JP2009041998A - Method and device for detecting storage capacity of secondary cell, and the charger of secondary cell - Google Patents
Method and device for detecting storage capacity of secondary cell, and the charger of secondary cell Download PDFInfo
- Publication number
- JP2009041998A JP2009041998A JP2007205803A JP2007205803A JP2009041998A JP 2009041998 A JP2009041998 A JP 2009041998A JP 2007205803 A JP2007205803 A JP 2007205803A JP 2007205803 A JP2007205803 A JP 2007205803A JP 2009041998 A JP2009041998 A JP 2009041998A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- voltage
- storage capacity
- battery
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000006866 deterioration Effects 0.000 claims abstract description 24
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 26
- 229910001416 lithium ion Inorganic materials 0.000 description 26
- 238000010586 diagram Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 238000007599 discharging Methods 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000007562 laser obscuration time method Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- -1 nickel metal hydride Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、二次電池の蓄電容量検出方法、二次電池の蓄電容量検出装置、及び二次電池の充電器の技術に関し、特に、現在使用している電池の蓄電容量を短時間で算出することができる二次電池の蓄電容量検出方法、二次電池の蓄電容量検出装置、及び二次電池の充電器の技術に関する。 TECHNICAL FIELD The present invention relates to a secondary battery storage capacity detection method, a secondary battery storage capacity detection device, and a secondary battery charger technology, and in particular, calculates the storage capacity of a currently used battery in a short time. The present invention relates to a secondary battery storage capacity detection method, a secondary battery storage capacity detection device, and a secondary battery charger technology.
ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池等の二次電池は、放電と充電のサイクルを繰り返すことにより、繰り返し利用することができる電池である。
しかし、前記二次電池を複数回充電すると、過充電や二次電池の電解液や電極板の劣化等の原因により、二次電池の蓄電容量が初期に比べて少なくなってしまい、二次電池の劣化が進行して最終的には二次電池を使用することができなくなっていた。
ここで、二次電池の充電、放電による劣化について二次電池の一例であるリチウムイオン電池を用いて説明する。
前記リチウムイオン電池は陽極板と陰極板と電解液等から構成されている。放電時には、陰極よりリチウムイオンLi+と電子e−が放出され、陽極でリチウムイオンLi+と電子e−が吸収される。電解液を介してリチウムイオンLi+の授受を両極間で行い、回路を介して電子の授受が行われることにより回路に電流が流れ放電されることとなる。
一方充電時には逆に、陽極よりリチウムイオンLi+と電子e−が放出され、陰極でリチウムイオンLi+と電子e−が吸収される。電解液を介してリチウムイオンLi+の授受を両極間で行い、回路を介して電子の授受が行われることにより回路に電流が流れ充電されることとなる。
前記放電及び充電の過程において、二次電池内に内部抵抗(内部インピーダンス)が発生する。前記内部抵抗の原因としては、リチウムイオンLi+の電気泳動における抵抗の増加、反応速度の低下、拡散速度の低下、陽極及び陰極におけるリチウムイオンLi+のサイト数の低下などが考えられる。前記内部抵抗は充電及び放電を重ねることにより増加し、その結果二次電池の劣化が進行する。
従来、前記二次電池の劣化の程度については、二次電池の温度変化率を計測して、劣化していない二次電池の温度変化と比較することにより検出していた(特許文献1参照)。しかし、従来の方法では、長時間温度変化を計測しつづけなければならず、また、電池の温度を計測する際に外気温の影響等を受ける場合もあり、高い精度で劣化の程度を検出することはできなかった。また、劣化しているか否かについては検出できるものの、劣化していない二次電池に比べてどの程度劣化が進行しているかを検出することはできなかった。
Secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lithium ion batteries are batteries that can be used repeatedly by repeating discharge and charge cycles.
However, if the secondary battery is charged a plurality of times, the storage capacity of the secondary battery is reduced compared to the initial stage due to overcharge, deterioration of the electrolyte solution or electrode plate of the secondary battery, etc. As the battery deteriorates, the secondary battery can no longer be used.
Here, the deterioration due to charging and discharging of the secondary battery will be described using a lithium ion battery which is an example of the secondary battery.
The lithium ion battery is composed of an anode plate, a cathode plate, an electrolytic solution, and the like. At the time of discharge, lithium ions Li + and electrons e − are emitted from the cathode, and lithium ions Li + and electrons e − are absorbed at the anode. Lithium ion Li + is exchanged between the two electrodes via the electrolytic solution, and electrons are exchanged via the circuit, whereby a current flows through the circuit and is discharged.
On the other hand, at the time of charging, conversely, lithium ions Li + and electrons e − are emitted from the anode, and lithium ions Li + and electrons e − are absorbed at the cathode. Lithium ion Li + is exchanged between the two electrodes via the electrolytic solution, and electrons are exchanged via the circuit, whereby a current flows through the circuit and is charged.
In the process of discharging and charging, an internal resistance (internal impedance) is generated in the secondary battery. Possible causes of the internal resistance include an increase in resistance in lithium ion Li + electrophoresis, a decrease in reaction rate, a decrease in diffusion rate, and a decrease in the number of lithium ion Li + sites at the anode and cathode. The internal resistance increases due to repeated charging and discharging, and as a result, deterioration of the secondary battery proceeds.
Conventionally, the degree of deterioration of the secondary battery has been detected by measuring the temperature change rate of the secondary battery and comparing it with the temperature change of the non-degraded secondary battery (see Patent Document 1). . However, in the conventional method, it is necessary to continuously measure the temperature change for a long time, and when the temperature of the battery is measured, it may be affected by the outside air temperature, etc., and the degree of deterioration is detected with high accuracy. I couldn't. Further, although it can be detected whether or not it has deteriorated, it has not been possible to detect how much deterioration has progressed compared to a secondary battery that has not deteriorated.
また、従来から、間欠充電において、充電回路から開放された開回路電池端子電圧と満充電時の電圧の最大閾値との差(差電圧)を検出し、前記差電圧と所定の閾値とを比較して、その比較結果に基づき電池の劣化を判定する技術が公知となっている(特許文献2参照)。しかし、前記従来技術では、間欠充電時にのみ電池の劣化を判定するものであり、二次電池を使用している最中や二次電池を使用して放電した後に、二次電池の劣化を判定することはできなかった。また、電池の劣化を所定の閾値との比較結果でしか判断することができず、具体的に蓄電容量の値を確認することはできなかった。
そこで、本発明はかかる課題に鑑み、充電時に限らずいつでも二次電池の蓄電容量を短時間で算出することができ、前記蓄電容量より二次電池の劣化状態を確認することができる二次電池の蓄電容量検出方法、二次電池の蓄電容量検出装置、及び二次電池の充電器を提供する。 Therefore, in view of such problems, the present invention can calculate the storage capacity of the secondary battery in a short time at any time, not only at the time of charging, and can check the deterioration state of the secondary battery from the storage capacity. A storage capacity detection method, a secondary battery storage capacity detection device, and a secondary battery charger are provided.
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
即ち、請求項1においては、二次電池に起電力E以上の外部電圧Vaを印加して、二次電池の印加時電池端子電圧VONと印加時電流JONとをそれぞれ計測し、前記外部電圧Vaを遮断して、二次電池の開回路電池端子電圧VOFFを計測し、前記印加時電池端子電圧VONと印加時電流JONと開回路電池端子電圧VOFFとを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である。
That is, in the first aspect, to apply an electromotive force E more external voltage V a to the secondary battery, the secondary battery of the applied when the battery terminal voltage V ON is applied when the current J ON and were respectively measured, the blocks the external voltage V a, the secondary open circuit battery terminal voltage V OFF measures the battery, using the the applied when the battery terminal voltage V ON and applied during current J ON and the open circuit battery terminal voltage V OFF The storage capacity Q of the secondary battery represented by the following formula is calculated.
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
請求項2においては、二次電池の現在の蓄電容量を検出する二次電池の蓄電容量検出装置において、二次電池に起電力E以上の外部電圧Vaを印加する電圧供給手段と、二次電池の電池端子電圧を計測する電圧計測手段と、二次電池に流れる電流を計測する電流計測手段と、前記電圧供給手段から二次電池への印加状態を切り換える電圧切換手段と、二次電池の蓄電容量を算出する蓄電容量算出手段とを具備してなり、前記電圧供給手段から外部電圧が印加された状態で、前記電圧計測手段により二次電池の印加時電池端子電圧VONと、前記電流計測手段により二次電池の印加時電流JONとをそれぞれ計測し、前記電圧切換手段を切り換えて二次電池に印加される外部電圧を遮断して、二次電池の開回路電池端子電圧VOFFを計測し、前記蓄電容量検出手段にて、印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である。
In
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
請求項3においては、二次電池に電圧を印加して充電する二次電池の充電器において、二次電池に起電力E以上の外部電圧Vaを印加する電圧供給手段と、二次電池の電池端子電圧を計測する電圧計測手段と、二次電池に流れる電流を計測する電流計測手段と、前記電圧供給手段から二次電池への印加状態を切り換える電圧切換手段と、二次電池の蓄電容量を算出する蓄電容量算出手段とを具備してなり、二次電池を充電する際に、前記電圧供給手段から外部電圧が印加された状態で、前記電圧計測手段により二次電池の印加時電池端子電圧VONと、前記電流計測手段により二次電池の印加時電流JONとをそれぞれ計測し、前記電圧切換手段を切り換えて二次電池に印加される外部電圧を遮断して、二次電池の開回路電池端子電圧VOFFを計測し、前記蓄電容量算出手段にて、印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である。
In claim 3, in the charger of the rechargeable battery to be charged by applying a voltage to the secondary battery, and voltage supply means for applying a force E more external voltage V a to the secondary battery, the secondary battery Voltage measuring means for measuring the battery terminal voltage, current measuring means for measuring the current flowing through the secondary battery, voltage switching means for switching the application state from the voltage supply means to the secondary battery, and the storage capacity of the secondary battery A storage battery capacity calculating means for calculating the secondary battery, and when the secondary battery is charged, an external voltage is applied from the voltage supply means when the secondary battery is applied by the voltage measuring means. The voltage V ON and the current J ON when the secondary battery is applied are respectively measured by the current measuring means, and the external voltage applied to the secondary battery is cut off by switching the voltage switching means. Open circuit battery terminal voltage VO The FF is measured, and the storage capacity calculation unit calculates the storage capacity Q of the secondary battery expressed by the following formula using the applied battery terminal voltage V ON , the applied current J ON , and the open circuit battery terminal voltage V OFF. Is calculated.
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
請求項4においては、二次電池の充放電サイクルに対する劣化状態を示す健全度を算出する健全度算出手段を具備してなるものである。 According to a fourth aspect of the invention, there is provided a soundness degree calculating means for calculating a soundness degree indicating a deterioration state with respect to the charge / discharge cycle of the secondary battery.
請求項5においては、二次電池の蓄電容量及び二次電池の充放電サイクルに対する劣化状態を示す健全度を表示する表示手段を具備してなるものである。 According to a fifth aspect of the invention, there is provided display means for displaying a soundness level indicating a storage capacity of the secondary battery and a deterioration state with respect to a charge / discharge cycle of the secondary battery.
本発明の効果として、以下に示すような効果を奏する。 As effects of the present invention, the following effects can be obtained.
請求項1においては、使用履歴、経年変化によって大きく変わる二次電池の現在の蓄電容量を短時間で算出することを可能とする。また、満充電時のみでなく、二次電池を使用しているときや、二次電池の放電が終わった後で、二次電池の蓄電容量を算出することができる。 According to the first aspect, it is possible to calculate the current storage capacity of the secondary battery, which greatly changes depending on the usage history and the secular change, in a short time. Moreover, the storage capacity of the secondary battery can be calculated not only when fully charged, but also when the secondary battery is used or after the secondary battery has been discharged.
請求項2においては、使用履歴、経年変化によって大きく変わる二次電池の現在の蓄電容量を短時間で算出することを可能として、現在の蓄電容量から電池の交換時期を予め設定することができ、突然、電池の寿命が来て機器の使用ができなくなるのを防ぐことができる。
In
請求項3においては、特に二次電池を充電器に常にセットする機器では、初期蓄電容量から蓄電容量がどのように変化したかを計測することで、前記機器を計画的に利用することができる。また、現在の蓄電容量を計測することにより、過充電が発生する前に充電を止めることができる。 According to the third aspect of the present invention, in particular, in a device in which the secondary battery is always set in the charger, the device can be used in a planned manner by measuring how the storage capacity has changed from the initial storage capacity. . In addition, by measuring the current storage capacity, charging can be stopped before overcharging occurs.
請求項4においては、電池の劣化状態をモニタすることで、最適で健全な電池管理を行うことができる。 In Claim 4, optimal and sound battery management can be performed by monitoring the deterioration state of a battery.
請求項5においては、二次電池の蓄電容量がどのように変化したかを計測して表示部に表示することにより、二次電池の蓄電容量を容易に把握することができる。 According to the fifth aspect, the storage capacity of the secondary battery can be easily grasped by measuring how the storage capacity of the secondary battery has changed and displaying it on the display unit.
次に、発明の実施の形態を説明する。
図1は蓄電容量検出装置の回路図、図2は蓄電容量検出装置のブロック図、図3は蓄電容量検出装置の斜視図である。図4は(a)放電時の二次電池の状態を示す概念図(b)充電時の二次電池の状態を示す概念図、図5は電池素子の等価回路を示す概念図、図6は二次電池の電圧と時間の関係を示すグラフ図、図7は二次電池に流れる電流及び二次電池の電圧の計測の流れを示すフローチャート図、図8は二次電池に流れる電流及び二次電池の電圧の計測の流れを示すフローチャート図、図9は充電器の回路図、図10は充電器のブロック図である。
Next, embodiments of the invention will be described.
1 is a circuit diagram of a storage capacity detection device, FIG. 2 is a block diagram of the storage capacity detection device, and FIG. 3 is a perspective view of the storage capacity detection device. 4A is a conceptual diagram showing the state of the secondary battery during discharging, FIG. 4B is a conceptual diagram showing the state of the secondary battery during charging, FIG. 5 is a conceptual diagram showing an equivalent circuit of the battery element, and FIG. Fig. 7 is a graph showing the relationship between the voltage of the secondary battery and time, Fig. 7 is a flowchart showing the flow of measurement of the current flowing through the secondary battery and the voltage of the secondary battery, and Fig. 8 is the current flowing through the secondary battery and the secondary battery. FIG. 9 is a flowchart of the battery voltage measurement flow, FIG. 9 is a circuit diagram of the charger, and FIG. 10 is a block diagram of the charger.
〔蓄電容量検出装置〕
前記二次電池の蓄電容量検出方法を用いた二次電池の蓄電容量検出装置について説明する。
図1及び図2に示すように、前記蓄電容量検出装置1は内部抵抗Rを計測するための回路2を内蔵しており、電圧供給手段としての外部電源12、電圧計測手段としての電圧計13、電流計測手段としての電流計14、二次電池10への印加状態を切り換える電圧切換手段としての回路スイッチ15、蓄電容量Qを算出する蓄電容量算出手段としての制御装置16、表示部17などからなる。図2に示すように前記制御装置16には入力側に電圧計13及び電流計14が接続されており、出力側に回路スイッチ15及び表示部17が接続されている。
また、図3に示すように、前記蓄電容量検出装置1には現在の蓄電容量Qを検出したい二次電池に接続するためのリード線18が設けられている。前記リード線18は、蓄電容量検出装置1内の回路2に接続されており、前記リード線18に現在の蓄電容量Qを算出したい二次電池10を接続することで、二次電池10を回路2に接続することができる。
[Storage capacity detector]
A secondary battery storage capacity detection apparatus using the secondary battery storage capacity detection method will be described.
As shown in FIGS. 1 and 2, the storage
As shown in FIG. 3, the storage
次に、前記蓄電容量検出装置1を用いた二次電池10の蓄電容量Qの検出方法について説明する。
Next, a method for detecting the storage capacity Q of the
〔二次電池の原理〕
まず、二次電池10の原理について二次電池10の一例であるリチウムイオン電池を用いて説明する。なお、鉛電池、ニッケル水素電池等の他の二次電池も電気化学的な原理は同様である。
[Principle of secondary battery]
First, the principle of the
図4に示すように、前記二次電池10は、陰極21、陽極22及び電解液23等により構成され、放電時には、図4(a)に示すように、イオンポテンシャルの高い陰極21より陽極22へとリチウムイオンLi+と電子e−が放出され、陽極22でリチウムイオンLi+と電子e−が吸収される。このとき、電解液23を介してリチウムイオンLi+の授受を両極間で行い、回路24を介して電子e−の授受を行うことにより回路24に陽極22から陰極21へと電流が流れ放電されることとなる。
一方充電時には、図4(b)に示すように、外部電圧をかけることでイオンポテンシャルが高くなった陽極22より陰極21へとリチウムイオンLi+と電子e−が放出され、陰極21でリチウムイオンLi+と電子e−が吸収される。このとき、電解液23を介してリチウムイオンLi+の授受を両極間で行い、回路24を介して電子e−の授受を行うことにより回路24に陰極21から陽極22へと電流が流れ二次電池10の充電が行われることとなる。
As shown in FIG. 4, the
On the other hand, at the time of charging, as shown in FIG. 4B, lithium ions Li + and electrons e − are emitted from the
次に二次電池10の起電力Eについて説明する。前記起電力Eとは二次電池10が外部の回路と接続しておらず、電流が流れていない状態での電池端子電圧を意味する。すなわち、前記起電力Eは、リチウムイオンLi+や電子e−の流れではなく、陰極21と陽極22のイオンポテンシャル差となる。したがって、イオンポテンシャル差は陰極21と陽極22の間のリチウムイオンLi+のサイトの占有率の差によって表される。
Next, the electromotive force E of the
次に二次電池10の蓄電容量Qについて説明する。前記蓄電容量Qとは前記リチウムイオンLi+が陰極に蓄えられる空間の大きさを意味する。すなわち、蓄電容量Qが大きいとは、陰極21及び陽極22の体積が大きい(サイト数が大きい)ことであり、また、作用面が大きく、両極へのリチウムイオンLi+の浸透が早く、多いことを意味する。
前記蓄電容量Qは、二次電池10の劣化に伴い減少する。前記二次電池10の劣化とは、内部抵抗(内部インピーダンス)Rが増加して、リチウムイオンLi+が電池電極に接触せず機能しないことを意味する。前記内部抵抗Rが増加する原因としては、リチウムイオンLi+の電気泳動における抵抗の増加、反応速度の低下、拡散速度の低下、陽極及び陰極におけるリチウムイオンLi+のサイト数の低下などが考えられる。前記内部抵抗Rは充電及び放電を重ねることにより増加し、その結果二次電池10の劣化が進行する。
Next, the storage capacity Q of the
The storage capacity Q decreases as the
〔蓄電容量と内部抵抗の関係〕
次に蓄電容量Qと内部抵抗(内部インピーダンス)Rの関係について説明する。
陰極21と陽極22の対となる微小作用面要素をdSとすると、図5に示すように、このdSによって電池素子を等価回路で表すことができる。
ここで単位作用面積あたりの回路における電流の流れやすさを意味するコンダクタンスρは、単位面積あたりの抵抗をrとすると、
ρ=1/r
で表され、有効作用面積をSとすると内部抵抗Rは、
R=1/∫ρdS=1/ρS=r/S
で表される。また、全面積の蓄電容量Qは単位面積あたりの電気容量をqとすると、
Q=∫qdS=qS
で表される。以上の式より、
QR=qr=K
の関係が得られる。ここでKは二次電池の種類によって決定される定数である。
すなわち、蓄電容量Qの異なる同一種類の二次電池では、その蓄電容量Qと内部抵抗Rを掛け合わせた数値は一定だから、蓄電容量Qが大きな電池は内部抵抗Rが反比例して小さく、また、内部抵抗Rが増すと蓄電容量Qはそれに反比例して減少することとなる。また、有効作用面積Sが小さくなると蓄電容量Qは減少し、一方内部抵抗Rは増大する。よって、内部抵抗Rを算出することにより、Kの値を用いて蓄電容量Qを算出することができる。
[Relationship between storage capacity and internal resistance]
Next, the relationship between the storage capacity Q and the internal resistance (internal impedance) R will be described.
Assuming that the minute working surface element that forms a pair of the
Here, the conductance ρ, which means the ease of current flow in the circuit per unit action area, is r, where the resistance per unit area is r.
ρ = 1 / r
When the effective working area is S, the internal resistance R is
R = 1 / ∫ρdS = 1 / ρS = r / S
It is represented by In addition, the storage capacity Q of the entire area is q, where the electric capacity per unit area is q.
Q = ∫qdS = qS
It is represented by From the above formula,
QR = qr = K
The relationship is obtained. Here, K is a constant determined by the type of the secondary battery.
That is, in the same type of secondary batteries having different storage capacities Q, the value obtained by multiplying the storage capacities Q and the internal resistance R is constant. Therefore, a battery with a large storage capacity Q has a small internal resistance R in inverse proportion, As the internal resistance R increases, the storage capacity Q decreases in inverse proportion. Further, when the effective working area S decreases, the storage capacity Q decreases while the internal resistance R increases. Therefore, by calculating the internal resistance R, the storage capacity Q can be calculated using the value of K.
〔内部抵抗の算出〕
次に、蓄電容量検出装置1を用いた内部抵抗Rの算出方法について説明する。
前記回路スイッチ15を「ON」にすると二次電池10と電源12が繋がることにより、二次電池10に外部電圧Vaを印加する構成となっている。前記外部電圧Vは蓄電容量Qを測定する二次電池10の開回路電池端子電圧VOFFよりも高い電圧である必要がある。
前記回路スイッチ15を「ON」にした場合、すなわち外部電圧Vaがかかっている場合の印加時電池端子電圧VONと印加時電流JON、回路スイッチ15を「OFF」にした場合の開回路電池端子電圧VOFFとした場合、内部抵抗Rは、
R=(VON−VOFF)/JON
で表される。
また、以上より、現在の蓄電容量Qは、
Q=K/R=K×JON/(VON−VOFF)
で算出することができる。
[Calculation of internal resistance]
Next, a method for calculating the internal resistance R using the storage
Wherein by the
Open circuit in the case where the case of the
R = (V ON −V OFF ) / J ON
It is represented by
From the above, the current storage capacity Q is
Q = K / R = K × J ON / (V ON −V OFF )
Can be calculated.
〔電圧及び電流の計測方法〕
次に前記印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFの計測方法について図6乃至図8を用いて説明する。
最初に、外部電圧Vaが印加されていない状態から外部電圧Vaが印加されている状態へ移行する際に計測する方法を図6及び図7を用いて説明する。
まず、前記回路スイッチ15が「OFF」になっている状態、すなわち外部電圧Vaが印加されていない時点T1(図6参照)での開回路電池端子電圧VOFFを前記電圧計13で計測する(ステップS10)。続いて、前記回路スイッチ15を「ON」にして(ステップS20)、外部電圧Vaが印加されている時点T2(図6参照)の印加時電池端子電圧VONを前記電圧計13で、印加時電流JONを前記電流計14で計測する(ステップS30)。ここで、T2は外部電圧Vaを印加した瞬間ではなく、外部電圧Vaを印加してから所定時間t1経過後である。これにより、外部電圧Vaを印加した瞬間に発生する電圧及び電流の値の揺れが収まった時点でそれぞれの値を計測することが可能となる。
次に、外部電圧Vaが印加されている状態から外部電圧Vaが印加されていない状態へ移行する際に計測する方法を図6及び図8を用いて説明する。
まず、前記回路スイッチ15が「ON」になっている状態、すなわち外部電圧Vaが印加されている時点T3(図6参照)の印加時電池端子電圧VONを前記電圧計13で、印加時電流JONを前記電流計14で計測し(ステップS110)、続いて、前記回路スイッチ15を「OFF」にして(ステップS120)、外部電圧Vaが印加されていない時点T4(図6参照)の開回路電池端子電圧VOFFを前記電圧計13で計測する(ステップS130)。ここで、T4は外部電圧Vaを遮断した瞬間ではなく、外部電圧Vaを遮断してから所定時間t2経過後である。これにより、外部電圧Vaを遮断した瞬間に発生する電圧や電流の値の揺れが収まった時点で電圧を計測することが可能となる。但し、二次電池の電圧は、外部電圧Vaを遮断した瞬間から漸減していくため、前記所定時間t2は前記所定時間t1よりも長い時間が必要である。
前述する方法で前記印加時電池端子電圧VON、印加時電流JON及び開回路電池端子電圧VOFFを計測することにより、前記定数Kは二次電池の種類によって定まる一定の値であるので、現在の蓄電容量Qを算出することができる。なお、定数Kは、例えば二次電池がリチウムイオン電池であれば0.156〔Ah・Ω〕である。
[Method of measuring voltage and current]
Next, a method of measuring the applied battery terminal voltage V ON , applied current J ON , and open circuit battery terminal voltage V OFF will be described with reference to FIGS.
First, a method of measuring the time of transition from the state where the external voltage V a is not applied to a state in which the external voltage V a is applied with reference to FIGS.
First, to measure the state of the
Next, a method for measuring the time of transition from the state where the external voltage V a is applied to a state in which the external voltage V a is not applied with reference to FIGS. 6 and 8.
First, the state of the
By measuring the applied battery terminal voltage V ON , applied current J ON and open circuit battery terminal voltage V OFF by the above-described method, the constant K is a constant value determined by the type of the secondary battery. The current storage capacity Q can be calculated. The constant K is, for example, 0.156 [Ah · Ω] if the secondary battery is a lithium ion battery.
このように構成することにより、使用履歴、経年変化によって大きく変わる二次電池10の現在の蓄電容量Qを短時間で計測することを可能として、現在の蓄電容量Qから二次電池の交換時期を予め設定することができ、突然、二次電池10の寿命が来て機器の使用ができなくなったり、メモリーが消えたりすることを防ぐことができる。
By configuring in this way, it is possible to measure the current storage capacity Q of the
以上のように、本実施例の二次電池の蓄電容量検出方法は、二次電池に起電力E以上の外部電圧Vaを印加して、二次電池の印加時電池端子電圧VONと印加時電流JONとをそれぞれ計測し、前記外部電圧Vaを遮断して、二次電池の開回路電池端子電圧VOFFを計測し、前記印加時電池端子電圧VONと印加時電流JONと開回路電池端子電圧VOFFとを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である。
このように構成することにより、使用履歴、経年変化によって大きく変わる二次電池の現在の蓄電容量を短時間で算出することを可能とする。また、満充電時のみでなく、二次電池を使用しているときや、二次電池の放電が終わった後で、二次電池の蓄電容量を算出することができる。
As described above, the power storage capacity detecting method for a secondary battery of the present embodiment, by applying a force E more external voltage V a to the secondary battery, is applied and the applied time of the battery terminal voltage V ON of the rechargeable battery measuring respectively the current J ON time, to cut off the external voltage V a, to measure the open-circuit battery terminal voltage V OFF of the secondary battery, wherein the applied when the battery terminal voltage V ON and applied during current J ON The storage capacity Q of the secondary battery expressed by the following equation is calculated using the open circuit battery terminal voltage V OFF .
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
By configuring in this way, it is possible to calculate the current storage capacity of the secondary battery, which greatly changes depending on the usage history and the secular change, in a short time. Moreover, the storage capacity of the secondary battery can be calculated not only when fully charged, but also when the secondary battery is used or after the secondary battery has been discharged.
また、本実施例の蓄電容量検出装置1は、二次電池10の現在の蓄電容量を検出する二次電池10の蓄電容量検出装置1において、二次電池10に起電力E以上の外部電圧Vaを印加する電源12と、二次電池10の電池端子電圧を計測する電圧計13と、二次電池10に流れる電流を計測する電流計14と、前記電源12から二次電池への印加状態を切り換える回路スイッチ15と、二次電池10の蓄電容量を算出する制御装置16とを具備してなり、前記電源12から外部電圧Vaが印加された状態で、前記電圧計13により二次電池の印加時電池端子電圧VONと、前記電流計14により二次電池の印加時電流JONとをそれぞれ計測し、前記回路スイッチ15を切り換えて二次電池に印加される外部電圧Vaを遮断して、二次電池10の開回路電池端子電圧VOFFを計測し、前記制御装置16にて、印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である。
このように構成することにより、使用履歴、経年変化によって大きく変わる二次電池の現在の蓄電容量を短時間で算出することを可能として、現在の蓄電容量から電池の交換時期を予め設定することができ、突然、電池の寿命が来て機器の使用ができなくなるのを防ぐことができる。
In addition, the storage
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
By configuring in this way, it is possible to calculate the current storage capacity of a secondary battery that changes greatly due to usage history and secular change in a short time, and it is possible to preset the replacement time of the battery from the current storage capacity It is possible to prevent the sudden use of the device due to sudden battery life.
〔充電器〕
次に前記二次電池10の蓄電容量検出方法を用いた二次電池の充電器40について説明する。本実施例では、上述した実施例1と同様の二次電池の蓄電容量検出方法を用いており、実施例1とは、かかる検出方法を充電器40に採用している点で異なる。
図9に示すように、充電器40は、外部より二次電池10に電圧を印加することにより充電を行うものであって、前記二次電池10の内部抵抗Rを求めることにより、前記二次電池10の蓄電容量Qを算出し表示することができるように構成されている。充電器40は、電圧供給手段としての電源41、電圧計測手段としての電圧計42、電流計測手段としての電流計43、二次電池への印加状態を切り換える電圧切換手段としての回路スイッチ44、蓄電容量を算出する蓄電容量算出手段としての制御装置45、蓄電容量を表示する表示手段としての表示部46、初期蓄電容量を記憶しておく記憶装置47が設けられている。
図10に示すように、前記制御装置45には入力側に電圧計42及び電流計43が接続されており、出力側に回路スイッチ44及び表示部46が接続されている。また、前記制御装置45には記憶装置47が接続されており、相互に情報の入出力を行う構成となっている。
前記内部抵抗Rは充電終期までは略一定値を取ることが分かっている。充電終期に入ると、不可逆化学反応が伴い内部抵抗Rは一般に大きくなる。従って充電率が70%程度までであれば、正確に二次電池本来の内部抵抗Rを算出することができることから、二次電池10の現在の蓄電容量Qを算出することができる。
前記二次電池10の蓄電容量Qを算出する場合には、充電初期から充電率が70%となるときまでに、前記回路スイッチ44を「ON」にした場合、すなわち外部電圧Vaがかかっている場合の印加時電池端子電圧VONを電圧計42で計測し、印加時電流JONを電流計43で計測し、回路スイッチ44を「OFF」にした場合、すなわち外部電圧Vaを遮断した場合の開回路電池端子電圧VOFFを電圧計42で計測する。
[Charger]
Next, the secondary battery charger 40 using the method for detecting the storage capacity of the
As shown in FIG. 9, the charger 40 performs charging by applying a voltage to the
As shown in FIG. 10, a
It has been found that the internal resistance R takes a substantially constant value until the end of charging. At the end of charging, the internal resistance R generally increases with an irreversible chemical reaction. Therefore, if the charging rate is up to about 70%, the inherent internal resistance R of the secondary battery can be accurately calculated, so that the current storage capacity Q of the
To calculate the charge capacity Q of the
前記二次電池10の蓄電容量Qの算出は、充電時に回路スイッチ44を一時的に「ON」「OFF」切り換えることにより行う。すなわち、平常時は、外部の電源41より外部電圧Vaを二次電池10に継続的若しくは断続的に印加し続けることにより、充電を行い、蓄電容量Qの算出時には回路スイッチ44の「ON」「OFF」を一時的に切り換えることにより、前記印加時電池端子電圧VON、印加時電流JON及び開回路電池端子電圧VOFFを計測するものである。これにより、二次電池10を充電器40に常にセットする機器、例えば充電器搭載型電動車等では、当初から、蓄電容量がどのように変化したかを逐次計測することができる。
The storage capacity Q of the
〔SOH(健全度)の算出〕
次に二次電池10の劣化の進行状況を示す指標であるSOH(健全度(State Of Health))について説明する。
本実施例の充電器40は、制御装置45にて二次電池の充放電サイクルに対する劣化状態を示す健全度であるSOHが算出される。前記SOHは、電池の劣化の進行状況を示す指標であり、現在の蓄電容量の初期蓄電容量に対する比で表され、初期蓄電容量をQ0とすると、
SOH=(Q/Q0)×100
で算出することができる。
すなわち、初期蓄電容量Q0を予め算出しておくことにより、現在の蓄電容量QからSOHを求めることができる。
前記充電器40においては、まず、二次電池の使用を開始する際に計測した前記印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFの値から初期蓄電容量Q0を算出し、前記初期蓄電容量Q0を記憶装置47に記憶させておく。そして、二次電池を使用した後に計測した前記印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFの値から現在の蓄電容量Qを算出し、前記記憶装置47より初期蓄電容量Q0を呼び出し、制御装置45においてSOHを算出するものである。
[Calculation of SOH (health level)]
Next, SOH (State Of Health) that is an index indicating the progress of deterioration of the
In the charger 40 of this embodiment, the
SOH = (Q / Q 0 ) × 100
Can be calculated.
That is, by calculating the initial storage capacity Q 0 in advance, the SOH can be obtained from the current storage capacity Q.
In the charger 40, first, the initial storage capacity is determined from the values of the applied battery terminal voltage V ON , applied current J ON , and open circuit battery terminal voltage V OFF measured when starting use of the secondary battery. Q 0 is calculated, and the initial storage capacity Q 0 is stored in the
このように構成することにより、前記充電器40の制御装置45において、二次電池の現在の蓄電容量Q及びSOHを算出して、表示部46に出力して表示するものである。なお、前記表示部46には蓄電容量QやSOHの他にも、印加時電池端子電圧VONや回路スイッチを「OFF」にした場合の開回路電池端子電圧VOFFを表示することも可能である。
With this configuration, the
また、前記回路を二次電池生産工程における電池の品質管理に利用することも可能である。すなわち、出荷前に二次電池の蓄電容量を検出することにより、不良品の流出を未然に防ぐことができる。 The circuit can also be used for quality control of the battery in the secondary battery production process. That is, it is possible to prevent the outflow of defective products by detecting the storage capacity of the secondary battery before shipment.
以上のように、本実施例の二次電池10の充電器40は、二次電池10に電圧を印加して充電する二次電池10の充電器40において、二次電池10に起電力E以上の外部電圧Vaを印加する電源41と、二次電池10の電池端子電圧を計測する電圧計42と、二次電池10に流れる電流を計測する電流計43と、前記電源41から二次電池10への印加状態を切り換える回路スイッチ44と、二次電池10の蓄電容量を算出する制御装置45とを具備してなり、二次電池10を充電する際に、前記電源41から外部電圧Vaが印加された状態で、前記電圧計42により二次電池10の印加時電池端子電圧VONと、前記電流計43により二次電池10の印加時電流JONとをそれぞれ計測し、前記回路スイッチ44を切り換えて二次電池10に印加される外部電圧Vaを遮断して、二次電池10の開回路電池端子電圧VOFFを計測し、前記制御装置45にて、印加時電池端子電圧VON、印加時電流JON、及び開回路電池端子電圧VOFFを用いて下式で示される二次電池の蓄電容量Qを算出するものである。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数である
このように構成することにより、特に二次電池を充電器に常にセットする機器では、初期蓄電容量から蓄電容量がどのように変化したかを計測することで、前記機器を計画的に利用することができる。また、現在の蓄電容量を計測することにより、過充電が発生する前に充電を止めることができる。
As described above, the charger 40 of the
Q = K × J ON / (V ON −V OFF )
However, K is a constant determined by the type of battery. By configuring in this way, it is possible to determine how the storage capacity has changed from the initial storage capacity, especially in devices where secondary batteries are always set in the charger. By measuring, the device can be used in a planned manner. In addition, by measuring the current storage capacity, charging can be stopped before overcharging occurs.
また、前記充電器40は二次電池10の充放電サイクルに対する劣化状態を示す健全度SOHを算出する制御装置45を具備してなるものである。このように構成することにより、電池の劣化状態をモニタすることで、最適で健全な電池管理を行うことができる。
また、前記充電器40は、二次電池10の蓄電容量Q及び二次電池10の充放電サイクルに対する劣化状態を示す健全度SOHを表示する表示部46を具備してなるものである。このように構成することにより、二次電池の蓄電容量がどのように変化したかを計測して表示部に表示することにより、二次電池の蓄電容量を容易に把握することができる。
The charger 40 includes a
The charger 40 includes a
1 容量検出装置
10 二次電池
12 外部電源
13 電圧計
14 電流計
15 回路スイッチ
16 制御装置
40 充電器
41 外部電源
42 電圧計
43 電流計
44 回路スイッチ
45 制御装置
46 表示部
DESCRIPTION OF
Claims (5)
前記外部電圧(Va)を遮断して、二次電池の開回路電池端子電圧(VOFF)を計測し、
前記印加時電池端子電圧(VON)と印加時電流(JON)と開回路電池端子電圧(VOFF)とを用いて下式で示される二次電池の蓄電容量(Q)を算出することを特徴とする二次電池の蓄電容量検出方法。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数
である。 Apply an external voltage (V a ) greater than the electromotive force (E) to the secondary battery, and measure the battery terminal voltage (V ON ) and the applied current (J ON ) when the secondary battery is applied,
Cut off the external voltage (V a ), measure the open circuit battery terminal voltage (V OFF ) of the secondary battery,
Using the applied battery terminal voltage (V ON ), applied current (J ON ), and open circuit battery terminal voltage (V OFF ) to calculate the storage capacity (Q) of the secondary battery expressed by the following equation: A method for detecting a storage capacity of a secondary battery.
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
二次電池に起電力(E)以上の外部電圧(Va)を印加する電圧供給手段と、
二次電池の電池端子電圧を計測する電圧計測手段と、
二次電池に流れる電流を計測する電流計測手段と、
前記電圧供給手段から二次電池への印加状態を切り換える電圧切換手段と、
二次電池の蓄電容量を算出する蓄電容量算出手段とを具備してなり、
前記電圧供給手段から電圧が印加された状態で、前記電圧計測手段により二次電池の印加時電池端子電圧(VON)と、前記電流計測手段により二次電池の印加時電流(JON)とをそれぞれ計測し、
前記電圧切換手段を切り換えて二次電池に印加される電圧を遮断して、二次電池の開回路電池端子電圧(VOFF)を計測し、
前記蓄電容量算出手段にて、印加時電池端子電圧(VON)、印加時電流(JON)、及び開回路電池端子電圧(VOFF)を用いて下式で示される二次電池の蓄電容量(Q)を算出することを特徴とする二次電池の蓄電容量検出装置。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数
である。 In the secondary battery storage capacity detection device that detects the current storage capacity of the secondary battery,
Voltage supply means for applying an external voltage (V a ) equal to or higher than the electromotive force (E) to the secondary battery;
Voltage measuring means for measuring the battery terminal voltage of the secondary battery;
Current measuring means for measuring the current flowing in the secondary battery;
Voltage switching means for switching the application state from the voltage supply means to the secondary battery;
A storage capacity calculation means for calculating the storage capacity of the secondary battery;
In a state where a voltage is applied from the voltage supply means, a battery terminal voltage (V ON ) when the secondary battery is applied by the voltage measurement means, and a current (J ON ) when the secondary battery is applied by the current measurement means Measure each
Switching the voltage switching means to cut off the voltage applied to the secondary battery, and measuring the open circuit battery terminal voltage (V OFF ) of the secondary battery,
The storage capacity of the secondary battery expressed by the following equation using the battery terminal voltage (V ON ) when applied, the current (J ON ) when applied, and the open circuit battery terminal voltage (V OFF ) by the storage capacity calculation means (Q) is calculated, The storage capacity detection apparatus of the secondary battery characterized by the above-mentioned.
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
二次電池に起電力(E)以上の外部電圧(Va)を印加する電圧供給手段と、
二次電池の電池端子電圧を計測する電圧計測手段と、
二次電池に流れる電流を計測する電流計測手段と、
前記電圧供給手段から二次電池への印加状態を切り換える電圧切換手段と、
二次電池の蓄電容量を算出する蓄電容量算出手段とを具備してなり、
二次電池を充電する際に、
前記電圧供給手段から電圧が印加された状態で、前記電圧計測手段により二次電池の印加時電池端子電圧(VON)と、前記電流計測手段により二次電池の印加時電流(JON)とをそれぞれ計測し、
前記電圧切換手段を切り換えて二次電池に印加される電圧を遮断して、二次電池の開回路電池端子電圧(VOFF)を計測し、
前記蓄電容量算出手段にて、印加時電池端子電圧(VON)、印加時電流(JON)、及び開回路電池端子電圧(VOFF)を用いて下式で示される二次電池の蓄電容量(Q)を算出することを特徴とする二次電池の充電器。
Q=K×JON/(VON−VOFF)
但し、K:電池の種類によって決定される定数
である。 In a secondary battery charger that charges a secondary battery by applying a voltage,
Voltage supply means for applying an external voltage (V a ) equal to or higher than the electromotive force (E) to the secondary battery;
Voltage measuring means for measuring the battery terminal voltage of the secondary battery;
Current measuring means for measuring the current flowing in the secondary battery;
Voltage switching means for switching the application state from the voltage supply means to the secondary battery;
A storage capacity calculation means for calculating the storage capacity of the secondary battery;
When charging the secondary battery,
In a state where a voltage is applied from the voltage supply means, a battery terminal voltage (V ON ) when the secondary battery is applied by the voltage measurement means, and a current (J ON ) when the secondary battery is applied by the current measurement means Measure each
Switching the voltage switching means to cut off the voltage applied to the secondary battery, and measuring the open circuit battery terminal voltage (V OFF ) of the secondary battery,
The storage capacity of the secondary battery expressed by the following equation using the battery terminal voltage (V ON ) when applied, the current (J ON ) when applied, and the open circuit battery terminal voltage (V OFF ) by the storage capacity calculation means (Q) is calculated, The battery charger of the secondary battery characterized by the above-mentioned.
Q = K × J ON / (V ON −V OFF )
Where K is a constant determined by the type of battery.
The secondary battery charger according to claim 4, further comprising display means for displaying a storage capacity of the secondary battery and a soundness degree indicating a deterioration state with respect to a charge / discharge cycle of the secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007205803A JP2009041998A (en) | 2007-08-07 | 2007-08-07 | Method and device for detecting storage capacity of secondary cell, and the charger of secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007205803A JP2009041998A (en) | 2007-08-07 | 2007-08-07 | Method and device for detecting storage capacity of secondary cell, and the charger of secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009041998A true JP2009041998A (en) | 2009-02-26 |
Family
ID=40442898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007205803A Pending JP2009041998A (en) | 2007-08-07 | 2007-08-07 | Method and device for detecting storage capacity of secondary cell, and the charger of secondary cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009041998A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636805A (en) * | 1992-07-17 | 1994-02-10 | Nippon Soken Inc | Detector for remaining capacity of battery |
JPH0935756A (en) * | 1995-07-20 | 1997-02-07 | Nippon Soken Inc | Charging device |
JP2005010032A (en) * | 2003-06-19 | 2005-01-13 | Hitachi Maxell Ltd | Battery remaining amount detection method, small electric device using the method, and battery pack |
-
2007
- 2007-08-07 JP JP2007205803A patent/JP2009041998A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636805A (en) * | 1992-07-17 | 1994-02-10 | Nippon Soken Inc | Detector for remaining capacity of battery |
JPH0935756A (en) * | 1995-07-20 | 1997-02-07 | Nippon Soken Inc | Charging device |
JP2005010032A (en) * | 2003-06-19 | 2005-01-13 | Hitachi Maxell Ltd | Battery remaining amount detection method, small electric device using the method, and battery pack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108603918B (en) | Device and method for testing performance of battery cell | |
US11456610B2 (en) | Internal short sensing battery control apparatus and battery control method | |
TW202014723A (en) | Battery control apparatus and method for detecting internal short of battery | |
JP6155830B2 (en) | State estimation device and state estimation method | |
JP6527356B2 (en) | Secondary battery deterioration detection system, secondary battery deterioration detection method | |
Kirchev | Battery management and battery diagnostics | |
US10218036B2 (en) | Battery pack, electrical device, and control method therefor | |
JP6379956B2 (en) | Storage element abnormality determination device | |
KR20170062765A (en) | Apparatus method for defect detecting of the battery cell by unknown discharge current | |
CN104698385A (en) | Cell state calculation apparatus and cell state calculation method | |
JP6749080B2 (en) | Power storage system, secondary battery control system, and secondary battery control method | |
JP2001292534A (en) | Deterioration determination device for lithium ion battery | |
WO2017169088A1 (en) | Remaining life estimation device of lithium ion secondary battery | |
JP2012202851A (en) | Deterioration measurement device, secondary battery pack, deterioration measurement method, and program | |
JP6694462B2 (en) | How to test semi-finished battery cells | |
JP2020079764A (en) | Secondary battery status determination method | |
JP2014109535A (en) | Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method | |
WO2019058666A1 (en) | Secondary battery deterioration detection system | |
JP2003111289A (en) | Secondary battery power supply system | |
JP2008292272A (en) | Method of predicting voltage of electric storage device | |
WO2015059738A1 (en) | Secondary battery control apparatus and secondary battery control method | |
JP2013029445A (en) | Battery management device and power supply system | |
KR102538238B1 (en) | Apparatus and method for estimating state of charge according to battery voltage in steady state | |
JP5794089B2 (en) | Battery control device | |
JP5625282B2 (en) | Battery deterioration determination device and battery deterioration determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120131 |