[go: up one dir, main page]

JP2009046402A - Hall conductive cholesteric liquid crystal compounds - Google Patents

Hall conductive cholesteric liquid crystal compounds Download PDF

Info

Publication number
JP2009046402A
JP2009046402A JP2007211446A JP2007211446A JP2009046402A JP 2009046402 A JP2009046402 A JP 2009046402A JP 2007211446 A JP2007211446 A JP 2007211446A JP 2007211446 A JP2007211446 A JP 2007211446A JP 2009046402 A JP2009046402 A JP 2009046402A
Authority
JP
Japan
Prior art keywords
liquid crystal
cholesteric liquid
thin film
crystal compound
cholesteric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007211446A
Other languages
Japanese (ja)
Other versions
JP4997598B2 (en
Inventor
Masahiro Funahashi
正浩 舟橋
Nobuyuki Tamaoki
信之 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007211446A priority Critical patent/JP4997598B2/en
Publication of JP2009046402A publication Critical patent/JP2009046402A/en
Application granted granted Critical
Publication of JP4997598B2 publication Critical patent/JP4997598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

【課題】室温付近で安定なコレステリック薄膜が形成可能であり、かつ、可視光波長域に選択反射バンドを有し、有機半導体としての電気伝導性を示すとともに、光学純度が高く、しかも光学分割等の煩雑な調製工程を経ることなく、低廉なコストで得られる、電気励起による円偏光発光素子やレーザー媒体として有用な新規なコレステリック液晶化合物およびこのものを含有する薄膜更にはこの薄膜を利用した蛍光体や発光素子を提供する。
【解決手段】下記一般式(1)で示されるコレステリック液晶化合物

(式中、Rは炭素数1〜6の直鎖アルキル基を示す。式中、nは1〜8の整数である。)
【選択図】なし
A stable cholesteric thin film can be formed near room temperature, has a selective reflection band in the visible light wavelength region, exhibits electrical conductivity as an organic semiconductor, has high optical purity, and has optical resolution. A novel cholesteric liquid crystal compound useful as an electrically excited circularly polarized light-emitting element or laser medium, and a thin film containing the same, and further using this thin film can be obtained at a low cost without going through the complicated preparation process of A body and a light emitting element are provided.
A cholesteric liquid crystal compound represented by the following general formula (1)

(In the formula, R represents a linear alkyl group having 1 to 6 carbon atoms. In the formula, n is an integer of 1 to 8.)
[Selection figure] None

Description

本発明は室温で安定なガラス性コレステリック相を示し、かつ、良好なホール伝導性を示すコレステリック液晶化合物およびこれを用いた発光材料に関する。   The present invention relates to a cholesteric liquid crystal compound exhibiting a glassy cholesteric phase which is stable at room temperature and exhibiting good hole conductivity, and a light emitting material using the same.

近年、実用レベルに達した有機LEDを始めとして、薄膜トランジスター、太陽電池など有機半導体の光電子デバイスへの展開が盛んに検討されている。有機半導体のメリットとしては、一般に安価であり薄膜形成が容易であることが挙げられ、その柔軟性を利用して高分子基板上にデバイスを構築するプラスティックエレクトロニクスへの試みが為されている。   In recent years, development of organic semiconductors such as thin-film transistors and solar cells in optoelectronic devices such as organic LEDs that have reached a practical level has been actively studied. The merit of the organic semiconductor is that it is generally inexpensive and easy to form a thin film, and attempts have been made for plastic electronics to construct a device on a polymer substrate using its flexibility.

液晶は液体的な流動性を持つため、液晶セルを利用する事により大面積の薄膜を容易に得ることができ、しかもその分子配向性や層状構造が機能発現の場になるため、従来にない高次の光電子機能を持った材料になることが期待される。   Since liquid crystals have liquid fluidity, a thin film with a large area can be easily obtained by using a liquid crystal cell, and its molecular orientation and layered structure become a place of function expression, which is unprecedented. It is expected to become a material with higher-order optoelectronic functions.

液晶材料の中でも、コレステリック液晶は光の波長程度の周期の螺旋構造を持ち、一方の円偏光を選択的に透過もしくは反射するため、可視光の選択反射による干渉色を利用した温度計や表示材料が検討されている。   Among liquid crystal materials, cholesteric liquid crystals have a helical structure with a period of about the wavelength of light, and selectively transmit or reflect one circularly polarized light. Therefore, thermometers and display materials that use interference colors due to selective reflection of visible light. Is being considered.

近年は、コレステリック液晶に色素を添加し、光励起による円偏光発光素子やレーザーへの応用が検討されている。このようなコレステリック液晶においては蛍光を発するクロモフォアが螺旋状に配列するため、選択反射バンドと蛍光波長が重なる領域では、蛍光はコレステリック液晶の螺旋のねじれを反映した円偏光になる。また、コレステリック相での周期構造は1次元のフォトニッククリスタルとみなすことができる。そのため、試料外部から入射した光に関しては、螺旋構造に一致する円偏光を選択的に反射する一方で、試料の内部での発光に対しては、螺旋周期に一致する波長の光を閉じ込めることができるため、レーザーの共振器として作用する(非特許文献1)。   In recent years, a dye is added to a cholesteric liquid crystal, and its application to a circularly polarized light emitting device or a laser by photoexcitation has been studied. In such a cholesteric liquid crystal, the chromophores that emit fluorescence are arranged in a spiral, so that in the region where the selective reflection band and the fluorescence wavelength overlap, the fluorescence becomes circularly polarized light reflecting the twist of the spiral of the cholesteric liquid crystal. A periodic structure in the cholesteric phase can be regarded as a one-dimensional photonic crystal. For this reason, circularly polarized light that matches the helical structure is selectively reflected with respect to light incident from the outside of the sample, while light having a wavelength that matches the helical period can be confined for light emission inside the sample. Therefore, it acts as a laser resonator (Non-patent Document 1).

従来公知のコレステリック液晶は、電気的に不活性なコレステロール誘導体やキラリティーを持つ比較的低分子量の芳香族化合物であった。前者においては電気伝導に必要不可欠なπ電子共役系が含まれておらず、根本的に絶縁体であり、電子デバイスへ応用することはできない。後者においては、π電子共役系の広がりが小さいため、分子間の電荷移動が円滑に進行せず、不純物によるイオン伝導が優先して進行するという問題があった(非特許文献2)。   Conventionally known cholesteric liquid crystals have been a relatively low molecular weight aromatic compound having an electrically inactive cholesterol derivative or chirality. The former does not include a π-electron conjugated system that is indispensable for electric conduction, is fundamentally an insulator, and cannot be applied to electronic devices. In the latter, since the spread of the π-electron conjugated system is small, there is a problem that charge transfer between molecules does not proceed smoothly and ion conduction by impurities proceeds preferentially (Non-patent Document 2).

本発明者等は、大きなπ共役系を導入したコレステリック液晶において、分子間の分子軌道の重なりが大きくなることにより分子間の電荷移動が円滑に進行するようになり、コレステリック相においても電子伝導が実現できることを明らかにした(非特許文献3、4)。
さらに、室温付近で安定なコレステリック薄膜が形成可能であり、かつ、可視光波長域に選択反射バンドを有し、有機半導体としての電気伝導性を示す新規なコレステリック液晶化合物を開発した(非特許文献5)。
In the cholesteric liquid crystal in which a large π-conjugated system is introduced, the inventors of the present invention make the charge transfer between molecules proceed smoothly by increasing the overlap of molecular orbitals between the molecules, and the electron conduction also occurs in the cholesteric phase. It was clarified that this can be realized (Non-patent Documents 3 and 4).
Furthermore, a novel cholesteric liquid crystal compound that can form a stable cholesteric thin film near room temperature, has a selective reflection band in the visible light wavelength region, and exhibits electrical conductivity as an organic semiconductor has been developed (Non-Patent Document) Five).

このコレステリック液晶は電荷輸送部位として、オリゴチオフェンを、キラル部位としてビナフチルを含み、選択反射バンドを単量体型液晶製半導体との混合、あるいは、温度変化により変調可能であり、選択反射バンドと蛍光スペクトルが重なる範囲において円偏光蛍光を発する。
しかも、有機溶媒に良好な溶解性を示すため、スピンコート法やキャスト法による製膜が可能であった。この結果はコレステリック相の選択反射などのユニークな光学的な性質を電気伝導と組み合わせることにより、電気励起による有機半導体レーザーや円偏光発光可能な電界発光素子などの、従来にない新しいタイプの光電子デバイスを実現できる可能性を示す。
This cholesteric liquid crystal contains oligothiophene as a charge transport site and binaphthyl as a chiral site, and the selective reflection band can be modulated by mixing with a monomer-type liquid crystal semiconductor or by temperature change. Circularly polarized fluorescence is emitted in the range where the two overlap.
Moreover, in order to show good solubility in an organic solvent, film formation by a spin coating method or a casting method was possible. The result is a combination of unique optical properties such as selective reflection of the cholesteric phase with electrical conduction, which enables new types of optoelectronic devices such as organic semiconductor lasers and electroluminescent devices capable of emitting circularly polarized light. The possibility that can be realized.

S. Furumi and Y. Sakka, Adv. Mater., 18, 775 (2006).S. Furumi and Y. Sakka, Adv. Mater., 18, 775 (2006). K. Yoshino, N. Tanaka, and Y. Inuishi, Jpn. J. Appl. Phys., 15, 735 (1976).K. Yoshino, N. Tanaka, and Y. Inuishi, Jpn. J. Appl. Phys., 15, 735 (1976). M. Funahashi and N. Tamaoki, ChemPhysChem., 7, 1193-1197 (2006).M. Funahashi and N. Tamaoki, ChemPhysChem., 7, 1193-1197 (2006). M. Funahashi and N. Tamaoki, Chem. Mater., 19, 608 (2007).M. Funahashi and N. Tamaoki, Chem. Mater., 19, 608 (2007). 舟橋正浩、機能材料 2005年12月号 p.7Masahiro Funahashi, Functional Materials December 2005, p.7

本発明は、前記非特許文献5に記載のコレステリック液晶を更に改良、発展飛翔させたものであり、室温付近で安定なコレステリック薄膜が形成可能であり、かつ、可視光波長域に選択反射バンドを有し、有機半導体としての電気伝導性を示すとともに、光学純度が高く、しかも光学分割等の煩雑な調製工程を経ることなく、低廉なコストで得られる、電気励起による円偏光発光素子やレーザー媒体として有用な新規なコレステリック液晶化合物およびこのものを含有する薄膜更にはこの薄膜を利用した蛍光体や発光素子を提供することを目的とする。   The present invention is a further improvement and development of the cholesteric liquid crystal described in Non-Patent Document 5, which can form a stable cholesteric thin film near room temperature, and has a selective reflection band in the visible light wavelength region. A circularly polarized light-emitting element or laser medium by electrical excitation that is obtained at low cost without having to go through complicated preparation steps such as optical resolution while having high electrical purity as an organic semiconductor. It is an object of the present invention to provide a novel cholesteric liquid crystal compound useful as a thin film, a thin film containing the compound, and a phosphor and a light emitting device using the thin film.

本発明者は、円偏光発光可能な電界発光素子や電気励起による有機半導体レーザーとして有用なコレステッリク液晶化合物を鋭意検討した結果、安価に入手できる代表的なキラル天然物であるイソソルビドに大きなπ電子共役系をもつフェニルオリゴチオフェン部位を二個結合させたキラル二量体が室温付近で安定なコレステリック薄膜を形成でき、可視光の波長域に選択反射を示すこと、選択反射バンドと蛍光スペクトルが重なる領域で良好な品位の円偏光を発すること、および、良好なホール輸送性を示すことを知見し、本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉下記一般式(1)で示されるコレステリック液晶化合物
(式中、Rは炭素数1〜6の直鎖アルキル基を示す。式中、nは0〜2の整数である。)
〈2〉〈1〉に記載のコレステリック液晶化合物を含有する薄膜。
〈3〉〈1〉に記載のコレステリック液晶化合物を透明な一対の基板間に挟みコレステリック液晶性を示す温度から急冷却することに得られる〈2〉に記載の薄膜。
〈4〉〈1〉に記載のコレステリック液晶化合物を含有するコレステリック半導体薄膜。
〈5〉〈1〉に記載のコレステリック液晶化合物を含有するコレステリック薄膜蛍光体。
〈6〉〈1〉に記載のコレステリック液晶化合物を含有する電界発光素子。
As a result of intensive investigation of electroluminescent devices capable of emitting circularly polarized light and cholesteric liquid crystal compounds useful as organic semiconductor lasers by electrical excitation, the present inventors have found that large π electron conjugates to isosorbide, a representative chiral natural product that can be obtained at low cost. A chiral dimer formed by bonding two phenyl oligothiophene moieties with a system can form a stable cholesteric thin film near room temperature, exhibits selective reflection in the visible wavelength range, and a region where the selective reflection band and the fluorescence spectrum overlap Thus, the present inventors have found that it emits circularly polarized light of good quality and exhibits good hole transportability, and has completed the present invention.
That is, according to this application, the following invention is provided.
<1> Cholesteric liquid crystal compound represented by the following general formula (1)
(In the formula, R represents a linear alkyl group having 1 to 6 carbon atoms. In the formula, n is an integer of 0 to 2.)
<2> A thin film containing the cholesteric liquid crystal compound according to <1>.
<3> The thin film according to <2>, which is obtained by sandwiching the cholesteric liquid crystal compound according to <1> between a pair of transparent substrates and rapidly cooling from a temperature exhibiting cholesteric liquid crystallinity.
<4> A cholesteric semiconductor thin film containing the cholesteric liquid crystal compound according to <1>.
<5> A cholesteric thin film phosphor containing the cholesteric liquid crystal compound according to <1>.
<6> An electroluminescent device comprising the cholesteric liquid crystal compound according to <1>.

本発明に係る前記一般式(I)で示されるコレステリック液晶化合物は、光の波長程度の螺旋構造を持ちながら、電子伝導に基づく良好なホール移動度を示すことに加え、黄色の強い蛍光を示すことから、円偏光発光可能な蛍光体や、円偏光電界発光素子、有機半導体レーザーへの応用が期待されるものである。
また、本発明に係る前記一般式(I)で示されるコレステリック液晶化合物は室温付近で安定なガラス性コレステリック薄膜を形成することができる。そのため、電荷移動特性が均一で大面積の有機半導体素子および有機半導体装置、さらには有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス装置を形成することができる。
更に、本発明に係るコレステッリク液晶化合物は光学純度が高く、しかも光学分割等の煩雑な調製工程を経ることなく低廉なコストで得られる。
The cholesteric liquid crystal compound represented by the above general formula (I) according to the present invention exhibits a strong yellow mobility in addition to a good hole mobility based on electron conduction while having a helical structure of the wavelength of light. Therefore, application to phosphors capable of emitting circularly polarized light, circularly polarized electroluminescent elements, and organic semiconductor lasers is expected.
In addition, the cholesteric liquid crystal compound represented by the general formula (I) according to the present invention can form a glassy cholesteric thin film that is stable near room temperature. Therefore, an organic semiconductor element and an organic semiconductor device having uniform charge transfer characteristics and a large area, and further an organic electroluminescence element and an organic electroluminescence device can be formed.
Furthermore, the cholesteric liquid crystal compound according to the present invention has high optical purity and can be obtained at low cost without going through complicated preparation steps such as optical resolution.

本発明に係るコレステリック液晶化合物は、下記一般式(I)で表される。
(式中、Rは炭素数1〜6の直鎖アルキル基を示す。式中、nは0〜2の整数である。)
The cholesteric liquid crystal compound according to the present invention is represented by the following general formula (I).
(In the formula, R represents a linear alkyl group having 1 to 6 carbon atoms. In the formula, n is an integer of 0 to 2.)

上記一般式(I)において、Rは炭素数1〜6の直鎖アルキル基を示す。具体的には、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられるが、プロピル基が好ましい。   In the said general formula (I), R shows a C1-C6 linear alkyl group. Specific examples include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a propyl group is preferred.

nは0〜2の整数であり、好ましくは3以下である。   n is an integer of 0 to 2, preferably 3 or less.

本発明に係る一般式(I)で示されるコレステッリク液晶化合物は、たとえば、以下の方法によって合成できる。
クゥオーターチオフェン誘導体3(n=2)をTHF中、n-ブチルリチウムで処理しトリメチルホウ酸誘導と反応させたのち、2,2-ジメチル-1,3-プロパンジオールを作用させて得られたオリゴフェニルホウ酸エステル9と、ビス(p-ヨードフェニルオキシアルカノイロキシ)−イソソルビド12とを好ましくはPd(PPh3)4触媒、および、Na2CO3存在下、DME中で還流することにより得られる反応混合物をTHFで抽出し、溶媒を留去して得られた粗生成物をシリカゲル(展開溶媒:シクロヘキサン/THF)のカラムクロマトグラフィーで精製し、シクロヘキサンより再結晶することにより目的とするイソソルビド誘導体10が得られる。
この合成反応は、つぎの反応式で示される。なお、原料であるオリゴチオフェン誘導体は公知物質であり、たとえばM. Funahashi et al., Adv. Mater., 17, 594 (2005).に記載された方法で合成でき、また、ビス(p-ヨードフェニルオキシアルカノイロキシ)−イソソルビド12も、市販のイソソルビドから、日本化学会編第4版実験科学講座有機合成IV p.45に記載されている、ジシクロヘキシルカルバジイミドを用いた脱水縮合反応によって合成することができる。キラル原料のイソソルビドは天然物化合物であり、きわめて安価に入手できる。
The cholesteric liquid crystal compound represented by the general formula (I) according to the present invention can be synthesized, for example, by the following method.
Quarter thiophene derivative 3 (n = 2) obtained by treating with n-butyllithium in THF and reacting with trimethylboric acid induction, followed by the action of 2,2-dimethyl-1,3-propanediol By refluxing oligophenylborate 9 and bis (p-iodophenyloxyalkanoyloxy) -isosorbide 12 in DME, preferably in the presence of Pd (PPh 3 ) 4 catalyst and Na 2 CO 3 The reaction mixture obtained is extracted with THF, the solvent is distilled off, and the resulting crude product is purified by column chromatography on silica gel (developing solvent: cyclohexane / THF) and recrystallized from cyclohexane. Isosorbide derivative 10 is obtained.
This synthesis reaction is represented by the following reaction formula. The oligothiophene derivative as a raw material is a known substance and can be synthesized by the method described in, for example, M. Funahashi et al., Adv. Mater., 17, 594 (2005), and bis (p-iodo (Phenyloxyalkanoyloxy) -isosorbide 12 is also synthesized from commercially available isosorbide by a dehydration condensation reaction using dicyclohexylcarbadiimide described in Organic Chemistry IV, p. 45, edited by the Chemical Society of Japan, 4th edition. be able to. Isosorbide, a chiral raw material, is a natural product compound and can be obtained at a very low cost.

本発明に係る前記液晶化合物は、215℃以下でコレステリック相を示し、急冷した場合には70℃付近でガラス転移し、室温付近では、安定なガラス性コレステリック相を示す。更にコレステリック相において、電子伝導に基づく高いキャリア移動度、および、良好な蛍光性を示す。
すなわち、本発明で提供される液晶化合物は、光学活性なイソソルビド部位を有するため、液晶相においてコレステリック相特有の螺旋構造に基づくグランジャン組織やフィンガープリント組織を示すと共に、非対称な分子構造により結晶化が阻害される一方で、分子量が大きくなり、分子運動が抑制されるため、比較的高い温度でガラス転移し、室温付近では安定なガラス性コレステリック相を示す。この性質のため、本液晶材料を液晶セル中に注入して試料を作成して急冷することにより室温付近で安定なガラス性コレステリック薄膜を作製できる。この性質は、実用的な光・電子デバイスを室温付近で駆動する上で必要不可欠である。
また、π電子共役系が大で分子間のπ軌道の重なりの大きいオリゴチオフェン骨格を持ことにより電子伝導性が促進され、有機半導体としての電気伝導性を示す。具体的には、Time-of-Flight法により液晶相でのキャリア移動度を測定すると、正キャリアに関して、通常の有機アモルファス半導体と同程度の5X10-5cm2/Vsの値を示す。また、大きく広がったπ電子共役系を持つことから、コレステリック相において良好な蛍光性を示す。また、本物質は安価に入手できる天然物化合物イソソルビドをキラル部位としており、生産コストを大幅に低減できる。
The liquid crystal compound according to the present invention exhibits a cholesteric phase at 215 ° C. or lower, undergoes a glass transition around 70 ° C. when rapidly cooled, and exhibits a stable glassy cholesteric phase near room temperature. Further, in the cholesteric phase, it exhibits high carrier mobility based on electron conduction and good fluorescence.
That is, since the liquid crystal compound provided by the present invention has an optically active isosorbide moiety, the liquid crystal phase exhibits a Grandjan structure or a fingerprint structure based on a helical structure peculiar to the cholesteric phase in the liquid crystal phase and is crystallized by an asymmetric molecular structure. Is inhibited, but the molecular weight is increased and the molecular motion is suppressed, so that the glass transition occurs at a relatively high temperature, and a stable glassy cholesteric phase is exhibited near room temperature. Because of this property, a glassy cholesteric thin film that is stable at around room temperature can be produced by injecting the liquid crystal material into a liquid crystal cell to prepare a sample and quenching. This property is indispensable for driving a practical optical / electronic device near room temperature.
In addition, by having an oligothiophene skeleton having a large π-electron conjugated system and a large overlap of π orbitals between molecules, electronic conductivity is promoted, and electrical conductivity as an organic semiconductor is exhibited. Specifically, when the carrier mobility in the liquid crystal phase is measured by the Time-of-Flight method, the positive carrier shows a value of 5 × 10 −5 cm 2 / Vs, which is similar to that of a normal organic amorphous semiconductor. Moreover, since it has a π-electron conjugated system that spreads widely, it exhibits good fluorescence in the cholesteric phase. In addition, this substance uses the natural product compound isosorbide, which is available at low cost, as a chiral moiety, and can greatly reduce the production cost.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

参考例1(反応中間体の合成)
[クウォーターチオフェニルホウ酸エステル9(R=C3H7,n=2)の合成]
2−プロピル−3’’’−メチルクウォーターチオフェン8 3.0 g (7.0mmol)をTHF100mlに溶かし、-78℃において、n-ブチルリチウム 1.6 Mヘキサン溶液(5ml,8.0mmol)を滴下する。0℃に昇温して30分攪拌後、再度-78℃に冷却し、トリメチルホウ酸のTHF溶液(1.04g,10mmol/THF10ml)を5分かけて滴下する。徐々に室温まで昇温して30分攪拌の後、2,2-ジメチル-1,3-プロパンジオール(1.04g,10mmol)を加え、1時間攪拌する。その後、水を加えて、分液した後、THF層を硫酸ナトリウムで乾燥させる。溶媒を留去してシリカゲルカラムクロマトグラフィーにて精製し(展開溶媒シクロヘキサン/THF(3:1))、さらに、シクロヘキサン-THF混合溶媒から再結晶する。収量2.2g(4.5mmol,64%)。
Reference Example 1 (Synthesis of reaction intermediate)
[Synthesis of Quarterthiophenylborate 9 (R = C 3 H 7 , n = 2)]
2-propyl-3 ′ ″-methylquaterthiophene 83.0 g (7.0 mmol) is dissolved in THF 100 ml, and n-butyllithium 1.6 M hexane solution (5 ml, 8.0 mmol) is added dropwise at −78 ° C. The temperature is raised to 0 ° C. and stirred for 30 minutes, and then cooled again to −78 ° C., and a THF solution of trimethylboric acid (1.04 g, 10 mmol / THF 10 ml) is added dropwise over 5 minutes. After gradually warming to room temperature and stirring for 30 minutes, 2,2-dimethyl-1,3-propanediol (1.04 g, 10 mmol) is added and stirred for 1 hour. Then, after adding water and liquid-separating, a THF layer is dried with sodium sulfate. The solvent is distilled off and the residue is purified by silica gel column chromatography (developing solvent cyclohexane / THF (3: 1)), and further recrystallized from a cyclohexane-THF mixed solvent. Yield 2.2 g (4.5 mmol, 64%).

実施例1 [イソソルビド誘導体10(R=C3H7,n=2)の合成]
クウォーターチオフェニルホウ酸エステル9(0.50g,1.0mmol)、(S)-イソソルビドジ(p−ヨードフェニロキシ酪酸エステル)12(0.35g,0.5mmol)、Pd(PPh3)4 45mg(0.04mmol)をジメトキシエタン(DME)50mlに溶解し、10w%炭酸ナトリウム水溶液50mlを加え1時間還流する。やがて生成物が沈殿してくる。冷却後、水を加え、有機層を留去しろ過して沈殿を濾別する。得られた沈殿をTHFに溶かし、ろ過して不溶物を除いた後、濾液を濃縮する。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製する(展開溶媒はシクロヘキサン/THF混合溶媒)。シクロヘキサン/THF混合溶媒より再結晶することにより、橙色結晶0.28g(収率 40%)を得る(一般式(I)において、R:プロピル,n=2)
同様な方法で、一般式(1)において、R:n = mのものも合成される。
Example 1 [Synthesis of Isosorbide Derivative 10 (R = C 3 H 7 , n = 2)]
Quarterthiophenylborate 9 (0.50 g, 1.0 mmol), (S) -isosorbidodi (p-iodophenyloxybutyrate) 12 (0.35 g, 0.5 mmol), Pd (PPh 3 ) 4 45 mg (0.04 mmol) Is dissolved in 50 ml of dimethoxyethane (DME), 50 ml of a 10% aqueous sodium carbonate solution is added, and the mixture is refluxed for 1 hour. Eventually the product will precipitate. After cooling, water is added and the organic layer is distilled off and filtered to separate the precipitate. The obtained precipitate is dissolved in THF, filtered to remove insoluble matters, and the filtrate is concentrated. The resulting crude product is purified by silica gel column chromatography (developing solvent is cyclohexane / THF mixed solvent). Recrystallization from a cyclohexane / THF mixed solvent gives 0.28 g (yield 40%) of orange crystals (in general formula (I), R: propyl, n = 2)
In the same manner, a compound having R: n = m in the general formula (1) is also synthesized.

実施例2 [液晶相の同定、ガラス化温度の測定]
実施例1で得た液晶化合物10(R=C3H7, n= 2)の液晶相の同定を以下のようにして行った。
実施例1で得た液晶化合物を220℃に融解し、厚さ10μmの二枚のITO電極ガラス基板からなる液晶セルに毛管現象を利用して浸透させた。この液晶セルを120℃において偏光顕微鏡により光学組織を観察した。電場を印加しない場合にはプレーナー配向したコレステリック相に特有のGranjan組織が観測された。電場を100V以上印加しても分子の配向状態は変化しなかった。200℃以下においては、コレステリック相特有の選択反射が見られた。反射色は200℃で赤色、190℃で橙色、180℃で黄色、150℃で緑色、100℃で淡緑色であった。徐冷した試料は70℃付近で結晶化したが、各温度で急冷することに各温度での反射色を室温で固定することができた。冷却には金属板に試料を押し付けるだけで十分であり、液体窒素などの冷媒を使用する必要はなかった。
以上の結果から、実施例1で得られた液晶化合物は室温付近で安定なコレステリックガラス状態を示すものと判断された。
Example 2 [Identification of liquid crystal phase, measurement of vitrification temperature]
The liquid crystal phase of the liquid crystal compound 10 (R = C 3 H 7 , n = 2) obtained in Example 1 was identified as follows.
The liquid crystal compound obtained in Example 1 was melted at 220 ° C. and allowed to penetrate into a liquid crystal cell composed of two ITO electrode glass substrates having a thickness of 10 μm by utilizing capillary action. The optical structure of this liquid crystal cell was observed at 120 ° C. with a polarizing microscope. When no electric field was applied, a Granjan structure peculiar to the planar cholesteric phase was observed. Even when an electric field of 100 V or higher was applied, the molecular orientation did not change. Below 200 ° C., selective reflection specific to the cholesteric phase was observed. The reflected color was red at 200 ° C, orange at 190 ° C, yellow at 180 ° C, green at 150 ° C, and light green at 100 ° C. The slowly cooled sample crystallized at around 70 ° C., but the reflection color at each temperature could be fixed at room temperature by rapid cooling at each temperature. For cooling, it was sufficient to press the sample against the metal plate, and it was not necessary to use a refrigerant such as liquid nitrogen.
From the above results, it was determined that the liquid crystal compound obtained in Example 1 exhibited a stable cholesteric glass state near room temperature.

実施例3 [電荷輸送特性]
実施例1で得た液晶化合物10(R=C3H7, n= 2)の電荷輸送特性(キャリア移動特性)をTime-of-Flight法により測定した。
本法においては、光伝導性を示すサンドイッチ型の試料に直流電圧を印加し、パルスレーザーを照射することにより、試料の片側に光キャリアを発生させ、そのキャリアが試料中を走行する際に外部回路に誘起される変位電流(過渡光電流)の時間変化を測定する。光キャリアの走行により一定の電流が生じ、キャリアが対向電極に到達すると電流は0に減衰する。過渡光電流の減衰が始まる時間がキャリアは試料を走行するのに要した時間(トランジットタイム)に対応する。試料の厚さをd (cm)、印加電圧をV (volt)、トランジットタイムをtT とすると、移動度μ(cm2/Vs)は、
で表される。照射側電極を正にバイアスした場合には正キャリアの、負にバイアスした場合には負キャリアの移動度が求められる。
実施例2において作製した液晶セルをホットステージ上で120℃に加熱し、試料に電圧を印加しながら、パルスレーザー(Nd:YAGレーザー、THG:波長356nm、パルス幅1ns)を照射し、その際に誘起される変位電流をデジタルオシロスコープによって測定する。図2に照射側電極を正にバイアスした場合のコレステリック相での典型的な過渡光電流測定の測定結果を示す。本試料は良好な光伝導性を示すため、十分な強さの電流信号を得ることができた。電圧を変化させるとそれに対応して、減衰の始まる時間(トランジットタイムタイム)が変化しており、得られた過渡光電流がキャリアの走行に対応していることがわかる。正キャリアの移動度は室温において、5X10-5 cm2/Vsであり、一般に電界発光素子に用いられるホール輸送材料と同程度の値を示した。
Example 3 [Charge Transport Properties]
The charge transport property (carrier transfer property) of the liquid crystal compound 10 (R = C 3 H 7 , n = 2) obtained in Example 1 was measured by the Time-of-Flight method.
In this method, a photocarrier is generated on one side of a sample by applying a direct current voltage to a sandwich-type sample exhibiting photoconductivity and irradiating a pulse laser, and when the carrier travels through the sample, The time change of the displacement current (transient photocurrent) induced in the circuit is measured. A constant current is generated by the traveling of the optical carrier, and when the carrier reaches the counter electrode, the current is attenuated to zero. The time when the decay of the transient photocurrent starts corresponds to the time (transit time) required for the carrier to travel through the sample. When the thickness of the sample is d (cm), the applied voltage is V (volt), and the transit time is t T , the mobility μ (cm 2 / Vs) is
It is represented by When the irradiation side electrode is positively biased, the mobility of positive carriers is obtained, and when it is negatively biased, the mobility of negative carriers is obtained.
The liquid crystal cell produced in Example 2 was heated to 120 ° C. on a hot stage, and a pulse laser (Nd: YAG laser, THG: wavelength 356 nm, pulse width 1 ns) was applied while applying a voltage to the sample. Measure the displacement current induced by a digital oscilloscope. Fig. 2 shows the measurement results of a typical transient photocurrent measurement in the cholesteric phase when the irradiation side electrode is positively biased. Since this sample exhibited good photoconductivity, a sufficiently strong current signal could be obtained. When the voltage is changed, the decay start time (transit time) changes correspondingly, and it can be seen that the obtained transient photocurrent corresponds to the traveling of the carrier. The mobility of positive carriers is 5 × 10 −5 cm 2 / Vs at room temperature, which is similar to that of hole transport materials generally used for electroluminescent devices.

実施例4 [コレステリック液晶化合物の反射スペクトル]
実施例2において、液晶化合物10(R=C3H7,n=2)を用いて作製した液晶セルに白色光照射し、その反射スペクトルを測定した。液晶化合物10単独では螺旋ピッチが短すぎるため反射帯は紫外域にあるが、螺旋ピッチの長い液晶化合物13を添加することにより反射帯を可視域に移動させることができる。その結果を図2に示す。室温で混合比を変えることにより反射帯を赤から青緑まで変化させることができた。
Example 4 [Reflectance spectrum of cholesteric liquid crystal compound]
In Example 2, a liquid crystal cell produced using the liquid crystal compound 10 (R = C 3 H 7 , n = 2) was irradiated with white light, and its reflection spectrum was measured. The reflection band is in the ultraviolet region because the liquid crystal compound 10 alone is too short, but the reflection band can be moved to the visible region by adding the liquid crystal compound 13 having a long helical pitch. The result is shown in FIG. The reflection band could be changed from red to blue-green by changing the mixing ratio at room temperature.

実施例5 [コレステリック相での蛍光、および、円偏光発光]
実施例2において作製した液晶セルに120℃において水銀ランプの360nmの輝線を光学フィールターを通して照射し、その蛍光スペクトルを測定した。その結果を図3に示す。波長560nmと610nmにピークを持つ黄色の蛍光が観測された。
また、蛍光スペクトルを測定する際に、試料とプローブの間に1/4波長板と偏光子を配置してスペクトルを測定した。その結果を図3に示す。1/4波長板の角度により観察されるスペクトル強度が異なっていることから、試料の蛍光が円偏光であることがわかる。基板表面にポリイミドを塗布して配向状態の良い試料を作成した場合に、円偏光の二色比は最大で2:1に達した。
Example 5 [Fluorescence in cholesteric phase and circularly polarized light emission]
The liquid crystal cell produced in Example 2 was irradiated with a 360 nm emission line of a mercury lamp through an optical filter at 120 ° C., and the fluorescence spectrum was measured. The results are shown in FIG. Yellow fluorescence with peaks at wavelengths of 560 nm and 610 nm was observed.
Further, when measuring the fluorescence spectrum, the spectrum was measured by arranging a quarter-wave plate and a polarizer between the sample and the probe. The results are shown in FIG. Since the observed spectral intensity differs depending on the angle of the quarter-wave plate, it can be seen that the fluorescence of the sample is circularly polarized. When a sample having a good alignment state was prepared by applying polyimide to the substrate surface, the dichroic ratio of circularly polarized light reached 2: 1 at the maximum.

実施例6 [コレステリック液晶化合物の薄膜作成法]
実施例1で合成したコレステリック化合物10mgを加熱融解した後、表面にポリイミドを塗布しラビング処理した二枚の硝子板にはさみ、冷却することにより、薄膜を形成した。化合物10に化合物13を添加した場合には、添加量を変化させることにより、干渉色を赤から青緑まで変化させることができる。薄膜試料の写真を図4に示す。
Example 6 [Method for Preparing Thin Film of Cholesteric Liquid Crystal Compound]
After 10 mg of the cholesteric compound synthesized in Example 1 was melted by heating, a thin film was formed by sandwiching and cooling between two glass plates coated with polyimide and rubbed on the surface. When compound 13 is added to compound 10, the interference color can be changed from red to blue-green by changing the addition amount. A photograph of the thin film sample is shown in FIG.

実施例1で得たコレステリック液晶の電荷移動度を、対向電極基板対の試料構成にして、室温でTOF法によって測定したグラフである。It is the graph which made the charge mobility of the cholesteric liquid crystal obtained in Example 1 the sample structure of a counter electrode substrate pair, and measured it by the TOF method at room temperature. 実施例4で得たコレステリック液晶試料(10(R=C3H7,n=4)に13を添加して作製した薄膜試料の混合比を変化させた際の反射スペクトルである。It is a reflection spectrum when the mixing ratio of the thin film sample produced by adding 13 to the cholesteric liquid crystal sample (10 (R = C 3 H 7 , n = 4) obtained in Example 4 is changed. 実施例4で得たコレステリック液晶試料(10(R=C3H7,n=4)に13を7:3の比で添加して作製した薄膜試料の、右(R)または左(L)円偏光フィルターを通して測定した反射スペクトである。The right (R) or left (L) of the thin film sample prepared by adding 13 to the cholesteric liquid crystal sample (10 (R = C 3 H 7 , n = 4) obtained in Example 4 in a ratio of 7: 3. A reflection spectrum measured through a circular polarizing filter. 実施例5で得られたコレステリック液晶薄膜の室温での写真。4 is a room temperature photograph of the cholesteric liquid crystal thin film obtained in Example 5.

Claims (6)

下記一般式(1)で示されるコレステリック液晶化合物
(式中、Rは炭素数1〜6の直鎖アルキル基を示す。式中、nは0〜2の整数である。)
Cholesteric liquid crystal compound represented by the following general formula (1)
(In the formula, R represents a linear alkyl group having 1 to 6 carbon atoms. In the formula, n is an integer of 0 to 2.)
請求項1に記載のコレステリック液晶化合物を含有する薄膜。   A thin film containing the cholesteric liquid crystal compound according to claim 1. 請求項1に記載のコレステリック液晶化合物を透明な一対の基板間に挟みコレステリック液晶性を示す温度から急冷却することに得られる請求項2に記載の薄膜。   The thin film according to claim 2, which is obtained by sandwiching the cholesteric liquid crystal compound according to claim 1 between a pair of transparent substrates and rapidly cooling from a temperature exhibiting cholesteric liquid crystallinity. 請求項1に記載のコレステリック液晶化合物を含有するコレステリック半導体薄膜。   A cholesteric semiconductor thin film containing the cholesteric liquid crystal compound according to claim 1. 請求項1に記載のコレステリック液晶化合物を含有するコレステリック薄膜蛍光体。   A cholesteric thin film phosphor containing the cholesteric liquid crystal compound according to claim 1. 請求項1に記載のコレステリック液晶化合物を含有する電界発光素子。   2. An electroluminescent device comprising the cholesteric liquid crystal compound according to claim 1.
JP2007211446A 2007-08-14 2007-08-14 Hall conductive cholesteric liquid crystal compounds Expired - Fee Related JP4997598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211446A JP4997598B2 (en) 2007-08-14 2007-08-14 Hall conductive cholesteric liquid crystal compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211446A JP4997598B2 (en) 2007-08-14 2007-08-14 Hall conductive cholesteric liquid crystal compounds

Publications (2)

Publication Number Publication Date
JP2009046402A true JP2009046402A (en) 2009-03-05
JP4997598B2 JP4997598B2 (en) 2012-08-08

Family

ID=40498977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211446A Expired - Fee Related JP4997598B2 (en) 2007-08-14 2007-08-14 Hall conductive cholesteric liquid crystal compounds

Country Status (1)

Country Link
JP (1) JP4997598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388274B2 (en) 2011-12-16 2016-07-12 3M Innovative Properties Company Mercapto-containing bisanhydrohexitol derivatives and uses thereof
JP2019137823A (en) * 2018-02-15 2019-08-22 学校法人立命館 Composition for circularly polarized light emission
CN111418081A (en) * 2017-12-15 2020-07-14 默克专利有限公司 Preparation of organic functional material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613638A (en) * 1985-08-19 1986-09-23 Ici Americas Inc. Hindered phenolic compounds derived from hexides and stabilized compositions
JP2003137887A (en) * 2001-07-02 2003-05-14 Merck Patent Gmbh Chiral compound
WO2006022040A1 (en) * 2004-08-27 2006-03-02 National Institute Of Advanced Industrial Science And Technology 1,4-dithienylbenzene derivative
JP2007169178A (en) * 2005-12-20 2007-07-05 Asahi Glass Co Ltd Chiral agent, liquid crystal composition, polymer liquid crystal, diffraction component, and optical information recording regenerative apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613638A (en) * 1985-08-19 1986-09-23 Ici Americas Inc. Hindered phenolic compounds derived from hexides and stabilized compositions
JP2003137887A (en) * 2001-07-02 2003-05-14 Merck Patent Gmbh Chiral compound
WO2006022040A1 (en) * 2004-08-27 2006-03-02 National Institute Of Advanced Industrial Science And Technology 1,4-dithienylbenzene derivative
JP2007169178A (en) * 2005-12-20 2007-07-05 Asahi Glass Co Ltd Chiral agent, liquid crystal composition, polymer liquid crystal, diffraction component, and optical information recording regenerative apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388274B2 (en) 2011-12-16 2016-07-12 3M Innovative Properties Company Mercapto-containing bisanhydrohexitol derivatives and uses thereof
CN111418081A (en) * 2017-12-15 2020-07-14 默克专利有限公司 Preparation of organic functional material
JP2019137823A (en) * 2018-02-15 2019-08-22 学校法人立命館 Composition for circularly polarized light emission
JP7055348B2 (en) 2018-02-15 2022-04-18 学校法人立命館 Composition for circularly polarized light emission

Also Published As

Publication number Publication date
JP4997598B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Wang et al. Aqueous nanoaggregation-enhanced one-and two-photon fluorescence, crystalline J-aggregation-induced red shift, and amplified spontaneous emission of 9, 10-bis (p-dimethylaminostyryl) anthracene
Jadhav et al. Effect of end groups on mechanochromism and electroluminescence in tetraphenylethylene substituted phenanthroimidazoles
Qiu et al. Achieving purely organic room-temperature phosphorescence mediated by a host–guest charge transfer state
Zabulica et al. Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization
Liu et al. Multi-color solid-state luminescence of difluoroboron β-diketonate complexes bearing carbazole with mechanofluorochromism and thermofluorochromism
JP5071921B2 (en) Smectic liquid crystal compounds
Gupta et al. Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores
Khan et al. Mechanochromic Materials Based on Tetraphenylethylene-substituted phenothiazines: substituent-dependent hypsochromic and bathochromic switching of emission
Xu et al. Solid state emission enhancement of 9, 10-distyrylanthracene derivatives and amplified spontaneous emission from a large single crystal
JP5691235B2 (en) Fluorescent dichroic dye, fluorescent dichroic dye composition, wavelength conversion dye, liquid crystal composition using these, wavelength conversion element and liquid crystal element
Hiscock et al. Synthesis and Characterization of Liquid‐Crystalline Tetraoxapentacene Derivatives Exhibiting Aggregation‐Induced Emission
JP4997598B2 (en) Hall conductive cholesteric liquid crystal compounds
Dar et al. Engineering the solid-state luminescence of organic crystals and cocrystals
Poojary et al. Highly fluorescent materials derived from ortho-vanillin: structural, photophysical electrochemical and theoretical studies
Tian et al. Donor-π-acceptor materials for robust electroluminescence performance based on hybridized local and charge-transfer state
JP4756268B2 (en) Cholesteric liquid crystal compound
Wen et al. Triphenylethylene-based fluorophores: Facile preparation and full-color emission in both solution and solid states
Ganie et al. Hetero-aggregation-induced tunable emission in multicomponent crystals
Ahangar et al. Mechanistic insights into the aggregation-induced emission of halogenated Schiff base fluorescent probes
Mishra et al. Synthesis, linear and non-linear optical properties of “push-pull” chromophores based on 9, 9-dimethyl-9H-fluoren-2-amine
Zeng et al. Dual-state fluorescence in some salicylaldehyde-triphenylene discotic liquid crystal derivatives induced by excited state intramolecular proton transfer
JP4766321B2 (en) Cholesteric liquid crystal compound
Shimaoka et al. Glass-Forming Chiral Liquid Crystalline Dimers Based on an Oligo (phenylenevinylene) Unit Exhibiting Circularly Polarized Photoluminescence
Zhu et al. Fluorescein-bridged perylene bisimide dimer for use as liquid crystal: Studies on mesomorphic and fluorescence properties
Kolbus et al. Spectral properties of highly emissive derivative of coumarin with N, N-diethylamino, nitrile and tiophenecarbonyl moieties in water-methanol mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees