

Family

ID=40502006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218526A Expired - Fee Related JP5096076B2 (en) 2007-08-24 2007-08-24 Temperature control mirror, dew point meter, and humidity sensor

Country Status (1)

Country Link
JP (1) JP5096076B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008753A1 (en) * 2011-07-13 2013-01-17 ステラグリーン株式会社 Humidity sensor
WO2016040482A1 (en) * 2014-09-12 2016-03-17 Honeywell International Inc. Humidity sensor
US10585058B2 (en) 2016-05-13 2020-03-10 Honeywell International Inc. FET based humidity sensor with barrier layer protecting gate dielectric
US10677747B2 (en) 2015-02-17 2020-06-09 Honeywell International Inc. Humidity sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124861A (en) * 1984-11-22 1986-06-12 Yamatake Honeywell Co Ltd Humidity detection element
JP2007093269A (en) * 2005-09-27 2007-04-12 Yamatake Corp Moisture detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124861A (en) * 1984-11-22 1986-06-12 Yamatake Honeywell Co Ltd Humidity detection element
JP2007093269A (en) * 2005-09-27 2007-04-12 Yamatake Corp Moisture detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008753A1 (en) * 2011-07-13 2013-01-17 ステラグリーン株式会社 Humidity sensor
WO2016040482A1 (en) * 2014-09-12 2016-03-17 Honeywell International Inc. Humidity sensor
US9513242B2 (en) 2014-09-12 2016-12-06 Honeywell International Inc. Humidity sensor
US10677747B2 (en) 2015-02-17 2020-06-09 Honeywell International Inc. Humidity sensor
US10585058B2 (en) 2016-05-13 2020-03-10 Honeywell International Inc. FET based humidity sensor with barrier layer protecting gate dielectric

Also Published As

Publication number Publication date
JP5096076B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
WO2015088024A1 (en) Internal temperature sensor
KR100539205B1 (en) Measuring tip for a radiation thermometer
JP6225766B2 (en) Internal temperature measurement method and internal temperature measurement device
JP5096076B2 (en) Temperature control mirror, dew point meter, and humidity sensor
JP2003344156A (en) Infrared sensor and electronic apparatus using the same
JP2008145133A (en) Radiation thermometer
US20180024010A1 (en) Internal temperature measuring apparatus and sensor package
JP6706871B2 (en) Flow sensor
JP2016170014A (en) Temperature difference measurement device
WO2016067952A1 (en) Internal temperature measurement device
JP6398810B2 (en) Internal temperature measuring device and temperature difference measuring module
JP2009002739A (en) Radiation thermometer
JP5079723B2 (en) Humidity sensor
JP2009264744A (en) Measuring instrument of surface plasmon resonance
US7069768B2 (en) Method and apparatus for eliminating and compensating thermal transients in gas analyzer
JP2011058929A (en) Infrared sensor
JP2013228269A (en) Heat flux measuring apparatus and heat flux measuring method
KR101204885B1 (en) The apparatus and method for measurement of generated heat from LED
US7954993B2 (en) Measuring apparatus comprising a Peltier-Seebeck detector
JP2012028578A (en) Light receiving sensor and liquid sample analyzer
JP5985909B2 (en) Gas sensor
JP2009047591A (en) Angular velocity sensor and its manufacturing method
JP6428398B2 (en) Internal temperature measuring device and thermal resistance measuring device
JP4490580B2 (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees